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Ûber Interpolation ganzer Funktionen

Von A. Pfluger, Freiburg

Einleitung

1. Die Arbeit entstand im AnschluB an folgendes Résultat:

Satz A. Genûgt die ganze Funktion G(z) den Bedingungen

sup
lQg f(r) < JL M(r) Max | G(re<») |

K m,w 0 ±1, ±2,... (1.2)

50 ist G{z) notwendig eine Konstante1).

Der Beweis gelingt auf einfachste Weise2) mit Hilfe der Interpolations-
formel3)

G(z) a(z) Z —— —. G(m + in)

wo a(z) die Weierstrafl'sGhe cr-Funktion mit den Fundamentalperioden 1

und i bezeichnet.
Es ist naheliegend zu vermuten, daB die starre Bedingung (1.2) durch

eine freiere ersetzt werden darf. Anstatt der Gitterpunkte m + in be-
trachtet deshalb B.J. Maitland*) die zugehôrigen Quadrate Qmfn mit
den Endpunkten m + in, m + l-\-in, m + l + i(n + l), tw-~j-i(^-j- 1)

und greift aus jedem (?m n irgend einen Punkt am n heraus, — jedoch so,

*) Ein erstes Résultat in dieser Richtung wurde bewiesen von J.M. Whittaker (Fiat
régions of intégral functions, Proc. Edinburgh Math. Soc. 2 (1930), 111—128).
Ein Satz von G. Pâlya (Bemerkung zu der Aufgabe 105, Jahresber. d. Deutsch.
Math. Ver., 43 (1933), 67—69) unterscheidet sich vom vorliegenden dadurch, dafi die
rechte Seite von (1.1) durch null ersetzt wird. Satz A wurde gleichzeitig und mit ver-
schiedenen Methoden bewiesen von V.Ganapathy Jyer (A note on intégral functions

of order 2 bounded at the lattice points. Journal London Math. Soc, 11

(1936), 247—249) und vom Verf. (On analytic functions bounded at the lattice
points, Proc. London Math. Soc, 42 (1937), 305—315).

a) Aus der Interpolationsformel folgt | G(z)\ < K in einer Umgebung von z 0. Mit
G(z + M + iN), M, N 0, ± 1, ± 2, an Stelle von G(z) folgt \G(z)\ < K in einer
Umgebung von z M + iN'.

8) Vgl. G. Pélya, loc. citât. ; mit anderer Bezeichnung wurde die Formel erstmals von
J. M. Whittaker (loc. citât) bewiesen.

4) Vgl. B.J. Maitland, On analytic functions bounded at a double séquence
of points, Proc. London Math. Soc, 45 (1939) 440—457.

314



da8 die am,n, nach wachsenden Betrâgen geordnet und gleich av,v
1, 2, 3, gesetzt, der Bedingung [a^ — av\ > ô> 0, [t ^ v, geniigen.
Unter Voraussetzung (1.1) gilt dann entsprechend

7i'{av) (z— av)
(1.3)

wenn n (z) eine ganze Funktion mit den ax, a2, av, als einfachen
Nullstellen, also im wesentlichen das kanonische Produkt tiber die Stellen
av bedeutet. Ist die ganze Funktion O(z) tiberdies in den Interpolations-
stellen av gleichmàBig beschrânkt, so ist sie notwendig eine Konstante.
Letzteres beweist B. J. Maitland mit einer SchluBweise von G. Jyer5),
welche deutlich zeigt, daB nur die Gultigkeit einer Interpolâtionsformel
der Fofm (1.3) und eine feste Schranke fur die ganze Funktion in den

interpolierenden Stellen wesentlich sind. Damit ist ein bestimmtes Interpolât

ionsproblem gestellt.
Um die Besonderheit der Problemlage klarzustellen, betrachten wir

kurz den allgemeinen Fall:

A. Konstruktionsproblem: Gegeben sei in der z-Ebene eine Stellen-

folge alf a2, avi mit av->oo(v-+oo) und eine beliebige Wertfolge
Ax, A2, Av, Oesucht wird eine ganze Funktion O(z) mit G(av)

Av,v= 1,2,3,...
Die Lôsung lautet

—)kvG(z) n(z). z „ ;——(—)w w vtx 7t'(av) (z — av) \av)

Dabei ist 7t(z) eine ganze Funktion mit den av als einfachen Nullstellen.
Die kv sind ganze Zahlen und streben im allgemeinen mit v gegen un-
endlich, um die Konvergenz sicher zu stellen (konvergenzerzeugende
Faktoren). Im AnschluB an (1.3) lautet unsere Frage: Wie ist die
Stellenfolge zu wâhlen, damit kv 0, v 1, 2, 3, gesetzt werden darf?
Offenbar dûrfen die nf(av) gegenuber den Av nicht zu klein werden. Dies
stellt aber an die Stellenfolge gewisse Bedingungen und es ist unsere
Aufgabe, dièse Bedingungen zu untersuchen.

Vorangehend ist die Wertfolge gegeben und die zugehôrige ganze
Funktion gesucht. Eine engere Fassung des Problems, und um dièse

handelt es sich hier, ist die folgende:

6) Vgl. hiezu V. Oanapathy Jyer, Some theorems on intégral functions
bounded at séquence of points, Proc. London Math. Soc. 43 (1937) 63—72.
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B. Darstellungsproblem : Vorgegeben ist eine ganze Funktion von
bestimmtem Wachstum. Wie ist die Stellenfolge zu wâhlen, damit die ganze
Funktion durch die Interpolationsformel (1.3) darstellbar ist?

Um das Wachstum der ganzen Funktion genauer erfassen zu kônnen,
betrachten wir reellwertige Funktionen q (r) mit folgenden Eigenschaften :

1. Die Rechts- und Linksableitungen von g(r) existieren im Intervall
(0, oo) und stimmen dort stuckweise ûberein.

2. Es gilt
lim g(r) q

r->oo
und

lim ç'(r) • r • log r 0
r-> oo

wenn fur ql(r) die Rechts und Linksableitungen eingesetzt werd'en; und
definieren: Eine ganze Funktion von der Ordnung q ist von pràziser
Wachstumsordnung g(r), wenn der Ausdruck r~^r) • log M(r) filr
r -> oo eine positive obère Grenze besitzt6). Die Funktion

h((p) lim sup r-«<r>. log | G{reiq>) \

miBt dann das maximale Anwachsen von \G(z)\ làngs der Strahlen

arg z çp und heiBt Strahltypus von G(z) bezûglich der Wachstumsordnung

g(r)7).
Damit prâzisiert sich unsere Aufgabe dahin: Gegeben sei eine ganze

Funktion G(z) von pràziser Wachstumsordnung g(r) mit dem Strahltypus

h(q>). Wie ist die Stellenfolge {av} zu wâhlen, damit G(z) durch die

Interpolationsformel (1.3) darstellbar ist? Hierzu haben sowohl n(z) als
auch die nr(av) bestimmte Forderungen zu erfûllen. In den Nr. 14 und
Nr. 18 wird gezeigt, da8 folgende drei Bedingungen geniigen:

a) log \n{rei(p)\ ist ,,fast uberall" von der GrôBenordnung H(<p)

b) log Iot^)! und H(<pv) • rfTv\ av rvei<pv sind asymptotisch gleich.

c) Es ist h{<p) < H(<p) fur aile <p.

Dabei ist ç(r) die pràzise Ordnung von G(z) und H(q>) der dies-

bezûgliche Strahltypus von n(z),

e) Vgl. G. Valiron, Lectures on the gênerai Théorie of intégral funetions,
Toulouse, Edouard Privât, 1923, insbes. S. 64—67.

7) Die Eigenschaften dieser Funktion wurden erstmals von E. Phragmén und E. Lindelof
(Sur l'extension d'un principe classique de l'analyse et sur quelques
propriétés des fonctions monogènes dans le voisinage d'un point singulier,

Acta Math. 31 (1908)) untersueht»
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Aus diesen Forderungen resultieren die Bedingungen fur die av; denn
letztere bestimmen jz(z). Dadurch konzentriert sich aber unsere ursprung-
liche Aufgabe auf folgendes: Es sind Nullstellenverteilungen zu finden,
deren zugehôrige kanonische Produkte den obigen Bedingungen (a) und (b)

(und (c) genugen,
Wir erledigen die Aufgabe in zwei Schritten. Zunachst suchen wir

solche Nullstellenverteilungen, deren kanonische Produkte den
Bedingungen (a) genugen. Dièse Aufgabe ist fur nichtganze Ordnungen in einer
fruhern Arbeit8) vollstandig gelôst worden. Pur ganze Ordnungen ist die
Aufgabe bedeutend schwieriger und wird im folgenden Abschnitt A be-
handelt werden, allerdings nur fur ganze Funktionen vom Mitteltypus
einer ganzen Ordnung, q(t) q. In beiden Fallen druckt sich die Bedin-
gung fur die Nullstellenverteilung in einer Art ,,MeBbarkeit" aus, die
allerdings bei ganzer Ordnung scharfer zu fassen ist9). In einem zweiten
Schritt suchen wir die Bedingungen (a) und (b) zu erfullen, indem wir die
Forderung der MeBbarkeit noch durch eine zweite erganzen, die wir mit
dem Wort ,,unverdichtet" benennen und in Nr. 15 genau umgrenzen
werden.

