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Fundamentalgruppe
und zweite Bettische Gruppe

Von Henz Hopr, Ziirich

Einleitung

Es ist bekannt, dafl die erste Bettische Gruppe B! eines Komplexes K
durch die Fundamentalgruppe ® von K bestimmt ist: sie ist die Faktor-
gruppe von & nach der Kommutatorgruppe'). In dieser Arbeit wird
der Einflu von & auf die zweite Bettische Gruppe B2 untersucht.

a) B2 ist, wie man schon an trivialen Beispielen sehen kann, nicht
durch ® bestimmt; es wird aber folgendes festgestellt: Jeder Gruppe &
18t durch einen bestimmten algebraischen Prozef3 eine Abelsche Gruppe ®
zugeordnet, die im allgemeinen nicht die Nullgruppe?) ist; wemnn ® die
Fundamentalgruppe eines Komplexes K und wenn S2 die Untergruppe
von B? ist, die aus denjenigen Homologieklassen besteht, welche stetige
Bilder von Kugelflichen enthalten, so ist

B2 S GF .

Die zweite Bettische Gruppe besitzt also ®;* als homomorphes Bild,
und sie kann daher, wenn die Fundamentalgruppe ® gegeben ist, ,,nicht
zu klein‘“ sein. Ist z. B. ® eine freie Abelsche Gruppe vom Range p,
plp—1)

2
einen Komplex mit dieser Fundamentalgruppe & ist mithin die zweite
Bettische Zahl mindestens gleich —p——(—?%:—l—) p

Die ,,untere Schranke** ®;* fiir die mit & als Fundamentalgruppe ver-
traglichen zweiten Bettischen Gruppen kann nicht verbessert werden;
zu jeder Gruppe & (mit endlich vielen Erzeugenden und endlich vielen
Relationen) gibt es ndmlich einen Komplex K, der die Fundamental-
gruppe ® besitzt und in dem jedes Kugelbild homolog 0, also &% = 0 ist;
dann ist B2 = G;F .

Die allgemeine Theorie dieser Zusammenhénge wird im § 2 dargestellt;

so erweist sich ®;* als freie Abelsche Gruppe vom Range ; fiir

1) Seifert-Threlfall, Lehrbuch der Topologie (Leipzig und Berlin 1934), § 48. —
Statt ,,Homologiegruppe* (1. c.) sage ich ,,Bettische Gruppe‘.

%) Die Nullgruppe, oft kurz mit 0 bezeichnet, ist die Gruppe, die nur ein Element
enthalt.
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der § 3 enthilt spezielle Folgerungen und Beispiele. Im § 1, der rein
gruppentheoretischen Inhalt hat, wird die Gruppe ®," eingefiihrt.

b) Der § 4 handelt von dem Einflu der Fundamentalgruppe auf die
Schnitt-Eigenschaften der Zyklen in einer n-dimensionalen (geschlossenen
und orientierbaren) Mannigfaltigkeit M". Es stellt sich heraus: Diese
Ergenschaften, soweit es sich um Schnitte zwischen je etnem (n — 1)-dimen-
sionalen und einem zweidimensionalen Zyklus, sowie um Schnitte zwischen
je zwer (n — 1)-dimensionalen Zyklen handelt, sind rein algebraisch durch
die Fundamentalgruppe bestimmi.

Zum Beispiel ergibt sich: wenn & eine freie Gruppe ist, so sind die
genannten Schnitte simtlich homolog 0; wenn ® eine Abelsche Gruppe
ist, so ist der Schnitt zweier (» — 1)-dimensionaler Zyklen nur dann
homolog 0, wenn die beiden Zyklen linear abhéingig im Sinne der Homo-
logien sind.

Die Beschrankung auf Mannigfaltigkeiten ist iibrigens nicht notig;
zieht man ndmlich die neuere Produkt-Theorie in Komplexen heran?),
so bleiben die angedeuteten Satze giiltig, wenn man die Schnitte zwischen
(n — 1)-dimensionalen und zweidimensionalen Zyklen durch die Cech-
Whitneyschen Produkte zwischen eindimensionalen Kozyklen und zwei-
dimensionalen Zyklen sowie die Schnitte zwischen zwei (n — 1)-dimen-
sionalen Zyklen durch die Kolmogoroff-Alexanderschen Produkte zwischen
zwel eindimensionalen Kozyklen ersetzt; die Produkte selbst sind im
ersten Fall eindimensionale Zyklen, im zweiten Fall zweidimensionale
Kozyklen (aus diesen Formulierungen sieht man iibrigens, dal3 es berech-
tigt ist, auch die oben genannten Schnitte, bei denen (n — 1)-dimen-
sionale Zyklen auftreten, zu den Eigenschaften eindimensionaler und
zweidimensionaler Gebilde zu rechnen).

¢) Falls eine dreidimensionale Mannigfaltigkeit M2 vorliegt, so kommt
zu den Beziehungen zwischen ® und B2, die in den §§ 2 und 4 fest-
gestellt werden, noch die durch den Poincaréschen Dualitiatssatz aus-
gedriickte Beziehung sowie, fiir die Schnitt-Eigenschaften, die Gleichheit
n — 1 = 2 hinzu. Diese verschiedenartigen Beziehungen sind im allge-
meinen nicht miteinander vertriglich, und daher sind die Gruppen ®,
die als Fundamentalgruppen dreidimensionaler Mannigfaltigkeiten auf-
treten, starken Kinschrankungen unterworfen. Derartige Bedingungen
sind in dem kurzen § 5 zusammengestellt. Als Anwendung ergibt sich

3) Zusammenfassende Darstellung: H. Whitney, On products in a complex, Annals
of Math. 39 (1938), 397—432.
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ein neuer Beweis fiir den Satz von Reidemeister: Die einzigen Abelschen
Gruppen, welche als Fundamentalgruppen dreidimensionaler Mannig-
faltigkeiten auftreten, sind die zyklischen Gruppen und das direkte
Produkt von drei unendlich-zyklischen Gruppen.4)

d) Sowohl fiir den Aufbau der allgemeinen Theorie als auch fiir die
Behandlung von Beispielen sind gruppentheoretische Uberlegungen not-
wendig, die mir auch vom gruppentheoretischen Standpunkt aus nicht
uninteressant zu sein scheinen. Besonders wichtig ist die Bildung von
,shoheren Kommutatorgruppen‘‘, die in der neueren Gruppentheorie eine
Rolle spielen®): ist R eine Untergruppe der Gruppe &, so verstehe man
unter Cg(R) die Gruppe, welche von allen Kommutatoren zr 2171
erzeugt wird, fiir die z ¢ §, 7 ¢ R ist; speziell ist Cg(F) = € die Kom-
mutatorgruppe und €¢(€y) = €% die zweite Kommutatorgruppe von § .
Die Struktur der Gruppe ®;" , die in unserem unter a) genannten Haupt-
satz auftritt, ist folgendermaflen zu bestimmen: wenn ® homomorphes
Bild einer freien Gruppe & und wenn R der Kern dieses Homomorphismus
ist®) — ein solcher Homomorphismus liegt immer vor, wenn ® durch
Erzeugende und Relationen gegeben ist —, so ist

G = RNEY/CHR) .

Eine Grundlage fiir unsere Untersuchungen ist der gruppentheoretische
Satz, daB die durch diese Formel gegebene Gruppe ®; nicht von der
speziellen Darstellung der Gruppe ® als Bild von &, sondern nur von
® selbst, also nicht von ¥ und R, sondern nur von der Faktorgruppe
&/ R abhangt.

Das folgende Beispiel zeigt, von welcher Art die gruppentheoretisch-
topologischen Zusammenhinge sind, mit denen man es zu tun hat.

® sei durch Erzeugende E,, ..., E,, gegeben, zwischen denen eine ein-
zige Relation R(E,, ..., £,) = 1 besteht; man betrachte das Element
r= R(e,,...,e,) der von freien Erzeugenden e,, ..., e, erzeugten

freien Gruppe & ; es gelten die folgenden beiden Satze: (I) Dann und nur
dann gibt es einen Komplex K, dessen Fundamentalgruppe ® und
dessen zweite Bettische Gruppe 0 ist, wenn r nicht in €y enthalten oder

%) K. Retdemeister, Kommutative Fundamentalgruppen, Monatshefte f. Math.
u. Ph. 43 (1936), 20—28.

5) Zur Orientierung iiber die bei uns auftretenden Begriffe aus der Gruppentheorie:
W. Magnus, Allgemeine Gruppentheorie (Enzyklopaddie d. math. Wiss. I 1, 9;
Leipzig-Berlin 1939), Nr. 4 (besonders p. 17) und Nr. 14,

) Der ,,Kern‘‘ eines Homomorphismus ist das Urbild des Eins-Elementes der Bild-
gruppe.
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wenn r = 1ist. — (II) M™ sei eine Mannigfaltigkeit mit der Fundamental-
gruppe ® ; dann und nur dann gibt es in M zwei (» — 1)-dimensionale
Zyklen, deren Schnitt nicht homolog 0 ist, wenn r in €, aber nicht
in €% enthalten ist.

e) Nachdem man ziemlich befriedigende Satze iiber den EinfluB der
Fundamentalgruppe auf die zweite Bettische Gruppe gewonnen hat,
wird man fragen, ob ahnliches nicht auch fiir die hoheren Bettischen
Gruppen moglich sei. Die oben erwéhnte Rolle, welche die Kugelbilder
spielen, gibt einen Fingerzeig, in welcher Richtung man derartige Ver-
allgemeinerungen zu suchen haben wird: der Begriff des Kugelbildes ist
der Grundbegriff der Homotopie-Theorie von Hurewicz, und auch die
iibrigen Begriffe und Beziehungen, die im § 2 auftreten — insbesondere
der Begriff des ,,Homotopie-Randes* eines zweidimensionalen Komplexes
—, scheinen mir in den Ideenkreis von Hurewicz zu gehoren?); iibrigens
ergeben sich auch einige direkte Beriihrungen mit Resultaten dieser
Theorie (Nr.12 b, e). Ich halte es daher fiir wahrscheinlich, daB
die in der vorliegenden Arbeit festgestellten Beziehungen zwischen &
einerseits, B2 und S? andererseits in allgemeineren, uns noch unbekannten
Beziehungen enthalten sind, die zwischen den ersten # Homotopie-
gruppen einerseits, der (k -4 1)-ten Bettischen und der (k + 1)-ten
Homotopiegruppe andererseits bestehen. Jedenfalls lassen sich der
erwahnte Begriff des Homotopie-Randes und seine Haupt-Eigenschaften
auf hohere Dimensionszahlen iibertragen; wichtig fiir derartige Verallge-
meinerungen diirfte der Zusammenhang zwischen der Fundamental-
gruppe und den hoheren Homotopiegruppen sein, auf den Eilenberg
aufmerksam gemacht hat®).

Wenn man dagegen die Homotopiegruppen nicht heranzieht, sondern
ausschlieflich die Fundamentalgruppe und die Bettischen Gruppen —
also die klassischen Invarianten von Poincaré — untersucht und in diesem
Rahmen die Frage nach den gegenseitigen Beziehungen zwischen diesen
Gruppen stellt, so ist hierauf zu antworten, dafl diese Beziehungen sich
auf die Dimensionszahlen 1 und 2 beschrinken; wenn namlich &, 83,
..., B" willkiirlich vorgegebene Gruppen sind — mit endlich vielen
Erzeugenden und Relationen, die B" Abelsch —, so gibt es, wie man
leicht sieht, immer einen Komplex K mit der Fundamentalgruppe ®

) W. Hurewicz, Beitriage zur Topologie der Deformationen, Proc. Akad.
Amsterdam: (I) vol. 38 (1935), 112—119; (II) vol. 38 (1935), 521—528; (III) vol. 39
(1936), 117—126; (IV) vol. 39 (1936), 2156—224.

8) S. Eilenberg, On the relation between the fundamental group of a space
and the higher homotopy groups, Fundamenta Math. 32 (1939), 167—175.
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und den Bettischen Gruppen 9B”.?) In diesem Sinne sind also Verallge-
meinerungen unserer Satze nicht moglich.

§ 1. Eine Gruppen-Konstruktion

1. Wir beginnen mit der Zusammenstellung einiger bekannter Tat-
sachen. I" sei eine Menge von Elementen «, 3, ... . Jedem geordneten
Paar («, ) sei eine ,,Summe“ x + f eI, jedem « sei ein ,,Inverses‘
— o € I' zugeordnet; statt f-4(— «) schreiben wir auch f — « . Dann
verstehen wir unter einer ,,Restklassengruppe von I folgendes:

I' ist in zueinander fremde Klassen «, 8, ... zerlegt; zwischen diesen
ist eine Addition erklart, durch welche die Gesamtheit der Klassen zu
einer Gruppe wird ; diese Addition ist mit der Addition in I" auf folgende
natiirliche Weise verkniipft:

aus x e, fepf folgt oc—l—ﬁezx—l—ﬁ
aus x ex folgb — e — .

(1)

Jede Restklassengruppe lifit sich folgendermaflen erzeugen. I" wird
durch eine Abbildung ¢ homomorph auf eine Gruppe {Q abgebildet,
d. h. so, dal} 19)

qa + B) = q(«) - q(B) , 9(—a&) =q(x)? (1)

ist; die Restklassen sind die Urbildmengen der einzelnen Elemente von
Q; die Summe &8 zweier Restklassen ist durch die Vorschrift g(x )
= q(x) * ¢(B) bestimmt; so entsteht eine mit Q isomorphe Restklassen-
gruppe von I'.

Unter dem ,,Kern‘“ einer Restklassengruppe verstehen wir diejenige
Restklasse, welche das Null-Element der Gruppe darstellt; oder in der
Sprache der Homomorphismen: diejenige Klasse, welche durch ¢ auf
die Eins von Q abgebildet wird.

Mit Hilfe von (1) oder von (1’) bestatigt man leicht folgende Tatsache:
Zwei Elemente «, 8 von I' sind dann und nur dann in derselben Rest-

*) Andeutung: Es gibt einen Komplex mit der Fundamentalgruppe & (Seifert- Threl-
fall, 1. c. 1), 180, Aufgabe 3); der Komplex K’ seiner zweidimensionalen Simplexe hat auch
die Fundamentalgruppe & ; es gibt ferner einen Komplex K’ mit der Fundamental-
gruppe 0 und den Bettischen Gruppen B3, ..., Bn (Alexandroff-Hopf, Topologie I
(Berlin 1935), 266, Nr. 9); man fiige K’ und K” in einem Punkt aneinander.

10) Im allgemeinen schreiben wir beliebige Gruppen multiplikativ, Abelsche Gruppen
oft additiv; daB wir I" additiv schreiben, obwohl die Summenbildung i. a. nicht kommu-
tativ ist, wird sich im ,,Anhang* rechtfertigen (im Hinblick auf das distributive Gesetz
der dort behandelten Produktbildung).

261



klasse, wenn das Element 8 — « in dem Kern enthalten ist. Hieraus
folgt:

Zwei Restklassengruppen von I sind miteinander identisch (nicht nur
isomorph), wenn ihre Kerne identisch sind.

2. U sei eine beliebige Gruppe, U ein Normalteiler von W . Mit €y (U)
bezeichnen wir die von allen Elementen aua'u! mit aeq, uell
erzeugte Gruppe; sie ist, wie man leicht sieht, Normalteiler von o« und
in U enthalten. Beim Rechnen mit Kongruenzen mod. €y () — d. h.
beim Rechnen in der Faktorgruppe U/Cy(U) — ist jedes Element von
U mit jedem Element von 9 vertauschbar.

Fiir beliebige Gruppenelemente z,, ¥,, 5, ¥5, - .., Z,, ¥, definieren
wir das ,,Wort“ C durch

C(xl""ayn)le'yl'xl—l’yl—l'x2' s 9 ° y'r—z——fl xnynx;1 yr:l * (2)

Dann gilt folgende Regel: sind a,,b,,...,a,,b, und a,b,,...,a,,b,
Elemente von U mit
b, = b, mod. U (3)

14
a;

If

a,; ,

80 ist
Cay,...,b) =Cla;,...,b,) mod. Cyu(U) . (4)

Denn (3) bedeutet: a; = a, - u;, b; =b, v, mit u; e, v; e U ; setzt
man dies in C ein und beachtet die oben erwihnte Verta.uschbarkelts-
Eigenschaft sowie die besondere Gestalt (2) von C, so erhilt man (4).

Die Gruppe €y (%) ist die Kommutatorgruppe von 9[; wir nennen sie

kurz (g‘ll .

3. Nach diesen Vorbemerkungen kommen wir zu der Konstruktion,
die das Ziel dieses Paragraphen ist. ® sei eine beliebige Gruppe. Unter
I'y verstehen wir die Menge aller geordneten Systeme (X, Y,,...,
X,, Y, mit X;e®, Y, ¢« ® und beliebigem 7 . Fiir zwei Systeme x =
(X,,....Y,), p=U4..., V,) 80l « +=(Xy,..., Y,,U,;,..., V,),
und es soll —ax = (Y,, X,,..., Y, X,) sein.

Wir konstruieren nach einer speziellen Methode Restklassengruppen
von I'y. Es sei A eine homomorphe Abbildung einer Gruppe U auf & ;
der Kern¢) von A heiBe i . Wir nehmen ein Element « = (X,,..., ¥,)
von I'y; und ordnen seinen Komponenten X,,..., Y, Elemente a,, b,
von U so zu, daBl A(a;) = X,;, A(b;,) = Y, ist; diese a, und b, sind nicht
eindeutig bestimmt; aber ihre Restklassen modulo ) sind eindeutig
bestimmt; daher ist nach Nr. 2 die Restklasse modulo Ty (), welcher
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das Element C(a,,...,b,) angehort, eindeutig bestimmt; diese Rest-
klasse nennen wir g ,(«x) . Man verifiziert leicht, dal ¢, eine homomorphe
Abbildung (im Sinne von Nr. 1) von I'g auf die Faktorgruppe Ey /Ey ()
ist. Der Homomorphismus ¢, erzeugt eine Restklassengruppe von I’
(Nr. 1); diese heifle G, ; es ist

G, = Gy Gy (N) .

Der Kern des Homomorphismus ¢q,, also die Klasse derjenigen &« =
(X4,...,%Y,), zu denen es Elemente a,, b, von U mit

Afa,) =X, , A®b,)=7Y, , Clay,...,b,) eCy)
gibt, heifle K, .

