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Expressions de la somme x; + x, de deux
indéterminées x,,x, en fonction de x, x, + ¢(x; +x.)

Par D. MIRIMANOFF, Genéve

Introduction

Dans un article récent publié ici-méme?) j’ai fait connaitre une méthode
permettant de former les expressions les plus simples, canoniques et
réduites, de la somme p de deux indéterminées z,, x, en fonction de
leur produit ¢ . J’ai ajouté qu’on pouvait en déduire les expressions de
p et ¢ en fonction de G = ¢ 4 ¢p, qui interviennent dans certaines
démonstrations arithmétiques du théoréme fondamental de l’algébre.
Mais le procédé dont je me suis servi pour former ’expression cherchée
dans le cas de » = 4, a des inconvénients. Il ne permet pas, en parti-
culier, de se faire une idée précise de la structure et des propriétés carac-
téristiques de 1’expression ainsi obtenue. Aussi ai-je cru utile de reprendre
I’étude de ce probléme. En I'examinant de plus prés, je me suis apergu
que le passage des expressions en fonction de ¢ aux expressions en fonc-
tion de G peut étre effectué directement, & I'aide d’une transformation
trés simple, que, malgré son caractére élémentaire, je crois utile d’indiquer.

~ § 1. Envisageons n nouvelles indéterminées x; liées aux anciennes z,

par les relations ,
g =x;+¢ .

Désignons par f; les fonctions symétriques élémentaires correspon-
dantes, par p’ la somme z; + x; , par ¢’ le produit zjz; . Il est évident
que les expressions de p’ en fonction de ¢’ s’obtiennent de celles de p
en fonction de g en remplagant q par ¢’ et les f; par les f; .

Or,

p = (2, 4+ ¢) 4+ (x, +¢) = p + 2¢

P _ \ (1)
' =(x,+c) (2, +¢c) =G+ .

Quant aux f;, ce sont des fonctions linéaires de f,, f,,..., f;, qui se
calculent facilement. On a, en effet,

ﬂ = Bifi + BoCfin + -+ + BicH + ﬂi+1.ci ’ (2)

1) Expressions de la somme de deux indéterminées en fonction du
produit. C.M.H. t. 14, p. 1.
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les coefficients 8, = 1, B,, fs,. . . » Bi» Bis1 6tant les nombres du triangle
arithmétique de Pascal rangés le long de la ¢¢ paralléle & I’hypoténuse,
en comptant & partir du sommet de ’angle droit. On a, en particulier,

n(n—1)

f{::fl‘i"’w; f;=f2+(n_l)cf1+ 3

c? ; etc.

Pour avoir ’expression de p en fonction de @, il suffit donc de remplacer
q’ et les f; par leurs expressions (1) et (2) et de retrancher 2¢ de la formule
ainsi obtenue. La relation ¢ =G — c¢p permettra ensuite d’en tirer
Pexpression de ¢ en fonction de G .

§2. Casden=4etden=>5.

Lorsque n = 4, la somme p est donnée par la formule?)

2
p— fqu2 :fisq
Par conséquent
i
" —fi

Or,
f{=f1+40 ; f;=f2+3cf1+602 ;
f:; = f3 + 2cfy + 3c2f, + 4¢3 f;=f4 + cfs 4 c2fa 4 c2f, + c4;
par suite
(fy + 4¢) (G 4 )2 —(fs 4+ 2¢fy + 3c2f, + 4¢3) (G + ?)
(G4 c®)2—(fa +cfs + c2fy + 2f, + ¢%)

G2 —f,G - 2¢(F— [, G + f)) — A (LG —Ts)
G2 —fs—cfs + 2 (2G —fy) —c*fy ’

p= —2c

et I’on retrouve la formule (10) de I’article cité. |
Pour » = 5, on a, en vertu des formules (14) et (15) du méme article

fld* —fhd + fhfid" —fifid
" —fhd+ s — 1

— 2c .

Or,

fi=fi+5c; fa=fa+4cfi+10c? ; fi=f,+3cfy46c2f, + 10¢* ;
fi=fit2cfs+3ctfat-dcdfi+5ct; fy=Fs+cfatcfy-+cBfat-ct b

%) Ibid., formule (9), pag. 8.
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Je crois inutile de donner ’expression finale de p .

Le méme procédé permet de former les expressions réduites de p en
fonction de G . Et en général, & toute expression de p en fonction de ¢
correspond une expression de p en fonction de G .

§ 3. Deux propriétés des polynémes R, .
J’indiquerai en terminant deux propriétés curieuses des polynémes R, .

1° Adjoignons au systéme canonique By =0, R,=0,...,R,_, =0
les équations R, =0 et R, = 0. De ce systéme nouveau de n — 1
équations on peut éliminer les n — 2 inconnues oy, &y,..., %, 5, €N
égalant & 0 le déterminant des coefficients. L’équation qu’on obtient
n(n—1)
2
différente I’équation dont les racines sont les produits z;z; .

alors est du degré en g, et 'on retrouve ainsi par une voie

Soit n = 4 . Le systéme nouveau s’écrit

R, = qa —hqu+ f,g —fs =0
R; = (@* — fa)oy — fL1® +fsg =0
By = — fix, + fsqoxy + @ — [ =0 .
D’ou
q —hq foq — 1
e —fe®+ 19 1=0.
— s Y] ?—fe

En développant ce déterminant on retrouve I’équation dont les racines
sont les produits x;x; et qui s’écrit
¢ —fa@®+ (i fs—f) ¢ —(fifs — 2fofs + f3) @ + (fifsfa — f3) ¢
—ffig+fi=0 .
2° Deuxiéme propriété des R, :
Pour :>2, R,= —qou;, 3R, + «;, R, .

Démonstration. Par définition, cette propriété est vraie pour R;;
on vérifie aisément qu’elle est vraie pour R,. Supposons maintenant
qu’elle soit vraie pour R; et R, , , je dis qu’elle sera encore vraie pour
R, , . En effet ,
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RBiy=—qR, +pR, = — q(—qo; s B, + ;2 R,)

+p(— qx; s By + &, R,)
— q(poi—y — qo;s) Ry + (pox;_y — qov; o) B,y
—qo; By + o Ry .

I

La propriété est donc vraie pour tout ¢ > 2 .

Je crois qu’en s’appuyant sur ces propriétés il est possible de simplifier
certaines démonstrations arithmétiques du théoréme fondamental de
Palgébre.

(Recgu le 20 septembre 1941.)

313



	Expresssions de la somme x1 + x2 de deux indéterminées x1, x2 en fonction de x1x2 + c (x1 + x2).

