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Fundamentalgruppe
und zweite Bettische Gruppe
Von Heinz Hopf, Zurich

Einleitung
Es ist bekannt, dafi die erste Bettische Gruppe 931 eines Komplexes K

durch die Fundamentalgruppe © von K bestimmt ist : sie ist die Faktor-
gruppe von © nach der Kommutatorgruppe1). In dieser Arbeit wird
der EinfluB von © auf die zweite Bettische Gruppe 232 untersucht.

a) 932 ist, wie man schon an trivialen Beispielen sehen kann, nicht
durch © bestimmt ; es wird aber folgendes festgestellt : Jeder Gruppe ©
ist durch einen bestimmten algebraischen Prozefl eine Abelsche Gruppe ©*
zugeordnet, die im allgemeinen nicht die Nullgruppe2) ist; wenn © die
Fundamentalgruppe eines Komplexes K und wenn S2 die Untergruppe
von 932 ist, die aus denjenigen Homologieklassen besteht, welche stetige
Bilder von Kugelfldchen enthalten, so ist

Die zweite Bettische Gruppe besitzt also ©* als homomorphes Bild,
und sie kann daher, wenn die Fundamentalgruppe © gegeben ist, ,,nicht
zu klein" sein. Ist z. B. © eine freie Abelsche Gruppe vom Range p,
so erweist sich ©* als freie Abelsche Gruppe vom Range —- ; fur

einen Komplex mit dieser Fundamentalgruppe © ist mithin die zweite
tvy irp ]\Bettische Zahl mindestens gleich —-

Die ,,untere Schranke" ©f fur die mit © als Fundamentalgruppe ver-
trâglichen zweiten Bettischen Gruppen kann nicht verbessert werden;
zu jeder Gruppe © (mit endlich vielen Erzeugenden und endlich vielen
Relationen) gibt es nâmlich einen Komplex K, der die Fundamentalgruppe

© besitzt und in dem jedes Kugelbild homolog 0, also S2 0 ist;
dann ist 332 ^ ©*

Die allgemeine Théorie dieser Zusammenhânge wird im § 2 dargestellt ;

*) Seifert-ThrelfaU, Lehrbuch der Topologie (Leipzig und Berlin 1934), § 48. —
Statt ,,Homologiegruppe" (1. c.) sage ich ,,Bettische Gruppe".

a) Die Nullgruppe, oft kurz mit 0 bezeiehnet, ist die Gruppe, die nur ein Elément
enthàlt.
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der § 3 enthâlt spezielle Folgerungen und Beispiele. Im § 1, der rein
gruppentheoretischen Inhalt hat, wird die Grappe ©* eingefuhrt.

b) Der § 4 handelt von dem EinfluB der Fundamentalgruppe auf die
Schnitt-Eigenschaften der Zyklen in einer w-dimensionalen (geschlossenen
und orientierbaren) Mannigfaltigkeit Mn. Es stellt sich heraus: Dièse
Eigenschaften, soweit es sich um Schnitte zwischen je einem (n — \)-dimen-
sionalen und einem zweidimensionalen Zyhlus, sowie um Schnitte zwischen

je zwei (n — l)-dimensionalen Zyklen handelt, sind rein algebraisch durch
die Fundamentalgruppe bestimmt.

Zum Beispiel ergibt sich: wenn © eine freie Grappe ist, so sind die
genannten Schnitte sâmtlich homolog 0; wenn © eine Abelsche Grappe
ist, so ist der Schnitt zweier (n — l)-dimensionaler Zyklen nur dann
homolog 0, wenn die beiden Zyklen linear abhângig im Sinne der Homo-
logien sind.

