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Uber Interpolation ganzer Funktionen
Von A. PFLUGER, Freiburg

Einleitung
1. Die Arbeit entstand im Anschlu an folgendes Resultat:
Satz A. Genilgt die ganze Funktion G (z) den Bedingungen

lim sup log i[(r) < 7; , M(r) = Max | G(rei®)| , (1.1)
und
|G(m+1n)| <2« , m,n=0+1, +2,..., (1.2)

80 18t G (2) notwendig eine Konstante!).

Der Beweis gelingt auf einfachste Weise?) mit Hilfe der Interpolations-

formel3)

+ o (— lym+n+mn , g~ Frme 4 n2)

Glz) =o0() X

mn= — o0 Z—m—1in

- G(m +im) ,

wo ¢ (z) die Weiserstraf’sche o-Funktion mit den Fundamentalperioden 1
und ¢ bezeichnet.

Es ist naheliegend zu vermuten, dafl die starre Bedingung (1.2) durch
eine freiere ersetzt werden darf. Anstatt der Gitterpunkte m - in be-
trachtet deshalb B.J. Maitland?*) die zugehorigen Quadrate @,,,, mit
den Endpunkten m-+in, m+1+4in, m+1+i(n+1), m+t(n-+1)
und greift aus jedem @,, , irgend einen Punkt a,, , heraus, — jedoch so,

1) Ein erstes Resultat in dieser Richtung wurde bewiesen von J. M. Whittaker (Flat
regions of integral functions, Proc. Edinburgh Math. Soc. 2 (1930), 111—128).
Ein Satz von G. Pélya (Bemerkung zu der Aufgabe 105, Jahresber. d. Deutsch.
Math. Ver., 43 (1933), 67—69) unterscheidet sich vom vorliegenden dadurch, da die
rechte Seite von (1.1) durch null ersetzt wird. Satz A wurde gleichzeitig und mit ver-
schiedenen Methoden bewiesen von V.Ganapathy Jyer (A note on integral func-
tions of order 2 bounded at the lattice points. Journal London Math. Soc., 11
(1936), 247—249) und vom Verf. (On analytic functions bounded at the lattice
points, Proc. London Math. Soc., 42 (1937), 305—315).

2) Aus der Interpolationsformel folgt | G(z)l < K in einer Umgebung von z = 0. Mit
G(z+ M +iN), M,N =0, &1, £+ 2, ..., an Stelle von G(z) folgt [G(2)| < K in einer
Umgebung von z = M + iN.

3) Vgl. G. Pélya, loc. citat.; mit anderer Bezeichnung wurde die Formel erstmals von
J. M. Whittaker (loc. citat) bewiesen.

4) Vgl. B.J. Maitland, On analytic functions bounded at a double sequence
of points, Proc. London Math. Soc., 45 (1939) 440—457.
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~daf die a,,, , nach wachsenden Betriigen geordnet und gleich a,,v =
1,2,3,... gesetzt, der Bedingung |a‘u —a,| > 6> 0, u # v, geniigen.
Unter Voraussetzung (1.1) gilt dann entsprechend

. o G(a,)
G(z) o 7'6(2) v§1 n,(av) (z ""av) , (1‘3)
wenn n(2) eine ganze Funktion mit den a,, a,, ..., a,, ... als einfachen

Nullstellen, also im wesentlichen das kanonische Produkt iiber die Stellen
a, bedeutet. Ist die ganze Funktion G (z) iiberdies in den Interpolations-
stellen a, gleichméaflig beschrankt, so ist sie notwendig eine Konstante.
Letzteres beweist B.J. Maitland mit einer SchluBweise von G. Jyer®),
welche deutlich zeigt, daB nur die Giiltigkeit einer Interpolationsformel
der Form (1.3) und eine feste Schranke fiir die ganze Funktion in den
interpolierenden Stellen wesentlich sind. Damit ist ein bestimmtes Inter-
polationsproblem gestellt.

Um die Besonderheit der Problemlage klarzustellen, betrachten wir
kurz den allgemeinen Fall:

A. Konstruktionsproblem : Gegeben ses in der z-Ebene eine Stellen-

folge a,,a,,...,a,,... mit a,—>oco(v—>o0) und eine beliebige Wertfolge
A, A,, ..., 4,,.... Gesucht wird eine ganze Funktion G (z) mit G (a,) =
A,v=1,2,3,... .
Die Losung lautet
i Ay z \ kv
o0 =20 £ eyt (a)

Dabei ist 7 (z) eine ganze Funktion mit den g, als einfachen Nullstellen.
Die k, sind ganze Zahlen und streben im allgemeinen mit » gegen un-
endlich, um die Konvergenz sicher zu stellen (konvergenzerzeugende
Faktoren). Im Anschlufl an (1.3) lautet unsere Frage: Wrie ust die
Stellenfolge zu wihlen, damit k, = 0,v = 1,2, 3, ..., gesetzt werden darf?
Offenbar diirfen die n'(a,) gegeniiber den A4, nicht zu klein werden. Dies
stellt aber an die Stellenfolge gewisse Bedingungen und es ist unsere
Aufgabe, diese Bedingungen zu untersuchen.

Vorangehend ist die Wertfolge gegeben und die zugehorige ganze
Funktion gesucht. Eine engere Fassung des Problems, und um diese
handelt es sich hier, ist die folgende:

5) Vgl. hiezu V. Ganapathy Jyer, Some theorems on integral functions
bounded at sequence of points, Proc. London Math. Soc. 43 (1937) 63—172.
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B. Darstellungsproblem: Vorgegeben ist eine ganze Funktion von
besttmmtem Wachstum. Wie ist die Stellenfolge zu wiihlen, damit die ganze
Funktion durch die Interpolationsformel (1.3) darstellbar ist?

Um das Wachstum der ganzen Funktion genauer erfassen zu konnen,
betrachten wir reellwertige Funktionen g (r) mit folgenden Eigenschaften :

1. Die Rechts- und Linksableitungen von p(r) existieren im Intervall
(0, o0) und stimmen dort stiickweise iiberein.
2. Es gilt
lim o(r) = ¢
r-> o
und
lim o/(r)-r-log r =0,
r-> o
wenn fiir ¢/(r) die Rechts und Linksableitungen eingesetzt werden; und
definieren: Eine ganze Funktion von der Ordnung o ist von praziser
Wachstumsordnung o(r), wenn der Ausdruck r—°" -log M(r) fir
r —> 0o eine positive obere Grenze besitzt?). Die Funktion

h(p) = lim sup r—¢(". log | G(rei?) |
miflt dann das maximale Anwachsen von |G(z)| langs der Strahlen
arg z = @ und heiflt Strahltypus von G (2) beziiglich der Wachstums-
ordnung o(r) 7).

Damit prazisiert sich unsere Aufgabe dahin: Gegeben sei eine ganze
Funktion G(z) von praziser Wachstumsordnung o (r) mit dem Strahl-
typus & (p). Wie ist die Stellenfolge {@,} zu wahlen, damit ¢ (z) durch die
Interpolationsformel (1.3) darstellbar ist? Hierzu haben sowohl 7 (2) als
auch die n'(a,) bestimmte Forderungen zu erfiillen. In den Nr. 14 und
Nr. 18 wird gezeigt, daB folgende drei Bedingungen geniigen:

a) log |m(ret®)| ist ,,fast iiberall* von der GroBenordnung H/(gp) - re(”,
b) log |n(a,)| und H(p,) : r¥™), a, = r,e* sind asymptotisch gleich.

c) Esist h(p) < H(p) fiir alle ¢.
Dabei ist o(r) die prizise Ordnung von G'(z) und H(p) der dies-

beziigliche Strahltypus von =z (z).

¢) Vgl. G. Valiron, Lectures on the general Theorie of integral functions,
Toulouse, Edouard Privat, 1923, insbes. S. 64—67.

7) Die Eigenschaften dieser Funktion wurden erstmals von E. Phragmén und E. Lindelf
(Sur P’'extension d’un principe classique de l’analyse et sur quelques
propriétés des fonctions monogénes dans le voisinage d’un point singu-
lier, Acta Math. 31 (1908)) untersucht.
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Aus diesen Forderungen resultieren die Bedingungen fiir die a,; denn
letztere bestimmen = (z). Dadurch konzentriert sich aber unsere urspriing-
liche Aufgabe auf folgendes: Es sind Nullstellenverteilungen zu finden,
deren zugehorige kanonische Produkte den obigen Bedingungen (a) und (b)
(und (c)) geniigen.

Wir erledigen die Aufgabe in zwei Schritten. Zunéchst suchen wir
solche Nullstellenverteilungen, deren kanonische Produkte den Bedin-
gungen (a) geniigen. Diese Aufgabe ist fiir nichtganze Ordnungen in einer
frithern Arbeit?) vollstandig gelost worden. Fiir ganze Ordnungen ist die
Aufgabe bedeutend schwieriger und wird im folgenden Abschnitt A be-
handelt werden, allerdings nur fiir ganze Funktionen vom Mitteltypus
einer ganzen Ordnung, ¢(r) = ¢. In beiden Fallen driickt sich die Bedin-
gung fiir die Nullstellenverteilung in einer Art ,,MeBbarkeit‘ aus, die
allerdings bei ganzer Ordnung scharfer zu fassen ist®). In einem zweiten
Schritt suchen wir die Bedingungen (a) und (b) zu erfiillen, indem wir die
Forderung der MeBbarkeit noch durch eine zweite ergéinzen, die wir mit
dem Wort ,,unverdichtet benennen und in Nr. 15 genau umgrenzen
werden.

Die Hauptresultate iiber ganze Funktionen mit ganzer Ordnung und
mefbarer Nullstellenverteilung sind in Satz 1 (Nr. 2) und Satz 2 (Nr. 10)
zusammengefalt, jene tiber Interpolation in Satz 4 bis Satz 7 (Nr. 18
bis Nr. 20). Als Anwendung unserer Resultate wird die Erweiterung von
Satz A vollzogen?'?).

8) A. Pfluger, Die Wertverteilung und das Verhalten von Betrag und
Argument einer speziellen Klasse analytischer Funktionen, Comm. Math.
Helv. Vol. 11 (1938), 180—214 und Vol. 12 (1939/40), 25—865. Diese Arbeit wird im folgen-
den mit P zitiert.

9) Beziiglich des Begriffes ,,meBbar‘ vgl. P, 1. Teil, Nr. 11 und Nr. 2 der vorliegenden
Arbeit.