4. Jetzt sei § eine freie Gruppe und F ein Homomorphismus von
auf ®; der Kern von F heile ‘R . Dann ist gemall der soeben bespro-
chenen Konstruktion eine Restklassengruppe ® von I'y gegeben; der
Kern der zugehorigen Abbildung g5 heie K . Daneben betrachten wir
weiter wie in Nr. 3 einen Homomorphismus A einer beliebigen Gruppe A
auf dieselbe Gruppe & . — Wir behaupten :1°%)

Kpc K, . (5)

Beweis: {e;, ,,. ..} sei ein freies Erzeugenden-System von § . Zu jedem
e; gibt es in A Elemente, die durch 4 auf das Element F/(e;) abgebildet
sind ; unter diesen Elementen von U wahlen wir je eines aus und nennen
es H(e,); da die e; ein freies Erzeugenden-System bilden, gibt es einen
Homomorphismus H von § in U, der den Elementen e; die Elemente
H (e,) zuordnet. Nach Definition von H ist AH(e;) = F(e,) ; dann ist auch

AH(z) = F(x) fiir alle z ¢ § . (6)
Hiernach ist speziell AH(R) = F(R) = 1, also

HR)c U. (7)
Aus (7) folgt
HGE(R) c Cy () . (8)

Nun sei &« = (X,,...,Y,) e K;; dann gibt es solche Elemente z,, y,
in §, daB
F(z;) = X;,F(y) =Y, , (9)

108) Das Zeichen (— bedeute immer : ,,echter oder unechter Teil von*.
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Cl@y,s. . .5 ¥y) € Cx(R) (10)
ist. Wir setzep H(z;) = a;, H(y,) = b; . Dann folgt aus (6) und (9)
Ala;) =X, , Ab) =7,. (11)
Da H ein Homomorphismus ist, ist
Ca,...,b,) = HC(xy,..., ¥,);

hieraus, aus (10) und (8) folgt
C(ay,...,b,) e Cy(U) . (12)

(11) und (12) bedeuten: x € K, . Somit gilt (5) .

5. Jetzt seien F,F’ Homomorphismen zweier freier Gruppen §, &’
auf ®. Nach Nr.4 ist Ky c Kz und Ky c Ky, also K, = K. .
Dann sind nach der Bemerkung am Schlufl von Nr. 1 die Gruppen G
und ®;, miteinander identisch; mit anderen Worten: die Gruppe G
ist von F' unabhéngig, wenn nur § eine freie Gruppe ist.

Jede Gruppe ® ist homomorphes Bild freier Gruppen; man erhilt
einen solchen Homomorphismus, wenn man die Elemente eines beliebigen
Erzeugenden-Systems von & zugleich als freie Erzeugende einer freien
Gruppe auffat. Daher ist fiir jede Gruppe ® die Gruppe ®, erklairt;
um die Unabhéngigkeit von F' zu betonen, setzen wir G, = ®*. Wir
fassen die Konstruktions-Vorschrift fiir * noch einmal zusammen:

Die Gruppe & set gegeben. I'y sei die Menge aller Systeme (X,, Y4,...,
X, Y,)mit X;e®,Y,e®; in I'y sind ,,Summe’* und ,,Inverses* gemif
Nr. 3 erklirt. F sei etn Homomorphismus einer freten Gruppe & auf ® ;
der Kern von F heifle R ; die Gruppen €y und Cg(R) sind in Nr. 2 defi-
niert. Den Komponenten X,, Y, jedes Hlementes x = (X,,..., Y,) von
I'y ordnen wir Elemente x;, y, von § zu, fir welche F(x;) = X, F(y,) =
Y, ist; dann ist die Restklasse von § modulo Cg(R), welche das Kommu-
tatorelement C(x,,...,y,) enthdilt, durch « eindeutig bestvmmi ; sie heifle
Ip(%) . g st ein Homomorphismus von I'g auf die Faktorgruppe C/C(R) ;
die von diesem Homomorphismus erzeugte Restklassengruppe von I'g st
®&* . Sie 18t unabhingig von F .

Es ist

G*= Gy /Cy(R) . (13)
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Als Korollar ergibt sich: Sind &, §' freie Gruppen, R, R’ Normalteiler
von thnen, und st
FIR=ZF R, (14)
80 18t auch

Gy ) C4(R) = Cg [ G (R') (15)

Denn ist ® die durch jede der beiden Seiten von (14) erklarte abstrakte
Gruppe, so ist jede der beiden Seiten von (15) mit der zugehorigen Gruppe
®* isomorph.

6. Fiir unsere spiteren Zwecke ist eine bestimmte Untergruppe &;
von G* wichtig, die wir jetzt erklaren werden.

Zu jedem Element x = (X,,...,Y,) von Iy gehort ein Element
C(Xy,..., Y,) von G, das wir C(x) nennen. Mit « ,... bezeichnen wir
die Restklassen von I'g , welche die Elemente von G* sind.

F sei wieder ein Homomorphismus wie in Nr. 5. Da Gg(R) ¢ R ist,
wird durch ¥ jeder Restklasse von § modulo € (R) ein bestimmtes Ele-
ment von ® zugeordnet; daher ist fiir jedes « ein bestimmtes Element
Fqg(x) erklart; aus der Definition von ¢, und der Homomorphie-Eigen-
schaft von F folgt leicht:

Fyp(a) = O(a) . (16)

Hieraus ist ersichtlich: Sind «, «’ in derselben Klasse « enthalten,
ist also gp(x) = qr(a’), so ist C(x) = O(«’). Man kann daher statt
C(x) auch O(x) schreiben. Unter I'y verstehen wir die Menge der « , fiir
die C(x) = 1, unter G;* die Menge der « , fiir die C(x) =1 ist. Aus (16)
sieht man, daB die Bedingung C(x) = 1 gleichbedeutend damit ist, daf3
qp(x) c R ist; hierbei ist gp(x) eine der Restklassen, in die €y modulo
Cy(R) zerfallt; (eine beliebige dieser Restklassen ist, da Cz(R) c R ist,
entweder fremd zu R oder in R enthalten). Die in R enthaltenen g¢(x)
bilden die Untergruppe (R N €g)/Cx(R) von Cg/Cy(R); da diese gp(x)
den zu B, gehorigen x entsprechen, ist ®," eine, mit der genannten Unter-
gruppe isomorphe, Untergruppe von ®*. — Wir fassen zusammen:

®F ist die Untergruppe der Restklassengruppe ®*, die aus denjenigen
Restklassen « besteht, fur deren Elemente o = (X,..., Y,) die Kommuta-
toren C(x) = C(X,,..., Y,) =1 sind.

& ist daher ebenso wie ®* vollstindig durch ® bestimmi (unabhdngig
von dem als Hilfsmittel benutzten Homomorphismus F).

Man kann ®;* auch so charakterisieren: Der durch C(«) = 1 bestimmie
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Teil I's von I' wird durch gp homomorph auf die Gruppe (RN Cg)/C(R)
abgebildet ; & ist die hierdurch erzeugte Restklassengruppe von I'y .

Es ist
Gf=Rn 63’-)/@8(9{) . (17

In Analogie zu (15) erhalt man das Korollar: Unter der Voraussetzung
(14) gslt
(RN Ce)/Ce(R) = (RN Cyr) | Cgo (R (18)

Aus (17) ist iibrigens ersichtlich, daB ®;° eine Abelsche Gruppe ist;
denn die Kommutatorgruppe von R n € ist in der Kommutatorgruppe
von R, also auch in deren Obergruppe Cg(R) enthalten.

Wir bemerken noch folgendes: durch die oben eingefiihrte Funktion
C(x) wird G* homomorph auf €4 abgebildet, und &;* ist der Kern dieses
Homomorphismus; daher ist

G* /6 =G . (19)

Damit brechen wir die gruppentheoretischen Betrachtungen ab; sie
werden in Nr. 19, wozu auch der ,,Anhang‘ gehort, fortgesetzt werden.

§ 2. Homotopie-Rinder, Kugelbilder und Fundamentalgruppe

7. Homotopie-Rinder. E sei ein zweidimensionales Element, d. h. eine
abgeschlossene Kreisscheibe oder ein topologisches Bild einer solchen;
E sei orientiert; g sei die Randkurve von E, einmal im positiven Sinne
durchlaufen. K sei ein simplizialer Komplex, f eine simpliziale Abbildung
einer Simplizialzerlegung von £ in den Komplex K . Dann ist f(£) = ¥
ein zweidimensionaler algebraischer Komplex!!) in K und f(g) = r ein
geschlossener Kantenweg in K 12). Unter diesen Umsténden sagen wir:
,»t 18t etn Homotopre- Rand von Y .*

Dieser Begriff des ,,simplizialen” Homotopie-Randes ist nur wenig
spezieller als der folgendermafen erklarte Begriff des ,,stetigen‘ Homo-
topie-Randes. Mit K7 bezeichnen wir den Komplex der hoéchstens -
dimensionalen Simplexe von K ; die durch K, K bestimmten Polyeder
nennen wir K, K™ 1), Wir betrachten nur solche stetige Abbildungen f
von E in K, daB 1%

flo) =K', f(B) c K* (1)

11) Terminologie wie bei Alexandroff-Hopf, 1. c. ?).

12) Wegen des Begriffes ,,geschlossener Weg‘‘ vgl. man die Biicher von Seifert-Threl-
fallt), 1491f., und Alexandroff-Hopf?), 332ff.; dieser Begriff ist verschieden von dem Begriff
weindimensionaler Zyklus* (oder ,,eindimensionale geschlossene Kette*‘).
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ist ; dann hat die Abbildung f von £ in jedem zweidimensionalen orientier-
ten Simplex y; von K einen bestimmten Grad c;, und nur endlich viele
¢; sind nicht 0; wir definieren den algebraischen Komplex Y = f(H)
durch Y = X'¢c;y,; das Bild f(p) = r ist ein stetiger geschlossener Weg
in K 12), Wir nennen t einen (stetigen) Homotopie- Rand des algebraischen
Komplexes Y .

8. Der Komplex K sei zusammenhéngend; er kann iibrigens endlich
oder unendlich sein; die Komplexe K" seien wie oben erklart. Ein Eck-
punkt O sei ausgezeichnet. § sei die Fundamentalgruppe von K!; wir
reprasentieren ihre Elemente in bekannter Weise durch geschlossene Wege
in K1, deren Anfangs- und Endpunkte in O zusammenfallen. Ferner sei auf
dem Rande jedes Elementes £ ein Punkt a ausgezeichnet ; wir betrachten
nur solche stetige Abbildungen f von E in K, welche (1) erfiillen und fiir
welche f(a) =0 ist; dann reprisentieren die Randbilder r = f(¢) Elemente
der Gruppe & . — Kleine deutsche Buchstaben sollen bis auf weiteres
immer geschlossene Wege in K durch den Punkt O bezeichnen.

Unter R verstehen wir die Menge derjenigen Elemente von § , welchen
geschlossene Wege in K* entsprechen, die in K auf einen Punkt zusammen-
ziehbar sind; diese Wege sind dann bekanntlich bereits in K2 auf einen
Punkt zusammenziehbar; ebenso ist bekannt oder leicht zu sehen, daf
R Normalteiler von § ist. € bezeichne die Kommutatorgruppe von  ;
die von den Elementen zr 17! mit x ¢ &, r ¢ R erzeugte Gruppe
heifle €(R) ; daraus, dal R Normalteiler ist, folgt: C(R) c R.

Wir werden jetzt eine Reihe von Tatsachen zusammenstellen, die sich
auf den Zusammenhang beziehen, der durch die Bildung der (stetigen)
Homotopie-Rénder zwischen den algebraischen Komplexen Y in K2 und
der Fundamentalgruppe § von K! sowie deren Untergruppen R und
C(R) vermittelt wird.

+a) t ist dann und nur dann ein Homotopie-Rand, wenn das durch ¢
reprisentierte Element r von § zu R gehort.

Denn die Tatsache, daB ¥ Homotopie-Rand ist, ist gleichbedeutend
mit der Existenz einer Abbildung f eines Elementes E , fiir welche
f(E) c K2, f(p) =t ist, wobei o wieder den Rand von E bezeichnet;
dieselbe Bedingung ist aber auch charakteristisch dafiir, daB v in K?
auf einen Punkt zusammenziehbar ist, also, wie oben bemerkt, dafiir,
daf} r ¢ R ist.

b) Es sei r,eR, zeF , ro=a7'r,&; ¥y, L, seien Wege, welche
Ty, 7, reprasentieren; v, ses Homotopie-Rand von Y . Dann ist auch v,
Homotopie- Rand von Y .
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Beweis: Da r, = 7! r, z ist, sind r, und r, einander ,,frei homotop*
auf K, d.h. r, 1aBt sich auf K! stetig in r, deformieren, ohne daB dabei
ein Punkt festgehalten zu werden braucht'?). Es gibt daher eine solche
Abbildung f’ eines von zwei Kreisen p,, g, begrenzten Kreisringes R ,
daB f'(e;) =11, f'(0:) = t;, f(R) c K* ist. Hierbei sei p, der innere
Randkreis von R ; da r, Homotopie-Rand von Y ist, gibt es eine solche
Abbildung f, der von g, begrenzten Kreisscheibe K, , daB f, auf p, mit
f’ iibereinstimmt und daB f,(E,) = Y ist. f, und f’ zusammen bilden eine
Abbildung f, der von g, begrenzten Kreisscheibe E, ; da f,(R)=f'(R) c K*
ist, liefert das Bild von R keinen Beitrag zu dem algebraischen Komplex
f2(E;) , und daher ist fy(E,) = fy(E,) = Y ; da auBerdem f,(0,) = f'(0.) =
1, ist, ist ¥, Homotopie-Rand von Y .

Bemerkung: Von dem hiermit bewiesenen Satz ist besonders auch der
Spezialfall wichtig, in dem r, = r, ist.

¢) y sei ein zweidimensionales orientiertes Simplex von K ; unter
einer ,,Schleife um y‘‘ verstehen wir einen geschlossenen Weg folgender
Art: man lauft erst von O auf einem (in K* gelegenen) Weg w bis in einen
Eckpunkt von y, dann durchlduft man den Rand von y einmal im
positiven Sinne, schlieBlich lauft man auf w, in der entgegengesetzten
Richtung wie zuerst, nach O zuriick.

Behauptung: Jede Schleife um y ist Homotopie-Rand wvon y . Den
Beweis fithrt man leicht durch geeignete (z. B. simpliziale) Abbildung
eines Elementes auf die aus den Punkten von y und w bestehende
Punktmenge.

d) Ist v Homotopie- Rand von Y , so ist der inverse Weg t=* Homotopie-
Rand des Komplexes —Y ; sind t,, ty Homotopie-Rinder von Y,,Y,,
30 ist der zusammengesetzte Weg t,-t, Homotopie-Rand von Y=Y, + Y, .

Der Beweis des ersten Teiles ist klar. Um den zweiten Teil zu beweisen,
hefte man die beiden Elemente X, , E,, welche durch f,, f, so abge-
bildet sind, daB f,(Z,) = Y,, fi(e;) = t; ist, in ihren Randpunkten
@, , @, , welche durch f, , f, auf O abgebildet sind, zusammen ; auf diesen
Komplex E, 4 E, bilde man ein Element E durch eine Abbildung f’
8o ab, dall E, und E, mit dem Grade 1 bedeckt werden, dal der Rand ¢
von E in den aus den beiden Randern zusammengesetzten Weg g, * o,
iibergeht, und daB ein vorgegebener Randpunkt a von E auf a;, = a,
abgebildet wird; fiir die Abbildung f von Z, die entsteht, wenn man
erst f/, dann f, und f, ausfiihrt, ist () = Y, + Y,, flo) =111, .

18) Seifert-Threlfall, § 49.
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e) Durch den soeben gefiihrten Beweis ist zugleich folgendes gezeigt
worden : wenn die Komplexe Y, , Y, Bilder f,(#,), f,(¥,) von Elementen
sind — mit den Nebenbedingungen f,(a,) = f,(a@,) =0 —, so ist auch
Y=Y, + Y, Bild f(Z) eines Elementes — mit der Nebenbedingung
f(@) =0 . Ferner geht aus c) hervor, daBl jedes Simplex y, von K2 Bild
eines Elementes ist — ebenfalls mit der Nebenbedingung, da ein vor-
geschriebener Randpunkt des Elementes auf O abgebildet wird. Durch
Kombination dieser Tatsachen ergibt sich:

Jeder Komplex Y = Xc;y, ist Bild eines Elementes E, und zwar so,
daf} exn vorgeschriebener Randpunkt von E auf O abgebildet wird ; jeder
Komplex Y besitzt daher Homotopie-Rinder, und zwar solche, welche
geschlossene Wege durch den Punkt O sind.

f) Jeder Weg v, der ein Element r der Gruppe C(R) reprisentiert, ist
Homotopie- Rand des Nullkomplexes ¥ = 0 .

Beweis: Es sei r ¢ €(R); dann ist r = II(z; r, 27 r;H)E! mit r, e R,
x; ¢ § . Nach a) und b) gibt es zu jedem ¢ einen Komplex Y, , so daB3
sowohl die Wege, die zu dem Element r,, als auch die Wege, die zu
dem Element z,r; z;' gehéren, Homotopie-Rinder von Y, sind ; nach

1 1

dem ersten Teil von d) sind die zu r;* gehorigen Wege Homotopie-Rénder
von —Y;; nach dem zweiten Teil von d) sind daher die zu z; r, z;* ;!
gehorigen Wege Homotopie-Rénder von Y, — Y, = 0; und ebenfalls
nach d) sind daher auch die zu r gehorigen Wege Homotopie-Rénder

des Komplexes 0 .

g) Der Weg v set Homotopie-Rand des Nullkomplexes. Dann ist das
durch t reprdsentierte Element r von § in C(R) enthalten.

Beweis: Es gibt eine Abbildung f von E mit f(E) =0, f(o) =,
f(@) = O . Beim Ubergang zu einer simplizialen Approximation von f
andert sich weder das durch f(p) reprasentierte Element von §, noch,
wie sich aus den Grundeigenschaften des Abbildungsgrades ergibt, der
algebraische Komplex f(¥); auBlerdem kann man dafiir sorgen, daf O
das Bild von a bleibt. Daher konnen wir f von vornherein als simplizial
annehmen.

Die Simplizialzerlegung von E , die der simplizialen Abbildung f
zugrundeliegt, ist ein Komplex E?; mit E! bezeichnen wir den Kanten-
komplex von £2; die Fundamentalgruppe von E* heille & ; wir reprasen-
tieren ihre Elemente durch geschlossene Wege durch den Eckpunkt a ;
die Kommutatorgruppe von @ heile I'. Die zweidimensionalen Sim-
plexe von E? seien 7, ; sie seien so orientiert, da X', = E das orien-
tierte Element ist. Fiir jedes A sei g, eine feste ,,Schleife” um 7%, , die
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analog wie unter c) definiert ist, mit dem Anfangs- und Endpunkt a .
Der Randweg des orientierten Elementes X sei o .