Die Beschrânkung auf Mannigfaltigkeiten ist ûbrigens nicht nôtig;
zieht man nâmlich die neuere Produkt-Theorie in Komplexen heran3),
so bleiben die angedeuteten Sâtze gùltig, wenn man die Schnitte zwischen
(n — l)-dimensionalen und zweidimensionalen Zyklen durch die Cech-
Whitneyschen Produkte zwischen eindimensionalen Kozyklen und
zweidimensionalen Zyklen sowie die Schnitte zwischen zwei (n — l)-dimen-
sionalen Zyklen durch die Kolmogoroff-AlexanderschenProdukte zwischen
zwei eindimensionalen Kozyklen ersetzt; die Produkte selbst sind im
ersten Fall eindimensionale Zyklen, im zweiten Fall zweidimensionale
Kozyklen (aus diesen Formulierungen sieht man ûbrigens, daB es berech-

tigt ist, auch die oben genannten Schnitte, bei denen (n — l)-dimen-
sionale Zyklen auftreten, zu den Eigenschaften eindimensionaler und
zweidimensionaler Gebilde zu rechnen).

c) Falls eine dreidimensionale Mannigfaltigkeit M3 vorliegt, so kommt
zu den Beziehungen zwischen © und S2, die in den §§2 und 4 fest-
gestellt werden, noch die durch den Poincaréschen Dualitâtssatz aus-
gedruckte Beziehung sowie, fur die Schnitt-Eigenschaften, die Gleichheit
tt —- 1 2 hinzu. Dièse verschiedenartigen Beziehungen sind im allge-
meinen nicht miteinander vertràglich, und daher sind die Gruppen ©,
die als Fundamentalgruppen dreidimensionaler Mannigfaltigkeiten
auftreten, starken Einschrânkungen unterworfen. Derartige Bedingungen
sind in dem kurzen § 5 zusammengestellt. Als Anwendung ergibt sich

3) Zusammenfassende Darstellung: H, Whitney, On products in a complex, Armais
of Math. 39 (1938), 397—432.
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ein neuer Beweis fur den Satz von Reidemeister : Die einzigen Abelschen
Gruppen, welche als Fundamentalgruppen dreidimensionaler Mannig-
faltigkeiten auftreten, sind die zyklischen Gruppen und das direkte
Produkt von drei unendlich-zyklischen Gruppen.4)

d) Sowohl fur den Aufbau der allgemeinen Théorie als aueh fur die
Behandlung von Beispielen sind gruppentheoretische Ûberlegungen not-
wendig, die mir auch vom gruppentheoretischen Standpunkt aus nicht
uninteressant zu sein scheinen. Besonders wichtig ist die Bildung von
,,hôheren Kommutatorgruppen", die in der neueren Gruppentheorie eine
Rolle spielen5): ist 9$ eine Untergruppe der Gruppe $, so verstehe man
unter (£5(9t) die Gruppe, welche von allen Kommutatoren x r x~x r~x

erzeugt wird, fur die x e $, r € 5R ist; speziell ist (£^(5) (£% die Kom-
mutatorgruppe und (£g((£5) (£| die zweite Kommutatorgruppe von Qf •

Die Struktur der Gruppe ©* die in unserem unter a) genannten Haupt-
satz auftritt, ist folgendermafien zu bestimmen: wenn © homomorphes
Bild einer freien Gruppe 5 un<l wenn 5R der Kern dièses Homomorphismus
ist6) — ein solcher Homamorphismus liegt immer vor, wenn © durch
Erzeugende und Relationen gegeben ist —, so ist

Eine Grundlage fur unsere Untersuchungen ist der gruppentheoretische
Satz, daB die durch dièse Formel gegebene Gruppe ©f nicht von der
speziellen Darstellung der Gruppe © als Bild von 5 > sondern nur von
© selbst, also nicht von g und 91, sondern nur von der Faktorgruppe
3f/3l abhângt.

Das folgende Beispiel zeigt, von welcher Art die gruppentheoretisch-
topologischen Zusammenhânge sind, mit denen man es zu tun hat.
© sei durch Erzeugende Ex, Em gegeben, zwischen denen eine ein-
zige Relation R(E1, jE7w) 1 besteht; man betrachte das Elément
r R(e1, em) der von freien Erzeugenden et, em erzeugten
freien Gruppe § ; es gelten die folgenden beiden Sàtze : (I) Dann und nur
dann gibt es einen Komplex K, dessen Fundamentalgruppe © und
dessen zweite Bettische Gruppe 0 ist, wenn r nicht in (£^ enthalten oder

4) K. Beidemeister, Kommutative Fundamentalgruppen, Monatshefte f. Math.
u. Ph. 43 (1936), 20—28.