10) Wie mir kiirzlich durch ein Referat in der Mathematical Reviews bekannt wurde,
hat sich B. Lévine in seiner Arbeit ,,Sur certaines applications de la série d’in-
terpolation de Lagrange dans la théorie des fonctions entidres‘ (Rec.
Math. (Mat. Sbornik) N. S. 8 (50), 437—454 (1940), russisch mit franzésischem Auszug)
mit demselben Interpolationsproblem beschéftigt. Soweit ich dem Referat entnehmen
konnte, diirften unsere Resultate fiir ganze Funktionen einer nichtganzen Ordnung wenig
von einander verschieden sein. Im Falle ganzer Ordnung verlangt B. Lévine neben der
MeBbarkeit, da die a, emim/e (m=1,2,..., 9—1) in den [a,} enthalten seien. Es war
nun gerade ein Hauptziel meiner vorliegenden Arbeit (Abschnitt A) bei ganzer Ordnung
von solchen starren Symmetriebedingungen frei zu werden und nur mit asymptotischen
Forderungen auszukommen. In der Tat geniigt es, neben eine etwas scharfere Art von
MeBbarkeit (2.5) die nur asymptotische Gleichgewichtsforderung (2.4) zu setzen.
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A. Ganze Funktionen
von ganzer Ordnung mit meBbarer Nullstellenverteilung

2. Problem und Hauptsatz.

Wir nennen eine Verteilung von Stellen dann meBbar beziiglich
einer prézisen Wachstumsordnung p(r), wenn fiir irgend zwei
Stetigkeitsstellen einer monoton wachsenden und beschrinkten Funktion

N(p)
In(t; @', ¢") — (N@") — N(p'))te®| =o(te®), t >01) (2.1)

ist. Dabei bezeichnet n(t;¢’, ¢”) die Anzahl der Stellen im Sektor
|z2] € t, o' £ argz<¢”; N(p) heilt MaBfunktion der Stellenver-
teilung!?).

Jede ganze Funktion G (2) mit nichtganzer Ordnung ¢ und meBbarer
Nullstellenverteilung verhalt sich asymptotisch regular, d. h. es gilt
fiir jedes ¢

lim* r—e(M.log |G(ret?)| = h(¢p) (2.2)
oder m. a. W. der Ausdruck hinter lim* strebt gegen den Strahltypus,
wenn r auf einer geeigneten Menge von linearer Dichte 1 gegen Unendlich
strebt!3).

Umgekehrt, verhilt sich eine ganze Funktion mit beliebiger praziser
Wachstumsordnung o (r), o (r)— o, asymptotisch regular, so ist ihre Null-
stellenverteilung mefbar beziiglich ¢(r) und es besteht zwischen Strahl-
typus und MaBfunktion die Beziehung

27-d N(g) = o hlg) dp + —;—dh'((p) : (2.3)

Bei ganzer Ordnung o besitzen die Nullstellen iiberdies eine Art Gleich-
gewichtseigenschaft, die sich im Bestehen der beiden Gleichungen

2w 27
f cos g0-dN(@) =0 , | sin g6-dN(f) =0, (2.4)
0 0

ausdriickt4).

11) Hier und im folgenden bedeutet die Gleichung f(r) = O(¢(r)), daB der Quotient
ég% bei r - co von einer gewissen Stelle an beschrankt bleibt; f(r) = o(¢p(r)) dagegen
besagt, dafl lim -cf;((%— = 0 sei. Insbesondere bezeichnet O(1) eine Gréle, die bei r— oo

- 00
beschrinkt bleibt; dagegen o(1) eine solche, die bei r - co gegen Null strebt.
12) Vgl. Anm. 9.

13) beziiglich ,,Menge von linearer Dichte 1*‘ vgl. P, 1. Teil, S. 195.
14) Vgl. P, 2. Teil, insbes. Satz 156 und Nr. 37.
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Um letzteres Resultat umzukehren, geniigen der obige Begriff der
MeBbarkeit und die Forderung der Gleichgewichtseigenschaft (2. 4) nicht.
Es ist vielmehr eine scharfere Fassung des Begriffes ,,meBbar‘ notwendig.
Wir nennen eine Verteilung von Stellen meB8bar im engern Sinne
beziiglich einer ganzen Ordnung g, wenn fir irgend zwei Stetig-
keitsstellen einer monoton wachsenden Funktion N (p)

|n(t; ¢ ,¢") — (N(@")—N(¢')) te|<K-o(t) ,t>0,
(2.5)

e, f’ll/?” O<t<e ,
o(t) = .
te(log t)™°7%, e>0, fur t=e ,

gilt. Mit N(2n) — N(0)=D wund n(;0,2x) = n() ist dann auch
|n() — Dte|<K -a(t), t>0. (2.6)
Hiernach gilt

Satz 1. Ist eine Nullstellenverteilung mefbar im engern Sinne beziiglich
der ganzen Ordnung o(r) und erfillt ithre Maffunktion N(p) die Gleich-
gewichtsforderung (2.4), so gilt firr das Weierstraf3’sche kanonische Produkt

11(2)
lim* r—¢.log | II(rei?) | = H(p) = 4 cos (op + o) -+ h(p) . (2.7)
Dabes 18t
a=ielr="lim Y a3 (2.8)
wnd @ Rro lay |2 R

2w
h(g) =—!0 sin gp-d N(p+96) . (2.9)

Bemerkung: Wie spiter gezeigt werden wird (Nr.9 und 10), gilt
zwischen N(¢) und A (p) in (2.7) die Beziehung (2.3).

Die Abidnderung endlich vieler Nullstellen hat auf das Resultat keinen
EinfluB.

Im ganzen folgenden Abschnitt A (Nr. 3 bis 11) wird unter ¢ immer
eine positive ganze Zahl verstanden.

3. Beweisanlage fiir Satz 1.

Der Beweis dieses Satzes scheint zunichst deshalb besondere Schwie-
rigkeiten zu bieten, weil im kanonischen Produkt

1 1
——2 *a0 —
et ult +Qu9

ﬂ(z)='ﬁE(—z-,e) , Blu,o)=(1—u)-e ,
p=1  \Qpu
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jede einzelne Nullstelle einen Beitrag von der Ordnung o liefert. Anderung
einer einzigen Nullstelle bewirkt also eine Storung von der Ordnung ¢ und
es geniigt deshalb nicht nur das asymptotische Verhalten der Nullstellen
zu betrachten. Aber zufolge der Gleichgewichtseigenschaft (2.4) und der
MefBbarkeit im engern Sinne ist es moglich, den individuellen und den
asymptotischen EinfluB der Nullstellen voneinander zu trennen. Es gilt
namlich

Lemma 1. Unter den Voraussetzungen von Satz 1 existiert

lim Y a;%=pleit* = paqa . (3.1)
R> [ap'|7\R

Wir kénnen daher schreiben

17 z \¢ ; 1/ 2 12 12 g %Ed
e —_—d— =) F e —{—
IlI(z) = lim I ee(ai‘) . im II (1———2—-)6““ 2(“F) 1 “u) |
R>w lay| <R R>o |a,|ZR Ay
oder
II(z) = e2*® . n(z) . (3.2)

Es beschrankt sich also der EinfluB der Nullstellen auf den harmlosen
Exponentialfaktor eez¢, wihrend auf den zweiten Faktor nur das asymp-
totische Verhalten der Nullstellenverteilung einen EinfluB hat. Denn dort
ist jeder einzelne Faktor von der Ordnung ¢ — 1. Es bleibt somit die
Aufgabe, das asymptotische Verhalten der ganzen Funktion

az) = lim 1T E(—z—, 9—1) (3.3)
R>» |au|ZR \

zu untersuchen. Offenbar konvergiert das Produkt (3.3) nur bedingt.
DaB es iiberhaupt konvergiert, beruht wesentlich auf der Me8barkeit im
engern Sinne und der Gleichgewichtseigenschaft (2.4), sowie des konzen-
trischen Einfangens der a, beim Grenziibergang. Das Produkt iiber irgend
eine Teilfolge der a, braucht nicht mehr zu konvergieren.

Zur Losung der Aufgabe beweisen wir zunéichst folgenden Spezialfall:

Lemma 2. Sei arg z = ¢ irgend eine feste Richtung und der Winkelraum
larg z — @| < 5, 5 > 0 von Nullstellen frei. Im ibrigen erfille die Null-
stellenverteilung die Voraussetzungen des Satz 1. Dann gilt fir (3.3) ‘

2m
lim 7~ log | n(rei?) | = h(p) = — [ O sin g0 . d N(p+0) . (3.4)
0

r->o 5
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Um von hier zum allgemeinen Sachverhalt vorzustoBen, bendtigen
wir1s)

Lemma 3. Sei die ganze Funktion G (z) vom Mitteltypus der Ordnung o
und h (@) thr Strahltypus. Gilt im offenen Winkelraum — <<+«

lim 7-¢.log|G(ret?) | = h(g) ,

r> o0

so gilt fur die Grenzstrahlen ¢ = +

lim* r—¢ log |G(ret*®) | = h(4«) .
Ferner

Lemma 4. Gegeben sei eine Nullstellenverteilung V, die den Voraus-
setzungen des Satzes 1 geniigt. Fiir jede feste Richtung ¢ lafpt sich V durch
eine Verteilung V' zur Verteilung V* erginzen und die letztere in zwei
komplementdre Verteilungen V, und V, zerlegen, derart, daf3

1. alle Verteilungen V', V*, V, und V, den Voraussetzungen des Satzes 1
geniigen,

2. die Verteilung V' in |arg z — ¢| < &, die Verteilung V, in
p —e<argz < o und die Verteilung Vyinp <argz< ¢ + ¢
nullstellenfrer ist.

Bezeichnen wir nun die zu V, V/, V* ¥V, und V, gehorigen MaB-
funktionen mit N, N’, N* N, und N, und die zugehdrigen kanonischen
Produkte mit w, #’, n*, 7, und &,, so gilt

n*=n-n' =m  n, (3.5)
und
N*=N4N'=N,+N,. (3.6)

GemalB Lemma 2 und Lemma 3 ist nun

2
lim* r—¢ . log |mre??) | = — [ Osin g0 -dN(p+6) , i=1,2,
7> 00 0
und daher
2m
Hm* ¢ . log |a*(re??) | = — [ Osin g0 - d(N1(p + 6)+ Nylp+0)) .
7->00 0

1) Vgl. P, 1. Teil, Nr. 8.
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Nach Lemma 2 gilt

27
lim r-¢.log |n'(ret?)| = — | 0 sin 06 - dN'(p + 0)
7300 0
und daher
*( g ol ® 2w
lim* 77 - log "f?(%—))‘ = — [ Osin g0 - d(N* (¢ + 0) — N'(p+0)) ,
7->00 0

schlieBlich nach (3.5) und (3.6)
P

lim* r—¢ . log|n(re®®)| = — [ 6 sin 00 - d N(p + 0) .
0

-> 00

Daraus folgt aber in Verbindung mit (3.2) die Behauptung des Satz 1.