Die Wege g, o) repriasentieren im Sinne der Homologietheorie Zyklen
o', 0, des Komplexes E'; aus X', = E folgt

o' =2, . (2)

Nun ist der Zusammenhang zwischen der Fundamentalgruppe und der
Gruppe der eindimensionalen Zyklen eines Komplexes E! bekanntlich
derart, daB man p’, o} als diejenigen Restklassen von @ mod. I" auf-
fassen kann, welche die durch p bzw. g, reprisentierten Elemente von
@ enthalten'). Daher ist (2) gleichbedeutend mit der Tatsache, dafi der
Weg o sich folgendermaflen aus den Wegen g) und einem Weg y, der
ein Element von I’ reprasentiert, zusammensetzen lat:

e =7y Ilg, . (3)
Durch Ausiibung der Abbildung f folgt aus (3)
t=c-IIt) ; (4)

hierin bezeichnet ¢ einen Weg, der ein Element ¢ der Gruppe f(I") repréa-
sentiert, und es ist f(p)) = r) gesetzt; die durch r, r, reprasentierten
Elemente von & seien r, r,. Unsere Behauptung, daf r e C(R) sei,
koénnen wir auf Grund von (4) in zwei Teile zerlegen:

(5,) ceCR) ; (5,) IIry e C(R).

Beweis von (5,): Da E ein Element ist, ist jeder geschlossene Weg
des Komplexes E' in B auf einen Punkt zusammenziehbar; daher ist
auch das durch f gelieferte Bild eines solchen Weges in K zusammen-
ziehbar; das bedeutet: f(®) c R . Folglich ist f(I') in der Kommutator-
gruppe von R, also erst recht in deren Obergruppe E(R) enthalten.
Mithin gilt (5,).

Beweis von (5,): Das Bild f(7,) eines Simplexes 7, von E? ist entweder
0 oder ein Simplex 4y; von K?; im ersten Fall wird der einmal durch-
laufene Rand von 7, auf einen Punkt oder auf eine hin und her durch-
laufene Strecke abgebildet, und daher ist das Bild r), der Schleife g,
offenbar in K zusammenziehbar, also ist dann r), das Eins-Element
von & ; im zweiten Fall ist r) eine Schleife um +y; . Wir lassen nun aus
dem Produkt ITr) = p die Faktoren r), weg, die gleich 1 sind; dann ist
p als Produkt von Elementen r, dargestellt, welche Schleifen r) um die
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Simplexe -y, entsprechen. Dabei treten fiir jedes |y, ebensoviele posi-
tive wie negative Schleifen auf; denn deren Anzahlen sind gleich den
Anzahlen der positiven bzw. negativen Bedeckungen, die das Simplex y,
durch Bilder f(5,) erleidet, und diese beiden Anzahlen sind einander
gleich, da f(Z) = 0 ist.

Wir rechnen modulo der Gruppe €(R); dann diirfen wir, da ) ¢ R
1st, in dem Produkt p = Iz r) je zwel Faktoren r) miteinander vertauschen;

daher ist
P El_Ypi mod. C(R) ,

wobei p; das Produkt derjenigen r) bezeichnet, welche durch Schleifen
um -y, reprasentiert werden. Die Behauptung (5,) wird bewiesen sein,
wenn wir fiir jedes einzelne ¢ gezeigt haben, dafl p, e €(R) ist.

r, und t, seien zwei Schleifen um vy, ; dann ist t,=w,uw;?, t, = w,uw;?,
wobei » den Randweg von y, und w, , w, zwei Wege von O nach dem-
selben Eckpunkt von y, bezeichnen'?); dann ist v, = xr,x™', wobei
x = w,w;" ein geschlossener Weg durch O ist. Zwischen den durch
Ty, ¥, reprasentierten Elementen r,, r, von §§ besteht also eine Bezie-
hung 7, = ar; 7! mit z ¢ § ; hieraus sieht man, daB r, = r, mod. C(R)
ist. Bezeichnet nun s; ein Element, das durch eine feste Schleife um y,
reprasentiert wird, so ist aus dem Vorstehenden ersichtlich, da3 jeder der
Faktoren r) des Produktes p; entweder mit s, oder mit s;' kongruent
mod. C(R) ist; es ist daher p, = s{* mod. €(R), wobei ¢, die Anzahl der
positiven Schleifen ry um y,, vermindert um die Anzahl der negativen
Schleifen r) um y, ist. Wir haben oben gesehen, dal ¢; = 0 ist; folglich
st p; = 1 mod. €(R). Damit ist (5,) bewiesen.

h) v set Homotopie-Rand von Y ; dann besteht die Gesamtheit aller
Homotopie-Rinder von Y aus denjenigen Wegen t’, fir welche r' =r
mod. C(R) ist, wobei r , r’ wieder die durch v, t’ reprdsentierten Gruppen-
elemente bezeichnen.

Der Beweis ergibt sich leicht aus f), g) und d).

i) S sei eine Kugelfliche, g eine stetige Abbildung von S in das Poly-
eder K2 ; diese Abbildung hat in jedem Simplex y; von K? einen bestimm-
ten Grad ¢;, und nur endlich viele ¢; sind nicht 0; den Komplex
Y= Jc,y, nennen wir ein (stetiges) ,,Kugelbild“ und setzen g(S) =Y. Ist
g’ eine simpliziale Approximation von g, so ergibt sich aus bekannten

14) Man darf annehmen, daB die Eckpunkte e, , ¢; von y;, in denen w, und w, enden,
zusammenfallen; wenn dies zun#chst nicht so ist, so verlingere man w, zu einem Weg
w; » indem man auf dem Rande von ¥, im negativen Sinne von e, bis e, lauft, und ersetze

wy durch w; .
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Eigenschaften der simplizialen Approximationen und des Abbildungs-
grades, daB g’(8) = ¢(8) ist; ein Komplex Y, der stetiges Kugelbild ist,
ist also auch ,,simpliziales’ Kugelbild. Natiirlich sind alle Kugelbilder
Zyklen.

Ist Y Kugelbild, Y = ¢(S), so gibt es auch eine solche Abbildung g,
einer Kugel 8, , daBl ¥ = ¢,(8,) ist, und daB ein Punkt a, von 8, auf
O abgebildet wird. Um ¢, zu konstruieren, befestige man eine Strecke s
mit einem Endpunkt ¢ an S und erweitere g zu einer Abbildung ¢’ von
8 + 8, indem man s auf einen Streckenzug in K abbildet, der O mit
g(q) verbindet; ferner sei A eine Abbildung von S, auf s + S, welche «,
auf den freien Endpunkt von s, die Halbkugel, deren Mittelpunkt a,
ist, auf s , den Aquator, der die Halbkugel begrenzt, auf g und die andere
Halbkugel mit dem Grade 1 auf S abbildet; dann leistet die Abbildung
9, = g'h das Gewiinschte. Man erhilt also auch dann alle Kugelbilder
in K, wenn man nur solche Abbildungen einer Kugel S, zuldBt, bei
denen ein Punkt a, auf O abgebildet wird; die so erhaltenen Bilder Y
sind aber offenbar identisch mit denjenigen Bildern f(%) eines Elementes
E , bei denen das Bild des Randes g nur aus dem Punkt O besteht. Dies
konnen wir auch so ausdriicken:

Die Kugelbilder in K sind diejenigen Komplexe Y , welche einen Homo-
topie- Rand haben, der nur aus etmem Punkt besteht.

Auf Grund von h) ist diese Aussage gleichbedeutend mit der folgenden :
Y ist dann und nur dann Kugelbild, wenn die Homotopie- Rinder von
Y die Elemente der Gruppe C(R) reprdsentieren.

j) Jedem geschlossenen Weg x in K ist in bekannter Weise ein ein-
dimensionaler Zyklus X zugeordnet: fiir jedes eindimensionale orien-
tierte Simplex s, von K gebe die Zahl b, an, wie oft s, im algebraischen
Sinne von x durchlaufen wird; mit anderen Worten: ist x = f(p), o
eine Kreislinie, so ist b; der Grad der Abbildung f in s,; dann ist X=
2'b;s; . Wir setzen X=B(x) . Die Zuordnung B ist homomorph in dem
Sinne, daB B(x, - x,) = B(x,) + B(x,) , B(x™') = — B(x) ist. Bekanntlich
ist dann und nur dann B(x) = 0, wenn das durch % reprisentierte
Element von § in der Kommutatorgruppe € von & enthalten ist. 1)
Hieraus und aus der Homomorphie-Eigenschaft folgt noch: dann und
nur dann ist B(x,) = B(x,), wenn die durch ¥,, x, reprisentierten
Elemente von § einander kongruent mod. ¢ sind.

Fiir zweidimensionale Komplexe Y, y; sollen Y , y, ihre Rander im
Sinne der Homologietheorie bezeichnen. — Wir behaupten:

Ist v Homotopie-Rand von Y, so ist B(r) = Y .
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Beweis: Sind v, t’ zwei Homotopie-Rinder von Y, so sind nach h)
die durch sie reprisentierten Elemente r,r’ einander kongruent mod.
C(R) ; sie sind also, da C(R) c € ist, einander auch kongruent mod. € ;
folglich ist, wie oben bemerkt, B(x) = B(t’) . Daher geniigt es, die fiir
alle Homotopie-Rénder von Y ausgesprochene Behauptung fiir einen
speziellen Homotopie-Rand r von Y zu beweisen.

Es sei Y = X¢,y; , wobei y, wieder zweidimensionale Simplexe sind.
Fiir jedes ¢ sei r; eine Schleife um y,; aus c¢) und d) folgt, dafl v = IIt¥
ein Homotopie-Rand von Y ist. Fiir die Schleifen r; folgt aus der Defi-
nition von B unmittelbar, daB B(r,) = y, ist; aus der Homomorphie-

Eigenschaft von B folgt B(r) = 2'¢c; B(x,) ; somit ist B(x) = 2¢;4, = Y .
In dem hiermit bewiesenen Satz ist der folgende enthalten:

Y ist dann und nur dann Zyklus, wenn die Homotopie-Rinder von Y
Elemente der Gruppe € reprdsentieren.

Denn daBl Y Zyklus ist, ist gleichbedeutend mit: Y = 0; und dal ¢
ein Element von ¢ repréasentiert, ist gleichbedeutend mit: B(r) = 0.

k) Wir fassen unsere bisherigen Ergebnisse zusammen. Auf Grund
von a), e) und h) ist jedem Komplex Y eine bestimmte Restklasse der
Gruppe R modulo €(R) zugeordnet, namlich diejenige, deren Elemente
durch die Homotopie-Rénder von Y représentiert werden; wir nennen
diese Restklasse 7'(Y) . Die Gruppe der zweidimensionalen Komplexe Y
in K heiBle £2; dann ist also 7' eine Abbildung von % in die Gruppe
R/C(R); aus a) folgt, daB dies eine Abbildung auf die ganze Gruppe
R/C(R) ist, und aus d), daB die Abbildung ein Homomorphismus ist.
Nehmen wir noch die Sitze i) und j) hinzu, so erhalten wir folgenden
Satz:

Satz I. Fir jeden zweidimensionalen algebraischen Komplex Y in K
bilden diejenigen Elemente der Gruppe ¢, welche durch die Homotopie-
Rinder von Y reprdsentiert werden, eine der Restklassen, in welche die
GQruppe R modulo C(R) zerfillt; nemnen wir diese Restklasse T(Y), so
ist T eine homomorphe Abbildung der Gruppe L% aller Komplexe Y auf
die Faktorgruppe R|/C(R) ; der Kern dieses Homomorphismus — also die
Urbildmenge der Eins der Bildgruppe — besteht aus denjenigen Y , welche
Kugelbilder sind. Die Zyklen sind unter den Komplexen Y dadurch aus-
gezeichnet, daf die Elemente der Restklassen T(Y) der Gruppe € angehéren ;
die Gruppe 32 der Zyklen wird also durch T auf die Faktorgruppe
(RN C)/C(R) abgebildet.

Dabei ist — um daran zu erinnern —: ¥ die Fundamentalgruppe des
Kantenkomplexes K! von K ; R die Untergruppe von § , die durch die
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in K zusammenziehbaren Wege reprisentiert wird; €(R) die von allen
Elementen 7 -1 ! mit z eF, r ¢ R erzeugte Gruppe; € die Kom-
mutatorgruppe von g .

9. Die Gruppen B2/S? und G . Die zweidimensionalen Zyklen des
Komplexes K bilden eine Untergruppe 32 von £2. Auch die Kugelbilder
bilden eine Gruppe; das kann man sowohl leicht direkt beweisen, als
auch dem Satz I entnehmen, da die Kugelbilder den Kern des Homo-
morphismus 7' bilden; diese Gruppe heiBe S2. Sie ist Untergruppe
von 3%. Diejenigen Zyklen, welche homolog 0 in K sind, bilden eine
Untergruppe $? von 3?; sie wird von den Réndern der dreidimensionalen
Simplexe von K erzeugt, und diese Simplexrinder sind natiirlich Kugel-
bilder; folglich ist 2 c 2. Die Bettische Gruppe B2, also die Gruppe
der Homologieklassen, ist als die Faktorgruppe 32/$? definiert's). Daraus,
daB $% c G2 ist, folgt, daB eine Homologieklasse entweder zu &2 fremd
oder in &2 enthalten ist; die in &2 enthaltenen Homologieklassen, also
diejenigen, deren Zyklen Kugelbilder sind, bilden die Untergruppe
S? = S%$H* von B2. Da eine Homologieklasse, die stetige Kugelbilder
enthilt, auch simpliziale Kugelbilder enthilt, ist es iibrigens klar, daf
die Gruppe ©2, ebenso wie B2, eine topologische Invariante des Poly-
eders K ist.

Bei dem natiirlichen Homomorphismus von 32 auf B2, der jedem
Zyklus die ihn enthaltende Homologieklasse zuordnet, ist S2 das Urbild
von &2; daher ist

3= BYe . (6)

Nach dem Satz I bildet 7' die Gruppe 3% homomorph auf die Gruppe
(RNC)/CR) ab, und der Kern dieses Homomorphismus ist &2;
daher ist

JF/S=RnC)/CR) . (7)

Jetzt betrachten wir die Fundamentalgruppe ® von K und die mit
ihr gemaB Nr. 6 verkniipfte Gruppe ®; . Es liegt ein natiirlicher Homo-
morphismus F von § auf ® vor: jedem Element x von &, als Wege-
klasse von K! aufgefalt, ist diejenige Wegeklasse X = F(x) in K — also
ein Element von & — zugeordnet, in welcher die Klasse x enthalten
ist. Der Kern dieses Homomorphismus F ist R . § ist als Fundamental-

18) Der Koeffizientenbereich fiir die Zyklen und Homologien ist in dieser Arbeit immer
der Ring der ganzen Zahlen.
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gruppe eines eindimensionalen Komplexes eine freie Gruppe!¢). Daher
ist nach Nr. 6 %)
F=RNE)/ER) . (8)

Mit (6), (7) und (8) haben wir das folgende Hauptresultat erhalten:

Satz 11. Fir jedes zusammenhingende (endliche oder unendliche) Poly-
eder sind die Bettische Gruppe B2, die Gruppe S der Homologieklassen,
die Kugelbilder enthalten, und die Fundamentalgruppe ® durch die Be-
ziehung

B2 2= G (9)

miteinander verkniipft ; dabei ist ®;° die Gruppe, die gemdf Nr. 6 in alge-
braischer Weise durch die Gruppe ® gegeben ist.

10. Der Satz II 148t sich noch prazisieren. Die in (9) stehenden Grup-
pen sind ja nicht nur als abstrakte Gruppen gegeben, sondern sie haben
fiir den Komplex K — und sogar fiir das Polyeder K — bestimmte
geometrische Bedeutungen : die Elemente von 82 und von &2 sind Homo-
logieklassen, die Elemente von G sind Klassen von Systemen von
Elementen der Fundamentalgruppe ®, und die Elemente von ® werden
durch geschlossene Wege repréasentiert. Es gibt nun zwischen den iso-
morphen Gruppen B2/S% und G auch eine isomorphe Abbildung, die
eine bestimmte geometrische Bedeutung hat; sie ergibt sich leicht aus
dem Satz I und dem § 1; sie soll iibrigens ohne Bezugnahme auf die
Gruppe § charakterisiert werden.

Die Elemente der Fundamentalgruppe ® von K nennen wir X, ,
Y,,...; wir reprasentieren sie durch geschlossene Wege x,, 1;,... in K?
mit gemeinsamem Anfangs- und Endpunkt O; wie im § 1 sind die Systeme
« = (X,,Y,,...,X,, Y,) die Elemente von I'y; das Kommutatorwort
C ist wie in Nr. 2 erklart. Die zweidimensionalen Zyklen in K2 nennen
wir Z .

Wir definieren: Z wird von « = (X,,..., Y,) ,,aufgespannt‘‘, wenn es
solche Reprisentanten %,...,1v, der X,,..., Y, gibt, daff der Weg
C(x,,...,1,) Homotopie- Rand von Z ist.

Die Prazisierung des Satzes II lautet nun:

Satz IIa. Zu jedem Zyklus Z gibt es Elemente « , die thn aufspannen,
und zwar bilden diese x eine der Klassen, welche die Elemente der Gruppe

1¢) K. Reidemeister, Einfiihrung in die kombinatorische Topologie (Braun-
schweig 1932), 107.
17) Es ist € = €5, C(R) = Cg(N).
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G sind. Jedes Element x aus einer Klasse, die Element von ®;F ist, spannt
gewisse Zyklen Z auf, und zwar bilden diese Z eine der Restklassen von
32 modulo S?%; oder, was auf Grund des natiirlichen Isomorphismus (6)
dasselbe ist: die Homologieklassen dieser Z bilden eine der Restklassen
von B2 modulo S2. Die so zwischen Klassen von Elementen x und Klassen
von Zyklen Z hergestellte Beziehung vermittelt einen Isomorphismus (9).