5) Zur Orientierung ûber die bei uns auftretenden Begriffe aus der Gruppentheorie:
W. Magnus, Allgemeine Gruppentheorie (Enzyklopâdie d. math. Wiss. I 1, 9;
Leipzig-Berlin 1939), Nr. 4 (besonders p. 17) und Nr. 14.

6) Der ,,Kern" eines Homomorphismus ist das Urbild des Eins-Elémentes der Bild-
gruppe.
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wenn r 1 ist. — (II) Mn sei eine Mannigfaltigkeit mit der Fundamental-
gruppe © ; dann und nur dann gibt es in Mn zwei (n — l)-dimensionale
Zyklen, deren Schnitt nicht homolog 0 ist, wenn r in (£s, aber nicht
in (£5 enthalten ist.

e) Nachdem man ziemlich befriedigende Sâtze uber den EinfluB der
Fundamentalgruppe auf die zweite Bettische Grappe gewonnen hat,
wird man fragen, ob àhnliches nicht auch fur die hôheren Bettischen
Gruppen môglich sei. Die oben erwàhnte Rolle, welche die Kugelbilder
spielen, gibt einen Fingerzeig, in welcher Richtung man derartige Ver-
allgemeinerungen zu suchen haben wird : der Begriff des Kugelbildes ist
der Grundbegriff der Homotopie-Theorie von Hurewicz, und auch die
ubrigen Begriffe und Beziehungen, die im § 2 auftreten — insbesondere
der Begriff des ,,Homotopie-Randes" eines zweidimensionalen Komplexes
—, scheinen mir in den Ideenkreis von Hurewicz zu gehôren7); ûbrigens
ergeben sich auch einige direkte Berûhrungen mit Resultaten dieser
Théorie (Nr. 12 b, e). Ich halte es daher fur wahrscheinlich, daB
die in der vorliegenden Arbeit festgestellten Beziehungen zwischen ©
einerseits, 232 und S2 andererseits in allgemeineren, uns noch unbekannten
Beziehungen enthalten sind, die zwischen den ersten k Homotopie-
gruppen einerseits, der (k + l)-ten Bettischen und der (k + l)-ten
Homotopiegruppe andererseits bestehen. Jedenfalls lassen sich der
erwàhnte Begriff des Homotopie-Randes und seine Haupt-Eigenschaften
auf hôhere Dimensionszahlen ubertragen ; wichtig fur derartige Verallge-
meinerungen dlirfte der Zusammenhang zwischen der Fundamentalgruppe

und den hôheren Homotopiegruppen sein, auf den Eilenberg
aufmerksam gemacht hat8).

Wenn man dagegen die Homotopiegruppen nicht heranzieht, sondern
ausschlieBHch die Fundamentalgruppe und die Bettischen Gruppen —

also die klassischen Invarianten von Poincaré — untersucht und in diesem
Rahmen die Frage nach den gegenseitigen Beziehungen zwischen diesen

Gruppen stellt, so ist hierauf zu antworten, da6 dièse Beziehungen sich
auf die Dimensionszahlen 1 und 2 beschrànken ; wenn nâmlich ©, 233,

2$n willkûrlich vorgegebene Gruppen sind — mit endlich vielen
Erzeugenden und Relationen, die 93r Abelsch —, so gibt es, wie man
leicht sieht, immer einen Komplex K mit der Fundamentalgruppe ©

7) W. Hureuricz, Beitràge zur Topologie der Deformationen, Proc. Akad.
Amsterdam: (I) vol. 38 (1935), 112—119; (II) vol. 38 (1935), 521—528; (III) vol. 39

(1936), 117—126; (IV) vol. 39 (1936), 215—224.
8) 8. Eilenberg, On the relation between the fundamental group of a space

and the higher homotopy groups, Fundamenta Math. 32 (1939), 167—175.
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und den Bettischen Gruppen 93r.9) In diesem Sinne sind also Verallge-
meinerungen unserer Sâtze nicht môglich.