4. Beweis von Lemma 1.

Es seien irgend zwei beliebig groBe Radien R’ und R” > 2R’ gegeben.
Wir wihlen eine Zahl ¢ und eine ganze Zahl m mit

2<c¢c<4 und R” = ¢m»R’ 4.1)

und betrachten die zugehorige Folge

.R,=.Rl, RV+1=CRV’ 1’=1,2,3,...,m, .Rm+1=.R”-
Setzen wir

S(R,, R//) —_ 2 a’:(’
R’<la,,, |Z R”
und
A, = PN a,’
R,,<|ap,|2R,,+l
so wird
m
S(R',R")= X A, . (4.2)
v=1

Zur Abschatzung von A, teilen wir die z-Ebene in k, Winkelrdume ein
von maximaler Offnung 6, — zwei GroBen, die wir spiter festlegen
werden. Ihre Schenkel argz = 6,, 0,, ..., Or, > Or, 1= 0,1+ 27 seien

Stetigkeitsstellen von N(p), so dall gemal (2.5)
|n (8 6, 0;41) — (N(0,41) — N(;) )t¢|<Ka(t), t>0, j=1,2,...,k,. (4.3)

Setze N(0,,;) — N(0,) = d;. Dann existiert gemal dem Mittelwertsatz
der Integralrechnung in jedem Intervall (6,, 0,,,) eine Richtung ¢;, so
daf3 wegen (2.4)

kv kv

zldj cos pp; =0 und jZ; d; sin gp; =0 . (4.4)

fom =

322



Jene Nullstellen a,, die im Winkelraum 6, < arg z < 0,,, gelegen sind,
drehen wir um O auf den Strahl arg z = ¢, und bezeichnen diese neuen

Stellen mit b = ryew" . Fiir ihre Anzahlfunktion gilt

ny(t) = n(t; 6, 6,4,)
und daher
|n;t) —d; - te|<K -a(t), t>0, 9=1,2,...,k, . (4.5)
Wir setzen
2 (bﬁf’)-ezB(j), 1=1,2,...,k,, (4.6)
Rv<|b§{)23,+1

j fest
und

2 la,|¢=0C, . (4.7)
R,,<|a“lZR,,+1

Zwischen jedem‘ a, im Winkelraum (6, , 6,;;) und dem zugehorigen
b{) besteht nun die Ungleichung

|42t — B¢ 1< 04, -1, ¢, j=1,2,.. .k, ,

und daher insgesamt

IA,,——_Z;B(,,j)Iégév-Cv, v=1,2,...,m . 4.8)
-
Wegen (4.6) und 6 = r, - ¢'® ist nun
Rytq Ryp1  Ryyy
B =% (e anyy =t |20 | o [2AO00]
Ry Ry Ry
Ry4q Ryty1  Byyy

—13 o dt n"t _—d te n"t “—'d to
e w,.zeaift_l_ ()te j +9f ()tQ'l'lj 'dtg’
RV

R, &
Weiter folgt gemill (4.5)
R o 1w
. = . g g
B — gd,¢ " log | <K ZD | 4 Kf ek
R, R,
V41 o(R,)
<(2+g log )K RS

und schlieflich aus (4.1) und (2.5)



| BY — od,e” %% . loge | <K(2+plog 4) (log B) 2%, (4.9)

i=1,2,..., %

Entsprechend gilt wegen (4.7) und (2.5) r=1,2,...,m.
|C, — eDlogc|<K(2+plog4)(log R) %5 v=1,2,....,m . (4.10)

Die Addition der Ungleichungen (4.9) unter Beriicksichtigung von (4.4)
ergibt k,
l 2 B?| < K,k,(logR)™* ¢, v=1,2,...,m .
j=1
Daher wird aus (4.8) in Verbindung mit (4.10)
|4,| < e*Dlog4-8,+ (k, + 2m0) K, (log R)"27%, »=1,2,...,m .

Nun wéhlen wir 9
8, = i
"7 (v log 2 + log R)t+er

und
2mo<ky<2(v log 2 4 log R/)**+#2 R’ geniigend gro8.

Dann wird wegen R, > 2V R’
K’ 4K,

< g e T log By e® T T log 2 F log B

| 4, | < K" (log R/)=%4 « y=1—2l4 p =12, ..., m .
Nun ist }'f' y—l-e/d < E’ y—1—¢4 = C und daher
=1 y=1
in Verbindung mit (4.2)
| S(R’, R") | < K" - (log R')~¢* . (4.11)

Da aber K” von R’ und R” unabhingig ist und (4.11) fiir alle B”">2R’
gilt, so ist hiedurch Lemma 1 bewiesen.

b. Beweis von Lemma 2.
Die Zahl r > €!° sei beliebig vorgegeben. Wir betrachten die zugehorige

Folge
0=R,, By=13 R,,=rR,, v=2234,... (5.1)
und{ setzen
2

A =lg _O__ E(L,e—1),s=12.... .

Ry<|oy| X Ryy, \
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Dann ist 16)

log 7 (2) = ;fle,,(z) : (5.3)

Zur Abschatzung von A, (z) wird der Winkelraum ¢ + #n < argz &
@ + 27 — 7 eingeteilt in k, kleine Winkelrsume von maximaler Offnung
d,. Die Wahl ibrer Schenkel argz =0,;,j=1,2,...,k, + 1, 0, = ¢+ 7,
Or,+1 =@ + 27 — 7, und der Richtungen argz=g¢, im Intervall
(0,, 0,,,) treffen wir entsprechend wie in Nr. 4, so da}, unter Beibehaltung
der dortigen Bezeichnungen, (4.3) und (4.4) erfiillt sind. Wieder drehen
wir die Nullstellen @, im Winkelraum 6, £ argz < 0,,, um O auf den
Strahl arg z = ¢,, so , da8 die Anzahlfunktion der b (4.5) erfiillt. Wir
setzen

-B.(Vj)(z)zlog H E('B?;.)—, 9_1) 9 j=1’2,||',kv.(504)
R, <|tD|2Ryyy B
j fest

Bezeichnet C,, jenen Bogen, der ein @, im Winkelraum 6,< argz<90,,,
mit dem entsprechenden b{)’ verbindet, so besteht zwischen den beiden
entsprechenden Weierstraf’schen Primfaktoren ZE (_C;z__’ 0 — 1) und

z . . #
E (—5&—) , 0 — 1) die folgende Beziehung

2
logE(E:, g—-—l)-——logE(bm , 0— 1):

[ o 5( o) =y

Mit z=re®® und { = te® ist wegen |p —arga,| =19

(5.5)

| —z2| =+ t)sinyaZn/4E+7r), n<nfs, (56.6)

und daher das Integral der letzten Seite von (5.5) wegen 0,,, — 0, < §,

absolut kleiner als 4 O — r .
n o oreT(ry+1)

16) Es ist zu beachten, daB infolge (2.5) der Ursprung nullstellenfrei ist. Diese Ein-
schrankung wurde aus beweistechnischen Griinden vorgenommen. Im tbrigen hat die
Abanderung von endlich vielen Nullstellen auf das Resultat keinen EinfluB.
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Also insgesa.mt gemiB (5.2) und (5.4)
Ryt

o s _‘?l’_ re & [ re-dn(t)
| 4, (re )—EB"(f*e"°)l<4=,7 p rer+r,) 477ft9‘1(t+)

By <tu< Ryyy "0

L

v+1 v+1

1
—4—fr n(t). [T -dt.

Oy re n (t)
n et (t+r)

=4

Wegen (2.6) und o () & ¢ ist das erste Glied der rechten Seite kleiner als
8 % . (D 4+ K)re. Der Differentialquotient unter dem Integralzeichen

ist negativ, sein absoluter Betrag kleiner als Der Betrag des

4
etrr)
Integrals selbst also kleiner als 3o (D 4 K) r¢ log r. Folglich ist

kv

| 4, (ret?) — X B9 (rei?) l<-%— - K'relog r . (5.7)

i=1

6. Zur Abschitzung der B{)(z) betrachten wir vorerst den Fall, da8
alle Stellen b, auf der negativen reellen Achse liegen und ihre Anzahl-
funktion = (f) der Bedingung

|n(t) —dte| < Ko(t) , t>0, (6.1)
geniigt. Mit b, = — r, wird dann ')
Ry,
B, (z) = log 74 E(————-z—-,g——-l) =flog E(——-i,g—l)-dn(t)
R, <ty ZRy4y Tw ¢
Ryt Ry,
_ _z -n(t) - dt
_”“”OgE( F e ) l’f 2+ 2)
Ry a1 Rv+1
=dztelog E(—-':— 9-—1) __(_1)ef zz:_d: 2 (6.2)
v RV
Ry Ryq,
2 22 (n(t) —dte) d¢ z
+ g (n(t) — dt2) logE(——-—Z-, 9—-1) _(—1)ef T

17) Weil der Ursprung keine Nullstelle ist, und die WeierstraBschen Primfaktoren X
von der Ordnung ¢ — 1 sind, haben alle nachfolgenden Ausdriicke auch fiir £ = 0 einen
Sinn oder es existiert ein Grenzwert fir ¢ 0.
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Wir setzen
Rv+1 Rv+1

,,(z)--iﬁttelogE'( - Q——-l) —-.(-——1)ef Z:_d:z (6.3)

14 RV

2
g B (— e—1] ’+f FeEn

Aus (6.4), (6.3), (6.2), (6.1) und (5.6) (wir setzen |p| £ n — 7 voraus)
folgt dann

(RB@— () |< 2= il , lzl=r. (6.9

(r)= Max o(f)

Zur weitern Abschitzung der Ausdriicke J und j formen wir folgender-
mafen um

By +1 . /zeglog—l—:—g—{—log(l—l—}%-)z , v=1,

Jz@ dt
=
R, alta logR’”rl —{—log(l + )—-—-log(l —l——£——) 2 ,
v+1 v
pom B, 8, 0ue

Wegen (5.1) und log |1 4 u| < K|u]| fiir [u| & 4 folgt weiter

R
mj'ﬂze.dt { 2r¢log r-cos pp + re.psing@p + re-2.0(1) ,v=1 ,

24t r¢ log r-cos pp +1r¢-v.0(1), »=2,3,..
Aus . ( ) "
2 (._....1)2"‘ 2z \¢ — 1)@ 2z \¢
e B (= 0 =SB () S () o0

fiir t > 2r
folgt in Verbindung mit (5.1) 18)

Rv-}-l

913#’ log E(——zt-—,g—--l) i

und geméafl (2.5)

(—1e?