Beweis: F' soll im folgenden der natiirliche Homomorphismus der
Fundamentalgruppe § von K' auf die Fundamentalgruppe & von K
sein, den wir schon in Nr. 9 erwéahnt haben und der die Eigenschaft hat:
wenn der Weg x das Element z von { reprasentiert, so ist F(x) das durch
x reprasentierte Element von & . Die Abbildung ¢, hat dieselbe Bedeu-
tung wie in Nr. 5, T' dieselbe Bedeutung wie im Satz I. Unter g¢,(x)
und 7'(Z) sind also Restklassen der Gruppe R N € modulo R(T) zu ver-
stehen. — Wir behaupten: Dann und nur dann wird Z von « aufgespannt,
wenn

gx(x) = T(Z) (10)
ist.

Um dies zu beweisen, nehmen wir zuerst an, dafl (10) gelte, wobei
o = (X,;,..., Y,) sei; wir wahlen die Elemente z,,..., y, von § so, dal
F(z;)=X,;,Fy;) =Y, ist; nach Definition von ¢ ist C(x,,. .., y,) eqp(cx);
nach (10) ist also C(x,,...,y,) € T(Z); das bedeutet nach Satz I: sind
¥;, 1; Repriasentanten von z,, y;, ist also C(x,,. . ., 1,) Reprisentant von
C(zy,..., Y,), so ist C(x,,...,1,) Homotopie-Rand von Z . Infolge der
oben genannten Eigenschaft von F sind dieselben %;, 1; Reprisentanten
der X,, Y,; folglich wird Z von « aufgespannt.

Es werde zweitens Z von « = (X,,..., Y,) aufgespannt; dann gibt
es also solche Repréasentanten x;, 1y, von X;, Y,, daB C(x,,...,1,)
Homotopie-Rand von Z ist; z;, y, seien die durch x;, 1, reprasentierten
Elemente von § ; dann ist nach Satz I C(xy,...,v,) e T(Z). Da x,, y;
auch die Elemente F(x,) , F(y,) reprasentieren, ist F(x,) = X, , F(y,) =
Y, ; nach Definition von ¢ ist daher C(x,,.. ., ¥,) € ¢z(«) . Da somit die
Klassen 7'(Z) und ¢z(x) ein Element gemeinsam haben, gilt (10).

Somit ist (10) in der Tat gleichbedeutend damit, da Z von « auf-
gespannt wird. Hieraus ergeben sich leicht die Behauptungen des Satzes
Ila. Erstens: Z sei gegeben; nach Satz I ist 7'(Z) eine Restklasse von
R N € modulo €(RN); nach Nr. 5 gibt es daher Elemente « , fiir die (10)
gilt, und diese bilden eine Klasse, die Element von & * ist; nach Nr. 6
ist dies ein Element von & . Zweitens: « sei gegeben und in einer
Klasse enthalten, die Element von ®; ist; dann ist gz(x) nach Nr. 6
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eine Restklasse von R N € modulo €(R); nach Satz I gibt es daher
Zyklen Z , fiir die (10) gilt, und diese bilden eine Restklasse von 32
modulo G2. DaB drittens die so zwischen den Elementen von G} und
denen von 3%/ hergestellte Beziehung ein Isomorphismus ist, ergibt
gich daraus, daf diese Gruppen durch ¢, bzw. T isomorph auf

(RN C)/C(R) abgebildet werden.

11. Die Fundamentalgruppe & eines Komplexes K ist gewohnlich
durch erzeugende Elemente E,, E,,... und Relationen R,(E,, E,,...)
=1, Ry#,,E,,...)=1, ... zwischen den E, gegeben. Diese Erzeu-
gung 146t sich bekanntlich auch so deuten: Man betrachte gleichzeitig
eine freie Gruppe & mit freien Erzeugendene, , e,, ...,dieden &, , E,,...
eineindeutig zugeordnet sind; jedem ,,Wort*“ W(e,, e,,...) in den Ele-
menten e; von § ordne man das durch dasselbe Wort dargestellte Element
W(E,, E,,...) von ® zu; diese Zuordnung ist ein Homomorphismus ¥
von § auf ® , und der Kern von F ist der von den Elementen R,(e,, e,,. . .)
erzeugte Normalteiler von § . Man kann also sagen, dafl & gewdohnlich
durch einen solchen Homomorphismus gegeben ist; dabei ist § natiirlich
im allgemeinen nicht wie bisher die Fundamentalgruppe von K. Daher
ist, besonders auch fiir die Behandlung von Beispielen, der folgende Satz
wichtig, der sich ohne weiteres aus dem Satz Ila und dem §1 ergibt:

Satz I11b. Es set F ein Homomorphismus einer freien Gruppe § auf die
Fundamentalgruppe ® von K ; der Kern von F heiffe ‘R . Dann ist

B2 S2= (RN Cy) [ Cy(R) ; (11)

und 2war entsteht eine isomorphe Abbildung, wenn man erstens B2S?
gemdf3 Satz IIa auf ®; abbildet und zweitens die durch qp vermitielte
isomorphe Beziehung zwischen ®; und (R N Cg)/Co(R) herstellt.

§ 3. Folgerungen und Beispiele

12. Wir stellen hier einige Folgerungen aus dem Satz II zusammen.
a) Die, durch die Fundamentalgruppe © bestimmie, Gruppe ®F ist
homomorphes Bild der Bettischen Gruppe B2.

Bei gegebener Fundamentalgruppe ® kann also B2 nicht ,,zu klein*

sein; insbesondere:
Wenn ®F # 0 ist, so ist auch B2 % 0, der Komplex K ist dann also
nicht ,,azyklisch'‘ in der zweiten Dimension. ‘
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b) Ein Komplex K heile ,,homologie-asphéarisch“ (in der zweiten
Dimension), wenn in ihm jedes Kugelbild homolog 0 , also wenn &2 = 0
ist. — Aus Satz II folgt:

Ist K homologie-asphdrisch, so ist B2 = G .

Ein Korollar ist folgender Satz: Zwei homologie-asphirische Komplexe
mit isomorphen Fundamentalgruppen haben tisomorphe zweite Bettische
Gruppen.

Dies steht in Zusammenhang mit einem Satz aus der Homotopie-
Theorie von Hurewicz. Ein Komplex K soll in der r-ten Dimension
»homotopie-aspharisch‘ heilen, wenn jedes stetige Bild einer r-dimen-
sionalen Sphére in K auf einen Punkt zusammenziehbar ist. Ein homo-
topie-asphérischer Komplex ist a fortiori homologie-asphérisch, denn ein
stetiges Spharenbild, das zusammenziehbar ist, ist auch homolog 0;
andererseits ist &s leicht, Komplexe anzugeben, die (in der zweiten Dimen-
sion) homologie-aspharisch sind, ohne homotopie-aspharisch zu sein!8).
Der betreffende Satz von Hurewicz lautet'?): ,,Zwei in den Dimensionen
r = 2,...,n homotopie-asphirische Komplexe mit isomorphen Funda-
mentalgruppen haben isomorphe n-te Bettische Gruppen.* Der Spezial-
fall dieses Satzes mit » = 2 ist in unserem obigen Korollar enthalten,
das insofern allgemeiner ist, als in ihm nur der homologie-aspharische
Charakter vorausgesetzt wird. Der fiir beliebige » giiltige Satz von Hure-
wicz weist auf die Richtung hin, in der man Verallgemeinerungen unserer
Theorie auf hohere Dimensionen zu suchen hat. Die Frage, auf welche
Weise die Struktur der in dem Satz genannten n-ten Bettischen Gruppe
durch die Fundamentalgruppe bestimmt sei, ist fiir » = 2 durch die
Angabe der Gruppe ®; beantwortet.

c) Bisher durfte der Komplex K endlich oder unendlich sein; jetzt
setzen wir seine Endlichkeit voraus; dann 148t sich der Satz b) umkehren:

Wenn K endlich und B2 = G ist, so ist K homologie-asphdrisch. Denn
wenn K endlich ist, so ist B2 eine Abelsche Gruppe mit endlich vielen
Erzeugenden, und fiir eine solche folgt aus der Isomorphie B2/S? = B2
leicht, daB &% = 0 ist.

Die Sitze b) und c) zeigen: bei endlichen Komplexen K kann man den
Strukturen von ® und B? ansehen, ob K homologie-aspharisch ist oder
nicht.

18) Beispiel: die ,,Summe‘‘ zweier Exemplare 7', , T'; des topologischen Produktes von

drei Kreisen, die man erhalt, wenn man aus 7', und 7, je eine Vollkugel ausbohrt und

dann die Randflichen zusammenheftet.
19) L ¢.%), (IV), 221 (die dort formulierte Voraussetzung, daB die Raume in allen
Dimensionen = 2 asphérisch seien, ist fiir den Beweis offenbar unnétig).
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d) In diesem Zusammenhang verdient der folgende Hilfssatz Interesse:
»Ist ® eine vorgegebene Gruppe mit endlich vielen Erzeugenden und
endlich vielen Relationen, so gibt es einen (endlichen) Komplex, der die
Fundamentalgruppe ® hat und homologie-aspharisch ist.

Ich deute den Beweis an: Es gibt zunachst bekanntlich??) einen (end-
lichen) Komplex K mit der Fundamentalgruppe & . Seine Gruppe &2
ist eine Abelsche Gruppe mit endlich vielen Erzeugenden, also direkte
Summe von endlich vielen (endlichen oder unendlichen) zyklischen
Gruppen; z,,. . ., z,, seien Zyklen aus den Homologieklassen, welche diese
zyklischen direkten Summanden von &2 erzeugen; diese z; sind simpli-
ziale Kugelbilder. Falls sie sogar topologische Kugelbilder und falls sie
iiberdies paarweise fremd zueinander sind, so erweitere man K durch
Anfiigen von m dreidimensionalen Elementen E,,..., £, deren Réander
man mit z,,. .., 2, identifiziert, zu einem Komplex K’; man iiberzeugt
sich leicht davon, daB auch K’ die Fundamentalgruppe ® hat, und daB
die einzige Anderung der zweiten Bettischen Gruppe, die beim Ubergang
von K zu K’ eintritt, gerade darin besteht, dafl die Kugelbilder homolog
0 werden; folglich hat K’ die gewiinschten Eigenschaften. Falls die 2,
nicht topologische, zueinander fremde Kugelbilder sind, so erweitere
man K zundchst zu einem topologischen Produkt K X W, wobei W
ein dreidimensionaler Wiirfel ist; dann ist ® auch die Fundamental-
gruppe von KX W, und die z; bilden auch eine Basis der Gruppe &2
von KXW ; in KX W aber kann man durch eine kleine Verschiebung
der Eckpunkte der z; diese Kugelbilder in topologische und zueinander
fremde Kugelbilder verwandeln, ohne daf die z; dabei ihre Basis-Eigen-
schaft verlieren; nunmehr verfahre man wie vorhin.

Aus diesem Hilfssatz und dem Satz b) folgt:

Ist ® eine Qruppe mit endlich vielen Erzeugenden und endlich vielen
Relationen, so gibt es einen (endlichen) Komplex K mit der Fundamental-
gruppe G , fir den B2 G ist.

In a) wurde festgestellt, daB ®; in einem bestimmten Sinne eine
,,untere Schranke* der mit ® als Fundamentalgruppe vertriglichen
zweiten Bettischen Gruppen ist; der soeben bewiesene Satz zeigt: G
ist die ,,genaue‘‘ untere Schranke dieser Gruppen B2.

e) Aus Satz II folgt unmittelbar:
Dann und nur dann sind in K alle zweidimensionalen Zyklen Kugel-
bilder, wenn ®; = 0 ist.

20) Seifert-Threlfall, 180, Aufgabe 3.

279



Zum Beispiel ist fiir einfach zusammenhéangende Komplexe, also wenn
® = 0 ist, ® = 0; in einfach zusammenhingenden Komplexen sind
also alle zweidimensionalen Zyklen Kugelbilder; dies ist auch in einem
allgemeineren und schirferen Satz von Hurewicz iiber einfach zusammen-
hangende Riume enthalten?!). Jedoch gibt es (Nr. 13, Nr. 14) auch viele
von 0 verschiedene Gruppen ® mit G = 0.

Ferner gilt folgender Satz:

Zw etner gegebenen Gruppe ® mit endlich vielen Erzeugenden und endlich
vielen Relationen gibt es dann und nur dann einen Komplex K, der die
Fundamentalgruppe ® hat und in der zweiten Dimension azyklisch ist,
wenn G = 0 ist.

Denn ist K ein Komplex mit den genannten Eigenschaften, so folgt
aus a), daB ®;* = 0 ist; andererseits gibt es zu einer Gruppe ®, fiir die
® = 0 ist, nach d) einen Komplex K mit der Fundamentalgruppe &
und mit B2 = 0.

13. Beispiele. Es handelt sich hauptsichlich darum, zu gegebenen
speziellen Gruppen ® die Strukturen der zugehorigen Gruppen G zu
ermitteln. Hierfiir gibt es zwei Methoden; erstens die geometrische: man
gibt einen homologie-aspharischen Komplex mit der Fundamentalgruppe
® an; seine zweite Bettische Gruppe hat nach Nr. 12 b dieselbe Struktur
wie ®) ; zweitens die algebraische Methode: ® sei durch Erzeugende
und Relationen gegeben, also (man vgl. Nr. 11) durch einen Homomor-
phismus F einer freien Gruppe § mit dem Kern R ; dann ist nach Nr. 6,
(17),

G = (% N Cg)/C5(R) ; (1)

aus dieser Formel leite man durch gruppentheoretische Uberlegungen
Eigenschaften von & her.

a) Wenn ® eine freie Gruppe ist, so ist G = 0.

Geometrischer Beweis: Zu einer freien Gruppe ® (mit endlich oder
abzahlbar unendlich vielen freien Erzeugenden) gibt es einen eindimen-
sionalen Komplex mit der Fundamentalgruppe & ; fiir ihn ist B2 = 0. —
Algebraischer Beweis: Man kann & = & , R = 0 annehmen; nach For-
mel (1) ist dann G = 0.

Aus diesem Satz und Nr. 12 e folgt: In einem Komplex, dessen Funda-
mentalgruppe eine freie Gruppe ist, sind alle zweidimensionalen Zyklen
Kugelbilder.

1) 1 ¢.%), (II), Satz I.
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b) ® ses etne freie Abelsche Gruppe mit p Erzeugenden ; dann ist G

eine freie Abelsche Gruppe mit —&2:1—)-Erzeugenden. (Eine freie Abelsche

Gruppe mit n Erzeugenden ist — bei additiver Schreibweise — die direkte
Summe von » unendlichen zyklischen Gruppen.)

Beweis (geometrisch): Der Komplex K sei das topologische Produkt
von p Kreislinien ; seine Fundamentalgruppe ist die gegebene Gruppe ® ;
er ist bekanntlich homotopie-aspérisch (in allen Dimensionen > 2), also
erst recht homologie-asphérisch; seine zweite Bettische Gruppe ist, wie
den bekannten Regeln zur Bildung der Bettischen Gruppen von Produkt-
komplexen aus denen der Faktoren zu entnehmen ist, die freie Abelsche

Gruppe mit -—Zj(lj—é—i

Einen algebraischen Beweis werden wir hier nicht geben; im Gegenteil,
die Formel (1) soll benutzt werden, um aus dem soeben geometrisch
bewiesenen Satz einen gruppentheoretischen Satz herzuleiten. Die
Gruppe ® ist in natiirlicher Weise als homomorphes Bild der freien
Gruppe § mit p Erzeugenden darzustellen; der Kern ist dabei R = Cg;
daher ist RN Cy = €y, und Cgx(R) = Cx(Cy) = €% ist die ,zweite
Kommutatorgruppe* von & . Aus (1) folgt daher:

Erzeugenden.

Bezeichnen € und €% die erste und die zweite Kommutatorgruppe der
freien Gruppe & mit p Erzeugenden, so ist €y /C% die freie Abelsche Gruppe
mit P (p; 1)

Der geometrisch-gruppentheoretische Zusammenhang, den wir hier vor
uns haben, 148t sich mit Hilfe der Satze I1a und IIb noch préazisieren.
Die freien Erzeugenden von § seien z,,. .., %, ; die ihnen entsprechenden
Erzeugenden der Abelschen Gruppe ® seien X,,..., X, ; mit %;,..., %,
bezeichnen wir geschlossene Wege in der Produkt-Mannigfaltigkeit K,
die die X, reprisentieren; diese x; kann man als die p Faktor-
Kreise von K auffassen. Aus den bekannten und leicht zu iibersehenden
Eigenschaften von K sieht man: es gibt eine zweidimensionale Homo-
logiebasis, die aus Zyklen Z,, mit 1 <¢ <k < p besteht, wobei die Z,,
durch Torusflichen reprisentiert werden; und zwar besitzt Z,, den Weg
O(x;, %) = %; %, %; - %, * als Homotopie-Rand ; daher ist &« = (X, X;)
ein Element von I'y, das Z,, aufspannt; das dem Zyklus Z,, in der
Gruppe (R N Cg)/Cx(R) = €4/Cy zugeordnete Element gp(x) ist daher
diejenige Restklasse von € modulo €% , welche das Element O(x;, ,) =

Erzeugenden. ?2)

33) Das ist der einfachste Spezialfall eines Satzes von E. Witt: Treue Darstellung
Liescher Ringe, Crelles Journal 177 (1937), 1562—160, Satz IV.
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%, T, @; ' @' enthdlt. Da die so zwischen $B?/S®= B und Cy/C]
hergestellte Beziehung ein Isomorphismus ist, und da die Z,, eine Basis
in B? darstellen, ergibt sich zu dem obigen gruppentheoretischen Satz
noch der folgende Zusatz:

Sind x,,. .., x, freie Erzeugende von &, so bilden diejenigen rlp—1) ; 1)

Restklassen von Gy modulo G, welche die Elemente x; x, x;* x;* mit
1 < i<k < p enthalten, eine Basis der Gruppe Cg/C% .

c) Jetzt sei & eine beliebige Abelsche Gruppe mit endlich vielen
Erzeugenden. Wir schreiben sie additiv. Unter U ,, verstehen wir immer
eine zyklische Gruppe der Ordnung m , wobei U, eine unendliche zyklische
Gruppe sein soll. ® gestattet Darstellungen als direkte Summe

G =A,, + Ay, + o+ A, )

Unter den moglichen Darstellungen (2) wahlen wir eine aus. Es sei etwa
m;>1 fir 1 <q—p, m;=0 fir ¢ >qg — p. Wir betrachten einen
Komplex K , der das topologische Produkt von p Kreislinien und von
g — p dreidimensionalen Linsenrdumen ist, deren zyklischen Fundamen-
talgruppen die Ordnungen m,,. .., m,_, haben??). Dann ist ® die Funda-
mentalgruppe von K . Sowohl die Kreislinie als auch jeder Linsenraum
ist homotopie-asphérisch in der zweiten Dimension (fiir die Linsenrdume
folgt dies daraus, daB sie von der dreidimensionalen Sphéare iiberlagert
werden??)); daher 2*) ist auch K in der zweiten Dimension homotopie-
aspharisch, und folglich erst recht homologie-asphérisch. Nach Nr. 12b
ist somit ®;" mit der Gruppe B2 von K isomorph. B2 laBt sich nach
bekannten Regeln fiir Produktkomplexe aus den nullten, ersten und
zweiten Bettischen Gruppen der Faktoren bestimmen?®); da die zweiten
Bettischen Gruppen der Faktoren Nullgruppen und da die ersten Bet-
tischen Gruppen die Gruppen U, aus (2) sind, liefert die Anwendung
der erwiahnten Regeln die folgende Darstellung von B2 als direkte Summe:

2 .
Br= 2 Q[(mi,mk) ’

1<i<ik<g

hierin bezeichnet (m,, m,) den groften gemeinsamen Teiler von m; und
m, , wobei (0,0) = 0 zu setzen ist; U, ist die Nullgruppe.