§ 1. Eine Gruppen-Konstruktion

1. Wir beginnen mit der Zusammenstellung einiger bekannter Tat-
sachen. F sei eine Menge von Elementen oc, /9, Jedem geordneten
Paar (oc, /J) sei eine ,,Summe" oc + p c F, jedem oc sei ein ,,Inverses"
— oc e F zugeordnet; statt /?+(— oc) schreiben wir auch /? — oc. Dann
verstehen wir unter einer ,,Restklassengrappe" von F folgendes:

F ist in zueinander fremde Klassen ~ôc, /?, zerlegt ; zwischen diesen
ist eine Addition erklârt, durch welche die Gesamtheit der Klassen zu
einer Grappe wird; dièse Addition ist mit der Addition in F auf folgende
naturliche Weise verknupft:

aus oc € oc, (} e p folgt oc + /? e oc + /? ;

aus oc e oc folgt — oc e — oc.

Jede Restklassengruppe lâBt sich folgendermaBen erzeugen. F wird
durch eine Abbildung q homomorph auf eine Grappe Q abgebildet,
d. h. so, daB 10)

q(oc + p) q(oc) - q(P) q(-oc) q(oc)-* (l')

ist; die Restklassen sind die Urbildmengen der einzelnen Elemente von
JQ ; die Summe oc+ff zweier Restklassen ist durch die Vorschrift q{ôcJr~P)

q(oc) • q(P) bestimmt ; so entsteht eine mit JQ isomorphe Restklassengruppe

von F.
Unter dem ,,Kern" einer Restklassengruppe verstehen wir diejenige

Restklasse, welche das Null-Element der Grappe darstellt; oder in der
Sprache der Homomorphismen : diejenige Klasse, welche durch q auf
die Eins von JQ abgebildet wird.

Mit Hilfe von (1) oder von (1/) bestàtigt man leicht folgende Tatsache:
Zwei Elemente oc, (S von F sind dann und nur dann in derselben Rest-

9) Andeutung: Es gibt einen Komplex mit der Fundamentalgruppe (5 (Seifert-Threl-
fait, 1. o.1), 180, Aufgabe 3); der Komplex K' seiner zweidimensionalen Simplexe hat auch
die Fundamentalgruppe © ; es gibt ferner einen Komplex K" mit der Fundamentalgruppe

0 und den Bettischen Gruppen 233, ...,$Bn {Alexandroff-Hopf, Topologie I
(Berlin 1935), 266, Nr. 9); man fûge K' und K" in einem Punkt aneinander.

10) Im allgemeinen schreiben wir beliebige Gruppen multiplikativ, Abelsche Gruppen
oft additiv; daû wir T additiv schreiben, obwohl die Summenbildung i. a. nicht kommu-
tativ ist, wird sich im ,,Anhang" rechtfertigen (im Hinblick auf das distributive Gesetz
der dort behandelten Produktbildung).
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klasse, wenn das Elément /? — oc in dem Kern enthalten ist. Hieraus
folgt:

Zwei Restklassengruppen von F sind miteinander identisch (nicht nur
isomorph), wenn ihre Kerne identisch sind.

2. % sei eine beliebige Gruppe, U ein Normalteiler von 91 Mit
bezeichnen wir die von allen Elementen a u a,-1 u~x mit a e % u € U
erzeugte Gruppe; sie ist, wie man leicht sieht, Normalteiler von % und
in U enthalten. Beim Rechnen mit Kongruenzen mod. d^(U) — d. h.
beim Rechnen in der Faktorgruppe tK/G^U) — ist jedes Elément von
U mit jedem Elément von % vertauschbar.

Fur beliebige Gruppenelemente xt, yx, x2, y2, xn, yn definieren
wir das ,,Wort" G durch

C(x1,...,yn) x1.y1.xî1'yî1-x2> y~\ - x^y^x'1 y'1 (2)

Dann gilt folgende Regel: sind al5 61?..., an, bn und a{, b[,..., a!n, b'n

Elemente von SU mit
a'% a% b[~ bt mod. U (3)

so ist
C(aï ,...,b'n)= C(at bn) mod ^(lt) (4)

Denn (3) bedeutet : a[ at • ut, b[ bt • vt mit ut c M, ^ e U ; setzt
man dies in C ein und beachtet die oben erwahnte Vertauschbarkeits-
Eigenschaft sowie die besondere Gestalt (2) von C', so erhalt man (4).