«r¢.cos pp + re2.0(1) , v=1,

r, |re—v.0(1),v=2,3,... (6.7)

E / re
].Og E( t ,Q 1) ,< K ((v+1)10g1')2+a ’ (6-8)
y=1,2,3,... .

18) Es ist zu beachten, daB die linken Seiten von (6.7) und (6.8) mit ¢ gegen null
streben.

Max o(t) -
lzl=r
=vaRv+1
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Ferner gilt

Ry 41

re.g(l)-dt e, e
f ) ZK're(y+ 1)~2~¢. (log n)~1-¢,9=1,2,3,... .
B (6.9)

Setzen wir nun

(— 1)e-1.pe

1 . |
21 — =
Hv(reiq’):{ ( ogr -+ Q)cosgw—]—(pSan(pS,‘v 1,

(—1)e1.7¢]logr-cospp , v=2,3,... . (6.10)
so folgt aus (6.10), (6.7), (6.6), (6.3) und (6.9), (6.8), (6.4)

|/,(2) — H(2)|<K,-re”, v=1,23,...
und
i (1) < 2K're(logr)™ - (w+1)"2"%, »=1,2,3,....

Und endlich, wegen ¥ > (v 4 17 « (log r)'*¢ fiir r > €19, 0 <e< 1, in
Verbindung mit (6.5)

4

| R B, (2) —d H,(2) |<}%—r@(lo,g'r)‘l“*3 « (v1)"2-2, »=1,2,3,...
fir |2| > €% und |argz2| < n — 75 . (6.11)
7. Kehren wir nun zur Situation der Nr. 5 zuriick. GemaB (6.11) gilt'?)

n

| R B (ret)—d, H,(re' " 7%1"7) | < £{;,— re(log 1) (v 1)7 5

und daher

k E
v L ¥ S (19—, — K” 1—e —2—g
ZlﬁlB(J)(re‘¢)~_Z'1de,(re(W il )) <—;—7~k,r‘~’(log r) T (1) T,
j= i=
v»=1,2,3,... . (7.1)
Zufolge (6.10) und (4.4) ist aber
kl
ky () pis] — —re Y dl log—¢)|- sin —¢il,v=1,
dj.Hv(re(Iq’ ?;l ))= Pae] 7I‘P ¢7l QI‘p (le
i=1 ‘

0, »=2,3,... 20, (7.2)

19) Die Winkel ¢ und ¢; sind jedenfalls so zu messen, da 0 | ¢ —q; | 2 2 7 ist.

20) Die Richtungen ¢; und die zugehérigen d; sind von v abhéngig. Zu jedem Wert
von v gehort eine besondere Einteilung. Mit cp{ , cp;, — rp'kl (d; Y A dl:u) bezeich-
nen wir jetzt die speziell zu v = 1 gehoérige Einteilung. Diese hangt natiirlich wieder
von r ab.
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Sei nun N,(0) =dj +d; + --- + d] fir ¢} <0< ¢}, sodaB
0 fir 6 ¢ ,0,...,9,
AN, 0) =] ,
d; fir 6 = ¢; .

Setzen wir das Differential dNV,(p) periodisch iiber das Intervall (0, 27)
hinaus fort und beachten wir, daB dN,(p + 6) = d} fir 6 =¢; — ¢
(mod 2x), sonst aber Null ist, so wird nach (7.2)

kq . ’ 2
2 d H (ref1*7%1" ™) = e [ 0sing0.dN,(p+0) . (7.3)
i=1 0

Aus (7.3), (7.2), (7.1) und (5.7) folgt aber

2m /4
|RA, (ret?) 4 re ! Osinp0.-dN,(p+0) | < —%— re{é, log r + &, (log r)—1—2. 2-2-¢}

n
|RA, (ret?) | < —K;— re {dy-logr + k,(logr)—1—2.(v 4 1)"2-¢}, »=2,3,...
und daraus nach (5.3)

| log | 7 (ref®) | + re Tesinge-dN,(qa—l—O)l | (1.4)

/4

< %—79{ logr 2‘ 0y + (logr)~1-2. E’,‘ ky(v + 1)—2—¢} .
v=1 y=1
Nun wahlen wir

8 2 2x(logr) =2, (v + 1)71-¢2 | 5 =12, ...
und
k, >2(logr)*e2 (v + 1)1+e2 | p=1,2,....

/4
Daher wird die rechte Seite von (7.4) kleiner als —%—- re (log r)~°2.

Die Treppenfunktion N,(0) strebt aber mit r—>oco gegen N(6), da die
Einteilung ¢ + 7 = ¢}, ¢}, ..., ¢, .1 =¢ + 2m — 1 bei r—>oo beliebig
fein wird. Es gilt also
2w 2w
re [ sin o6 - AN (p + 0) = re [Osin g0 - dN(p + 0) 4 0(r) 21)
0 0
und daher
2w
|log|m(re®)| + re [Osin g0 - dN(p + 0)] = 0(re) ,
0

womit Lemma 2 bewiesen ist.

1) Vgl. Anm. 11),
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8. Beweis von Lemma 4.

Es bedeutet keine Einschrankung der Allgemeinheit, ¢ = 0 voraus-
. 7
zusetzen. Es sei ferner 0 < ¢ < Bp

Die Menge V'’ setzt sich zusammen aus folgenden zwei Teilmengen :

V! besteht aus jenen Stellen in % & argz< % + ¢ , die durch
Drehung an O erhalten werden aus den Stellen von V in 0 < argz < ¢.
V, besteht aus neuen Stellen auf den Strahlen arg z = + —i—z—é von der
Dichte d, bzw. d_, so daB |[n,(r) —d, ¢ |< K -0o(r), r>0.

Es gilt also

. 7
d+ flll‘ 0 = -4—9—-
ar 6= —
AN’ (6) = d_ fir 0= Io
dN(e--—”—) fir %z 0< -2
0 0 < e TE
0 fiir alle andern 6 .

Demnach sind die positiven Zahlen d,_ und d_ so bestimmbar, daf3

2m & 1

6.-dN'(0) = — 6.-dN(O d d_.)=20
gcose (6) gcose ()+V‘2'(++) )
2T & 1

1 0-dN'(0) = — i 6.-dN(0 —_—(d,.—d_)= 0.
gsme 6) gsme ()+V§(* )

Es erfiillt also ¥/ und damit auch die Vereinigungsmenge V* die Forde-
rungen von Lemma 4.

Die Menge V* zerlegen wir folgendermaflen in zwei komplementéare
Mengen V, und V,: V, besteht aus V] und den Nullstellen aus V in
0L argz < e. Es gilt also

dN(6) fir 0Z0<e
T

N, () = dN(O———%—) fir Z2o< 4

0 fiir alle andern 6 .

N,(0) erfiillt also (2.4), und daher auch N,(0), die MaBfunktion der
Komplementérmenge ¥V, von V,. Beide geniigen den Forderungen von
Lemma 4.
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9. Geometrische Deutung des Zusammenhanges zwischen
N(p) und h(p) .

Der Zusammenhang zwischen den beiden Funktionen k(@) und N(p),
wie er durch Gleichung (2.9) festgelegt ist, gestattet eine einfache geo-
metrische Interpretation??).

Als Strahltypus einer ganzen Funktion der Ordnung o ist % (¢p) stetig
und je von rechts und links differenzierbar. Diese Rechts- und Links-
ableitungen sind von beschrankter totaler Schwankung und geniigen
den Bedingungen &\ (p —0)=h_(p — 0)=h"(p) und &l (p 4 0) =
k. (p + 0) = &/ (¢). Die Funktion

K, (@) + b (¢)

b () = 3

(9.1)

besitzt also nur abzihlbar viele Unstetigkeiten und es gilt fiir alle ¢

h' h (p —
B (p) = (p + 0) ‘;" (p —0)

Die Hiillkurve § der Geradenschar

x-cosgp + y-singp —h(p) =0, 0Z2¢<Z2m,

ist konvex, in sich geschlossen und kann sich im Falle ¢ > 1 mehrmals
iiberschneiden; A (p) heiflt ihre Stiitzfunktion. Durch

x(p) = h(p) - cos ew——%k’(qo) -8in g
(9.2)

. 1
Y(p) =h(p)- sin op -+ -é—h’(q)) - COS 0@

wird jedem ¢ eindeutig ein Punkt P(p) der Hiillkurve § zugeordnet.
In Unstetigkeitsstellen von h'(p) ist P(p) Mittelpunkt der Strecke, die
P(p — 0) mit P(p + 0) verbindet. Wir bezeichnen mit € (g, ¢,) die Lange
jenes Stiickes der Hiillkurve, das zwischen den Punkten P(p;) und P(p)
gelegen ist, mit andern Worten, dem Intervall ¢, € 0 £ ¢ entspricht.
Die Gleichung € (g, ¢,) = C(p) — €(gp,) definiert dann — bis auf eine
additive Konstante — eine Funktion ¢ (p). Wir nennen sie die zur Hiill-
kurve § gehorige Bogenfunktion. Diese Bogenfunktion ist monoton
wachsend und es gilt

C 0)+Cl@—0
(o) = @ + )42— (¢ —0) , (9.3)

23) Fir diese Nr. vgl. P. 2. Teil, S. 256—41.
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Clp + 27) — Clp) = C(2=) — €(0) , (9.4)

dC(p) = oh(p) dp +.g- dh'p) (9.5)
?008 00 -dC(0) =0 , 2jrﬂi:n 00-d€(0) =0 . (9.6)
0 0

10. Wir suchen den Zusammenhang zwischen N(p) und % (p) und be-
trachten zu diesem Zwecke die Gleichung (2.9)

27
hlp) = — j@singﬂ-dN(g;—{—O). (10.1)
0
Durch partielle Integration von (2.4) folgt zunéchst
@427 —
_f N(t) sin gt-dt = — N(2n)g il cos o@ ,
’ (10.2)
Q427 —
f N(t) cos pt-dt= N(2n)e NO . sin pgp .
14

Mittels der Variablentransformation ¢ = ¢ + 0 unter Verwendung von
(2.4) und nachheriger partieller Integration folgt aus (10.1)

¢+2m

j'tsmgt- @) -d N(t) =

+2w p42=xm o+2m

= — ¢ 8in p(t-¢) * N(¢) | + j' N(t) sin g(t-¢) - dt+p j' t cos o(t-¢@) - N(t) dt.