33) Seifert- Threlfall, 210, 215.
2) 1, ¢.7), (I), Satz IV; (IV), 216.
35) Alexandroff-Hopf, 308, Formel (12).
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Damit ist folgendes bewiesen:
Besitzt die Abelsche Gruppe ® die Darstellung (2), so ist

G X Uy - (3)

I<i<k<g

® besitzt, wie jede Abelsche Gruppe mit endlich vielen Erzeugenden,
solche Darstellungen (2), dafl die m; Teiler der m, , sind (wobei 0 als
Teiler von 0 gilt); durch diese Bedingung sind die Zahlen m; und ins-
besondere auch die Anzahl der direkten Summanden eindeutig bestimmt;
diese Anzahl heile ¢, , und die Anzahl der unendlichen unter den A,
heile p, . Wir setzen voraus, daBl die rechte Seite von (2) eine solche
,,Normalform** sei. Dann ist, wenn m, und m, beide s 0 sind, (m,, m,)
die kleinere der beiden Zahlen; ist eine von ihnen 0, so ist (m,, m,) die
andere (auch wenn diese 0 ist); infolgedessen treten auch in (3) als Ord-
nungen der Summanden A keine anderen Zahlen auf als in (2); bei
geeigneter Anordnung der Summanden ist daher auch auf der rechten
Seite von (3) die Teilbarkeits-Bedingung fiir die Ordnungen der ¥ erfiillt,
und daher ist die rechte Seite von (3) die Normalform der Gruppe G, .
Ist hierbei die Anzahl aller Summanden ¢*, die Anzahl der unendlichen
unter ihnen p*, so ist

—1 —1
g* = 91(%2 ) . pr—= pl(T’12 ) ] 4)

Jetzt sei K irgend ein (endlicher) Komplex mit der Fundamental-
gruppe ® . In der Normalform seiner zweiten Bettischen Gruppe B2
sei g, die Anzahl der Summanden, p, die Anzahl der unendlichen unter
ihnen. Nach Nr. 12a ist ®;" homomorphes Bild von B2 ; daraus folgt

*<q,, p*<p,. (5)

Die Giiltigkeit der zweiten dieser Ungleichungen ist ohne weiteres klar;
die erste ergibt sich daraus, daBl einerseits jedes homomorphe Bild von
B2 direkte Summe von hochstens ¢, Summanden ist, andererseits be-
kanntlich jede Darstellung von G;* als direkte Summe zyklischer Gruppen
aus mindestens ¢* Summanden besteht. Aus (4) und (5) ergibt sich der
folgende Satz, wobei wir noch beachten, da p, und p, die erste bzw.
zweite Bettische Zahl von K ist:

Der endliche Komplex K habe eine Abelsche Fundamentalgruppe © .
Dann gilt fir die beiden ersten Bettischen Zahlen :
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—1
p >0 D ®)

bezeichnen ferner q, und q, die Anzahlen der direkten Summanden in den
Normalformen der beiden ersten Bettischen Gruppen B! = & und B2, so
qilt auch

—1
qz > QI (q12 ) . (7)

Aus (7) liest man noch folgendes Korollar ab: Wenn die Abelsche
Fundamentalgruppe nicht zyklisch (d. h. wenn q, > 1) ist, so ist B2 £ 0.

d) Mit derselben geometrischen Methode, die wir in den Abschnitten
b) und c¢) angewandt haben, gelingt es auch fiir manche andere Gruppen
® , die Strukturen der zugehorigen Gruppen &, zu bestimmen; dies
gelingt ndmlich immer dann, wenn wir einen Komplex K finden, der die
Fundamentalgruppe & hat, der homologie-asphirisch ist, und dessen
zweite Bettische Gruppe wir kennen. Ist z. B.  die Fundamentalgruppe
einer geschlossenen Flache, welche nicht mit der Kugel homéomorph
ist, so ist die Fliche selbst ein solcher Komplex; daher ist G eine
unendliche zyklische Gruppe oder die Nullgruppe, je nachdem die Fliche
orientierbar oder nichtorientierbar ist. Hieraus ergibt sich unter anderem
folgender Satz:

Ein Komplex, der dieselbe Fundamentalgruppe hat wie eine geschlossene
orientierbare Fliche positiven Geschlechtes, hat immer eine positive zweite
Bettische Zahl.

In der nichsten Nummer werden wir die Flichengruppen als Spezial-
falle allgemeinerer Gruppen noch einmal algebraisch behandeln.

14. In dem nachfolgenden Beispiel, in dem wir Gruppen ® unter-
suchen, die durch Erzeugende und Relationen gegeben sind, stellen wir
uns auf den Standpunkt, der in Nr. 11 auseinandergesetzt worden ist;
wir deuten also die Erzeugung der Gruppe zugleich als homomorphe
Abbildung einer freien Gruppe § auf ® . Eine Relation R(Z,,..., £,,) =1
zwischen den Erzeugenden Z, von ® soll ,,wesentlich‘‘ heilen, wenn das
Element R(e,,...,e,) der von den freien Erzeugenden e, erzeugten
freien Gruppe § nicht das Eins-Element ist. — Wir behaupten:

® sei durch endlich viele Erzeugende E,. . ., B, gegeben, zwischen denen
eine einzige wesentliche Relation R(E,,..., H,)= 1 besteht. Falls das
Element r = Rle,,...,e,) der von den freien Erzeugenden e, erzeugten
freten Gruppe § micht Kommutator-Element ist, so ist ®F = 0; falls r
Kommutator-Element von § ist, so ist ®; eine unendliche zyklische Gruppe.
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Beweis: Der von r erzeugte Normalteiler R von & , der der Kern des
Homomorphismus ¥ von § auf ® ist, besteht aus allen Elementen
r’'=1I(y;' r y)* mit y, e F. Rechnet man modulo Cyx(R), so darf
man r mit jedem y, vertauschen; daher 148t sich jedes Element 7’ von
R in der Form

r'=7r"-¢c mit ceCyR) (8)
darstellen.

Es sei nun erstens  nicht in der Kommutatorgruppe € enthalten;
da die Faktorgruppe §/Cy eine freie Abelsche Gruppe (von m Erzeu-
genden) ist, also kein KElement endlicher Ordnung aufler dem Eins-
Element enthilt, ist dann auch keine Potenz ™ mit » 7 0 in €4 enthalten;
da Cy(R) c ¢ ist, ist daher aus (8) zu sehen, daBl nur diejenigen Ele-
mente 7’ von R in g enthalten sind, fiir die in (8) n = 0 ist, die also
Elemente von €g(R) sind. Somit ist R n €z < Cx(R) ; andererseits ist
immer C(R) cR N Cy; esist also R N €y = Cy(R), und aus (1) folgt:
G =0.

Es sei zweitens r ¢ € ; dann ist Rc €y, also RNCEy =R, also
nach (1): GFf = R/Cg(R) ; hieraus und aus (8) ist ersichtlich, dall unsere
Behauptung, G sei unendlich-zyklisch, gleichbedeutend mit folgender
Behauptung ist: Fiir n 7 0 ist 7" nicht ¢ €(R) . Die Richtigkeit dieser
Behauptung wiederum ist, da in ihr r % 1 ist, eine Folge des nachste-
henden H:lfssatzes :

r gei ein Element der freien Gruppe § mit endlich vielen Erzeugenden,
R der von r erzeugte Normalteiler von § , und es gebe ein solches n #~ 0,

daB
™ e Cg(R) (9
1st. Dann ist r = 1.

Fiir den Beweis des Hilfssatzes ziehen wir die hoheren Kommutator-
Gruppen G% von & heran, die rekursiv durch €} = &, CEt! = Cg(€F)
erklirt sind, und wir benutzen folgende beiden Eigenschaften der (i’% : ()
die Faktorgruppen €%/Cit! sind freie Abelsche Gruppen mit endlich
vielen Erzeugenden?®); (8) der Durchschnitt aller (Z’{v, besteht nur aus
dem Eins-Element??).

Unsere Behauptung r = 1 ist nach () bewiesen, sobald fiir jedes &

ezeigt ist, dall
SRS e (Z’g (10)

ist. Fiir £ = 0 ist (10) trivialerweise richtig; (10) sei fiir ein gewisses k
bewiesen; dann ist R c €%, Cgx(R) c €&+, also nmach (9): 7™ e CEF;
20) Wik, 1. c.1),

37) Witt, 1. c., Satz 12; sowie W.Magnus, Math., Annalen 111 (1935), 259—280, speziell
269.
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hieraus, aus (10) und aus («) folgt: r ¢ €¢** . Folglich gilt (10) fiir alle &,
w.z.b.w.

Aus dem hiermit bewiesenen Satz und aus den Sitzen von Nr. 12
ergeben sich jetzt die folgenden Tatsachen fiir die Komplexe K , deren
Fundamentalgruppen ® von endlich vielen Elementen #,,. .., E,, erzeugt

werden, zwischen denen eine einzige (wesentliche) Relation R(#,,..., £,,)
= 1 besteht:
Falls das Element r = Rle,,...,e,,) der von den e, erzeugten freien

Gruppe § micht Kommutator-Element ist, sind alle zweidimensionalen
Zyklen Kugelbilder ; in diesem Falle gibt es auch Komplexe mit der Funda-
mentalgruppe ® , die in der zweiten Dimension azyklisch sind. Falls dagegen
r Kommutator-Element tst, sind tmmer Zyklen vorhanden, die nicht Kugel-
bilder sind, und die zweite Bettische Zahl st nicht O .

In diesem zweiten Fall ist die Gruppe B2/S? unendlich-zyklisch; ihr
erzeugendes Element 1af3t sich leicht angeben; denn aus dem obigen
Beweis geht hervor, daB die mit ;" und daher auch mit B2/S? isomorphe
Gruppe R N Cg/Cg(R) durch diejenige Restklasse von R N €5 modulo
Cg(R) erzeugt wird, welche r enthilt; daher folgt aus Satz ITb :

Um — im Falle r e €y — das erzeugende Element der unendlich-zyklischen
Gruppe B?/S? zu bestimmen, nehme man solche Elemente x,,. . ., y, von
&,dafp Clx,,.. ., y,)=rrist, und einen Zyklus Z von K, der von (X,,...,Y )
aufgespannt wird, wobei X,,..., Y, die Elemente von & sind, die den
Zyy. ..y Y, enisprechen; dann erzeugt die Restklasse von B? modulo S2,
die die Homologieklasse von Z enthilt, die Gruppe B2/S? . —

Ubrigens lassen sich die beiden hier unterschiedenen Félle — r nicht
¢ €3 und r ¢ €; — auch durch das Verhalten der ersten Bettischen Zahl
charakterisieren: im ersten Fall ist sie m — 1, im zweiten Fall m . Dies
erkennt man, wenn man beachtet, dafl ein System von Erzeugenden und
definierenden Relationen fiir die Fundamentalgruppe dadurch in ein
solches System fiir die erste Bettische Gruppe iibergeht, dall man die
Erzeugenden als miteinander vertauschbar auffaft.

§ 4. Fundamentalgruppe und Schnitt-Produkte in Mannigfaltigkeiten

16. Vorbemerkungen. a) M™ sei eine n-dimensionale, geschlossene,
orientierte Mannigfaltigkeit. Fiir je zwei Homologieklassen U und Z der
Dimensionen » und ' in M* ist in bekannter Weise das Schnittprodukt
U - Z erklart; es ist eine Homologieklasse der Dimension 7 + ' —n;
ist r4 7' <n, so ist es gleich 0 zu setzen. Das Produkt erfiillt die
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distributiven Gesetze und das assoziative Gesetz ; auBerdem ist
Z U= (—1)tn ") 7. 7 .

Wir werden, wenn es sich um Homologien handelt, in den Bezeich-
nungen oft keinen Unterschied zwischen Zyklen und ihren Homologie-
klassen machen. Wenn U und Z Zyklen sind, so bezeichnet U - Z einen
beliebigen Zyklus aus der Homologieklasse, die das Produkt der Homolo-
gieklassen von U und von Z ist.

b) Wenn r 4- ' = ist, so ist U - Z ~ s P, wobei s eine Zahl und P
ein durch einen einfachen Punkt reprisentierter nulldimensionaler
Zyklus ist. s ist die ,,Schnittzahl von U und Z .

Ist dabei einer der beiden Faktoren U ,Z ein Torsions-Element, so
ist s = 0; denn ist z. B. U Torsions-Element, d. h. gibt es eine Zahl
m #=0,s0daB mU ~ 0 ist, so ist ms =0, also s =0.

c) Unter einem ,,Charakter einer Abelschen Gruppe § soll eine
homomorphe Abbildung von §) in die additive Gruppe der ganzen Zahlen
verstanden werden. Die Charaktere von § bilden in bekannter Weise
eine Gruppe; wir nennen sie €} § . Sie ist, wenn § von endlich vielen
Elementen erzeugt wird, eine freie Abelsche Gruppe, deren Rang gleich
dem Rang von $ ist. 28)

d) Die r-te Bettische Gruppe von M" heille B, die -te Torsionsgruppe
Ir; unter B; verstehen wir die Restklassengruppe B7/I"; sie ist eine
freie Abelsche Gruppe, deren Rang die r-te Bettische Zahl ist. Fiir U ¢ 8"
sei immer U, das Element von B mit U ¢ U, .

Bezeichnen wir fir U ¢ B*", Z ¢ B" die Schnittzahl von U und Z
mit s;(Z), so ist s; ein Charakter von B". Die Zuordnung U — s ist
eine homomorphe Abbildung /» von 8" in Ch B", die — nach dem Poin-
caré-Veblenschen Dualititssatz — die folgenden beiden Eigenschaften
hat: 1. Zu jedem Charakter s von B" gibt es ein solches U ¢ B", dall
8 = 8y ist; 2. dann und nur dann ist sy(Z) = 0 fiir alle Z « B", wenn
U e Tn- ist. Aus diesen Eigenschaften folgt leicht: & bewirkt eine iso-
morphe Abbildung von Bj~" auf €h B . Diesen Isomorphismus nennen
wir I ; er ist folgendermafBlen charakterisiert: es st IU,= sy fir

UeU,; es ist also
IBy"=0ChHB" . (0)

Da @h Br = B; ist, folgt aus (0) By "= B;, also der Hauptteil des
Poincaréschen Dualitatssatzes. Ubrigens ist Ch B” = Ch B, da jeder
Charakter fiir die Elemente endlicher Ordnung von B” den Wert 0 hat.

18) Cf. Alexandroff-Hopf, 5861f.
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e) Die Fundamentalgruppe von M™ sei & ; ihre Elemente seien in
bestimmter Weise als Wegeklassen in M" realisiert. Fiir jedes X ¢ ®
sei X' diejenige Restklasse von G modulo der Kommutatorgruppe € ,
welche X enthalt; die X’ bilden die Gruppe &’ = /€ . FaBt man die
X' als Klassen geschlossener Wege auf, so sind sie bekanntlich als iden-
tisch mit den eindimensionalen Homologieklassen in M” zu betrachten;
in diesem Sinne ist also 29)

6’ =3B. (1)

f) Wir vereinigen (1) mit (0) fiir »r = 1. Da in M" keine (n — 1)-
dimensionale Torsion vorhanden ist, ist Bi'= B*1, U,= U zu
setzen; ferner setzen wir I-! = I, ; dann ist I, ein Isomorphismus
von €h) &' auf B 1, der fir jedes U e B durch I,sy; = U gegeben

18t ; es ist also
1,6h G’ = B (2)

g) Zu der Fundamentalgruppe & gehort nach §1 eine bestimmte
Gruppe &, , deren Elemente gewisse Klassen 5 von Systemen o =
(X;,...,Y,) sind, wobei X,,...,Y, Elemente von ® sind wund
C(X,,...Y,) = 1 ist. Die Untergruppe ©* von B2 ist in Nr. 9 erkliart
worden ; fiir jedes Z ¢ B2 verstehen wir unter Z das Element der Rest-
klassengruppe B2/S?%, zu dem Z gehort. Nach Satz Ila gibt es einen
Isomorphismus I; von ®;* auf B2/S?, der folgendermaBen charakteri-
siert ist: es ist Iyo = Z , wenn die Z ¢ Z von den « € x aufgespannt
werden ; es ist also

I,G} = B2/ . (3)

h) Diejenigen W ¢ B"—2 , welche die Eigenschaft haben, dal W - Z = 0
fiir alle Z €« ©2, also fiir alle Kugelbilder, ist, bilden eine Untergruppe
W2 von B"?; nach b) ist T"2 c W*2; wir setzen W"—2/T"2 =

n—2. fiir jedes W e W 2 ist W, das Element von W2, zu dem W
gehort.