Die Gruppe £^(31) ist die Kommutatorgruppe von % ; wir nennen sie
kurz &%

3. Nach diesen Vorbemerkungen kommen wir zu der Konstruktion,
die das Ziel dièses Paragraphen ist. © sei eine beliebige Gruppe. Unter
F® verstehen wir die Menge aller geordneten Système (Xt, Yt,...,
Xn, Yn) mit Xt e ©, Yt e © und beliebigem n Fur zwei Système oc

und es soll — oc Yn, Xn,..., F1, Xi) sein.

Wir konstruieren nach einer speziellen Méthode Restklassengruppen
von F®. Es sei A eine homomorphe Abbildung einer Gruppe % auf ©
der Kern6) von A heifie U Wir nehmen ein Elément oc (Xx,..., Yn)

von /"^ und ordnen seinen Komponenten X1,..., Fw Elemente at, 6t

von 31 so zu, daB A(at) Xti A(bt) Y% ist; dièse at und bt sind nicht
eindeutig bestimmt; aber ihre Restklassen modulo U sind eindeutig
bestimmt; daher ist nach Nr. 2 die Restklasse modulo (£gl(U), welcher
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das Elément C(al9...9 bn) angehôrt, eindeutig bestimmt; dièse Rest-
klasse nennen wir qA(oc) Man verifiziert leicht, daB qA eine homomorphe
Abbildung (im Sinne von Nr. 1) von F® auf die Faktorgruppe G^/G^lt)
ist. Der Homomorphismus qA erzeugt eine Restklassengruppe von F^
(Nr. 1); dièse heiBe ©^ ; es ist

Der Kern des Homomorphismus qA, also die Klasse derjenigen oc

(Xl9..., Yn), zu denen es Elemente at, bt von % mit

A(at) X, A(bt) 7, Cfo,..., 6J c £9l(U)

gibt, heiBe JÇ^

4. Jetzt sei g eine freie Gruppe und F ein Homomorphismus von 5
auf (5 ; der Kern von F heiBe 9Î Dann ist gemàB der soeben bespro-
chenen Konstruktion eine Restklassengruppe (5F von F® gegeben; der
Kern der zugehôrigen Abbildung qF heiBe KF Daneben betrachten wir
weiter wie in Nr. 3 einen Homomorphismus A einer beliebigen Gruppe 21

auf dieselbe Gruppe © — Wir behaupten :1Oa)

KF<zKA (5)

Beweis: {el9 e2J...} sei ein freies Erzeugenden-System von 5 • Zu jedem
et gibt es in 31 Elemente, die durch A auf das Elément F(et) abgebildet
sind; unter diesen Elementen von 21 wàhlen wir je eines aus und nennen
es H(e{) ; da die et ein freies Erzeugenden-System bilden, gibt es einen

Homomorphismus H von % m.tyL, der den Elementen et die Elemente
H(et) zuordnet. Nach Définition von H ist AH(et) F{et) ; dann ist auch

AH(x) F(x) fur aile x e g (6)

Hiernach ist speziell AH(3i) F(9l) 1, also

c U (7)
Aus (7) folgt

c Œ,(U) (8)

Nun sei a (Xl9.. .,rj € iiCp ; dann gibt es solche Elemente xi9 yt
in g, daB

Yi9 (9)

Das Zeichen c bedeute immer : ,,echter oder unechter Teil von".
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(10)

ist. Wir setzen H(x{) au H{yi) b{. Dann folgt aus (6) und (9)

A(a{) X, A(b{) Y,. (11)

Da H ein Homomorphismus ist, ist

hieraus, aus (10) und (8) folgt

C(a1,...,bn)€<Z9i(U). (12)

(11) und (12) bedeuten: oc € KA Somit gilt (5)

5. Jetzt seien F, F' Homomorphismen zweier freier Gruppen Qf» g'
auf © Nach Nr. 4 ist KF c KF, und KF, c KF also KF KF,
Dann sind nach der Bemerkung am SchluB von Nr. 1 die Gruppen (&F

und (5F, miteinander identisch; mit anderen Worten: die Gruppe ©^
ist von F unabhângig, wenn nur 5 eme freie Gruppe ist.