14

Das erste Glied verschwindet, das zweite Glied ist gemafl (10.2) gleich
_ e ;—N(O) und daher
- ¢ +2m
hlp) = — N(g") . Hi0) + 0 f t cos g(t—¢) - N(t)dt . (10.3)
L4
Durch differenzieren nach ¢ folgt

P+2mw

-—-h’((p) (99-}-2%) (N(2#x) —N(0))+27-N(¢)+o j t sin p(¢—e¢). N(t)dt oD
und hieraus .
%dh'(tp)=(N(2n)——N(0)) -do+2n. dN(qa)—dtp-g“qD}z,trcos o(t—¢)-N(t)dt.

L4
(10.5)
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Fiigen wir noch bei, dafl durch partielle Integration von (10.4) und
nachfolgender Variablentransformation folgt?23)

2
_;_;,f(qg) — [ 6cosgf-dN(p+6) . (10.6)
0

Die erhaltenen Ausdriicke (10.3) und (10.5) in (9.5) eingesetzt ergeben
27 - dN(p) = dC(p) .

Es ist also 2z N(p) die Bogenfunktion der von A (¢) erzeugten konvexen
Kurve.

Durch die Bogenfunktion 27N (p) ist aber die Kurve nur bis auf Trans-
lationen bestimmt?*). Wodurch ist dann die Lage der Hiillkurve ausge-
zeichnet? Um dies zu sehen, belegen wir die Kurve mit Masse, deren
Dichte proportional ist der Kurvenkriimmung an der betreffenden Stelle.
Der Schwerpunkt dieses Massensystems heilt Kriimmungsschwerpunkt
der Kurve. Wir behaupten: Der Kriimmungsschwerpunkt der Hiillkurve
liegt im Ursprung.

Um dies zu zeigen, beachten wir, daBl der Lange d € (p) die Masse kd¢
zukommt, d. h. ihre Dichte proportional der Kriimmung ist. Das zum
Kurvenpunkt P(p) gehorige Massenelement ist also gleich kde und die
Gesamtmasse gleich % - 2x. Die Koordinaten des Schwerpunktes sind

dann g g
1 1
=5 [e@de . v=5= [verde .
0 0
GemiaB (10.1), (10.6) und (9.2) ist nun
2w
() = — g' Osing (6 +¢)-d Nip + 0) ,
2w
ylp) = ofecose(@+¢)-dN(¢+0) :

Durch partielle Integration unter Verwendung von (10.2) folgt

2w
z(p) = — 2z sin gp « N(p+2n) + [ N(p+0){sin ¢(6+¢)+00 cos g(p+0)}d 0
0

N(27)— N(0)
e

2w
= —2xsinpp-N(p4-2a) — cos o -+ egﬂ cos ¢ (p--6) - N(p-+0)db.

e+2m
23) Man beachte, daB wegen (10.2) f cos ¢ (t— ¢) . N(¢) dt verschwindet.
L4
) Vgl. P, 2. Teil, Nr. 23, insbes. Satz 7.
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_ N@2a)—N(©)
e

Ty

27 27

+ 5 [6-d0. [Nip+0) cosolp+0)dg=0 .
0 0

Entsprechend

2w
Y (p) =27 cos gp * N(p+2n)+ JN(¢+0) {cos o(p+0) — 0O sin o(6+9)} d 6

2m
=2n cos op-N(p +27)+ N(zn);—N(O)

sin gp—¢ §0 sin g(¢ + 0) N(o+0)do .
2w 2m

2w
vo= [ Nig)cosgpdy— - [0as- [Nig+0)singlp+0)-dp=0 .
0 0 0

Es ist also z, = y, = 0, womit alles bewiesen ist. Wir haben als Resultat:
Satz 2. Die Funktion
2w
h(p) = — [Osin o6 - dN(p + 0)
0

erzeugt als Stitzfunktion eine geschlossene konvexe Kurve, derem Kriim-
mungsschwerpunkt mit dem Ursprung zusammenfillt und deren Bogen-
funktion gleich 27 - N(p) ist 28).

Bemerkung: Es erfiillen also Strahltypus und MafBfunktion die
Gleichung (2.3).

11. Die in den vorangehenden Nummern 9 und 10 durchgefiihrten
Betrachtungen deuten auf folgende Verallgemeinerung hin.

Sei €(p) eine monoton wachsende Funktion, die den Bedingungen
(9.3), (9.4) und (9.6) geniigt, f(p) eine beliebige monoton wachsende
Funktion derart, daB fiir alle ¢

@+ 27) — fle) =1

ist. Mit ahnlichen Methoden wie in den vorangehenden Nummern lafit
sich beweisen:
Die Funktion .
h(p) = ! f(0) sin (6 — @) - 4C(0)

erzeugt als Stiitzfunktion eine geschlossene konvexe Hiillkurve, deren
Bogenfunktion gleich € (p) ist.

25) Mitz Satz 1 und Satz 2 begegnen wir einem Resultat iiber Exponentialsummen von
Q. Pélya, ,,Geometrisches tiiber die Verteilung der Nullstellen gewisser
ganzer transzendenter Funktionen*, Sitzungsberichte Bayerisch. Akad. d. Wiss.,
Math. phys. Kl., 1920, S. 285—290, insbes. S. 288.
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Der Ubergang von einer Funktion f(6) zu einer neuen kann also hich-
stens eine Translation der konvexen Kurve bewirken. Irgend wie mull
also die Funktion f(0) charakteristisch sein fiir die Lage der Hiillkurve.
Wir kénnen dies folgendermafen prizisieren: Denken wir uns die Kurve
so mit Masse belegt, daBl dem Kurvenstiick zwischen P(p,) und P(p,) die
Masse f(p;) — f(p,) zukommt. Dann liegt der Schwerpunkt dieses Massen-
systems im Ursprung.

B. Interpolation ganzer Funktionen

12. In einer fritheren Arbeit?¢) und im vorangehenden Abschnitt
wurden hinreichende Bedingungen fiir reguldres asymptotisches Ver-
halten (vgl. Nr. 2) hergeleitet und zwar einerseits fiir ganze Funktionen
von beliebigem Wachstum einer nichtganzzahligen Ordnung?’) und
anderseits fiir ganze Funktionen vom Mitteltypus einer ganzen Ordnung
(Satz 1). Diese Funktion und ihre Nullstellenverteilungen bilden die
Grundlage fiir die nachfolgenden Untersuchungen. Sie sind hier durch
ihr radiales Verhalten charakterisiert worden. Zur Integralabschétzung
ist aber die Kenntnis ihres ,,zirkuldren,, Verhaltens notwendig. Um den
Ubergang herstellen zu kénnen benttigen wir folgendes, leicht verallge-
meinertes Lemma von Bernstein-Cartwright?®)

Lemma 5. Se: F(z) in |z| € R reguldr,
log|F()| < A4  fur |z| < R
und bei gegebemem k < 1

log |F(ze)| = — 4 fur etn zg in |2| € kR .

Dann gibt es zu jedem { > 0 ein nur von k und { abhingiges K = K(k, ),
so daf
log | F(z)| > — AK

fir |z| € kR, ausgenommen in Kreislein, deren Radiensumme < (R.

Ferner erinnern wir daran, daB zu jeder prazisen Wachstumsordnung
o (r) eine Funktion V(z) existiert, die auf der positiven reellen Achse reell-
wertig, monoton wachsend und von dort ausgehend im Winkelraum

26) P, 1. Teil.
27) Vgl. P, 1. Teil, Satz 3.
28) Vgl. P, 1. Teil, Hilfssatz 2.
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larg z| < —g— der Riemannschen Fliche von log z eindeutig und analytisch

ist. Sie geniigt den Bedingungen
V(r) ~ /rQ( r)
und
V(zr) ~ze- V(r) (12.1)
fiir jedes feste z in | arg z| < L. letzteres gilt gleichmaBig in jedem
Winkelraum |argz| < —;—E- — 7, n>072). Wir beniitzen sie deshalb als

Vergleichsfunktion der ganzen Funktionen von priziser Wachs-
tumsordnung o (r) .

13. Wir beweisen nun

Lemma 6. Die ganze Funktion G (z) mit der Vergleichsfunktion V(r) und
dem Strahltypus k(@) sei von regulidrem asymptotischen Verhalten. Dann
existiert fiir jedes ¢ > 0 und y > 0 9m Kreisring r(1 — y) < [z| <r(1+4+7y)
eine geschlossene Kurve C(p = ¢(0), 0 < 0 &£ 2x) von der Linge < 8nr
so daf} darauf

|1og |G (e(6)¢*® )| — A (6)V ()| <V (r) (13.1)

18t fir alle geniigend grofen r.

Beweis. I. Zunichst betrachten wir die Funktion G (z) in der Um-
gebung der Richtung arg z = ®. Sei § eine kleine positive Zahl und

A
7(0) = Mazx|h(p) — M D) cos o(P — ¢)| fir P —3d<Z 9= P+36. (13.2)

Wir setzen &6
F(z) = G(z) - e M@ 7E™)

Dann ist wegen (13.2)
log |F(z)| <€ 2% - V(R) fiir alle z in |z — Re'®| £ Rsin 35 (13.4)

(13.3)

und wegen des regulidren asymptotischen Verhaltens von G (2) (2.2)
log | F(zo)] = — 2% + V(R) fiir ein 2, in [z — Re*®| < Rsin § ,

sofern R geniigend grof ist. Daraus folgt aber durch Anwendung von

. 2 1
Lemma 5 mit k"'ﬁ' und C—~1——2~

29) Vgl. V. Bernstein, ,,Sulla crescenza delle trascendenti intere d’ordine
finito*, R. Ace. d'Italia, 4 (1933), 346—48.
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log | F(z)| > —27- K(3 , 112) . V(R) (13.5)

iiberall in |z — Re'?| <5 R sin 36 ausgenommen in Kreislein, deren

Radiensumme < 112 Rsin 34 ist.