Die Hauptresultate uber ganze Funktionen mit ganzer Ordnung und
mefîbarer Nullstellenverteilung sind in Satz 1 (Nr. 2) und Satz 2 (Nr. 10)

zusammengefafit, jene uber Interpolation in Satz 4 bis Satz 7 (Nr. 18

bis Nr. 20). Als Anwendung unserer Resultate wird die Erweiterung von
Satz A vollzogen10).

8) A. Pfluger, Die Wertverteilung und das Verhalten von Betrag und
Argument einer speziellen Klasse analytischer Funktionen, Comm. Math
Helv. Vol. 11 (1938), 180—214 und Vol. 12 (1939/40), 25—65. Dièse Arbeit wird im folgenden

mit P zitiert.
9) Bezughch des Begnfïes ,,mefîbar" vgl. P, 1. Teil, Nr. 11 und Nr. 2 der vorhegenden

Arbeit
10) Wie nur kurzhch durch ein Référât m der Mathematical Reviewa bekannt wurde,

hat sich B. Lév%ne in semer Arbeit „ Sur certaines applications de la série d'in-
terpolation de Lagrange dans la théorie des fonctions entières" (Rec
Math. (Mat. Sbornik) N. S 8 (50), 437—454 (1940), russiseh mit franzosischem Auszug)
mit demselben Interpolationsproblem beschâftigt. Soweit ich dem Référât entnehmen
konnte, durften unsere Resultate fur ganze Funktionen emer mchtganzen Ordnung wenig
von einander verschieden sem. Im Falle ganzer Ordnung verlangt B. Lévine neben der
MeÛbarkeit, dafi die av e1****! Q (m 1, 2, q—1) m den \av\ enthalten seien. Es war
nun gerade ein Hauptziel memer vorliegenden Arbeit (Abschnitt A) bei ganzer Ordnung
von solchen starren Symmetriebedingungen frei zu werden und nur mit asymptotischen
Forderungen auszukommen. In der Tat genugt es, neben eine etwas schârfere Art von
MeÛbarkeit (2.5) die nur asymptotische Gleichgewichtsforderung (2.4) zu setzen.
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A. Ganze Funktionen
von ganzer Ordnung mit mefibarer Nullstellenverteilung

2. Problem und Hauptsatz.
Wir nennen eine Verteilung von Stellen dann meBbar bezuglich

einer pràzisen Wachstumsordnung g(r), wenn fur irgend zwei
Stetigkeitsstellen einer monoton wachsenden und beschrânkten Funktion
N(<p)

\n(t;<p',<p»)- (N((p")-N(<pf))t^\=o(t«i% t > 0 «) (2.1)

ist. Dabei bezeichnet n(t;<pf,(p/f) die Anzahl der Stellen im Sektor
\z\^tt> <p'^ &rgz<(p;'; N(q?) heifit MaBfunktion der Stellenver-
teilung12).

Jede ganze Funktion G (z) mit nichtganzer Ordnung q und meBbarer
Nullstellenverteilung verhâlt sich asymptotisch regulâr, d. h. es gilt
fur jedes <p

lim* r-<?<r).iOg \0{rei9) | A(?>) (2.2)

oder m. a. W. der Ausdruck hinter lim* strebt gegen den Strahltypus,
wenn r auf einer geeigneten Menge von linearer Dichte 1 gegen Unendlich
strebt13).

Umgekehrt, verhâlt sich eine ganze Funktion mit beliebiger prâziser
Wachstumsordnung g(r), g(r)->g, asymptotisch regulàr, so ist ihre
Nullstellenverteilung mefibar bezuglich g(r) und es besteht zwischen Strahltypus

und MaBfunktion die Beziehung

2n-dN((p) Qh(<p)d<p + — dh'(<p) (2.3)

Bei ganzer Ordnung q besitzen die Nullstellen uberdies eine Art Gleich-
gewichtseigenschafb, die sich im Bestehen der beiden Gleichungen

/cos Q0.dN(0) 0 Jsin Qd.dN(0) 0 (2.4)
0 0

ausdrûckt14).

n) Hier und im folgenden bedeutet die Gleichung f(r) — O(q>{r))t daû der Quotient

-^-^ bei y->«oo von einer gewissen Stelle an beschrânkt bleibt; f(r) o(cp(r)) dagegen
*<r> f(r)
besagt, dafi lim —y~ 0 sei. Insbesondere bezeichnet 0(1) eine Grôûe, die bei r~>oc

beschrânkt bleibt; dagegen o(l) eine solche, die bei r->oo gegen Null strebt.
12) Vgl. Anm. 9.
18) bezuglich ,,Menge von linearer Dichte 1*' vgl. P, 1. Teil, S. 195.
M) Vgl. P, 2. Teil, insbes. Satz 15 und Nr. 37.
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Um letzteres Résultat umzukehren, geniigen der obige Begriff der
MeBbarkeit und die Forderung der Gleichgewichtseigenschaft (2.4) nicht.
Es ist vielmehr eine schârfere Fassung des Begriffes ,,meBbar" notwendig.
Wir nennen eine Verteilung von Stellen meBbar im engern Sinne
beziiglich einer ganzen Ordnung g, wenn fur irgend zwei Stetig-
Jceitsstellen einer monoton wachsenden Funktion N((p)

\n(t ; <p'y) — (N(iP'r)-N(<p'))*\<K-o(t) t>0
(2.5)

t* fur 0<t<e
o(t)

tfi (log t)~2~B, e > 0 fur t^e
gilt. Mit N{2n) — N(0) D und n(t ; 0, 2n) n(t) ist dann auch

\n(t) - Dt*\<K • o(t), t> 0 (2.6)
Hiernach gilt

Satz 1. Ist eine Nullstellenverteilung mefibar im engern Sinne beziiglich
der ganzen Ordnung g(r) und erfûllt ihre Maflfunktion N(q>) die Gleich-
gewichtsforderung (2.4), so gilt fur dos Weierstrafi'sche kanonische Produkt

lim* r~« • log | Il(reiq>) | H(<p) X cos (pç? -f p<%) + %>) (2.7)

Dabei ist
1

— A6 K — lim £t Mu \^«°)
und *

27T

h{<p) — J 0 sin £<p • d #(^ + 0) (2.9)
o

Bemerkung : Wie spàter gezeigt werden wird (Nr. 9 und 10), gilt
zwischen N(<p) und h(cp) in (2.7) die Beziehung (2.3).

Die Abânderung endlich vieler Nullstellen hat auf das Résultat keinen
EinfluB.

Im ganzen folgenden Abschnitt A (Nr. 3 bis 11) wird unter q immer
eine positive ganze Zahl verstanden.

3, Beweisanlage fur Satz 1.

Der Beweis dièses Satzes scheint zunâchst deshalb besondere Sohwie-

rigkeiten zu bieten, weil im kanonischen Produkt
1 -- ¦ .+±UQ

Q

FI(z) 77 e(-?~ q) E(u q) (1 — u)
/i=i \ top /
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jede einzelne Nullstelle einen Beitrag von der Ordnung q liefert. Ânderung
einer einzigen Nullstelle bewirkt also eine Stôrung von der Ordnung q und
es geniigt deshalb nicht nur das asymptotische Verhalten der Nullstellen
zu betrachten. Aber zufolge der Gleichgewichtseigenschaft (2.4) und der
MeBbarkeit im engern Sinne ist es môglich, den individuellen und den
asymptotischen EinfluB der Nullstellen voneinander zu trennen. Es gilt
nàmlich

Lemma 1. Unter den Voraussetzungen von Satz 1 existiert

lim Z a~Q que**" =- qa (3.1)

Wir kônnen daher schreiben

nr (i-£lim n e"x > • lim
R-**qq la^l^R R+oo

oder
77(2) eazQ • n(z) (3.2)

Es beschrânkt sich also der EinfluB der Nullstellen auf den harmlosen
Exponentialfaktor easQ, wâhrend auf den zweiten Faktor nur das
asymptotische Verhalten der Nullstellenverteilung einen EinfluB hat. Denn dort
ist jeder einzelne Faktor von der Ordnung q — 1. Es bleibt somit die
Aufgabe, das asymptotische Verhalten der ganzen Funktion

\
— q — il (3.3)
H I

zu untersuchen. Offenbar konvergiert das Produkt (3.3) nur bedingt.
DaB es ûberhaupt konvergiert, beruht wesentlich auf der MeBbarkeit im
engern Sinne und der Gleichgewichtseigenschaft (2.4), sowie des konzen-
trischen Einfangens der a^ beim Grenziibergang. Das Produkt uber irgend
eine Teilfolge der a^ braucht nicht mehr zu konvergieren.

