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Expressions de la somme x{ + x2 de deux
indéterminées xux2 en fonction de XiX2 + c(x1+x2)

Par D. Mirimanoff, Genève

Introduction

Dans un article récent publié ici-même1) j'ai fait connaître une méthode

permettant de former les expressions les plus simples, canoniques et
réduites, de la somme p de deux indéterminées xl9 x2 en fonction de

leur produit q J'ai ajouté qu'on pouvait en déduire les expressions de

p et q en fonction de G q + cp, qui interviennent dans certaines
démonstrations arithmétiques du théorème fondamental de l'algèbre.
Mais le procédé dont je me suis servi pour former l'expression cherchée
dans le cas de n 4, a des inconvénients. Il ne permet pas, en
particulier, de se faire une idée précise de la structure et des propriétés
caractéristiques de l'expression ainsi obtenue. Aussi ai-je cru utile de reprendre
l'étude de ce problème. En l'examinant de plus près, je me suis aperçu
que le passage des expressions en fonction de q aux expressions en fonction

de 0 peut être effectué directement, à l'aide d'une transformation
très simple, que, malgré son caractère élémentaire, je crois utile d'indiquer.

§ 1. Envisageons n nouvelles indéterminées x\ liées aux anciennes #e

par les relations
xi xi + c

Désignons par ft les fonctions symétriques élémentaires correspondantes,

par p1 la somme x[ + x2, par qr le produit x[x2. Il est évident

que les expressions de pf en fonction de q! s'obtiennent de celles de p
en fonction de q en remplaçant q par qr et les ft par les j\.

Or,
p' {xj, + c) + (x, + c) p + 2c

q' (Xl + c) (xa + c) G + e

Quant aux j\, ce sont des fonctions linéaires de flt /8,... ,fit qui se

calculent facilement. On a, en effet,

i'i Mi + fof<-i +••• + AC-7i + &+1c', (2)

x) Expressions de la somme de deux indéterminées en fonction du
produit. CM. H. t. 14, p. 1.
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les coefficients fix 1, /?2, /?3,..., f}i9 pi+1 étant les nombres du triangle
arithmétique de Pascal rangés le long de la ie parallèle à l'hypoténuse,
en comptant à partir du sommet de l'angle droit. On a, en particulier,

fi fx -f- ne ; f2 — f2-\-(n — 1) cf1 -\ - *• c2 ; etc.

Pour avoir l'expression de p en fonction de G, il suffit donc de remplacer
qf et les ft par leurs expressions (1) et (2) et de retrancher 2c de la formule
ainsi obtenue. La relation q — O — cp permettra ensuite d'en tirer
l'expression de q en fonction de G.

§ 2. Cas de n 4 et de n 5

Lorsque n 4, la somme p est donnée par la formule2)

Par conséquent

Or,
fi h + 4c ; f', ft + 3cA + 6c* ;

par suite

(/, + 4c) (Q + c*)2- (/, + 2c/2 + 3c2/x + 4C3) (g +
P ~ (G + cy- (/4 + c/3 + eV, + c»/i + c4)

et l'on retrouve la formule (10) de l'article cité.
Pour n 5, on a, en vertu des formules (14) et (15) du même article

fiq"-tWt + ÂfWt-f'JW «p~ q"-fW° + fïfWi-f?
Or,

/i /i+5c; /^/î+ éc/i

Ibid., formule (9), pag. 8.
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Je crois inutile de donner l'expression finale de p
Le même procédé permet de former les expressions réduites de p en

fonction de G Et en général, à toute expression de p en fonction de q
correspond une expression de p en fonction de G

§ 3. Deux propriétés des polynômes Ri

J'indiquerai en terminant deux propriétés curieuses des polynômes R{

1° Adjoignons au système canonique Rz 0, R% 0,..., jRn—1 0
les équations R2 0 et Rn 0 De ce système nouveau de n — 1

équations on peut éliminer les n — 2 inconnues ocl9 oc2,..., otn^2, en
égalant à 0 le déterminant des coefficients. L'équation qu'on obtient

alors est du degré ——-—— en q, et l'on retrouve ainsi par une voie

différente l'équation dont les racines sont les produits x(Xj

Soit n 4 Le système nouveau s'écrit

B2 qoc2 — f1qoc1 + f2q — /4 =0
#3 (q2 - f*)«i - fxt + hq =o
Bt - /4«t + hqcc, + 8» - f2q* 0

D'où

-h
—7i 2 U q — f*

hq

En développant ce déterminant on retrouve l'équation dont les racines
sont les produits xtxt et qui s'écrit

q*-Uq* + (/i/s-/*) ï4-(/i2/4 - 2/,/. + H) q3 + (hhh- fàq*

2° Deuxième propriété des R{ :

Pour i > 2 R{r — q&i-zRi + oc{__2R2

Démonstration. Par définition, cette propriété est vraie pour Rz ;

on vérifie aisément qu'elle est vraie pour i?4 Supposons maintenant
qu'elle soit vraie pour Rt et Ri+1 je dis qu'elle sera encore vraie pour
Ri+2 En effet
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pRi+1 -

-qoci^1R1 + ociR2

La propriété est donc vraie pour tout i > 2

Je crois qu'en s'appuyant sur ces propriétés il est possible de simplifier
certaines démonstrations arithmétiques du théorème fondamental de

l'algèbre.

(Reçu le 20 septembre 1941.)
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