Nun ist A(p) stetig, es strebt » mit J gegen null. Zu jedem &> 0
existiert also ein d(¢), so dafl Maz (27K, 27) < ¢| wird fiir [p-—DP | <3 4.
Aus (13.3), (13. 4) und (13.5) folgt dann wegen — 9 < h(p) — h(P)
cos ¢ (p — P) L

lloglG(z)l —hip) V(B)|<eV(R) , z=re?, (13.6)
iiberall in |z — Re'?| & —?— R sin 34, ausgenommen in Kreislein, deren

Radiensumme < 112 R sin 3§ ist.

II. Sei ¢ > 0 eine beliebig klein vorgegebene Zahl. Wegen der gleich-
mafligen Stetigkeit von & (¢) 1aBt sich § = %{; (bei ganzem N) so wihlen,
daB |

5@ — (") cosele — ") | < Max(, 55) fir I/ —¢|< 30

ist. Hiernach teilen wir durch die Strahlen arg z=né=9,, n=0,1,2,...,N,
die z-Ebene in N gleiche Winkelriume von der Offnung 4 ein.
Das Resultat (13.6) in I wenden wir an auf jeden Strahl
argz=®,,n=20,1,2,..., N. Es gilt dann (13.6) fiir geniigend grofe

R in jedem Kreis |z — Re”"‘l/—z—R gin 36, n=0,1,..., N, ausge-

nommen in Kreislein, deren Radlensumme < 115 R sin 36 ist. Diese
Kreise iiberdecken den Kreisring R(1 — sin ) € |z| £€ R(1 + sin d).

Da in jedem Sektorstumpf
R(1 —sin §) € |z|< R(1 + sind), O,— 6L arg2< P, +6,7=0,1,2,...,N,

die Radiensumme der Ausnahmekreislein nicht die Halfte seiner Dimen-
sionen betrigt, enthilt jeder solche Sektorstumpf je einen Kreisbogen
und eine radial gerichtete Strecke, die gegeniiberliegende Rander des
Stumpfes verbinden und keine Ausnahmekreislein treffen. Diese Bogen
und Strecken enthalten als Teilmenge eine geschlossene Kurve um den
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Nullpunkt von der Lange <8sR. Léngs dieser Kurve gilt (13.6) und
damit ist Lemma 6 bewiesen.

Aus dem Beweis ergibt sich zugleich folgende etwas allgemeinere
Fassung von Lemma 6:

Zusatz zu Lemma 6: Sei die Funktion G(z) im Winkelraum
x Z |arg z| £ B regulir, von prdziser Wachstumsordnung o(r) und von
reguldrem asymptotischen Verhalten.

I. Fiir jedes ¢ > 0 und jedes y > 0 existiert im Sektorring

rl—ym<Zz|Zr(l +y), a<o' Zargz|Zp'<p

eine Kurve C(p = 0(0), o' < 0 < B’ von der Linge <4(8' — a')r,
8o daf darauf

|log|G(e(0)e)| — R(O)V(r)| < eV(r) , o&'=0=2p8,
8t fir alle gentigend grofen r.

II. Far jedes € > 0 und & > 0 gilt bes genilgend grofiem r
|log |G (re®)| — h(6)V(r)| < eV(r)

im ganzen Intervall o’ < 0 < B/, ausgenommen hichstens eine Menge vom
Maf <§.
Von II gilt die Umkehrung 3°).

14. Mit Lemma 6 sind wir nun in der Lage, folgendes ,,vorliufiges*
Resultat iiber Interpolation zu beweisen.

Satz 3. Die ganze Funktion n(z) mit der Vergleichsfunktion V(r) und
dem Strahltypus H(p) sei von requlirem asymptotischen Verhalten; thre
Nullstellen a,, a,, ..., a,, ... seien alle einfach. Sei ferner G (z) eine beliebige
ganze Funktion mit dem Strahltypus h(p) < H(p), 0 € ¢ < 2x, beziiglich
V(r). Dann existiert eine Folge von Bereichen B, , die mit n—oco allseitig
gegen umendlich streben, so daf

00 _ oy 0@

7‘(?) © ayCBn T (@) (2 —ay)

, 2Fa, .

Beweis: Wir wahlen ¢ so klein, daBl bei geniigend grofem r
hip) - V(r + yr) < (H(p) — ¢€) - V(r) wird fiir ein £ > 0 und alle ¢, ferner
eine monoton wachsende Folge r,, 73, ..., 7, ..., Ty—>00. Gemaf Lemma 6

30) Vgl. P, 2. Teil, Hilfssatz 8.
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existiert in jedem Kreisring r,(1 — ) < |2] < r,(1 + ») eine geschlos-
sene Kurve C, (um den Nullpunkt) von der Linge < 8=nr,, auf der
(13.1) erfiillt ist. Den von C, eingeschlossenen Bereich bezeichnen wir
mit B, . Es ist klar, dal = (z) auf C, keine Nullstellen besitzt. Aus dem
Residuensatz, angewandt auf B,, folgt nun

G(?) G (av) 1 G() dg
- ¥ .¢’ -

m(2) T, W) —a) T 2a0 ) (z—0)

Zufolge von Lemma 6 und den Voraussetzungen des Satzes strebt das
Integral fiir ein festes z und n—>oco gegen null, woraus sich die Behauptung
des Satzes ergibt.

n

: 1 G (ay)
15. Die Reihe E1 @) (e—a)
gieren. Erst geeignete Abschnitte zusammengefalit geben Glieder einer
konvergenten Reihe. Damit obige Reihe selbst konvergiert, sind iiberdies
noch gewisse Forderungen an n'(a,) zu stellen. Schon die Einfachheit der
Nullstellen, n'(a,) 5 0, ist eine solche Forderung. Es darf aber ='(a,) fiir
»—>oo nicht zu klein werden oder die Nullstellen diirfen nicht in zu dichten
Gruppen vorkommen. Wir wollen genau die Bedingungen festlegen, wann

eine Nullstellenverteilung ohne Verdichtungen sei.

braucht selbst nicht zu konver-

Definition. Eine Nullstellenverteilung heif3t unverdichtet, wenn eine feste

positive Zahl o und eine positive Funktion n(r) mit lim »(r) = 0 existiert,
7> 00

derart, daf3 das geometrische Mittel der Abstinde irgend einer Nullstelle a,,
von seinen benachbarten a, tnnerhalb der Kreise |z — a,| € o, |a,|>0>
n(|a,]) |, nicht kleiner wird als op.

Bezeichnet also N die Zahl der Nullstellen in 0< |z — a,| < o,
@] > 0> n(la,]) - |a|, so gilt

7 lay— a,| = (o) . (15.1)
lay —anle

Diese Forderung erstreckt sich demnach nicht nur auf Kreise von
Radien >0(|a,|); eine gewisse Unordnung ,,im kleinen*“ ist noch ge-
stattet.

16. Es folgen zwei Beispiele unverdichteter Nullstellenverteilungen:

1. Beispiel. Es sollen die Nullstellen a,, a,, ..., a,, ... ohne end-
lichen Haufungspunkt, nach wachsenden Betrigen geordnet, folgende
Voraussetzungen erfiillen:
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. 1. Die Nullstellen besitzen eine positive Minimaldistanz, d.h. es
existiert eine feste positive Zahl d, so da8 fiir irgend zwei Nullstellen
|@,, — a,| > d ist.

2. Es existiert eine positive Zahl ¢’ und eine positive Funktion 7 (r)
mit lim 7 (r) = 0 derart, daB die Anzahl N’ der Nullstellen in den

700
Kreisen |z — zo| £ 0, 0 > |2o| * 17(|20|) der Ungleichung N’ > ¢’ g2

geniigt.
Diese Nullstellenverteilung besitzt keine Verdichtungen 31).

Beweis : Offensichtlich geniigt es, die Behauptung fiir geniigend weit
entfernte Stellen, also fiir geniigend groBe » zu beweisen. Wir wihlen
eine Stelle a, und einen Kreis |z — a,| < o mit o > 7(|a,|) * |a,|, wo
7 (r) = 7(r) und 7 (r) - r->c0 bei r—>oco. Es wird dann mit n auch ¢ und
N’ beliebig groB. Zahlen wir im Kreis nur die Nullstellen auBerhalb des
Mittelpunktes, so gilt fiir ihre Anzahl N offenbar auch

N>ce® , c>c' . (16.1)

Diese Nullstellen wollen wir so dicht um den Mittelpunkt lagern, als dies
nach Voraussetzung 1 zuldssig ist. Umgeben wir die Stellen etwa mit

kleinen Kreislein vom Radius é = -g— , 80 diirfen diese Kreislein einander
nicht iiberdecken. Zur bequemen Abschatzung betrachten wir eine noch
dichtere Lagerung, indem wir einzelne Kreislein einander iiberdecken
lassen: Um den Mittelpunkt a, wéihlen wir 4 Stellen a, auf |z — a,| = 4,
8 Stellen auf |z — a,| = 24, ..., 4v Stellen auf |z — a,| = v und den

Rest auf dem letzten Kreis |2 — a,| = ud. Somit gilt

up—1)<N<2u(p+1). (16.2)

Diese Lagerung ist dichter als alle zuldssigen; denn die Fliche aller
Kreislein ist groBer als die Kreisfliche vom Radius (x 4 1)d, sobald
u = 5, was fiir hinreichend weit entfernte Stellen a, sicher zutrifft. Es
ist also

log I |a,—a,|>4(logd+2log2d+-.--4 (u—1)log (x—1)3)

lay =apn| e

—1
>4 [ wlogas -do=2(u—1) log (s — 1) 8 — (u — 1)?
0

—=2u(u+1) log VZa(ag + 1) + O(u) > N-log VN + O(I) .

31) Den Voraussetzungen des Beispieles geniigen offenbar die Gitterpunkte m 4 in,
m,ﬂ = 0’ il, :l:2, sse
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Wegen (16.1) wird dann
II| lay—a, | >(Ve-o)¥ - 2N > (sp)¥, s< Ve ,
lay —anl<Z e

fiir n geniigend groB.