Zur Lôsung der Aufgabe beweisen wir zunâchst folgenden Spezialfall:

Lemma 2. Sei arg z ç> irgend eine feste Richtung und der Winkelraum
|arg z — <p\<rj, rj>0 von Nullstellen frei. Im ûbrigen erfûlh die
Nullstellenverteilung die Voraussetzungen des Satz 1. Dann gilt filr (3.3)

2

lim r-« log | n(rei<p) \ h{q>) — J Q sin qO dN(<p+0) (3.4)
f->oo 0
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Um von hier zum allgemeinen Saehverhalt vorzustoBen, benôtigen
wir15)

Lemma 3. Sei die ganze Funktion 0(z) vom Mitteltypus der Ordnung q
und h{(p) ihr Strahltypus. Gilt im offenen Winkelraum —oc<(p<-\-oc

lim r-<? log\G(re**) \ h(<p)

so gilt fur die Grenzstrahlen <p ± <x

lim* ir* log \G(re±ioc) | h(±oc)
r->oo

Ferner

Lemma 4. Oegeben sei eine Nullstellenverteilung V, die den Voraus-
setzungen des Satzes 1 genilgt. Fur jede feste Michtung y lafit sich V durch
eine Verteilung Vf zur Verteilung F* ergânzen und die letztere in zwei
komplementâre Verteilungen V1 und V2 zerlegen, derart, dafi

1. aile Verteilungen F', F*, V1 und F2 den Voraussetzungen des Satzes 1

geniigen,

2. die Verteilung V in |arg z — q?\ < e, die Verteilung Vx in
<p — e < arg z ^ q? und die Verteilung F2 in cp < arg z <; q> + e

nullstellenfrei ist.

Bezeichnen wir nun die zu F, V, F*, Fx und F2 gehôrigen MaB-
funktionen mit N, Nf, N*9 Nt und N2 und die zugehôrigen kanonischen
Produkte mit tz, n', n*, nx und rc2, so gilt

m* n ' nf nx • tz2 (3.5)
und

N* N + N' N1 + N2. (3.6)

GemâB Lemma 2 und Lemma 3 ist nun

lim* r-Q -log |%(re^) | — J 0 sin Q0 -dNiicp + O) i==l,2,
f->oo 0

und daher

lim* r-* log | rc*(re*>) | — J 6 sin ^ 6 • ^(^(y + fl) + ^i(9 + fi)) •

Hoo 0

15) Vgl. P, 1. Teil, Np. 8.
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Nach Lemma 2 gilt

lim • log | n'ire**) | — J 0 sin £0 diV'(ç> + 0)
0

und daher

lim* 7i*(reitp) 27T

— J 0sine0.

schlieBlich nach (3.5) und (3.6)

lim* r-« • log | rc(re*») | — J 0 sin £0 • di%> + 0)
f->-oo 0

Daraus folgt aber in Verbindung mit (3.2) die Behauptung des Satz 1.

4. Beweis von Lemma 1.

Es seien irgend zwei beliebig groBe Radien R' und R" > 2R' gegeben.
Wir wàhlen eine Zahl c und eine ganze Zahl m mit

2<c<4 und R" cmRr (4.1)

und betrachten die zugehôrige Folge

Rr Rly jRv+1 cRv> v 1, 2, 3, m Rm+1 i2/;
Setzen wir

8(R'9 R") - Z a-*
Br<z\On\<:R*

und

so wird

', iT) 2 Av (4.2)
l

Zur Abschàtzung von u4v teilen wir die z-Ebene in kv Winkelrâume ein
von maximaler Ôfifnung àv — zwei GrôBen, die wir spàter festlegen
werden. Ihre Schenkel argz 01, 02, 0k 6k +1 01 + 2jc seien

Stetigkeitsstellen von N(cp), so daB gemàB (2.5)

\n(t;6j9eM)-{N(dM)^N(dj))^\<Ka(t)9 t>0 ,=1, 2, ...,&„. (4.3)

Setze -^(0j+i) — ^(0/) ^i- Dann existiert gemàB dem Mittelwertsatz
der Integralreehnung in jedem Intervall (0i? 0i+1) eine Richtung ç?i, so
daB wegen (2.4)

Z dj cos q<pj 0 und 27 d; sin ^ç?, 0 (4.4)
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Jene Nullstellen a^, die im Winkelraum 6, < arg z < 6i+1 gelegen sind,
drehen wir um 0 auf den Strahl arg z (pi und bezeichnen dièse neuen

e*Stellen mit 6^ r^e*1 Fur ihre Anzahlfunktion gilt

und daher

\n3(t)-drt«\<K.o(t), t>0, j l,2,...,^. (4.5)
Wir setzen

und
l fest

(4.6)

(4.7)

Zwischen jedem a^ im Winkelraum (03, 0m) und dem zugehôrigen
6^ besteht nun die Ungleichung

und daher insgesamt

\AV—
7=1

4-8)

%VjWegen (4.6) und b^ r^ • e%Vj ist nun

dt

/dt nAt)—dA*

Weiter folgt gemaB (4.5)

n,(t) — dj tfi

log Rv

und schlieBlich aus (4.1) und (2.5)

<K + a{t)dt
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— edte ie*i ¦ log c | <K(2 + Q log 4) (log Bv)-2~e, (4.9)

j= l,2,...,kv
Entsprechend gilt wegen (4.7) und (2.5) r 1,2,..., m

\Cy-eDlogc\<K(2 + Qlog±)(logRv)-2-*, »=l,2,...,m (4.10)

Die Addition der Ungleichungen (4.9) unter Beriicksichtigung von (4.4)
ergibt t

Daher wird aus (4.8) in Verbindung mit (4.10)

\AV\ < e2Dlog4 • ôv + (kv + 2nQ) ^ (log R,

Nun wâhlen wir o

{v log 2 + log RlY+*l*
und

2tzq< kv< 2(v log 2 + log JS/)1+£/2, Rr genûgend groB.

Dann wird wegen Rv ^ 2V R!

K'\A
(v log 2 + log i?')1+e/2 ^ (v log 2 + log 2?')1+e/2 '

\ AV\<K" (log B')—l* .or-1-^, v= 1,2,..., m
m oo

Nun ist 27 r""1""^4 < 2* *>-1-£/4= C und daher

in Verbindung mit (4.2)

I O(2l XV I < K * (lOg M ' (4:.

Da abér jf^ von î?7 und Rn unabhângig ist und (4.11) fur aile R">2R!
gilt, so ist hiedurch Lemma 1 bewiesen.

6. Beweis von Lemma 2.
Die Zahl r > e10 sei beliebïg vorgegeben. Wir betrachten die zugehôrige

Folge
0==^?!, jRa^r3, Rv+1=rRv, v 2, 3, 4, (5.1)

und setzen

Av(z) log i7_ J5^—, g —lj y=l,2,... (5.2)
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Dann ist 16) ^
log n (z) Z Av (z) (5.3)

Zur Abschàtzung von Av(z) wird der Winkelraum (p + rj ^ arg z ^
y -\- 2n — rj eingeteilt in kv kleine Winkelrâume von maximaler Ôffnung
ôv. Die Wahl ihrer Schenkel arg z Q^j — 1? 2, kv + 1, 0X ç? + rjy

6kv+i y + 2tz — rj und der Richtungen arg z q)j im Intervall
(0,-, 0,+i) treffen wir entsprechend wie in Nr. 4, so da8, unter Beibehaltung
der dortigen Bezeichnungen, (4.3) und (4.4) erfullt sind. Wieder drehen
wir die Nullstellen a^ im Winkelraum 0, ^ arg z < 0M um 0 auf den
Strahl arg z yi9 so da8 die Anzahlfunktion der b^ (4.5) erfullt. Wir
setzen

; fest

Bezeichnet C^ jenen Bogen, der ein a^ im Winkelraum 0^< argz< 0i+1

mit dem entsprechenden b^ verbindet, so besteht zwischen den beiden

entsprechenden Weierstrafl'schen Primfaktoren E l—, g — 1) und
/ z \ \a^ I

E \-Tr) > Q — 1) die folgende Beziehung

Mit z rei<p und f ^c*0 ist wegen |ç? — arga^] ^ rj

I f ~ A ^ (r + t)sïn rjfe ^ rç/4 (< + r), 17 < ^7/3 (5.6)

und daher das Intégral der letzten Seite von (5.5) wegen 0m — 0i ^ ôv

absolut kleiner als 4 —- • —j^j- —.

16) Es ist zu beachten, daû infolge (2.5) der Ursprung nullstellenfrei ist. Dièse Ein-
schrânkung wurde aus beweistechnischen Grunden vorgenommen. Im ûbrigen hat die
Abânderung von endlich vielen Nullstellen auf das Résultat keinen EinfluÛ.
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Also insgesamt, gemâB (5.2) und (5.4)

I Ar(re^) — i " Bv < Tfj, <

r« n (t)

r)
dt

Wegen (2.6) und a (t) ^ t* ist das erste Glied der rechten Seite kleiner als

8 — (D + K) r^. Der Differentialquotient unter dem Integrakeichen

ist negativ, sein absoluter Betrag kleiner als Der Betrag des

Intégrais selbst also kleiner als 3 q (D + K) r« log r. Folglich ist

5v-JL • JTt* log r (5.7)

6. Zur Abschàtzung der B^\z) betrachten wir vorerst den Fali, da8
aile Stellen b^ auf der negativen reellen Achse liegen und ihre Anzahl-
funktion n(t) der Bedingung

genûgt. Mit

\n(t)-dte\<Ko(t) t>0,
— r^ wird dann 17)

(6.1)

V+1

n (t) • dt

V+1

(6.2)

r
J

17) Weil der Ursprung keine Nullstelle ist, und die WeierstraÛscheu Primfaktoren E
von der Ordnung q — 1 sind, haben aile nachfolgenden Ausdrûcke auch fur t 0 einen
Sinn oder es existiert ein Grenzwert fur t ->- 0
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Wir setzen

und

jv (r) Max a (t)
\z\ r j r<*o(t) -dt

.3)

Ry (6.4)