Die Elemente von I3"-2 sind unter allen Elementen von B"-? dadurch
ausgezeichnet, daB sie durch den unter d) besprochenen Homomorphismus
k auf diejenigen s ¢ €h B2 abgebildet werden, die fiir alle Elemente von
&2 den Wert 0 haben; diese s konnen aber als identisch mit den Charak-
teren s’ der Gruppe B2/S2 betrachtet werden; es liegt also ein Homomor-
phismus IB"—2 — CH(B2/S?) vor; aus den unter d) genannten Eigen-

29) Um ganz korrekt zu sein, sollte man nicht sagen, daB ®’ mit B! identisch ist,
sondern da8 eine natiirliche isomorphe Abbildung I, von ('’ auf B! vorliegt; statt (1)
hat man dann zu schreiben: I,®’ = B*.
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schaften 1 und 2 folgt, daB dieser Homomorphismus einen Isomorphismus
I’ von W2 auf CH(B2/S?) bewirkt; I'W, ist also der Charakter von
B2/S?, der mit dem Charakter IW,= s, von B2 als identisch zu be-
trachten ist. Nun besteht auf Grund von (3) eine isomorphe Beziehung
zwischen den Charakteren von ®;* und denen von B2/G? : die Charaktere
s* ¢ ) B;F und s’ ¢ CH(B2/S?) sind einander zugeordnet, wenn s*(«) =
8'(Z) fiir I, = Z ist. Dieser Isomorphismus und der Isomorphismus I’
vermitteln einen Isomorphismus I, von € G;F auf MW?~2, der folgender-
maBen charakterisiert ist: es ist I,s* = W,, wenn s*(x)=sy(Z) fir
W e W, , beliebiges & € ®; und fir die von den « € x aufgespannten Z ist ;
es ist also

I1,6H G = W2, (4)

Aus (4) ist zu sehen, daB YB? 2 eine freie Abelsche Gruppe und daB ihr
Rang gleich dem gemeinsamen Rang von & und B2/S? ist. Wenn G’
kein Element endlicher Ordnung (auBer der 0) enthialt, so besitzt M
keine eindimensionale, also auch keine (n — 2)-dimensionale Torsion;
dann ist W2 = Wr-2.

i) Durch die Beziehungen (1), (2), (3), (4) samt den Erkldrungen der
Isomorphismen I,, I,, I, sind im wesentlichen unsere bisherigen Kennt-
nisse des Einflusses ausgedriickt, den die Fundamentalgruppe auf die
Homologiegruppen einer Mannigfaltigkeit hat. Das Ziel dieses Para-
graphen ist die Feststellung, daBl auch die Bildung der Schnitt-Produkte
zwischen je einem (n — 1)-dimensionalen und einem zweidimensionalen
Zyklus sowie zwischen je zwei (n — 1)-dimensionalen Zyklen durch die
Fundamentalgruppe bestimmt ist.

16. Zwei Schnitt-Formeln. In M" sei Z ein zweidimensionaler Zyklus;
er werde von (X,, Y,,..., X,, ¥,) aufgespannt (Nr. 10). Die Elemente
X1,..., Y} von B! sind wie in Nr. 15e erkliart. U sei ein (n — 1)-dimen-
sionaler Zyklus in M" .

Die Grundlage fiir unsere weiteren Uberlegungen ist die folgende

Formel: A
UZ~X[s5(Y) Xi—sp(X) Y] ; (5)
i=1
wir werden sie in Nr. 17 beweisen. Jetzt leiten wir aus ihr eine weitere
Formel her. V sei ein zweiter (n — 1)-dimensionaler Zyklus; dann ist
V.U ein (n — 2)-dimensionaler Zyklus, und nach dem assoziativen
Gesetz ist
V- (UZ)y~(V-U)-Z ~ 8p.u(Z) P ,
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wobei P wieder einen einfach gezihlten Punkt bezeichnet; wendet man
dies auf der linken Seite von (5) und wendet man auf der rechten Seite
das distributive Gesetz an, so erhilt man:

)
sy.p(Z) = gl[sv(xé) 8y (Y;) — sp(Yy) 3U(X§)] . (6)

17. Beweis von (5). Die Tatsache, dafl Z von (X,,.. ., Y,) aufgespannt
wird, bedeutet: sind x,, 1, Wege, die die Elemente X, Y, reprasentieren,
so ist der Weg r = C(x,,..., n,) Homotopie-Rand von Z ; das heif3t:
es gibt ein orientiertes Element £ mit dem Randweg ¢ und eine solche
Abbildung f von & in M*, dal f(E) = Z und f(p) = r ist. Infolge der
besonderen Gestalt des Kommutator-Wortes C sieht die Abbildung f
von p folgendermaBlen aus: p ist in 4% Bogen geteilt, die wir der Reihe
nach £,,7,, &, M1, &2s. - -5 &, 71y nennen, und es ist &; auf x;, & auf 7,
n; auf 1); , 7, auf y;* abgebildet. Man identifiziere nun fiir jedes ¢ den
positiv durchlaufenen Bogen &; mit dem negativ durchlaufenen Bogen &,
und verfahre ebenso mit den 7, und 7, ; dann entsteht aus dem Element £
eine geschlossene orientierbare Fliche vom Geschlecht % ; sie heille (2.
Die Bogen &, 7; gehen dabei in geschlossene Wege iiber, die wir auch
&, n, nennen wollen. Auch nach der Identifizierung, die wir vorgenommen
haben, ist f eine eindeutige und stetige Abbildung; bezeichnen wir den
orientierten Grundzyklus der Fliche (? ebenfalls mit {2, so haben wir
also eine solche Abbildung f von {% in M" , daB

(¢ =2, (7)
f(&) =2, [fln) =0,

ist; statt dieser letzten Gleichungen notieren wir die Homologien, wobei
wir &;, 7, als eindimensionale Zyklen auffassen:

f(&) ~Xi , fln)~7Y;. (8)

Die Zyklen ¢&,,...,7n; bilden eine eindimensionale Homologiebasis in
{2; ihre Schnitt-Relationen sind bekanntlich die folgenden, wobei wir
unter z die durch einen Punkt reprisentierte Homologieklasse verstehen :

§iomy~—mbi~Oym,
§iv &~ mMpemy~0 .

L
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Wir ziehen nun den Umkehrungs-Homomorphismus ¢ von f heran3?);
er bildet die Homologieklassen aus M" eindeutig auf Homologieklassen
aus (2 ab und hat die folgenden drei Eigenschaften: (A) ¢ ist ein
additiver und multiplikativer Homomorphismus ; (B) fiir die Homo-
logieklassen U aus M" und w aus {2 gilt

H(e(U) w) ~U-fw) ; (10)

(C) ist U eine r-dimensionale Homologieklasse aus M", so ist ¢(U) eine
(r — n + 2)-dimensionale Homologieklasse aus (2.

Da der Grundzyklus {2 bei der Multiplikation die Rolle der Eins spielt,
folgt aus (10), wenn man w = {2 setzt, und aus (7)

feU)~U-2 (11)
fir jeden Zyklus U aus M™.
U sei (n — 1)-dimensional; dann ist ¢(U) nach (C) eindimensional;
daher besteht in (% eine Homologie

@(U) "’Z(ai &+ b;m,) (12)

mit ganzzahligen Koeffizienten a;, b, . Ubt man auf beide Seiten von
(12) die Abbildung f aus, so folgt nach (11) und (8)

U-Z~2X@X:+b,7Y). (13)
Aus (12) und (9) folgt

pU)- & ~—bn, o@U): n~amn; (14)

iibt man hierauf f aus und wendet man (10), (8) sowie die Homologie
f(m) ~ P an, wobei P wieder einen einfachen Punkt in M" bezeichnet,
go erhalt man
U-X,~—-bP, U:-Y,~aP,
also
a; =sg(¥;) , b= '—Su(X:') .

Setzt man dies in (13) ein, so ergibt sich die Formel (5), die zu beweisen
war.

30) H, Hopf, Zur Algebra der Abbildungen von Mannigfaltigkeiten, Crelles
Journ. 163 (1930), 71—88. Wegen weiterer Literatur sowie der obigen Eigenschaft (C)
vgl. man auch meine Arbeit in den Comment. Math. Helvet. 13 (1941), 219—239, speziell
219 und 235f.
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18. Ein Korollar. Wir definieren: Der zweidimensionale Zyklus Z
heiflt ,,minimal®‘, wenn fiir alle (»n — 1)-dimensionalen Zyklen U die
Schnitt-Zyklen U - Z ~ 0 sind. %)

Dann lautet ein Korollar der Formel (5):

Alle Kugelbilder sind minimal. 3Y)

Denn wenn der Zyklus Z Kugelbild ist, so hat er einen Homotopie-
Rand, der nur aus einem Punkt besteht (Nr. 8i); Z wird also unter
anderem von dem System (£, E) aufgespannt, wobei E das Eins-
Element von ® ist; da £’ das Null-Element von &’ = B! ist, ist dann
die rechte Seite von (5) fiir beliebige U gleich 0 .

Aus diesem Korollar folgt weiter: Wenn die Zyklen Z, und Z, zu dem-
selben Element Z der Gruppe B2/S? gehéren, so ist U -Z, ~ U - Z, fir
jeden (n — 1)-dimensionalen Zyklus U .

Infolgedessen kann man die Produkte U - Z, die wir bisher als Pro-
dukte von Elementen der Gruppe B"-! mit Elementen der Gruppe B2
aufgefaBt haben, auch als Produkte U - Z von Elementen U der Gruppe
B"—1 mit Elementen Z der Gruppe B2/S? auffassen.

Eine weitere Konsequenz des Korollars: Sind U, V zwei (n — 1)-
dimensionale Zyklen, und ist Z ein Kugelbild, so folgt aus U -Z ~ 0,
daB auch V-(U:-Z)= (V-U)+Z ~ 0 ist; folglich gehort die Homo-
logieklasse von V - U zu der Gruppe 23"~2 (Nr. 15h).

Wir werden spiter statt des Produktes V - U das ,,reduzierte’ Pro-
dukt (V - U), betrachten, d. h. die Restklasse von "2 modulo T2,
zu welcher V - U gehort; das reduzierte Produkt zweier Elemente von
B"-1 ist also ein Element der Gruppe IBr—2.

19. Zwei Gruppen-Produkte. ® sei jetzt eine beliebige Gruppe, die
unabhéngig von irgend einer Mannigfaltigkeit gegeben ist; wir setzen
nur voraus, da3 & von endlich vielen Elementen mit endlich vielen defi-
nierenden Relationen erzeugt werden kann. Wie im § 1 betrachten wir
die Menge I'y, der Systeme & = (X,, ¥,,..., X;, Y,;)mit X, e ®, ¥, ¢ ®
und die Gruppe ;" , deren Elemente gewisse Klassen « von Elementen
« sind. Ferner betrachten wir die Restklassengruppe G’ von & modulo
der Kommutatorgruppe € ; wie in den letzten Nummern verstehen wir
fiir jedes X ¢ G unter X’ das Element von &', zu dem X gehort. AuBer-
dem werden die Charakterengruppen Ch G’ und Ch G auftreten. —
Wir brauchen den folgenden Hilfssatz:

31) Das ist ein Spezialfall eines allgemeineren Satzes, der auch fiir héhere Dimensions-
zahlen gilt: H. Hopf, Uber die Topologie der Gruppen-Mannigfaltigkeiten und
ihrer Verallgemeinerungen, Annals of Math. 42 (1941), 22—52; Nr. 34, 35.
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o sei ein Element von &, und &, = (Xl, Y ,...,. X, Y, oy =

(Py,@1,. .., Py, @,) seien zwei Elemente aus « ; ferner sei s ein Charakter
von G'. Dann ist — bei additiver Schreibweise von G’ —
2 [s(Y9) X; —s(X) Y] = 2 [s(@)) P; —s(P))@Q;]] .  (15)
=1 j=1

Fiir den Beweis dieses Hilfssatzes ziehen wir eine Mannigfaltigkeit M"
heran, deren Fundamentalgruppe ® ist3?); da ® von endlich vielen Ele-
menten mit endlich vielen Relationen erzeugt wird, gibt es eine solche
Mn20), Da &, € x und & € B} ist, gibt es nach Satz I1a in M™ einen Zyklus
Z,, der von (X,,..., Y,) aufgespannt wird; ebenso gibt es in M" einen
Zyklus Z,, der von (P,,..., @,) aufgespannt wird. Da «, und «, zu der-
selben Klasse & gehoren, gehoren nach Satz IIa die Zyklen Z, und Z,
zu derselben Restklasse Z von B2 modulo &2; nach Nr. 18 ist daher
U-Z,~U:-Z, fir jeden ( — 1)-dimensionalen Zyklus U in M". Man
kann U so wihlen, daB s; mit dem gegebenen Charakter s von G’ = B!
iibereinstimmt (Nr. 15d, e); dann ist nach Formel (5) U - Z, mit der
linken Seite von (15), U - Z, mit der rechten Seite von (15) homolog.
Da U-Z,~U-Z, ist, stellen also die beiden Seiten von (15) dasselbe
Element der Gruppe 8B = (&’ dar; folglich gilt (15).

Auf Grund dieses Hilfssatzes hangt das durch die linke Seite von (15)
gegebene Element von G’ nur von s und «, aber nicht von dem speziellen

Element & = (X,,..., Y,) € x ab; wenn wir also
A
[s-a] =X [s(¥Y) X; — s(X))Y}] (16)
i=1

mit beliebigem & = (X,,..., Y,) e« setzen, so haben wir durch (16)
in eindeutiger Weise ein ,,Produkt‘ definiert, wobei der erste Faktor
8 eCh G’, der zweite Faktor a ¢ ®), das Produkt [s-«] e &' ist; wir
nennen dies das ,.erste, zu ® gehorige Gruppen-Produkt‘‘. Dieses Pro-
dukt ist tibrigens distributiv in bezug auf beide Faktoren (wir denken
uns nicht nur € G’, sondern auch &;" additiv geschrieben).

Wir definieren jetzt das ,,zweite, zu & gehorige Gruppen-Produkt*
in ihm sind beide Faktoren Elemente von Ch &', und das Produkt ist
ein Element von Gh G, ; ist namlich s Ch G’, e Ch G’, x e By, so0
verstehen wir unter {t - s} denjenigen Charakter von G/, der durch

{t-s} (@ = t([s- ) (17)
%) Ein solcher geometrischer Beweis ist an dieser Stelle unseres Gedankenganges

natiirlicher und bequemer als ein rein algebraischer Beweis; ein solcher, der aus metho-
dischen Griinden erwiinscht ist, wird in dem ,,Anhang* angegeben werden.
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gegeben ist; ausfiihrlicher: ist [s-a] = X/, so wird durch {t - s} dem
Element « die Zahl #(X’) zugeordnet. Ist wieder (X,,..., ¥,) irgend
ein Element von I'y, das in der Klasse « ist, so folgt aus (17) und (16),
daB {t - s} durch

h

{t-8} () = X [H(X)) s(¥)) —t(¥}) 8(X}) ] (17')

i=1
bestimmt ist. Auch dieses Produkt ist distributiv in bezug auf beide
Faktoren; ferner ist iibrigens, wie man aus (17') abliest, {s-¢} = — {¢-s},
also speziell {s:8} =0 .

20. Die Bestimmung von Schnitt-Produkten durch die Fundamental-
gruppe. Wir fahren in der Untersuchung einer Mannigfaltigkeit M™ fort.
Es seien wieder: Z eine zweidimensionale Homologieklasse ; Z das Element
von B2/S?, zu dem Z gehort; « die Menge der & = (X,,..., ¥,), die Z
aufspannen; U, V zwei (» — 1)-dimensionale Homologieklassen; sy, sy
die durch die Schnitte mit U, V erzeugten Charaktere von B!. In den
Bezeichnungen aus Nr. 15 ist also

U=1Is,, V=1ILs,, Z=1Ix.

Nach Nr. 18 kénnen wir auf der linken Seite der Formel (5) statt U - Z
auch U - Z schreiben; die rechte Seite von (5) ist nach (16) gleich [s; * «] ;
die Formel (5) ist also gleichwertig mit 33)

U.Z=[I;*U.I;'Z] . (5%)

Nach Nr. 18 ist V - U e W2, (V - U), e Wr~2; die linke Seite von (6)
ist daher nach Nr.15h gleich s*(x), wenn man I;XV - U),=s* setzt;
die rechte Seite von (6) ist nach (17’) gleich {sy - s;}(x); da (6) fiir be-
liebige Z gilt, ist (6) also gleichbedeutend mit

ITHV-U)y = {8y 8} »
oder, was dasselbe ist, mit
(V-U)o = L{I;* V- I U} . (6%)

Da die Bestimmung der Gruppen-Produkte auf den rechten Seiten
von (5*) und (6*) algebraisch, ohne Bezugnahme auf die Mannigfaltigkeit
M™ erfolgt, zeigen diese Formeln, dafl die Bildung der Schnitt-Produkte
U-Z und (V- U), durch die Fundamentalgruppe bestimmt ist. Wir
formulieren dieses Ergebnis noch einmal:

83) Fiihrt man wie in FuBnote 29 den Isomorphismus I, ein, so hat man statt (5%)
zu schreiben: U.-Z = I, [I','1 U-I;‘Z] .
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Satz I1I. Durch die Fundamentalgruppe ® einer Mannigfaltigkeit M™
sind nicht nur — gemdf (1), (2), (3), (4) — die Gruppen B!, B1, B2/S2,
W2, sondern auch — gemiifp den Formeln (5*), (6*) — die Bildung des,
in B! gelegenen, Schnitt-Produktes je eines Elementes von B! und eines
Elementes von B2 /S? sowie die Bildung des, in W) 2 gelegenen, reduzierten
Schnitt- Produktes je zweter Elemente von B"! bestimmd.

Hierin ist enthalten:

Satz III'. Fiir zwei Mannigfaltigkeiten M* und M7 mit isomorphen
Fundamentalgruppen sind nicht nur die Gruppen B, Br-1, B2/St, W2
von M™ mit den Gruppen B!, B, B2/S2, Wir—2 von M{* isomorph,
sondern es stnd auch die soeben genannten Produktbildungen in der einen
Mannigfaltigkeit isomorph mit den entsprechenden Produktbildungen in der
anderen. )

Mit den Sitzen IIT und ITI’ ist das Hauptziel dieses Paragraphen
erreicht.

21. Wir heben eine Konsequenz des Satzes III hervor. Diejenigen
« € ®;°, fiir welche [s-&] = 0 mit allen s ¢ €h G’ ist, bilden eine Unter-
gruppe Mg von GF. Aus (5%) geht hervor: der Zyklus Z ist dann und nur
dann minimal (Nr. 18), wenn I;'Z ¢ M ist. Die minimalen Homologie-
klassen Z bilden eine Untergruppe Ii* von B2, die nach Nr. 18 die
Gruppe &? enthilt; wir haben soeben gesehen, daf I;(IM2/S?) = M,
ist. Hieraus und aus (3) folgt weiter, daBl I, auch eine isomorphe Ab-
bildung von &;* /M auf die Restklassengruppe von B2/&? modulo M2/S?
vermittelt, die mit B2/IM? isomorph ist. Wir haben also folgendes Korollar
zu Satz 111 :

Bezeichnet M2 die Gruppe der minimalen Elemente von B2, so sind die
Gruppen M2/S? und B2/IM? durch ® bestimmt ; I, vermittelt nimlich die
folgenden Isomorphien :

M= D2/ Gt , GF Mg B/ .