2. Beispiel: Es sollen die Nullstellen a,,a,,...,a,,... auf der
positiven reellen Achse gelegen, nach wachsenden Betrigen geordnet und
ohne endlichen H&aufungspunkt, den folgenden Voraussetzungen ge-
nugen:

1. Die Nullstellen besitzen wie im ersten Beispiel eine positive Minimal-
distanz.

2. Analog zum ersten Beispiel geniigt die Anzahl N’ der Nullstellen in
den Intervallen |z — zy| € @, %y > 0 > %, - 7(7,) auf der positiven
reellen Achse der Ungleichung N/ > ¢’p.

Diese Nullstellenverteilung besitzt keine Verdichtungen 32).

Der Beweis verlauft im wesentlichen gleich wie im ersten Beispiel.

17. Wir beweisen nun

Lemma 7. Istdie ganze Funktion n(z) mit der Vergleichsfunktion V(r)
und dem Strahltypus H(p) von regulirem asymptotischen Verhalten, besitzt
itberdies ihre Nullstellenverteilung keine Verdichtungen 33), so gilt fiir jedes
e > 0 und geniigend grofles n

| a/(a,) | > &E@w =) Virm) | (17.1)

wenn a,=r,e*" die nach wachsenden Betrdgen geordneten Nullstellen
bezeichnet.

Beweis: Er stiitzt sich auf folgende allgemeine Tatsache:

A. Ist m das Minimum der Funktion = (2) auf der Kreislinie |z —a,| = o
und erfiillen ihre Nullstellen in diesem Kreis die Bedingung (15.1),
so gilt

1 1 2\¥
m<%—"g° (—;) . (17.2)
Zum Beweis betrachten wir den Quotienten

(z—a,) - I7 (z—ay)

Q(Z) — Iavg;(l:;lze :

32) Uber den damit zusammenhéngenden Begriff des Kondensationsindex einer Folge
vgl. V. Bernstein, Legons sur les progrés récents de la théorie des séries de
Dirichlet, Paris, 1933, Note I, p. 251—293.

33) Um so mehr sind die Nullstellen einfach.
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der in |z — a,| £ p regular ist. Sein Betrag ist auf dem Rande kleiner als

(20)¥- —7%— , also auch im Innern. Fiir z = a, folgt dann

IIa,—a,|
| #'(a,) |
und daraus in Verbindung mit (15.1) die Behauptung.

Zum Beweis des Satzes verbleibt also noch eine zusammengehorige
Abschitzung der drei GroBen g, N und m.

= y,_ @
Z (20) pon

| Q(a,) | =

Zunachst gilt:
B. Zu jeder positiven Funktion 7(r) mit lim #(r) = 0 existiert eine

zweite Funktion % (r) > #5(r), die bei r—>oco ebenfalls gegen null strebt,
derart, da8 fiir jedes £ > 0 und jedes hinreichend grof3e » auf einer Kreis-
linie |z — a,| = g, mit n(r,) * 7, < 0, < 2%(r,) * 7, und @, = 7,€'*»

log [I\@, + 0,¢°)| — h(p,) (V(r,) > eV(r,), 0L 0=Z 2, (17.3)

gilt.
Dies ist bereits im ersten Teil des Beweises von Lemma 6 mitenthalten.

Schlieflich beniitzen wir die folgende Tatsache:

C. Ist n(2) eine ganze Funktion von regulirem asymptotischen Ver-
halten, mit der Vergleichsfunktion V(r), strebt die positive Funktion
7 (r) bei r—>co gegen null und bezeichnet N die Anzahl der Nullstellen im
Kreis |z — z| < n(l2) |7, so gilt

N
Iim ———=0. 17.4
2o >0 V(|2] ) ( )

Wegen des regﬁléiren asymptotischen Verhaltens namlich ist die Null-
stellenverteilung mefbar3?), d. h. es gibt um jede Richtung argz, = ¢,
beliebig kleine Winkelrdume ¢, — 7, < argz < ¢, + 7,, fir die

n(7; @0 — Mo, Po + Mo) = (N@o + 7¢) — Nlpo — 10) + £(r)) - V(r),

e(r)—0 bei r—~>o0; n(r; @', ¢”) bezeichnet die Anzahl der Nullstellen im
Sektor [z| & r, ¢’ & arg z < ¢”. Bei kleinem aber festem 7, und geniigend
groBem |z, = R ist der Kreis |z — 2y| < 5n(R) - R in R(1 — n(R)) <
2] € R(1 + n(R)), @o— me & arg 2 < @y + 7, enthalten und daher
gilt gemal den Eigenschaften von V(r) (vgl. 12.1)

34) Vgl. Nr. 2.
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N <n(B+R-n(B);po— 10, o+ 1) —n(B— B-5(R); @o— 0o: o+ 7o)
={N((p0+770) — N(po—10) + 8(R+R'77(R))}V(R+R'77(R))
— {N(@o+ 710) — Nlpo—10) + e(R— R . n(R))} -V(BR— R-n(R))
= K{V(R+4 REn(R)) —V(R—REn(R))} + ¢'(R) - V(R), ¢'(R)—>0,
= K-V(B)(14+n°—(1—n)°)+ &"(B) -V(R) , ¢ (R)—>0,
= ¢”(R) -V(R) , g”(R)—~0 ;

denn 7 (r) strebt fir r— oo gegen null. Daraus folgt die Behauptung.

Beachten wir nun, da die Nullstellenverteilung keine Verdichtungen
besitzt, also in den Kreisen |z — a,| £ ¢, |a,] > 0> 7(la,]) : |a,| die
Bedingung (15.1) erfiillt. Unter diesen Kreisen gibt es gemall B solche,
auf denen (17.3) und gemaB C, (17.4) erfiillt sind. Daraus folgt in Ver-
bindung mit 4 (17.2) fir jedes ¢ > 0 und geniigend groQle n

1 —(H(Pn)—¢&)+ V(rn) _ 2\&V(rn)
—|<e T
7 (a,) N(Ts) * T -
_ _ 108 n .
e (7 @w ~ 2~ L) vrm

Daraus folgt aber (17.1), denn 7 (2) ist eine ganze transzendente Funktion

und deshalb strebt M
V(r,)

fir n— oo gegen null.

18. Die in Lemma 7 betrachteten Funktionen und ihre Nullstellen-
verteilungen bilden die Grundlage fiir die nachfolgenden Untersuchungen.

Definition: Eine ganze Funktion mit requlirem asymptotischen Ver-
halten und wnverdichteter Nullstellenverteilung nenmnen wir Grund-
funktion.

Nach den Vorbereitungen der vorangehenden Nummern sind wir nun
in der Lage, folgendes Hauptresultat iiber Interpolation zu beweisen:

Satz 4. Sei n(z) eine Grundfunktion mit der Vergleichsfunktion V(r),
dem Strahltypus H(p) und den nach wachsenden Betrigen geordneten Null-
stellen a,, a5, ..., a,, ... .

Ist G (z) eine beliebige ganze Funktion mit dem Strahliypus h(p) < H(p),
0 < ¢ < 2x, beziiglich V(r), so qult

G@) =) 3 ——)

. . |
= () (2—ay) (18-1)
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Die Reihe konvergiert auferhalb der Stellen a, absolut und in jedem dort
abgeschlossenen und endlichen Bereich gleichmdfig.

Beweis: Wegen Satz 3 geniigt es, die Konvergenz der Reihe zu be-
weisen. Im betrachteten Bereich ist |2 — a,| > > 0. Wegen der Vor-
aussetzungen des Satzes und Lemma 7 gilt fiir ein ¢ > 0 und geniigend
grofles v

Ga _ - 9/2
71E/((a:;)) <V o gmelanl®t g re
und daher
G(a eyt -
/( v) <e ey < 2
7’ (ay)

Die Reihe besitzt also eine konvergente Majorante.

19. Die Grundfunktionen 7 (z) sind im wesentlichen schon durch ihre
Nullstellen, die interpolierenden Stellen @, bestimmt. Welchen Bedin-
gungen die Nullstellenverteilung zu geniigen hat, damit das zugehorige
kanonische Produkt eine Grundfunktion sei, ist in Nr. 15 im Abschnitt A
und einer frithern Arbeit?5) untersucht worden. Die Resultate sind, zu-
sammengefaft, folgende:

1. Ist eine Nullstellenverteilung unverdichtet (Nr. 15) und beziiglich
einer préazisen, nichtganzen Wachstumsordnung o(r) (o(r) > 0 #
0,1,2,...) meBbar mit der MaBfunktion N(p) (Nr. 2), so ist das zuge-
horige kanonische Produkt z(z) eine Grundfunktion von der prézisen
Ordnung ¢ (r) mit dem Strahltypus

27

H(p) = <o [ 08 @0—em) - dNlp+0) %) . (19.1)
0

2. Ist eine Nullstellenverteilung unverdichtet (Nr. 15) und beziiglich
einer ganzen Ordnung ¢ meflbar im engern Sinne (Nr. 2) mit der MaB-
funktion N(gp), die iiberdies der Gleichgewichtsforderung (2.4) geniigt,
so ist die ganze Funktion z(2) in (3.3) eine Grundfunktion vom Mittel-
typus der Ordnung ¢ und dem Strahltypus

H((p)——:—zfﬂsingﬂ-dN(qa—l—G) 87) (19.2)

35) Vgl. Anm. 26),
36) Vgl. Anm. 27),,
87) Vgl. Satz 1.
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Diese so charakterisierten Nullstellenfolgen wollen wir kurz Grund-
folgen von préziser, nicht ganzer Ordnung o (r) bzw. vom Mitteltypus
einer ganzen Ordnung g nennen.

Hiernach gilt in Verbindung mit Satz 4

Satz b. I. Set G(z) eine ganze Funktion von beliebigem Wachstum einer
nichtganzen Ordnung, V (r) thre Vergleichsfunktion und h (@) thr Strahliypus.
Set ferner a,,a,,...,a,, ... eine Grundfolge mit der Mapfunktion N(p)
beziiglich V(r), derart daf

2w

f cos (00 —om) - dN(p + 0) fir alle p . (19.3)

hlg) < sin g7

0
Dann gilt (18.1), wenn n(z) das kanonische Produkt mit den a,,a,,...,a,,...
als einfachen Nullstellen bezeichnet.

II. Sei G (2) eine ganze Funktion hichstens vom Mitteltypus der ganzen
Ordnung o und dem Strahltypus h(p) - a,, as, ..., a,, ... sei eine Grund-
folge mat der Mapfunktion N(p) beziiglich V(r) = re, derart daf

2T
h(¢)<——f Osin o0 -dN(p + 60) furalleg . (19.4)
0
Dann gilt (18.1), wenn m=(2) die ganze Funktion in (3.3) mit den
Ay, Qyy ..., Q,, ... als einfachen Nullstellen bezeichnet.
II1. Bei asymptotisch gleichmdfiger Stellenverteilung, dN (p) = é% K -dy

18t die Bedingung (19.3) bzw. (19.4) erfullt, wenn der Typus der ganzen
Funktion, k = Max h(p), der Ungleichung k < K geniigt.