Aus (6.4), (6.3), (6.2), (6.1) und (5.6) (wir setzen | y |< n — r\ voraus)
folgt dann

n ' ~~r

Zur weitern Abschâtzung der Ausdriicke J und / formen wir folgender-
mafien um

zfi

Wegen (5.1) und log 11 + u\ < K\u\ fur \u\

rQ log r«cos Q<p -f r^

log r» cos Q(p + fc"~

^=2,3,...
weiter

Aus

log E (—4" » 6 — M ^ " ("7"

folgt in Verbindung mit (5.1) 18)

iJu4.i \)Q-l

fur

und gemâB (2.5)

Max a(t) •

n 2,3, (6.7)

y 1,2,3,
18) Es ist zu beachten, daû die linken Seiten von (6.7) und (6.8) mit t gegen null

streben.
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Ferner gilt

Setzen wir nunnun

(— l)*""1 • r* | 12 log r -\ 1 cos q q> + <p sin q <p

(6.9)

(6.10)

so

[— l)*-1. r* log r

folgt aus (6.10), (6.7), (6.6), (6.3) und (6.9), (6.8), (6.4)

\Jv(z) - #,(*)!<*! •**-", v 1, 2, 3,

und

y» < 2ZVc(logr)-1-8 • (v + 1)"2"£ v 1, 2, 3,

Und endlich, wegen rv > (v + l)2+£ • (log r)1+c fur r > c10, 0 < e < 1, in
Verbindung mit (6.5)

fur 121 > e10 und | arg z \ < n — rj

7. Kehren wir nun zur Situation der Nr. 5 zuruck. GemàB (6.11) gilt19)

— r*(log r) B-(v + 1) >

;== 1,2,..., *„
y= 1,2,3,..-

und daher

hv

Zufolge (6.10) und (4.4) ist aber

: — Kr*(logr) •(

;= 1,2,3,... (7.1)

— tq £ dj | (p — q>j\ ' sin q | (p — <

0 v 2, 3, 20) (7.2)

19) Die Winkel g> und cpj sind jedenfalls so zumessen, dafi 0< | cp — q>$ | ^ 2 ^p ist.
20) Die Richtungen g>y und die zugehôrigen dj sind von v abhângig. Zu jedem Wert

von v gehôrt eine besondere Einteilung. Mit cp'x cp'%,..., ç>^ (^ ^2 » • • • » ^* fe0550^!1"

nen wir jetzt die speziell zu v » 1 gehôrige Einteilung. Dièse hângt natùrlich wieder
von r ab.
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Sei nun Nr(6) d[ + d'z + ¦ • • + dj fur $ < 0 < <p'i+1, sodafi

ftir 9 # ^ ' ^ ' ' ' ' ' î"*i '

d] fur 0 ç?J

Setzen wir das Differential dNr(<p) periodisch iiber das Intervall (0, 2n)
hinaus fort und beachten wir, daB dNr(cp + 6) dj fur 6 ç^ —- ç?

dNr(0)

(mod 2rc), sonst aber Null ist, so wird nach (7.2)

11/1"^) —re f esin^e.d^r(ç> + 0) (7.3)
o

Aus (7.3), (7.2), (7.1) und (5.7) folgt aber

2 7T TTff

$ 0 8inQd-dNr(ip + 6)\< — r«{ô± log r + ^ (logr)"1"6. 2-2
o *?

^ rc {<5vlogr + kv (logr)-1-.(v+ 1)-»-} y 2, 3,...

und daraus nach (5.3)

\og\n (re**) | + r«? / 0 sin e9 • rf^r(y + 6) \

o (7.4)

^ + (lOg r)-i-.. ^ *r (» + l)-2-8}

Nun wàhlen wir

ôv<27z(loër)-1-el2.(v+ir1-el2 »=1,2,...
und

fc, > 2 (log r)1+c/2 • (v + l)1+£/2 v 1, 2,

Daher wird die rechte Seite von (7.4) kleiner als r* (log r)~c/2.

Die Treppenfunktion -Wr(0) strebt aber mit r->oo gegen N(0), da die
Einteilung çj + r\ ç?(, (p'2,..., 9^+1 9? + 2tt — 77 bei r->oo beliebig
fein wird. Es gilt also

lit 27T

sin qO • dNf{q> + 6) r<* J0 sin ^6 • di% + 0) + 0(r«) 21)

und daher
2TT

0

womit Lemma 2 bewiesen ist.

21) Vgl. Anm. n).
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8. Beweis von Lemma 4.
Es bedeutet keine Einschrànkung der AUgemeinheit, q> 0 voraus-

zusetzen. Es sei ferner 0 < e < ——

Die Menge Y' setzt sich zusammen aus folgenden zwei Teilmengen:

V[ besteht aus jenen Stellen in — ^ arg z < \- e die durch
Q Q

Drehung an O erhalten werden aus den Stellen von F in 0^ arg z < e

Vf2 besteht aus neuen Stellen auf den Strahlen arg z ± — von der

Dichte d+ bzw. d_, so daB \n+(r) — d±r*\ < K • a(r) r > 0

Es gilt also
n

dN'(0)
d-

fur d

fur 0 — n

Î_JL fur -ÏL.^e< —
Q I Q Q

0 fur aile andern 6

Demnach sind die positiven Zahlen d+ und rf_ so bestimmbar, daB

f cos q6 ¦ dN' (0) —Ç cos qB • dN(6) + —^ (d+ + d_) 0)
o o y 2

sin sin Qd-dN(d)
}/2

+ — d_) 0

Es erfûllt also V und damit auch die Vereinigungsmenge F* die Forde-

rungen von Lemma 4.

Die Menge V* zerlegen wir folgendermaBen in zwei komplementâre
Mengen Vt und V2 : Vx besteht aus V[ und den Nullstellen aus V in
0 ^ arg z < e. Es gilt also

fur O<0<«
l—— I fur _<0<_ + e

0 fur aile andern 6

N^O) erfullt also (2.4), und daher auch JV^Ô), die MaBfunktion der
Komplementàrmenge F2 von Vx. Beide genugen den Forderungen von
Lemma 4.
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9. Geometrische Deutung des Zusammenhanges zwischen
N(q>) und h((p)

Der Zusammenliang zwischen den beiden Funktionen h(<p) und N(<p),
wie er durch. Gleichung (2.9) festgelegt ist, gestattet eine einfache
geometrische Interprétation22).

Als Strahltypus einer ganzen Funktion der Ordnung q ist h(<p) stetig
und je von rechts und links differenzierbar. Dièse Rechts- und Links-
ableitungen sind von beschrànkter totaler Schwankung und genùgen
den Bedingungen h+ty — 0) h'_(<p — 0) h'_(q>) und hf+((p + 0)
h'_((p + 0) h'+{(p). Die Funktion

besitzt also nur abzâhlbar viele Unstetigkeiten und es gilt fur aile <p

Die Hlillkurve £> der Geradenschar

x • cos Q<p + y • sin qç> — A(ç?) 0 0

ist konvex, in sich geschlossen und kann sich im Falle q > 1 mehrmals
uberschneiden ; h((p) heiBt ihre Sttitzfunktion. Durch

x(q>) h (<p) • cos q q) W(<p) • sin ^ 9^

1
0-2)

^(ç?) ^(ç?) sin q<p -\ h'(<p) • cos qy

wird jedem 9? eindeutig ein Punkt P{<p) der Hullkurve § zugeordnet.
In Unstetigkeitsstellen von hf(cp) ist P(ç>) Mittelpunkt der Strecke, die
P(<p — 0) mit P((p + 0) verbindet. Wir bezeichnen mit (£(9?, (px) die Lange
jenes Stiickes der Hullkurve, das zwischen den Punkten P(fp^) und P(ç?)

gelegen ist, mit andern Worten, dem Intervall <px ^ 0 ^<p entspricht.
Die Gleichung d(q>,q>1) Œ(ç>) — C(^i) definiert dann — bis auf eine
additive Konstante — eine Funktion (£(9?). Wir nennen sie d^e zur
Hullkurve § gehôrige Bogenfunktion. Dièse Bogenfunktion ist monoton
wachsend und es gilt

0) + C(y - 0)
,Q QX

aa) Fur dies© Nr. vgl. P. 2. Teil, S. 25—41.
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(9.4)

-L d h\<p) (9.5)

(9.6)

10. Wir suchen den Zusammenhang zwischen N(<p) und h (f) und be-
trachten zu diesem Zwecke die Gleichung (2.9)

anJ6) (10.1)J
0

Durch partielle Intégration von (2.4) folgt zunàchst

+r%7/^ • ** N(2n)—N(0)j N(t) sin gt *dt — ^- • cos Q<p
<p Q

(10.2)

j N(t) cos gt - dt= — L-^- • sin q<p
q> Q

Mittels der Variablentransformation t q> + 0 unter Verwendung von
(2.4) und nachheriger partieller Intégration folgt aus (10.1)

V + 21T

h{<p) — J t sin g(« — y) • d N(t)
9>

JJ N(t) sin e(H*) ' *+e J *C0S e(*-

Das erste Glied verschwindet, das zweite Glied ist gemàB (10.2) gleich

i—i L-L_ und daher

+ gy"j7rtcosg(^_<p).N(t)dt (10.3)

Durch diflEerenzieren nach <p folgt
' 9+2 it

h'(<p)=((p+27i) (N(2n) -N(0)) + 2n.N((p)+Q J * sin Q(t-(p)-N(t)dt
* (10.4)

und hieraus

— dh'(<p)=(N(27t)—N(0)).d<p + 27z-dN(<p)—d<p.Q* j «cos g(t—q>)-N(t)dt.
Q 9

(10.5)
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Fugen wir noch bei, dafi durch partielle Intégration von (10.4) und
nachfolgender Variablentransformation folgt23)

-j 27T

— h'(<p)= J 0co8Q6-dN((p + 0) (10.6)

Die erhaltenen Ausdrûcke (10.3) und (10.5) in (9.5) eingesetzt ergeben

2n-dN(<p)

Es ist also 2 7z- N((p) die Bogenfunktion der von h(<p) erzeugten konvexen
Kurve.