22. Beispiele. Ahnlich wie in Nr. 13 und Nr. 14 haben wir zwei Metho-
den zur Behandlung von Beispielen zur Verfiigung: die erste besteht
darin, daB3 man zu der M", die man untersuchen will, eine M7* findet, die
dieselbe Fundamentalgruppe besitzt, deren Schnitt-Eigenschaften man
aber bereits kennt, und daB man dann Satz III’ anwendet ; zweitens kann
man M* direkt mit Hilfe des Satzes III, also der Formeln (5*), (6*) oder,

34) Die Frage bleibt offen, ob auch die nicht-reduzierten Produktbildungen je zweier
Elements von 8" bzw. von B™™ miteinander isomorph sind.
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was auf dasselbe hinauskommt, der Formeln (5), (6) untersuchen; die
Hauptschwierigkeit besteht dabei iibrigens oft in der Bestimmung der
Gruppe ®;, also in der Losung einer gruppentheoretischen Aufgabe,
die mit Schnitt-Eigenschaften nichts zu tun hat, sondern in den Problem-
kreis des §2 gehort. Wir werden hier meistens die zweite der beiden
Methoden, gelegentlich aber auch die erste anwenden.

a) Es sei B = 0; dann ist B2/S% = 0, also sind alle zweidimen-
sionalen Zyklen Kugelbilder; nach Nr. 18 ist daher U - Z = 0 fiir beliebige
UeB1,Ze¢B?; aus B2/S2 =0 folgt W)*=0, also ist auch
(V- U),= 0 fiir beliebige V ¢ B"-1, U e B 1.

Die Voraussetzung ®; = 0 ist speziell erfiillt, wenn ® eine freie Gruppe
ist (Nr. 13a). Dann ist iibrigens keine eindimensionale, also auch keine
(n — 2)-dimensionale Torsion vorhanden, also (V - U), = V - U . Somit
gilt:

Ist die Fundamentalgrvppe von M™ eine frete Gruppe, so sind die Schnitt-
Produkte je eimes (n — 1)-dimensionalen und eines zweidimensionalen
Zyklus sowte je zweier (n — 1)-dimensionaler Zyklen homolog 0 .

b) ® sei Abelsch. In diesem Fall ist G nach Nr.13b, ¢ bestimmt.
Die Untersuchung ist hier darum besonders einfach, weil fiir je zwei
beliebige Elemente X,Y von & der Kommutator C(X, Y) = 1 ist, das
System &« = (X, Y) also immer zu einem Element x von &, gehort.
Wir wollen aber hier keine vollstindige Diskussion aller Schnitt-Eigen-
schaften, die von dem Satz III erfaf3t werden, durchfiihren, sondern nur
einige spezielle Punkte hervorheben.

Da &’ = ® ist, brauchen wir nicht zwischen den Elementen X ¢ ®,
X’ e®’ zu unterscheiden. Die Elemente X,,..., X, mogen eine ein-
dimensionale Homologiebasis bilden, d. h. B! = & sei direkte Summe
von g zyklischen Gruppen, die von den X, erzeugt werden; firh = 1,...,p
seien diese zyklischen Gruppen unendlich, fiir 2 > p endlich; dann ist
p die erste Bettische Zahl.

Wenn p = 0, also & endlich ist, so ist B! = 0, die Untersuchung
also uninteressant; das gleiche gilt, wenn ¢ = 1, also ® zyklisch ist,
da dann nach Nr. 13¢ G = 0 ist, nach dem obigen Satz a) also alle in
Frage kommenden Produkte verschwinden. Interesse verdienen also nur
die Fille p > 1, ¢ > 2, also diejenigen Abelschen Gruppen &, die unend-
lich und nicht zykhsch sind.

Setzt man fiir jedes Element X = 2 a,X,; e B!

t=1

8(X)=a,, h=1,...,p, | (18)
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80 sind hierdurch p Charaktere s, von B! definiert; zu ihnen gehdren
(n — 1)-dimensionale Zyklen U, durch die Festsetzung: sy, = 8, ; diese
U, bilden die zu {X,,..., X,} ,,duale‘ Basis von B8"!.

Unter Z,, verstehen wir einen von (X,;, X;) aufgespannten Zyklus

(die glg—1) 2e 1)

Basis von B2/G?; dies kann man aus Nr. 13b, ¢ entnehmen; wir werden
es aber nicht benutzen).
Wir bestimmen U, + Z,, nach den Formeln (5) und (18):

1 Zyklen Z,, mit 1 < ¢ < k < q représentieren iibrigens eine

Uy Zy = 83( X)X, — 8,( X)Xy = 05 X; — 65X,
also

. (19)
U, Z,,=0 fir h#i,h#k ; U, Z,=0.

Hieraus sieht man unter anderem:

) Wenn p>1, q =2, wenn also die Abelsche Gruppe ® unendlich
und nicht zyklisch ist, so gzbt es etnen (n — 1)-dimensionalen Zyklus U
und einen zweidimensionalen Zyklus Z, so daf3 U - Z + 0 1st.

Denn man kann in der ersten Gleichung (19) £ = 1, ¢ = 2 wiahlen.

Aus (19) — oder auch aus (6) — und aus (18) folgt
sp,0 (i) = £ 055 (20)

wobei 6¢% gleich 1 oder 0 ist, je nachdem die ungeordneten Indexpaare
(7, k) und (¢, k) miteinander iibereinstimmen oder nicht. Aus (20) folgt:

p) Die 19_(_1%—_1) (n — 2)-dimensionalen Zyklen U, U, , 1<h<j<p,

sind in der Gruppe B2 linear unabhdingig.

Denn aus
ZaihUj'Uhrr:JIO P 1\<\h<7‘\<\p,

— wobei dies eine ,,schwache‘‘ Homologie, d. h. eine Homologie modulo
der Torsionsgruppe I"~2 ist — ergibt sich durch Multiplikation mit
Z,, und Anwendung von (20), daB a,, = Ofiiralle 2, jmit 1 <h <j<<p
ist. (Man beachte iibrigens: die Unabhangigkeit in 8§~ besagt mehr als
die Unabhingigkeit in B"~2.)

Da fiir je zwei (n — 1)-dimensionale Zyklen U, U’ in einer beliebigen
Mannigfaltigkeit M" die Regel U-U’'= — U’ -U gilt, ist immer
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U-U =0, und daher auch immer U - U’ = 0, falls U und U’ linear
abhéngig sind. Wir behaupten :

y) Ist ® Abelsch und sind U, U’ zwei linear unabhdngige Elemente
von B"1, 8018t U- U’ #0 (in BL?).

Denn ist U = Xa,U;, U' = Xa, U,, so ist

’

U.U =Xa,a,U, U, , 1<i<p,1<k<
also
k

p
U.U =X @,a,—a,a)U, U, , 1<i<k<p.
Nach p) sind daher, falls U-U’=0 ist, alle Determinanten a;a; —a,a;
= 0, also sind dann U und U’ linear abhéngig.

Wir wollen den unter «) ausgesprochenen Satz noch etwas anders for-
mulieren, indem wir die Gruppe M2 heranziehen (Nr.21). Der Satz «)
besagt: Ist p > 1, ¢ > 2, so ist M2 £ B2, also B2/M2 £ 0.

Im Hinblick auf eine spiatere Anwendung (Nr.27) betrachten wir
besonders den Fall p > 1, ¢ = 2; dann ist nach Nr. 13¢ ®;* zyklisch,
nach Nr. 21 daher auch B2/IM? zyklisch. — Wir haben also folgendes
spezielles Ergebnis:

d) Iss p =1, q = 2, also ® direktes Produkt zweier zyklischer Gruppen,
von denen wenigstens eine unendlich vst, so ist B2/IM? eine von 0 verschie-
dene zyklische Gruppe.

Alle hiermit bewiesenen Sitze iiber Mannigfaltigkeiten mit Abelschen
Fundamentalgruppen kann man auch dadurch beweisen, dal man ihre
Giiltigkeit fiir die in Nr. 13b und ¢ betrachteten speziellen Produkt-
Mannigfaltigkeiten verifiziert und dann den Satz III’ anwendet.

c) ® sei 1somorph mit der Fundamentalgruppe der geschlossenen orientier-
baren Fliche M? vom Geschlecht p > 0 . Da man die Schnitteigenschaften
der Zyklen in M? kennt, kann man unter Anwendung des Satzes III’
den folgenden Satz fiir eine beliebige Mannigfaltigkeit /™ mit der Funda-
mentalgruppe ® aussprechen:

Es gibt zueinander duale Homologiebasen {X;,Y;,... X , Y,} und
{Uy, Vi, Uy, V,} der Dimensionen 1 und n — 1 sowie zweir Zyklen
Z und W der Dimensionen 2 und n — 2, so daf die folgenden Schnitt-

Relationen bestehen :
Uy, Z = — Y;, V,.-Z=X:.;

Ui.sz——.Vk‘Ui=6ikW’ Ui.Uk=Vi.Vk=O’
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Dieser Satz ist auch als Spezialfall in dem Ergebnis der néchsten
Nummer enthalten; dort werden wir direkt mit den Formeln (5) und (6)
arbeiten; dadurch wird die Tatsache beleuchtet werden, daf3 die bekann-
ten und soeben benutzten Schnitteigenschaften auf den Flachen gesetz-
mafige Folgen von Eigenschaften der Fundamentalgruppen der Flachen
sind.

3. ® ser eine Gruppe, die von endlich vielen Elementen E,,..., E,,
erzeugt wird, zwischen denen eine einzige Relation R(E,,...,E,) =1
besteht. Wir haben diese Gruppen bereits in Nr. 14 untersucht, und wir
benutzen die dortigen Bezeichnungen und Resultate. Wir verstehen also
unter e, ,. .., ¢, freie Erzeugende einer freien Gruppe &, die homomorph
so auf ® abgebildet ist, daB} die E, den e, entsprechen, und wir betrachten
wieder das Element r = R(e,,...,e,,) von .

Wir haben gesehen: wenn 7 nicht Kommutator-Element ist, so ist
®;* = 0; daher folgt aus Nr. 21a:

Wenn r nicht Kommutator-Element ist, so sind alle Schnitte je eines
(n — 1)-dimensionalen und eines zweidimensionalen Zyklus sowie je zweier
(n — 1)-dimensionaler Zyklen homolog O .

Es sei r € €. Die Gruppe 6’ = B! wird von den Elementen E,. .., E,,
erzeugt; ein System definierender Relationen fiir B! erhélt man, indem
man in einem Relationen-System fiir ® die Erzeugenden als miteinander
vertauschbar ansieht; in unserem Fall verschwindet dabei, da r e Cg
ist, die einzige Relation R = 1; daher ist B! die von den E, erzeugte

freie Abelsche Gruppe. Ej,..., E, bilden eine eindimensionale Homo-
logiebasis; die zu ihr duale (n -— 1)-dimensionale Basis sei {U,,..., U,};
es ist also

‘ 30, (Bp) = Oy - (21)

Nach Nr. 14 ist die Gruppe B2/S? unendlich-zyklisch; folglich ist
auch W?#~2 unendlich-zyklisch, und da keine eindimensionale Torsion
vorhanden ist, IB"2 = W¢~? (Nr.15h). Der Zyklus Z reprisentiere,
wie in Nr. 14, das erzeugende Element von B2/S? und der Zyklus W
das erzeugende Element von ¥B"-2; dann ist

swlZ) =1 . (22)
Es gibt solche Zahlen «,;, da}
UJ'Z——'Z“ME;a (23)

ist; hieraus folgt
Uy U;Z =3 oy Uy By
also nach (21)
Spp.0,8) = 04y ; (28/)
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da nach Nr.18 U, -U, e W2, also U, U, ein Vielfaches von W ist,
folgt aus (22) und (23’)

Durch (23) und (24) sind alle Schnitt-Relationen gegeben, die fiir uns
in Frage kommen. Unsere Aufgabe besteht darin, die Zahlen «,; aus den
Eigenschaften des Elementes r ¢ § zu ermitteln. Da iibrigens, wie man
aus (24) sieht, «,, = — «;; ist, geniigt die Bestimmung der «,; fir
I1<h<im.

Die Restklassengruppe €g/C% ist eine freie Abelsche Gruppe vom
m(m—1)
2
reprasentieren eine Basis dieser Gruppe (Nr. 13b). Daher erfiillt r, wie

jedes Element von G, eine Kongruenz

Range , und die Kommutatoren Cle,, ¢;) mit 1 <h <t < m

r=1IIC(e,, ¢;)" mod. €% , 1<h<i<m. (25)
Wir behaupten:
Xni = Vni - (26)
Beweis. Die Zahlen y,,, die bisher nur fir 4 <1 erklart sind, defi-
nieren wir fiir alle A, ¢ aus der Reihe 1,. .., m durch die Festsetzung
Yin = — Vi -
Dann sei

yllu' = Max. (Yrs50)
es ist

Vi = Vae — Vi » (27%)
Vhs =0 (277)

fiir alle &, ¢ aus der Reihe 1,...,m . Da immer C(y, ) = C(x, y)! ist,
konnen wir statt (25) schreiben:

rEHC’(e,,,e,-)y"‘mod.(i%,lghgm, 1<em (25%)
diese Kongruenz ist gleichbedeutend mit einer Gleichung

r=1IIC(e, ,e)™ . IIC(x,, ¥, , (26”)

wobei fiir jeden Index j wenigstens eines der Elemente z, und y; in Cg
enthalten ist.

300



Nach Nr. 14 wird, wenn r = C(z,,..., y,) ist, der Zyklus Z von dem
System « = (X,,...,Y,) a,ufgespa.nnt. Aus (25”) sieht man, da es ein
solches System o = (X,, Y,,...,X,, Y,,..., X,, Y,) gibt, das fol-
gende Eigenschaften hat: fiir £ <gq 1st ]edes Paar (X, Y;) mit einem
Paar (E,, E,) identisch, und zwar kommt fiir feste (2, ¢) dasPaar-(&,, K,)
genau y;;-mal vor; fiir jedes k> g ist wenigstens eines der Elemente
X, Y, Kommutator-Element von ®, also wenigstens eines der Elemente
X., Y, von G’ gleich 0.

Bilden wir fiir irgend einen Charakter s der Gruppe G’ das Gruppen-
produkt [s - «], wobei « € & ist, so ist infolge der eben genannten Eigen-
schaften von «

[s-0] = X' i [s(EY) B, — (B} EY]
also nach (27)
[s-a] = 2 v4: 8(E)) By, (28)

wobei & und ¢ immer von 1 bis m laufen. Setzen wir in (28) s = sp;,
so erhalten wir nach (5*) und mit Riicksicht auf (21)

U Z = Xyy,E,

Hieraus und aus (23) folgt die behauptete Gleichheit (26).

Es gilt also folgender Satz:

Ist r e Gy, so erfillt r esne Kongruenz (25), und durch die in ihr auf-
tretenden Exponenten y,;, = o,; sind die Schnitt- Relationen (23) und (24)
in M" bestimmd.

Ist 7 € €%, so sind alle y,; = 0; ist nicht r €%, so ist wenigstens ein
yni 7~ 0; daraus folgt:

Ist r € G%, so sind alle Schnitte je eines (n — 1)-dimensionalen und eines
zwerdimensionalen Zyklus sowie je zweier (n — 1)-dimensionaler Zyklen
in M" homolog 0 — ebenso wie es der Fall ist, wenn r nicht Kommutator-
Element ist. Ist dagegen r zwar in G, aber nicht in €% enthalten, so gib ’
es Elemente U e B"1, V e B 1,ZeB2,s0daf V-U #£0,U -Z # 01st

In dem letzten Fall ist, wenn z. B. y,, 5 0 ist, nach (23) U,-mZ # 0
fir m # 0; minimal (Nr. 18, 21) sind daher nur die Kugelbilder; folglich
gilt:

Ist r € €, aber nicht « €3, so ist die Gruppe B /M? unendlich-zyklisch ;
ist dagegen r nicht Gy, oder ist r « €%, so sind alle zweidimensionalen
Zyklen minimal, es ist also B2/M? = 0.
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Die Schnitteigenschaften der geschlossenen Fliachen (Nr. 22¢) ergeben
sich aus (23), (24), (25), wenn man m=2p und py,,=y3 = .+ =
Yam—1,2m = 1, alle anderen y,; = 0 setzt.

24. Verallgemeinerungen. Die Satze dieses Paragraphen lassen sich in
zwei Richtungen verallgemeinern.

Erstens braucht man sich fiir die (» — 1)-dimensionalen Zyklen nicht
auf den ganzzahligen Koeffizientenbereich zu beschrinken. Die Formel
(5), die ja der Ausgangspunkt fiir alles Weitere ist, behilt nimlich samt
ihrem Beweis ihre Giiltigkeit, wenn man unter U einen (n — 1)-dimen-
sionalen Zyklus in bezug auf irgend einen Koeffizientenbereich J ver-
steht; dann ist s; ein J-Charakter von B!, d. h. eine homomorphe Abbil-
dung der (ganzzahligen) Bettischen Gruppe B in die Gruppe J, und die
rechte Seite von (5) stellt ein Element der ersten Bettischen Gruppe

3 in bezug auf J dar. In der Formel (6) wird man voraussetzen, daB
fir U und V ein beliebiger Koeffizienten-Ring zugrundeliegt. Man wird
iibrigens bereits geniigende Verallgemeinerungen und Verfeinerungen
unserer Sitze erzielen, wenn man als Koeffizientenbereiche nur die Rest-
klassenringe modulo m mit m > 2 heranzieht. Fiir die zweidimensionalen
Zyklen Z allerdings wird man wohl nicht auf die Ganzzahligkeit ver-
zichten konnen, wenigstens nicht ohne erhebliche Abénderungen der
Begriffe und Satze aus § 2.