Im allgemeinen Resultat ist der folgende, besonders einfache Spezial-
fall enthalten:

Satz 6. Wir denken uns die Gitterpunkte m +in, m,n =0, +1, 42, ...
einzeln hochstens um die Strecke S verschoben, aber so, daf die neuen Stellen,
nach wachsenden Betrigen geordnet und mit a,,a,, ..., a,, ... bezeichnet,
dve Bedingung

lim inf | @, —a,| >0 (19.5)

pEv
erfillen.

Wenn das Wachstum der ganzen Funktion G (z) den Typus n/2 der Ord-
nung 2 nicht erreicht, so gilt (18.1).
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Beweis. Es ist zu zeigen, dafl die a,, a,, ... eine Grundfolge vom
Mitteltypus der Ordnung 2 bilden, fiir deren MaBfunktion dN(p) = 1dg
gilt.

7, (7 ; @1, ps) bezeichne die Anzahl der Gitterpunkte und =n(r; ¢, @,)
die Zahl der Stellen a, im Sektor |z| £ r, ¢, £ arg z < ¢,. Die Zahl der
Gitterpunkte ist nahezu gleich dem Flacheninhalt des Sektors, der Fehler
ist von der GroBlenordnung seines Umfangs. Es gilt also

(7 1,Ps) = %(‘Pz — @) r2 4 0(r?) .

Die Anzahl der Stellen a, im genannten Sektor ist aber fiir grofle r ver-
gleichbar mit der Zahl der Gitterpunkte. Der Fehler ist wiederum nur
von der GroBenordnung des Sektorumfanges; denn im Umkreis eines
festen Radius S um einen Gitterpunkt befindet sich die ihm zugeordnete
Stelle a,. Es ist also

n(r; @1, ) = %(‘Pz’“%)"’z’f‘o(ﬂ) (19.6)

und daher diese Stellenverteilung im engern Sinne mef3bar®®). Fiir ihre
MaBfunktion gilt offenbar dN(p) = 3dp. Wegen (19.6) und (19.5) sind
iiberdies die Voraussetzungen des ersten Beispieles in Nr. 16 erfiillt. Es
besitzt daher obige Verteilung keine Verdichtungen, womit alles be-
wiesen ist.

20. Die vorangehenden Methoden gestatten nicht nur eine gegebene
ganze Funktion durch die Interpolationsformel darzustellen, sondern
auch eine ganze Funktion mit vorgegebenen Werten in den a, zu kon-
struieren. Betrachten wir also das folgende Konstruktionsproblem3?)
etwas genauer: Gegeben sei in der komplexen Ebene eine Folge
a;,q,...,a,, ... ohne endlichen H&aufungspunkt und eine beliebige
zweite Folge A,, 45, ..., 4,, ... . Gesucht ist eine ganze Funktion, die in
den Stellen a, die Werte 4, annimmt. Um nicht konvergenzerzeugende
Faktoren verwenden zu miissen, m. a. W. um eine Darstellung von der
Form (18.1) zu erhalten, wihlen wir als erste Folge eine Grundfolge.
Die zweite Folge jedoch darf nicht zu stark anwachsen. Unser Resultat
lautet :

Satz 7. Seia,,a,,...,a,, ... eine Grundfolge mit der Maffunktion N(p)
beziiglich einer Vergleichsfunktion V(r). Eine zweite Folge A, , 4,, ..., 4,,...
erfillle fiir etn & > 0 und geniigend grofe v die Bedingung

88) Es ist (2.5) allerdings erst fiir geniigend groBe ¢ erfiillt. Aber die Abénderung von
endlich vielen Nullstellen hat auf das Resultat von Satz 1 keinen Einfluf.
39) Vgl. Nr. 1.
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log | 4, |

< H(py) —e , arg a, =g, ,

V(lay|)
wober H(p) durch (19.1) bzw. (19.2) definiert ist. Dann stellt
0 -Av
G(z) = n(2) X (20.1)

=1 n,(av) (z'—‘av)

etne ganze Funktion dar mit dem Strahltypus < H(p) beziiglich V(r), die in
den Stellen a, die Werte A, annimmd.

Beweis. Zufolge der Voraussetzungen des Satzes und von Lemma 7
konvergiert die Reihe in (20.1) aulerhalb der Stellen a, absolut und in
jedem dort abgeschlossenen und beschrankten Bereich gleichméafQig
(vgl. Beweis von Satz 4). Es stellt also (20.1) eine ganze Funktion dar,
die in den Stellen a, die Werte 4, annimmt. Umgeben wir die Stellen a,

mit den Kreislein |z — a,|< o,, o,=¢€¢ * 0" s0 wird das allgemeine

Glied der obigen Reihe auBlerhalb dieser Kreislein absolut kleiner als

e 7 VU¥D etrtere Glieder bilden aber eine konvergente Reihe. AuBer-
halb der Kreislein ist somit die Reihe in (20.1) gleichméBig beschrankt.

Die Radiensumme der Ausnahmekreislein, ' o,, ist aber auch beschrinkt
v=1

und daher fast iiberall |G(2)| < C - |n(z)|. Daraus folgt, daB fiir G(z)
der Strahltypus < H () ist.

21. Als Anwendung der vorangehenden Ergebnisse verallgemeinern
wir den Satz A. Gemal Satz 5 lautet unser Resultat:

Satz 8. Sei V(r) Vergleichsfunktion fir eine ganze Ordnung vom Miitel-
typus oder fiir eine beliebige michtganze Ordnung und a,, a,,...,a,, ...

eine Qrumdfolge fir deren Mapfunktion beziiglich V(r) gilt dN(p) =
2 K.dp, K>0 %),

2x
Genigt die ganze Funktion G (z) den Bedingungen
lim sup —19—517—(%@ =k< K, M@#)=Max |G(re?) |, (21.1)
und 7> 0
G@)| <€« , v=12.., (21.2)

8o 1st G (z) notwendig eine Konstante.

40) Selbstverstiandlich geniigt auch die Voraussetzung, H(p) = K fir alle ¢, wobei
H(¢p) durch (19.1) bzw. (19.2) definiert ist.
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Beweis: Wir setzen
G(Z) = Co + ¢,2 + - + Ca2+ o

und bemerken vorerst, dafl der Typus % in (21.1) nur von den Betrigen
der Entwicklungskoeffizienten abhangt. Mit

Ar) = el Lo 7+ e o o] -1 A e
gilt dann auch

lim sap log A(r)

- *——7(—7')——=k<K . (21.3)

Da auch 2" - G(z) die Bedingung (21.1) und damit die Voraussetzungen
von Satz 5 erfiillt, so gilt

o~ G(av) : aﬁ

2"« Q(2) = 7 (?) El (@) @—ay)
Daraus folgt aber -

, n=0,1,2,... .

e n — o~ 3 G(av) ) Cna’: _ < n=
Sticnz ) G(z) ==(2) ngo |§1 7' (ay) (z—a,) 7(2) El 7' (@) (z—ay)
und daher

G(zav)
' (ay) (2 — ay)

Gl=() X (21.4)

v=1

Die Reihenfolge der Summation ist ndmlich vertauschbar; denn wegen
(21.2) und (21.3) ist obige Doppelreihe absolut konvergent.

Wenden wir dasselbe Verfahren auf (21.4) an, so folgt entsprechendes
fir @},) usw., durch vollstindige Induktion, immer unter Beachtung von
(21.2) und (21.3)

G 2“ p!
= z , = 0, 1 ’ 2’. * o [ ]
p! () y=1 n,(“v) (z —ay) P

Wieder folgt durch Umordnen

o D
3 Gy
- » -} ]
D T
a=0 P! vo1 @) (2—ay)
oder
o0 eGay)

e?@ = z(z) ¥ (21.5)

2 Aay) (2—ay)
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Nun ist |e®©)| < ¢ = ¢'. Daher ist nach Satz 7 die rechte Seite
von (21.5) und somit auch ¢¢® von der Ordnung < [p]. Es ist also G (2)
hochstens ein Polynom vom Grade [p]; wegen (21.2) ist dann G () not-
wendig eine Konstante 41).

Geméal Satz 6 ist in unserem allgemeinen Resultat folgende unmittel-
bare Erweiterung von Satz A enthalten:

Satz 9. Die Folge a,,a,,...,a,,... erfille die Voraussetzungen von
Satz 6 und die ganze Funktion G () geniige den Bedingungen

im sup M.)_. <

1
Fide 55 r2 2

H

und
|1G@) | <k, v=1,2,8,... .

Dann ist G (z) notwendig eine Konstante.

Nachtrag nach der ersten Korrektur.

Im Falle des Mitteltypus einer nichtganzen Ordnung, auf den sich
der wesentliche Teil seiner Arbeit (vergl. Anm. 10) bezieht, verlangt
Herr Lévine neben der MeBbarkeit der Stellen a,, dal die Kreislein

lz—ay,|<d]ay| ® einander nicht iiberdecken. Letztere ‘Bedingung
deckt sich nicht mit der Forderung (15.1). Wie man aber leicht sieht,
gilt Lemma 7 auch dann, wenn man (15.1) durch

7 |ay —a, | = B¥. C"® | C = konst., (15.14a)
lav - an l ZR
ersetzt. Diese neue Fassung enthilt die Forderung von Léwine. All-
1-31e(lay))

gemein, wenn die Kreislein |z —a, | <d | ay | einander nicht
iiberdecken, so ist (15.1a) erfiillt. Dies folgt aus zwei Uberlegungen:
Bezeichnet einerseits »,(f) die Anzahl der Stellen a, mit 0< |a,—a,| & ¢,

80 ist
7 t? < 1 e lr—t .
nd”(r——-t)z“’“‘"” !

7y (f) < a2

anderseits gilt R

R
> log |a,,-——-a,,|=flogt-dn1(t) — ny(R) log R——-f”—‘t(-t)— dt .
0

|ay —an|<ZR &

(Eingegangen den 6. Oktober 1941.)

41) Beziiglich der Beweismethode vgl. Anm. 5).
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