Durch die Bogenfunktion 2nN((p) ist aber die Kurve nur bis auf Trans-
lationen bestimmt24). Wodurch ist dann die Lage der Hûllkurve ausge-
zeichnet? Um dies zu sehen, belegen wir die Kurve mit Masse, deren
Dichte proportional ist der Kurvenkrûmmung an der betreffenden Stelle.
Der Schwerpunkt dièses Massensystems heiBt Krummungsschwerpunkt
der Kurve. Wir behaupten: Der Krummungsschwerpunkt der Hûllkurve
liegt im Ursprung.

Um dies zu zeigen, beachten wir, daB der Lange d(£(ç?) die Masse kd<p

zukommt, d. h. ihre Dichte proportional der Krûmmung ist. Das zum
Kurvenpunkt P(ç?) gehôrige Massenelement ist also gleich kdcp und die
Gesamtmasse gleich k • 2n. Die Koordinaten des Schwerpunktes sind
dann 2ir 2n

1 f 1 /•
2nJ ' 8 2tcj

0 0

GemàB (10.1), (10.6) und (9.2) ist nun
27T

x{<p) - f 0 sin q {6 + <p) • d N{<p + 6)

y{<p) J d cos g (0 + V) • d N(<p + d)
0

Durch partielle Intégration unter Verwendung von (10.2) folgt
27T

x(tp) — 2n sin qq> • N((pJr2n) + J jW(9?+0){sin q(0+<p)-\-q6 cos Q{<p+O)}dO

2ir
cos gcp + q J 0 cos g(<p+O) • N(q>+6) dd.

M) Man beachte, daû wegen (10.2) J cos ç (t— cp). N(t) dt versehwindet.

24) Vgl. P, 2. Teil, Nr. 23, insbes. Satz 7.
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2ir 2n

^ N(2n)—N(0) + iQ.de. j N(<p+d) cos o((p + d) dq> 0
Q *njo

Entsprechend

2n cos Q<p • JV^(9?4"2^)+ J

2jt cos ^ç?<

2ir

sin g<p — q J0 sin ^(9 + 6) N(e+6)dO

y8= ÇN(<p) cos ç<p dtp —-^- Çddd • ÇN((p + 6) sin q (<p + 0) • dç? 0

0 00
Es ist also x8 y8 0, womit ailes bewiesen ist. Wir haben als Résultat :

Satz 2. Die Funklion

h{<p) — Je sin q6 • di% + 0)J
0

erzeugt ah Stûtzfunktion eine geschlossene konvexe Kurve, deren Krïïm-
mungsschwerpunkt mit dent Ursprung zusammenfâllt und deren Bogen-
funktion gleich 2n • N(cp) ist 25).

Bemerkung: Es erfullen also Strahltypus und MaBfunktion die
Gleichung (2.3).

11. Die in den vorangehenden Nummern 9 und 10 durchgefûhrten
Betrachtungen deuten auf folgende Verallgemeinerung hin.

Sei d(ç?) eine monoton wachsende Funktion, die den Bedingungen
(9.3), (9.4) und (9.6) genûgt, f(<p) eine beliebige monoton wachsende
Funktion derart, daB fur aile y

—/(^) =1
ist. Mit âhnlichen Methoden wie in den vorangehenden Nummern làBt
sich beweisen :

Die Funktion (p + 2rr

h((p)=: J f(6)8JiiQ(d-<p)-d<£(6)
<p

erzeugt als Stiitzfunktion eine geschlossene konvexe Htillkurve, deren

Bogenfunktion gleich (£(ç>) ist.
25) Mitz Satz 1 und Satz 2 begegnen wir emem Résultat uber Exponentialsummen von

G. Pôlya, ,,Geometrisches uber die Verteilung der Nullstellen gewisser
ganzer transzendenter Funktionen", Sitzungsberichte Bayensch. Akad. d. Wiss
Math. phys. KL, 1920, S. 285—290, msbes. S. 288.
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Der Ûbergang von einer Funktion f(6) zu einer neuen kann also hôch-
stens eine Translation der konvexen Kurve bewirken. Irgend wie muB
also die Funktion f(0) charakteristisch sein fur die Lage der Hiillkurve.
Wir kônnen dies folgendermaBen pràzisieren : Denken wir uns die Kurve
so mit Masse belegt, dafi dem Kurvenstûck zwischen P((pi) und P(<p2) die
Masse / (ç>2) — / {<Pi) zukommt. Dann liegt der Schwerpunkt dièses Massen-

systems im Ursprung.

B. Interpolation ganzer Funktionen

12. In einer fruheren Arbeit26) und im vorangehenden Abschnitt
wurden hinreichende Bedingungen fiir regulàres asymptotisches Ver-
halten (vgl. Nr. 2) hergeleitet und zwar einerseits fur ganze Funktionen
von beliebigem Wachstum einer nichtganzzahligen Ordnung27) und
anderseits fur ganze Funktionen vom Mitteltypus einer ganzen Ordnung
(Satz 1). Dièse Funktion und ihre Nullstellenverteilungen bilden die
Grundlage fur die nachfolgenden Untersuchungen. Sie sind hier durch
ihr radiales Verhalten charakterisiert worden. Zur Integralabschâtzung
ist aber die Kenntnis ihres ,,zirkulâren,, Verhaltens notwendig. Um den
Ûbergang herstellen zu kônnen benôtigen wir folgendes, leicht verallge-
meinertes Lemma von Bernstein-Cartwright28)

Lemma 5. Sei F(z) in\z\ < R regulâr,

log\F(z)\^A fur \z\^B
und bei gegebenem k<\

log |F(z0)| ^ — A fur ein z0 in \z\ < hR

Dann gibt es zu jedem £ > 0 ein nur von Je und £ abhangiges K K(k, £),
so da/i

fiir |z| < kR, ausgenommen in Kreislein, deren Radiensumme <£]?.

Ferner erinnern wir daran, daB zu jeder pràzisen Wachstumsordnung
q (r) eine Funktion V(z) existiert, die auf der positiven reellen Achse reell-
wertig, monoton wachsend und von dort ausgehend im Winkelraum

26) P, 1. Teil.
27) Vgl. P, 1. Teil, Satz 3.

28) Vgl. P, 1. Teil, Hilfssatz 2.
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|arg z\< — der BiemannschenFlâche von logz eindeutigund analytisch

ist. Sie genugt den Bedingungen

und
V(zr)~z<> • V(r) (12.1)

fur jedes feste z in | arg z\ < — ; letzteres gilt gleiehmàBig in jedem

Winkelraum |arg z\^ rj, rj>029). Wir benûtzen sie deshalb als

Vergleichsfunktion der ganzen Funktionen von prâziser Wachs-
tumsordnung g(r)

13. Wir beweisen nun

Lemma 6. Die ganze FunktionG(z) mit der Vergleichsfunktion V{r) und
dem Strahltypus h(cp) sei von regularem asymptotischen Verhalten. Dann
existiert fur jedes e > 0 und y > 0 im Kreisring r(1 — y) < \z\ < r(1 + y)
eine geschlossene Kurve C(q q{0), 0 < 6 ^ 2n) von der Lange < Sjtr
so dafi darauf

\log\G(Q(d)eie)\ - h(6)V(r)\<eV(r) (13.1)

ist fur aile genUgend grofien r,

Beweis. I. Zunàchst betrachten wir die Funktion G(z) in der Um-
gebung der Richtung arg z <P. Sei ô eine kleine positive Zahl und

tj(ô) Max\h{(p) — h{&) cos q(& — cp)\ fur 0 — 3ô^<p^ &+3Ô. (13.2)

Wir setzen _.
F(z) G{z) e~hw^ze > (13.3)

Dann ist wegen (13.2)

log \F(z)\ < 2rj • V(B) fur aUe z in \z — Be**\ ^Bsin3Ô (13.4)

und wegen des regulàren asymptotischen Verhaltens von G{z) (2.2)

ûr ein 20 in |2 — Bei0\ < B sin ô

sofern B genugend groB ist. Daraus folgt aber durch Anwendung von
2 1

Lemma 5 mit k — und C —
o Ï.Z

29) Vgl. V. Bernstein, ,,Sulla crescenza délie trascendenti intere d'ordine
finito", R. Ace. d'ItaUa, 4 (1933), 346—48.
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(jy (13.5)

2
iiberall in \z — Re%*\-^ — R sin Sô ausgenommen in Kreislein, deren

o

Radiensumme <-^r iîsin 3<5 ist.

Nun ist h{cp) stetig, es strebt rj mit <5 gegen null. Zu jedem e> O

existiert also ein ô(e), so daB Max (2 rçiT, 2 17) < e|2 wird fur |<p—<P | < 3 (5.