Jede Gruppe © ist homomorphes Bild freier Gruppen; man erhàlt
einen solchen Homomorphismus, wenn man die Elemente eines beliebigen
Erzeugenden-Systems von © zugleich als freie Erzeugende einer freien
Gruppe auffaBt. Daher ist fur jede Gruppe © die Gruppe ©^ erklârt ;

um die Unabhàngigkeit von F zu betonen, setzen wir ©^ ©* Wir
fassen die Konstruktions-Vorschrift fur ©* noch einmal zusammen:

Die Gruppe © sei gegeben. F® sei die Menge aller Système (Xx, Yx,...,
Xn, Yn) mit X4 e ©, Yi c © ; in F® sind ,,Summe" und ,,Inverses" gemafl
Nr. 3 erklârt. F sei ein Homomorphismus einer freien Gruppe 5 auf © ;

der Kern von F heifïe 91 ; die Gruppen (£^ und (£5(9t) sind in Nr. 2 defi-
niert. Den Komponenten Xt-, Yt jedes Elementes oc (X±,..., Yn) von
Fm ordnen wir Elemente x{, yt von 2f zu, fur welche Fi^x^ Xi,F(yi)
Yt ist ; dann ist die Bestklasse von g modulo (£5(9t), welche das Kommu-
tatorelement C(x1 ,,,.,|/fl) enthalt, durch oc eindeutig bestimmt; sie heifie
qF(oc). qF ist ein Homomorphismus von F& auf die Faktorgruppe (£^/(£ft(9l) ;

die von diesem Homomorphismus erzeugte Bestklassengruppe von F^ ist
©* Sie ist unabhângig von F

Es ist

«•SŒg/ïjf») (13)
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Als Korollar ergibt sich: Sind g, $' frète Gruppen, 9t, 9t' Normalteiler
von ihnen, und ist

so ist auch

Œj/ŒçWS^/ŒytWO (15)

Denn ist © die durch jede der beiden Seiten von (14) erklârte abstrakte
Grappe, so ist jede der beiden Seiten von (15) mit der zugehôrigen Grappe
©* isomorph.

6. Fur unsere spâteren Zwecke ist eine bestimmte Untergruppe ©*
von ©* wichtig, die wir jetzt erklâren werden.

Zu jedem Elément oc (X1}..., Yn) von Fe gehôrt ein Elément
C(X1,..., Yn) von (£(g, das wir C(oc) nennen. Mit oc,... bezeichnen wir
die Restklassen von F$ welche die Elemente von ®* sind.

F sei wieder ein Homomorphismus wie in Nr. 5. Da G^(9t) c 91 ist,
wird durch F jeder Restklasse von g modulo (£5(9l) ein bestimmtes
Elément von © zugeordnet; daher ist fur jedes oc ein bestimmtes Elément
FqF(oc) erklârt; aus der Définition von qF und der Homomorphie-Eigen-
schaft von F folgt leicht :

FqF(oc) C(oc) (16)

Hieraus ist ersichtlich: Sind <x9<xf in derselben Klasse oc enthalten,
ist also qF(oc) qF(ocf) so ist C(oc) C(oc!) Man kann daher statt
C(oc) auch G(oc) schreiben. Unter F$ verstehen wir die Menge der oc, fur
die C(oc) 1 unter ©* die Menge der oc, fur die C(oc) 1 ist. Aus (16)
sieht man, da8 die Bedingung C(oc) 1 gleichbedeutend damit ist, dafi
qF(oc) c 91 ist; hierbei ist qF(oc) eine der Restklassen, in die (£^ modulo

dg(9l) zerfâllt; (eine beliebige dieser Restklassen ist, da (£^(9t) c 91 ist,
entweder fremd zu 91 oder in 91 enthalten). Die in 91 enthaltenen qF(oc)

bilden die Untergruppe (9t fi <£8)/<Es(9t) von <Z9l<£d(9l); da dièse qF(oc)

den zu ©f gehôrigen oc entsprechen, ist ©* eine, mit der genannten
Untergruppe isomorphe, Untergruppe von ©*. — Wir fassen zusammen:

©f ist die Untergruppe der Restklassengruppe © *, die aus denjenigen
Restklassen oc besteht, fur deren Elemente oc (Xj,..., Yn) die Kommuta-
toren C(oc) C{Xl9..., Yn) 1 sind.