Zweitens kann man die Satze, die wir fiir Mannigfaltigkeiten bewiesen
haben, auf beliebige Komplexe iibertragen, wenn man die alte Schnitt-
theorie durch die neuere Produkttheorie ersetzt.3) Man hat dann die
Charaktere der Gruppe B! als eindimensionale Kohomologieklassen zu
deuten, und diese treten an die Stelle der (» — 1)-dimensionalen Homo-
logieklassen U ; ebenso sind die (» — 2)-dimensionalen Zyklen W durch
zweidimensionale Kozyklen zu ersetzen. Die linke Seite der Formel (5)
ist dann das Cech-Whitneysche Produkt — das ,,cap‘‘-Produkt — einer
eindimensionalen Kohomologieklasse mit einer zweidimensionalen Homo-
logieklasse, und die linke Seite von (6) ist das Kolmogoroff-Alexandersche
Produkt — das ,,cup‘‘-Produkt — zweier eindimensionaler Kohomologie-
klassen; der im Beweis von (5) verwendete Umkehrungs-Homomor-
phismus existiert auch in der allgemeinen Produkttheorie®®). Den Inhalt
von Nr. 19 (samt dem § 1 und dem Anhang dieser Arbeit) kann man als
eine rein algebraische Begriindung der cap- und cup-Produkte fiir die
genannten kleinen Dimensionszahlen auffassen, aus welcher hervorgeht,
daB diese Produkte in einem Komplex durch dessen Fundamentalgruppe
bestimmt sind.

35) Whitney, 1. c.?), Theorem 6.
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§ 5. Dreidimensionale Mannigfaltigkeiten

26. Fiir jede Abelsche Gruppe $ mit endlich vielen Erzeugenden
sollen die Zahlen p($), ¢($) analog erklart sein wie in Nr. 13c: in der
Normalform von §), also in derjenigen Darstellung von § als direkte
Summe zyklischer Gruppen, in welcher die Ordnung jedes Summanden
Teiler der Ordnung des folgenden Summanden ist, ist ¢(§) die Anzahl
aller Summanden, und p(§) ist — iibrigens in jeder Darstellung von $
als direkte Summe zyklischer Gruppen — die Anzahl der unendlich-
zyklischen Summanden. Zu jeder Gruppe ® (mit endlich vielen Erzeu-
genden und Relationen) gehoren also, wenn &’ und &, dieselben Be-
deutungen haben wie bisher, Zahlen

p(6)) =p,, ¢(6') =q,, p(6GF) = p*, ¢(Gf) = gq* .

Fiir jeden Komplex K mit der zweiten Bettischen Gruppe B? setzen
wir p(B2) = p,, 9(B2) = ¢, . Ist G die Fundamentalgruppe von K, so
folgt aus Nr. 12a, wie schon in Nr. 13¢, Formel (5), hervorgehoben

wurde,
qg* < q, (1)

(sowie p* < p,, was wir aber im folgenden nicht brauchen).

Jetzt sei K = M? eine dreidimensionale, geschlossene, orientierbare
Mannigfaltigkeit. Nach dem Poincaréschen Dualitatssatz ist p, = p,;
ferner ist, da keine zweidimensionale Torsion vorhanden ist, g, = p, .
Hieraus und aus (1) folgt, wenn wir noch die trivialen Beziehungen
P < ¢;, p* < ¢* notieren:

Ist ® die Fundamentalgruppe einer M3, so bestehen zwischen den durch
® bestimmten Zahlen p,, q,, p*, q¢* die Beziechungen

P<¢*<p<q . (2)

Korollar: Ist die Fundamentalgruppe ® einer M? endlich, so ist G = 0 .
Denn aus der Endlichkeit von & folgt p, = 0, aus (2) also ¢* = 0.

26. Wir behaupten zweitens, indem wir die geméaB Nr. 21 zu jeder
Gruppe ® gehorige Gruppe I heranziehen:

Ist & die Fundamentalgruppe einer M3, so ist ®; /Mg nicht eine von 0
verschiedene, zyklische Gruppe.

Beweis: Nehmen wir an, fiir die Fundamentalgruppe ® von M3 sei
(53 /M zyklisch und nicht 0 . Dann ist nach Nr. 21 auch B2/ zyklisch
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und nicht 0; es gibt also einen solchen zweidimensionalen, nicht mini-
malen Zyklus Z,, daB sich jeder zweidimensionale Zyklus U als Summe
U = U, + mZ, darstellen 1aBt, wobei U, minimal ist. Da Z, nicht minimal
ist, gibt es einen zweidimensionalen Zyklus U mit U - Z, 5 0; schreiben
wir U in der soeben angegebenen Form, so folgt, da U, minimal ist:
U-Z,=mZ,-Z, # 0. Dies ist unmoglich, da fiir (» — 1)-dimensionale
Zyklen Z,, Z, in einer M" immer Z, - Z, = — Z,+ Z,, also Z, - Z, = 0 ist.

2%7. Die Fundamentalgruppe ® von M3 sei Abelsch. Nach (2) und nach
Nr. 13¢, Formel (4), ist dann

—1
ql (QI2 ) < pl < Q1 . (3)

Man iiberzeugt sich ohne Miihe davon, dall die einzigen Paare von
ganzen, nicht negativen Zahlen (q,, p,), welche (3) erfiillen, abgesehen
von dem trivialen Fall ¢, = p, = 0, die folgenden sind: ¢, = 1, p, = 0;
“w=1m=1; =2, p=1; ¢.=2, p,=2; ¢,=3, p,=3.
Nach Nr. 22b, Satz 4§, folgt aus ¢, = 2, p, > 1, daBl B2/M? zyklisch
und nicht 0, also nach Nr. 21, daB auch & /Mg zyklisch und nicht 0
ist; nach Nr. 26 ist dies fiir eine M3 unmoglich; es bleiben fiir ¢, und p,
also nur folgende Moglichkeiten iibrig:

¢:=1,p<1; ¢=p=3.

¢, =1 bedeutet: ® ist zyklisch, und zwar endlich oder unendlich, jenach-
dem p, = 0 oder p, = 1 ist; ¢, = p, = 3 bedeutet: & ist direktes Pro-
dukt von drei unendlich-zyklischen Gruppen. Diese Gruppen treten
wirklich als Fundamentalgruppen auf, namlich fiir die Linsenrdume, fiir
das topologische Produkt von Kreis und Kugel und fiir das topologische
Produkt von drei Kreisen. Damit ist bewiesen:

Die einzigen Abelschen Fundamentalgruppen geschlossener, orientier-
barer, dreidimensionaler Mannigfaltigkeiten sind die zyklischen Gruppen
und das direkte Produkt von drei unendlich-zyklischen Gruppen.

Das ist ein Satz von Reidemeister. 3%)

3¢) 1. c.4). Es ist bemerkenswert, dal auch bei Reidemeister die Fialle ¢, =2, p,=>1,
besonders behandelt wérden miissen; ob ein innerer Zusammenhang zwischen den beiden
Methoden besteht, ist mir nicht klar.

304



28. Aus Nr. 23 und Nr. 26 ergibt sich — in analoger Weise, wie wir
soeben die Fille mit ¢, = 2 ausgeschaltet haben — folgender Satz:

Die Gruppe ® werde von Elementen E,,. .., E,, erzeugt, zuischen denen
etne einzige Relatton R(E,,. .., E,)=1 besteht ; das Element r= R(e,,..., ¢,,)
der von den freien Erzeugenden ey, ..., e, erzeugten Gruppe & sei in G,

aber nicht in ©% enthalten. Dann kann & nicht Fundamentalgruppe einer
M? sein.

Die Voraussetzungen iiber & sind insbesondere erfiillt, wenn — man
vgl. Nr. 23 — ® mit der Fundamentalgruppe einer geschlossenen, orien-
tierbaren Fliache positiven Geschlechtes isomorph ist; diese Gruppen
treten also nicht als Fundamentalgruppen dreidimensionaler Mannig-
faltigkeiten auf.

Ich kenne iibrigens iiberhaupt kein Beispiel einer M3, deren Funda-
mentalgruppe derart erzeugbar ist, dal zwischen den Erzeugenden eine
einzige Relation R = 1 besteht, wobei r ¢ €y ist (abgesehen von dem
trivialen Fall r = 1).

29. Bezeichnen wir mit ®, die Faktorgruppe von &’ nach der Gruppe
der Elemente endlicher Ordnung in ', so ist, wenn @ die Fundamental-
gruppe von M3 ist, B2 = §,; auBerdem ist B2/S2 = G,;*. Da B2 eine
Abelsche Gruppe mit endlich vielen Erzeugenden ist, kann man aus den
Strukturen von B2 und von B?/S? die Struktur von S? bestimmen,
z. B. durch Berechnung des Ranges und der Rénge mod. m fiir m > 2.
Daher gilt folgender Satz:

In einer M3 ist die Struktur der Qruppe S2, also der Gruppe der Homo-
logieklassen, die Kugelbilder enthalten, durch die Fundamentalgruppe &
bestimmt.

Speziell ergibt sich:

M3 ist dann und nur dann homologie-asphdrisch (Nr. 12b), wenn

6 = 6, (4)
1st.

Die Isomorphie (4) ist also insbesondere eine notwendige Bedingung
dafiir, daB eine Gruppe ® als Fundamentalgruppe einer M? auftreten
kann, deren universeller Uberlagerungsraum der euklidische Raum ist;
denn jede solche M3 ist sogar homotopie-asphérisch.

Die folgende Frage erscheint mir interessant : Kann man aus den Eigen-
schaften der Fundamentalgruppe auch erkennen, ob eine M3 homotopie-
asphérisch ist?
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ANHANG

Algebraische Einfiihrung der Gruppen-Produkte

Den Hilfssatz in Nr. 19, der die Definition der Produkte [s-«] und
{s - t} ermoglicht, haben wir dort unter Benutzung topologischer Hilfs-
mittel bewiesen, die nicht elementar sind. Hier soll ein rein algebraischer
Beweis gefiihrt werden; dabei wird sich noch zeigen, daBl die friihere
Formulierung des Hilfssatzes unnotig eng war und daB daher die beiden
Produkte einen groferen Definitionsbereich haben als den, der friiher
angegeben wurde.

a) & sei eine freie Gruppe, {e,} ein freies Erzeugendensystem von ;
die Machtigkeit dieses Systems ist gleichgiiltig. Fiir jedes = ¢  bezeichne
8,(z) die Anzahl der Faktoren e,, vermindert um die Anzahl der Faktoren
e;! in einer Darstellung von z als Produkt von Erzeugenden e}'; da die
e; ein freies Erzeugenden-System bilden, ist s,(x) eindeutig bestimmt.

X1y Yise - Tp» Y, seien Elemente von §; sie seien als Produkte von
Erzeugenden ef' dargestellt; die dabei vorkommenden e; seien etwa
€;,...,¢,; die von e,,...,e, erzeugte Untergruppe von § heile §F_;
sie ist eine freie Gruppe, und die e, ,. . ., e, sind freie Erzeugende von {, .

Die Kommutator-Worte C seien wie in Nr. 2 erklart.

Wir behaupten: Setzt man

%‘ [8:(22) - 84(yn) — 8:(a) - 8u(®r)] = yir » (1)
80 18t
C@ye.oryp) = HC(e;, e mod. G ; (@)
<<k

dabei ist (Z%q die zweite Kommutatorgruppe von §,; da (qu / (i%q Abelsch

ist, kommt es auf die Reihenfolge der Faktoren des Produktes in (2)
nicht an.

Der Beweis dieser Behauptung ergibt sich durch eine einfache Rech-
nung, indem man x,,..., y, als Produkte der ef,..., eX! schreibt und
dann die — in jeder Gruppe ® giiltigen — Regeln

C(a” b) = O(b: a)—l ’
 Ola-b,c) =Cla,c): O, c), Cla,b-c) =C(a,b) Cla, c) mod. €%

anwendet, von denen die erste trivial ist und die beiden letzten durch
eine kleine Rechnung verifiziert werden konnen?®?).

) Cf. Witt, 1. ¢.8%), § 4; (dio dortigen G sind unsere €%7) .
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b) Wir behaupten weiter: Ist C(z,,...,y,) =1, so stnd alle y,,=0.

Beweis: Da jedes Element ¢ von (Et;,q in der Form ¢ = C(z,,..., ¥,)

mit x,, y, € §, geschrieben werden kann, sieht man aus (2), daB die

q(g—1)
2
mit 1 < ¢ < k < g enthalten, die Gruppe (E(«,q / (5230 erzeugen ; diese Gruppe
ist nach einem Satz von Witt?®®) eine freie Abelsche Gruppe vom Range
q(g—1)
2
Folglich sind die Exponenten y,, in (2) nicht nur durch das System

(4. .+, Yn), sondern sogar durch das Element C(z,,..., y,) eindeutig
bestimmt. Daraus folgt: wenn C(z,,..., y,) € (Z%q ist, so sind alle y,, = 0.
Hierin ist die Richtigkeit der obigen Behauptung enthalten.

Restklassen von Q:%q mod. ¢3 .’ welche die Elemente C(e;,, ¢,)

; daber bilden die genannten Restklassen eine Basis in ihr.

c) & sei vorlaufig eine beliebige Gruppe, frei oder nicht; wie im §1

verstehen wir unter I'y die Menge aller Systeme (x,, y;,..., Z,, ¥,)
mit ,, ¥, € & ; geméaB Nr. 3 sind in I’y Addition und Bildung des Inversen

erklart. Ist ¢ = (2,,...,y,), so schreiben wir statt C(z,,..., y,) kurz
C(¢) . Fiir beliebige ¢, v ist
Clp £ y) = C(p) - Cy)** . (3)

&’ sei wieder die Gruppe §/Cg , und fiir jedes x ¢ § sei 2’ das Element
von §’, zu dem z gehort; wir schreiben ' additiv. Ferner betrachten
wir Charaktere f von §&’, also homomorphe Abbildungen von '’ in die
additive Gruppe der ganzen Zahlen.

Fiir beliebiges ¢ = (z,,. . ., ¥,) € 'y und fiir einen beliebigen Charakter
f von &’ definieren wir das Produkt [f- ¢] als

[F- o] = Z[{(w) s — f () wa] - (4)
[/ @] ist also ein Element von §’. Die Produktbildung ist distributiv:

[f-loexw)]=1[f el [f v]; (8)

sie ist iibrigens auch distributiv in bezug auf f .
Von jetzt an sei § wieder eine freie Gruppe; die durch (z,,..., y,)

38) ], ¢.22); auf unseren Beweis in Nr. 13 b diirfen wir uns nicht berufen, de der obige
»Anhang"‘ einen rein algebraischen Charakter haben soll.
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bestimmten Zahlen y,, sind wie in a) erklirt. Wir behaupten: Ist
@ = (T4,...,Yn), 80 18t

[/ - ] = X v fler) ¢ - (6)
Beweis: Aus der Definition von s,(z) folgt
vy =X (@) e;, Yp=28(¥) e .

Setzt man dies auf der rechten Seite von (4) ein, so erhilt man auf Grund
von (1) die behauptete Gleichung (6).

Aus (6) und aus b) folgt: Ist C(¢) =1, soist [f-@]=0 fir alle
Charaktere f von &' .

Aus diesem Satz, aus (5) und aus (3) ergibt sich:

Ist & eine freie Gruppe, und sind @, y Elemente von I'y mit C(¢) = C(yp),
so 8t [f - @] = [f - v] far alle Charaktere f .

d) ® sei eine Gruppe, auf welche die freie Gruppe § durch einen
Homomorphismus F abgebildet ist. F' vermittelt Abbildungen von I'y
auf I'y und von &’ auf G', die wir ebenfalls F nennen: fiir
@ = (%y1,..., Y,) € Iy ist F(p)=(F(x,),...,F(y,)), und fiir jedes x e F
ist F(z') = (F(x))’ ; ferner ordnet F' jedem Charakter s von G’ einen
Charakter f von &’ zu, nimlich den Charakter f = sF, der fiir das
Element 2’ von ' denselben Wert hat wie s fiir das Element F(x') .
Mit Hilfe der Definition (4) bestatigt man die Regel

F([sF - p]) = [s- F(9)] (7)

fiir jedes ¢ € I'y und jeden Charakter s von G'.

K habe dieselbe Bedeutung wie in Nr. 4 und 5; K ist also die Menge
derjenigen « € I'g, zu denen es solche ¢ e I'y gibt, dal F(¢) = « und
C(p) € €4(R) ist, wobei R den Kern des Homomorphismus F bezeichnet.
Wir behaupten:

Ist x ¢ Ky, 80 ist [s-«] = 0 fir alle Charaktere s von G’.

Beweis: Es sei « ¢ K, also o = F(¢), O(¢) e €x(R); dann ist C(¢p) =
IIC(,, y,), wobei fiir jedes 2 wenigstens eines der Elemente z,, ¥, in
R enthalten ist; wir setzen (z,, ¥,,...) = y; dann ist C(p) = C(y), also
nach ¢) [f: @] = [f- y] fiir jeden Charakter f von §’'. Nun folgt mit
Hilfe von (7) fiir jeden Charakter s von &’ :

[s-a] =[s-F(p)] = F([sF - ¢]) = F([sF - 9]) = [s- F(yp)]
= X [s(Y}) X, —s(X,) Y;]
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wobei wir F(z,) = X,, F(y,) = Y, gesetzt haben. Da nun fiir jedes A
wenigstens eines der Elemente z,, y, in R, also wenigstens eines der
Elemente X,, ¥, die Eins von G, also wenigstens eines der Elemente
X;, Y, die Null von G’ ist, ist in der Tat [s-a]= 0.

Aus dem hiermit bewiesenen Satz und aus (5) folgt:
Ist &y — oy e Ky, 80 ist [8+ oy ] = [8* oxy] fiir alle s .

e) Die in Nr. 5 erklarte Gruppe ®* ist eine Restklassengruppe von
I'i, und ihr Kern ist K, . Daher ist dann und nur dann &, — «, € K,
wenn &, und &, demselben Element « von G* angehoren. Mithin enthalt
der soeben bewiesene Satz den Hilfssatz aus Nr. 19.

Wir haben aber in zwei Richtungen mehr bewiesen als diesen Hilfs-
satz. Erstens ist « jetzt ein beliebiges Element von G*, wihrend friiher
auBerdem C(x) = 1 fiir « e x, also x €« ®; sein muBte. Zweitens haben
wir frither vorausgesetzt, da ® von endlich vielen Elementen mit end-
lich vielen Relationen erzeugbar sei, wihrend jetzt & ganz beliebig sein
kann, da jede Gruppe & homomorphes Bild einer freien Gruppe, im
allgemeinen einer solchen mit unendlich vielen Erzeugenden, ist. Auf
Grund dieser Verallgemeinerungen sieht man: Die Gruppen-Produlkte
[s: ] und {s-t} sind fur belicbige Gruppen & und beliebige « e G*,
8, te Ch® ' definiert; und zwar ist [s-«] € &', {s-1} e Ch G*.

Weitere Verallgemeinerungen erhialt man in naheliegender Weise,
wenn man auller den ganzzahligen Charakteren auch Charaktere modu-
lo m mit m > 2 oder noch allgemeinere Charaktere von &’ betrachtet.

(Eingegangen den 12. September 1941.)
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