Aus (13.3), (13.4) und (13.5) folgt dann wegen — rç < A(ç?) — A(#)
cos q (q> — #)< yj

\loë\G(z)\-h(q>)-V(R)\<eV(R) 2 re» (13.6)

2
ûberall in 12: — JBe** | < — R sin 3<5, ausgenommen in Kreislein, deren

o

Radiensumme <— R sin 3ô ist.
12

II. Sei e > 0 eine beliebig klein vorgegebene Zahl. Wegen der gleich-

âB

daB

2 3T

mâBigen Stetigkeit von "h (y) làBt sich ô -^- (bei ganzem i^) so wâhlen,

fur |^-^|<3(5
ist. Hiernachteilen wirdurch dieStrahlenarg z=nô 0n,n=*O, 1,2,...,^,
die z-Ebene in iV^ gleiche Winkelrâume von der ôffnung ô ein.
Das Résultat (13.6) in I wenden wir an auf jeden Strahl
arg z <Pn, n 0, 1, 2, N. Es gilt dann (13.6) fur genûgend groBe

R in jedem Kreis |z — Rei0n\ ^ —R sin 3ô n 0, 1, N, ausge-6
1

nommen in Kreislein, deren Radiensumme < — R sin Sô ist. Dièse
LA

Eo-eise uberdecken den Kreisring R(l —• sin ô) < |2| < JB(1 + sin ô).
Da in jedem Sektorstumpf

ô, ^

die Radiensumme der Ausnahmekreislein nicht die Hâlfte seiner Dimen-
sionen betrâgt, enthâlt jeder solche Sektorstumpf je einen Kreisbogen
und eine radial gerichtete Strecke, die gegenuberliegende Rânder des

Stumpfes verbinden und keine Ausnahmekreislein treffen. Dièse Bogen
und Strecken enthalten als Teilmenge eine geschlossene Kurve um den
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Nullpunkt von der Lange <8tiR. Làngs dieser Kurve gilt (13.6) und
damit ist Lemma 6 bewiesen.

Aus dem Beweis ergibt sich zugleich folgende etwas allgemeinere
Fassung von Lemma 6 :

Zusatz zu Lemma 6: Sei die Funktion G(z) im Winkelraum
oc ^ | arg z | < j8 regular, von prâziser Wachstumsordnung g (r) und von
regularem asymptotischen Verhalten.

I. Fur jedes e > 0 und jedes y > 0 existiert im Sehtorring

r(l-y)< \z\^r(l + y), <x < «' < |arg

eine Kurve G (g q(0), <xf < 6 < f}' von der Lange <4(/î/ - <x')r,
so dafî darauf

\log\G(Q(6)e«>)\-h(6)V(r)\<eV(r) *'** 0 ^ fi'
ist fur aile genilgend groften r.

IL Fur jedes e > 0 und f > 0 gilt bei genûgend gropem r

|log|0(re*)| - h{6)V(r)\ < sV(r)

im ganzen Intervall oc' ^ 6 ^ /!', ausgenommen hôchstens eine Menge vom

Mafi<S.
Von II gilt die Umkehrung 30).

14. Mit Lemma 6 sind wir nun in der Lage, folgendes ,,vorlâufiges"
Résultat iiber Interpolation zu beweisen.

Satz 3. Die ganze Funktion n(z) mit der Vergleichsfunktion V(r) und
dem Strahltypus H(y) sei von regularem asymptotischen Verhalten; ihre
Nullstellen ax,a2, av, seien aile einfach. Sei ferner G (z) eine beliebige

ganze Funktion mit dem Strahltypus h(q>) < H(<p), 0 ^ cp ^ 2tz, bezûglich
V(r). Dann existiert eine Folge von Bereichen Bn, die mit n->oo allseitig
gegen unendlich streben, so daji

Beweis : Wir wàhlen y so klein, daB bei geniigend groBem r
h(<p) • V(r + yr) < (H(q>) — e • V{r) wird fur ein e > 0 und aile <p, ferner
eine monoton wachsende Folge rx, r2, rn, rn->oo. GemàB Lemma 6

»°) Vgl. P, 2. Teil, HiHssatz 8.
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existiert in jedem Kreisring rn(l — y) < \z\ < rn(l + y) eine geschlos-
sene Kurve Cn (um den Nullpunkt) von der Lange < &7trn, auf der
(13.1) erfullt ist. Den von Cn eingeschlossenen Bereich bezeichnen wir
mit Bn. Es ist klar, daB n{z) auf Gn keine Nullstellen besitzt. Aus dem
Residuensatz, angewandt auf Bn, folgt nun

G(z) ^ 0(av) l
n{t) {z — f) '

Zufolge von Lemma 6 und den Voraussetzungen des Satzes strebt das

Intégral fur ein festes z und n->oo gegen null, woraus sich die Behauptung
des Satzes ergibt.

15. Die Reihe V —r,—~-^- —braucht selbst nicht zu konver-
v=i nf{av) (z — av)

gieren. Erst geeignete Abschnitte zusammengefaBt geben Glieder einer
konvergenten Reihe. Damit obige Reihe selbst konvergiert, sind ûberdies
noch gewisse Forderungen an n!(av) zu stellen. Schon die Einfachheit der
Nullstellen, nr{av) ^ 0, ist eine solche Forderung. Es darf aber nr{av) fur
v->oo nicht zu klein werden oder die Nullstellen dûrfen nicht in zu dichten
Gruppen vorkommen. Wir wollen genau die Bedingungen festlegen, wann
eine Nullstellenverteilung ohne Verdichtungen sei.

Définition. Eine Nullstellenverteilung heiflt unverdichtet, wenn eine feste

positive Zahl a und eine positive Funktion r\ (r) mit lim rj (r) 0 existiert,
r->oo

derart, dafî das geometrische Mittel der Abstânde irgend einer Nullstelle an

von seinen benachbarten av innerhalb der Kreise \z — an\ < q, \dn\>Q>
^(l^nl) * \an\ nicht kleiner wird dis oq.

Bezeichnet also N die Zahl der Nullstellen in 0 < | z — an | ^ g,
KI>8>rç(KI) -\an\,8ogitt

n \av- an\ ^ (aQ)N (15.1)
| <xv - an | ^ Q

Dièse Forderung erstreckt sich demnach nicht nur auf Kreise von
Radien >0(|aJ); eine gewisse Unordnung ,,im kleinen" ist noch ge-
stattet.

16. Es folgen zwei Beispiele unverdichteter Nullstellenverteilungen :

1. Beispiel. Es sollen die Nullstellen al9a2, .-.,an, ohne end-
lichen Hâufungspunkt, nach wachsenden Betràgen geordnet, folgende
Voraussetzungen erfûllen:
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1. Die Nullstellen besitzen eine positive Minimaldistanz, d. h. es
existiert eine feste positive Zahl d, so daB fur irgend zwei Nullstellen
l«m — «ni >dl8t.

2. Es existiert eine positive Zahl c' und eine positive Funktion rj(r)
mit lim rj(r) 0 derart, daB die Anzahl Nf der Nullstellen in den

r->oo

Kreisen \z — zo\ ^ q, q > \zo\ • ??(|zol) der Ungleichung JV' > cf q*

genûgt.
Dièse Nullstellenverteilung besitzt keine Verdichtungen 31).

Beweis : Offensichtlich genûgt es, die Behauptung fur geniigend weit
entfernte Stellen, also fur geniigend groBe n zu beweisen. Wir wâhlen
eine Stelle an und einen Kreis \z — an\ ^ g mit q > ^(|an|) • \an\, wo
ri(r) > rj(r) und rj(r) • r->oo bei r->oo. Es wird dann mit n auch q und
iV; beliebig groB. Zàhlen wir im Kreis nur die Nullstellen auBerhalb des

Mittelpunktes, so gilt ftir ihre Anzahl N offenbar auch

N>cq* oc' (16.1)

Dièse Nullstellen wollen wir so dicht um den Mittelpunkt lagern, als dies
nach Voraussetzung 1 zulàssig ist. Umgeben wir die Stellen etwa mit

kleinen Kreislein vom Radius ô —, so durfen dièse KJreislein einander

nicht ûberdecken. Zur bequemen Abschàtzung betrachten wir eine noch
dichtere Lagerung, indem wir einzelne Kreislein einander iiberdecken
lassen: Um den Mittelpunkt an wâhlen wir 4 Stellen av auf |z — an\ ô,
8 Stellen auf \z — an\ 2ô, iv Stellen auf \z — an\ vô und den
Rest auf dem letzten Kreis \z — o^J pô. Somit gilt

2/*(n-l)<N< 2^(^ + 1) (16.2)

Dièse Lagerung ist dichter als aile zulâssigen; denn die Flàche aller
Kreislein ist grôBer als die Kreisflâche vom Radius (fi + 1)<5, sobald

fjL > 5, was fur hinreichend weit entfernte Stellen an sicher zutrifft. Es
ist also

log n \a,-an\ > 4 (log d + 21og 2 d +•.. + (p- 1) log 0»- 1) ô)

> é'*/ a?log s« • cte 2 (p - l)2 • log Cu - 1) ô - (^ - l)2

log |/2/*(^c+ 1) + O(a*2) > ^. log

81) Den Voraussetzungen des Beispieles genùgen offenbax die Gitterpunkte m -f- *w,

O,±l, ±2,....
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Wegen (16.1) wird dann

n K — an\
I av - an | < q

fur n genugend groB.

2. Beispiel: Es sollen die Nullstellen ax, a2, an, auf der
positiven reellen Achse gelegen, nach waehsenden Betrâgen geordnet und
ohne endlichen Hâufungspunkt, den folgenden Voraussetzungen ge-
nùgen:

1. Die Nullstellen besitzen wie im ersten Beispiel eine positive Minimal-
distanz.

2. Analog zum ersten Beispiel genugt die Anzahl N! der Nullstellen in
den Intervallen | x — xo\ ^ q, xq > q > x0 • t]{Xq) auf der positiven
reellen Achse der Ungleichung N' > cfq.

Dièse Nullstellenverteilung besitzt keine Verdichtungen 32).

Der Beweis verlâuft im wesentlichen gleich wie im ersten Beispiel.

17. Wir beweisen nun
Lemma 7. Ist die ganze Funhtion n(z) mit der Vergleichsfunktion V{r)

und dent Strahltypus H((p) von regulàrem asymptotischen Verhalten, besitzt
ûberdies ihre Nullstellenverteilung keine Verdichtungen 33), so gilt fur jedes
e > 0 und genugend grofies n

(17.1)

wenn an rneliPn die nach wachsenden Betrâgen geordneten Nullstellen
bezeichnet.

Beweis : Er stutzt sich auf folgende allgemeine Tatsache:

A. Ist m das Minimum der Funktion n (z) auf der Kreislinie | z — an\ q

und erfûllen ihre Nullstellen in diesem Kreis die Bedingung (15.1),
8OgUt 11 /2\»

Zum Beweis betrachten wir den Quotienten

(z — an) II (z — av)

n (z)

82 Ûber den damit zusammenhângenden Begriflc des Kondensationsindex einer Folge
vgl. V. Bemstein, Leçons sur les progrès récents de la théorie des séries de
Dirichlet, Paris, 1933, Note I, p. 251—293.

83) Um so mehr sind die Nullstellen einfaeh.
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der in | z — an\ ^ q regulâr ist. Sein Betrag ist auf dem Rande kleiner als

(2 q)n — also auch im Innern. Fur z an folgt dann
Tïl

und daraus in Verbindung mit (15.1) die Behauptung.
Zum Beweis des Satzes verbleibt also noch eine zusammengehôrige

Abschàtzung der drei GrôBen q, N und m.

Zunàchst gilt :

B. Zu jeder positiven Funktion rj (r) mit lim rj(r) 0 existiert eine
r->oo

zweite Funktion rj(r) ^ rj(r), die bei r->oo ebenfalls gegen null strebt,
derart, daB fur jedes s > 0 und jedes hinreichend groBe n auf einer Kreis-
linie \z — an\ qn mit ï)(rn) -rn<Qn< 2^j(rn) • rn und an rnei<Pn

log \n\an + Qne«)\ - h(Vn) V(rn) > eV(rn) 0 < 6 < 2 n (17.3)

gilt.
Dies ist bereits im ersten Teil des Beweises von Lemma 6 mitenthalten.

SchlieBlich benûtzen wir die folgende Tatsache:

C. Ist n(z) eine ganze Funktion von regulàrem asymptotischen Ver-
halten, mit der Vergleichsfunktion V(r), strebt die positive Funktion
rj (r) bei r->oo gegen null und bezeichnet N die Anzahl der Nullstellen im
Kreis \z — zo\ < rj(\zo\) • \zo\, so gilt

° (174)

Wegen des regulâren asymptotischen Verhaltens nâmlich ist die Null-
stellenverteilung meBbar34), d. h. es gibt um jede Richtung arg z0 cp0

beliebig kleine Winkelrâume ç?0 — rj0 < arg z < <pQ + rj0, fur die

n(r ; <p0 — rjOiç>Q + rj0) (N((p0 + rç0) — N(q>0 — rj0) + e(r) • V(r),

e(r)->0 bei r->oo; n(r;<pf,(pff) bezeichnet die Anzahl der Nullstellen im
Sektor | z \ ^ r, cp ' ^ arg z<q>ff. Bei kleinem aber festem rj0 und geniigend
groBem \zo\ R ist der Kreis \z — zo\ < rj{R) • R in J?(l — rj(R)) <
|2;| < jR(1 + ^(5) ç?0 — rjQ < arg 2; < ç?0 + ^0 enthalten und daher

gilt gemàB den Eigenschaften von V(r) (vgl. 12.1)

M) Vgl. Nr. 2.

342



e"

denn r\ (r) strebt fur r-+ oo gegen null. Daraus folgt die Behauptung.
Beachten wir nun, daB die Nullstellenverteilung keine Verdichtungen

besitzt, also in den Kreisen \z — an\ ^ g, \an\ > q > rj(\an\) • \an\ die
Bedingung (15.1) erfullt. Unter diesen Kreisen gibt es gemàB B solche,
auf denen (17.3) und gemàB (7, (17.4) erfullt sind. Daraus folgt in Ver-
bindung mit A (17.2) fur jedes e > 0 und geniigend groBe n

-<Wn>-«)- nrn)
< e

n'{an)

Daraus folgt aber (17.1), denn n{z) ist eine ganze transzendente Funktion
lofîf T

und deshalb strebt —-=p—~- fur n->oo gegen null.

18. Die in Lemma 7 betrachteten Funktionen und ihre Nullstellen-
verteilungen bilden die Grundlage fur die nachfolgenden Untersuchungen.

Définition: Eine ganze Funktion mit regularem asymptotischen Ver-
halten und unverdichteter Nullstellenverteilung nennen wir Grund-
funktion.

Nach den Vorbereitungen der vorangehenden Nummern sind wir nun
in der Lage, folgendes Hauptresultat uber Interpolation zu beweisen :

Satz 4. 8ei n(z) eine Grundfunktion mit der Vergleichsfunktion V(r),
dem 8trahltypus H(y) und den nach wachsenden Betràgen geordneten Null-
stellen ax,a2, -.., av,

Ist G(z) eine beliebige ganze Funktion mit dem Strahltypus h(<p) < H(<p),

0 < <P < 2rc, bezilglich V(r), so gilt
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Die Reihe konvergiert aufierhalb der Stellen av absolut und in jedem dort
abgeschlossenen und endlichen Bereich gleichmafiig.

Beweis : Wegen Satz 3 geniigt es, die Konvergenz der Reihe zu be-
weisen. Im betrachteten Bereich ist | z — av\ > rj> 0. Wegen der Vor-
aussetzungen des Satzes und Lemma 7 gilt fur ein e > 0 und genûgend
groBes v

GHfh)

nf{av)

und daher
O(av)
7i'(av)

Die Reihe besitzt also eine konvergente Majorante.

19. Die Grundfunktionen n(z) sind im wesentlichen schon durch ihre
Nullstellen, die interpolierenden Stellen av bestimmt. Welchen Bedin-
gungen die Nullstellenverteilung zu genûgen hat, damit das zugehôrige
kanonische Produkt eine Grundfunktion sei, ist in Nr. 15 im Abschnitt A
und einer fruhern Arbeit35) untersucht worden. Die Resultate sind, zu-
sammengefaBt, folgende:

1. Ist eine Nullstellenverteilung unverdichtet (Nr. 15) und beziiglich
einer pràzisen, nichtganzen Wachstumsordnung q (r) (q (r) -> q =£

0, 1, 2,...) meBbar mit der MaBfunktion N(q>) (Nr. 2), so ist das
zugehôrige kanonische Produkt tz(z) eine Grundfunktion von der pràzisen
Ordnung q(r) mit dem Strahltypus

2ir

H(<p) —r-^ Çcos (qd — qn) • dN(<p + 0) 36) (19.1)
o

2. Ist eine Nullstellenverteilung unverdichtet (Nr. 15) und beziiglich
einer ganzen Ordnung q meBbar im engern Sinne (Nr. 2) mit der
MaBfunktion N(cp), die ûberdies der Gleichgewichtsforderung (2.4) genûgt,
so ist die ganze Funktion ti(z) in (3.3) eine Grundfunktion vom Mittel-
typus der Ordnung q und dem Strahltypus

H(V) — J OfùngO'dN((p + e) 37) (19.2)
o

**) Vgl. Anm. 26).

86) Vgl. Anm. 27).,
87) Vgl. Satz 1.
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Dièse so charakterisierten Nullstellenfolgen wollen wir kurz Grund-
folgen von pràziser, nicht ganzer Ordnung g(r) bzw. vom Mitteltypus
einer ganzen Ordnung q nennen.

Hiernach gilt in Verbindung mit Satz 4

Satz 5. I. Sei O(z) eine ganze Funktion von béliebigem Wachstum einer
nichtganzen Ordnung, V(r) ihre Vergleichsfunktion und h (<p) ihr Strahltypus.
Sei ferner ax, a2,..., av, eine Orundfolge mit der Maflfunktion N(<p)

bezilglich V{r), derart dajï
21T

h(<p) < —r^- P cos (q8 — qtz) • dN(<p + 6) fur aile cp (19.3)
0

Danngilt (18.1), wennn(z) das kanonische Produkt mit denal9a2,...,au,...
dis einfachen Nullstellen bezeichnet.

II. Sei G(z) eine ganze Funktion hôchstens vom Mitteltypus der ganzen
Ordnung q und dem Strahltypus h(<p) • a1}a2, ...,av, sei eine Orundfolge

mit der Ma/ïfunktion N(q>) bezûglich V(r) r«, derart dafi

h(cp) < — J 6 sin qB • dN(q> + 6) fur aile <p (19.4)
0

Dann gilt (18.1), wenn n(z) die ganze Funktion in (3.3) mit den

a1,a2,..., av, dis einfachen Nullstellen bezeichnet.

III. Bel asymptotisch gleichmâfiiger Stellenverteilung, dN(œ) ~- K'dwIn
ist die Bedingung (19.3) bzw. (19.4) erfûllt, wenn der Typus der ganzen

Funktion, k Max h(<p), der Ungleichung k < K genugt.

Im allgemeinen Résultat ist der folgende, besonders einfache Spezial-
fall enthalten:

Satz 6. Wir denken uns die Gitterpunkte m-\-in,m,n 0, ±1, ±2,
einzeln hôchstens um die Strecke S verschoben, aber so, dafi die neuen Stellen,
nach wachsenden Betràgen geordnet und mit ax,a%, ...,#„, bezeichnet,

die Bedingung
liminf | a^ - av\ > 0 (19.5)

erfûllen.
Wenn das Wachstum der ganzen Funktion 0 (z) den Typus n\% der

Ordnung 2 nicht erreicht, so gilt (18.1).
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Beweis. Es ist zu zeigen, daB die at,a2, eine Grundfolge vom
Mitteltypus der Ordnung 2 bilden, fur deren MaBfunktion dN(<p) ^dç>

gilt.
nx(r;<Pi,9?2) bezeichne die Anzahl der Gitterpunkte und n(r'9q>l9(p2)

die Zahl der Stellen av im Sektor \z\ ^ r, ç>x < arg z < <p2. Die Zahl der
Gitterpunkte ist nahezu gleich dem Flàcheninhalt des Sektors, der Fehler
ist von der GrôBenordnung seines Umfangs. Es gilt also

Die Anzahl der Stellen av im genannten Sektor ist aber fur groBe r ver-
gleichbar mit der Zahl der Gitterpunkte. Der Fehler ist wiederum nur
von der GrôBenordnung des Sektorumfanges ; denn im Umkreis eines
festen Radius S um einen Gitterpunkt befindet sich die ihm zugeordnete
Stelle av. Es ist also

\-9Ù 'r2 + O(r*) (19.6)

und daher dièse Stellenverteilung im engern Sinne meBbar38). Fur ihre
MaBfunktion gilt offenbar dN(q>) %d<p. Wegen (19.6) und (19.5) sind
ûberdies die Voraussetzungen des ersten Beispieles in Nr. 16 erfullt. Es
besitzt daher obige Verteilung keine Verdichtungen, womit ailes be-
wiesen ist.

20. Die vorangehenden Methoden gestatten nicht nur eine gegebene

ganze Funktion durch die Interpolationsformel darzustellen, sondern
auch eine ganze Funktion mit vorgegebenen Werten in den av zu kon-
struieren. Betrachten wir also das folgende Konstruktionsproblem39)
etwas genauer: Gegeben sei in der komplexen Ebene eine Folge
a1}a2, ...,av, ohne endlichen Hâufungspunkt und eine beliebige
zweite Folge Ax, A2, ...9AV9 Gesueht ist eine ganze Funktion, die in
den Stellen av die Werte Av annimmt. Um nicht konvergenzerzeugende
Faktoren verwenden zu miissen, m. a. W. um eine Darstellung von der
Form (18.1) zu erhalten, wàhlen wir als erste Folge eine Grundfolge.
Die zweite Folge jedoch darf nieht zu stark anwachsen. Unser Résultat
lautet :

Satz 7. Sei a^, a%, „,,«„, eine Grundfolge mit der Mapfunktion N(<p)

bezûglich einer Vergleichsfunktion V(r). Eine zweite Folge Al9 A2, Av,...
erfûlle fur ein e> 0 und genilgend grofie v die Bedingung

88) Es ist (2.5) allerdings erst fur genûgend groBe t erfullt. Aber die Abânderung von
endlich vielen Nullstellen hat auf das Résultat von Satz 1 keinen Einflufi.

89) Vgl. Nr. 1.
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^
'

¦

' < H((pv) — e, arg «„ 9?v

i H((p) durch (19.1) bzw. (39.2) definiert ist. Dann stellt

0{z) n(z) 2 /g wg_g) (2(K1)

: ^a72.2;e Funktion dar mit dem Strahltypus ^ .ff(<p) bezûglich V(r), die in
den Stellen av die Werte Av annimmt.

Beweis. Zufolge der Voraussetzungen des Satzes und von Lemma 7

konvergiert die Reihe in (20.1) auBerhalb der Stellen av absolut und in
jedem dort abgeschlossenen und beschrankten Bereich gleichmaBig
(vgl. Beweis von Satz 4). Es stellt also (20.1) eine ganze Funktion dar,
die in den Stellen av die Werte Av annimmt. Umgeben wir die Stellen av

mit den Kreislein | z — av\ ^ qvi qv e~ "â" so wird das allgemeine
Glied der obigen Reihe auBerhalb dieser Kreislein absolut kleiner als

e~ T av letztere Glieder bilden aber eine konvergente Reihe. AuBerhalb

der Kreislein ist somit die Reihe in (20.1) gleichmaBig beschrankt.
00

Die Radiensumme der Ausnahmekreislein, Z Qv, ist aber auch beschrankt
v=l

und daher fast uberall \G(z)\ < C • \n(z)\. Daraus folgt, daB fur G(z)
der Strahltypus < H (y) ist.

21. Als Anwendung der vorangehenden Ergebnisse verallgemeinern
wir den Satz A. GemaB Satz 5 lautet unser Résultat :

Satz 8. Sei V(r) Vergleichsfunktion fur eine ganze Ordnung vom Mittel-
typus oder fur eine beliebige nichtganze Ordnung und ax, a2, av,
eine Grundfolge fur deren Mafifunktion beziiglich V(r) gilt dN((p)

^-K-dcp, K>0 40).

Genilgt die ganze Funktion G (z) den Bedingungen

]im sup
log ^(r) k < K M(r) Max | G(re^) | (21.1)

und
\G(av)\<" y 1,2,... (21.2)

so ist G (z) notwendig eine Konstante.

40) Selbstverstandheh genugt auch die Voraussetzung, H(cp) > K fur aile cp, wobei
H(cp) durch (19.1) bzw. (19.2) definiert ist.
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Beweis : Wir setzen

und bemerken vorerst, da8 der Typus k in (21.1) nur von den Betràgen
der Entwicklungskoeffizienten abhàngt. Mit

|co

gilt dann auch

lim sup l0f7A(r) =k<K (21.3)

Da auch zn • 0(2) die Bedingung (21.1) und damit die Voraussetzungen
von Satz 5 erfûllt, so gilt

*) ±
Daraus folgt aber

und daher

Die Reihenfolge der Summation ist nàmlich vertauschbar; denn wegen
(21.2) und (21.3) ist obige Doppelreihe absolut konvergent.

Wenden wir dasselbe Verfahren. auf (21.4) an, so folgt entsprechendes
fur 0\z) usw., durch vollstândige Induktion, immer unter Beachtung von
(21.2) und (21.3)

Wieder folgt durch Umordnen

y <Jr(av)

oder
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Nun ist \eGiav) | < eK C. Daher ist nach Satz 7 die rechte Seite

von (21.5) und somit auch eQ(z) von der Ordnung < [q]. Es ist also 0(z)
hôchstens ein Polynom vom Grade [q]; wegen (21.2) ist dann O(z) not-
wendig eine Konstante 41).

GemàB Satz 6 ist in unserem allgemeinen Résultat folgende unmittel-
bare Erweiterung von Satz A enthalten :

Satz 9. Die Folge al9 a2,..., av,... erfûlle die Voraussetzungen von
Satz 6 und die ganze Funktion G (z) gentige den Bedingungen

v log M(r) nhm sup 6 < —¦
r->oo ' ^

und
\0{av) \<k v= 1,2,3,...

Dann ist 0 (z) notwendig eine Konstante.

Nachtrag nach der ersten Korrektur.

Im Falle des Mitteltypus einer nichtganzen Ordnung, auf den sich
der wesentliche Teil seiner Arbeit (vergl. Anm. 10) bezieht, verlangt
Herr Lévine neben der MeBbarkeit der Stellen av> da8 die Kreislein

1- \q
\z — av | < d | av | einander nicht ûberdecken. Letztere Bedingung
deckt sich nicht mit der Forderung (15.1). Wie man aber leicht sieht,
gilt Lemma 7 auch dann, wenn man (15.1) durch

n \av — an\ ^BN- CV(<R) C konst., (15.1a)
\av-an\<R

ersetzt. Dièse neue Fassung enthâlt die Forderung von Lévine. All-

gemein, wenn die Kreislein \z —av\<d\av\
v

einander nicht
ûberdecken, so ist (15.1a) erfûllt. Dies folgt aus zwei Ûberlegungen:
Bezeichnet einerseits nx(t) die Anzahl der Stellen av mit 0< | av—aw|< t,
so ist

anderseits gilt

2 loS I<V

(Eingegangen den 6. Oktober 1941.)

41) Bezùglich der Beweismethode vgl. Anm. *).
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