©f ist daher ebenso me ©* vollstandig durch © bestimmt (unabhàngig
von dent dis Hilfsmittel benutzten Homomorphismus F).

Man kann ©f auch so charakterisieren : Der durch C(<x) 1 bestimmte
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Teil F$ von F& wird durch qF homomorph auf die Gruppe (SR fl (£&)/
abgebildet ; (gf ist die hierdurch erzeugte Bestklassengruppe von F$
Es ist

ffi? S (*n <£*)/<£*(»)

In Analogie zu (15) erhâlt man das Korollar: Unter der Voraussetzung
g%t

(» n <£5)/<s;g(9t) s (»' n <£g,)/<£».(*'> • (18)

Aus (17) ist ubrigens ersichtlich, daB ©* eine Abelsche Gruppe ist;
denn die Kommutatorgruppe von 91 n £g ist in der Kommutatorgruppe
von SR, also auch in deren Obergruppe Œ^(SR) enthalten.

Wir bemerken noch folgendes: durch die oben eingefûhrte Funktion
C(ôc) wird (g* homomorph auf (£$ abgebildet, und ©f ist der Kern dièses

Homomorphismus ; daher ist

*S^. (19)

Damit brechen wir die gruppentheoretischen Betrachtungen ab; sie
werden in Nr. 19, wozu auch der ,,Anhang" gehôrt, fortgesetzt werden.

§ 2. Homotopie-Rânder, Kugelbilder und Fundamentalgruppe

7. Homotopie-Rânder. E sei ein zweidimensionales Elément, d. h. eine

abgeschlossene Kreisscheibe oder ein topologisches Bild einer solchen;
E sei orientiert; q sei die Randkurve von E, einmal im positiven Sinne
durchlaufen. K sei ein simplizialer Komplex, / eine simpliziale Abbildung
einer Simplizialzerlegung von E in den Komplex K Dann ist f(E) Y
ein zweidimensionaler algebraischer Komplex11) in K und f(g) x ein
geschlossener Kantenweg in K 12). Unter diesen Umstânden sagen wir:
,,r ist ein Hamotopie-Rand von Y."

Dieser Begriff des ,,simplizialen" Homotopie-Randes ist nur wenig
spezieller als der folgendermaBen erklàrte Begriff des ,,stetigen"
Homotopie-Randes. Mit Kr bezeichnen wir den Komplex der hôchstens r-
dimensionalen Simplexe von K ; die durch K, Kr bestimmten Polyeder
nennen wir X, ïr n). Wir betrachten nur solche stetige Abbildungen /
von E in K, daB ioa) _ _:K* (1)

n) Terminologie wie bei Alexandroff-Hopf, 1. c. 9).

la) Wegen des Begrifîes ,,geschlossener Weg" vgl. man die Bûcher von Seifert-Threl-
fall1), 14911, und Alexandroff-Hopf9), 332 ff. ; dieser BegrifE ist verschieden von dem Begriff
,,eindimensionaler Zyklus" (oder ,,eindimensionale geschlossene Kette").
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ist ; dann hat die Abbildung / von E in jedem zweidimensionalen orientier-
ten Simplex y4. von K einen bestimmten Grad ci9 und nur endlich viele
Ci sind nicht 0 ; wir definieren den algebraischen Komplex Y f(E)
durch Y Hc^i ; das Bild {(q) r ist ein stetiger geschlossener Weg
in K1 12). Wir nennen x einen (stetigen) Homotopie-Rand des algebraischen
Komplexes Y

8. Der Komplex K sei zusammenhângend ; er kann ùbrigens endlich
oder unendlich sein; die Komplexe Kr seien wie oben erklàrt. Ein Eck-
punkt 0 sei ausgezeichnet. ^ sei die Fundamentalgruppe von K1; wir
reprâsentieren ihre Elemente in bekannter Weise durch geschlossene Wege
in K1, deren Anfangs- und Endpunkte inO zusammenfallen. Ferner sei auf
dem Rande jedes Elementes E ein Punkt a ausgezeichnet ; wir betrachten
nur solche stetige Abbildungen / von2? in K, welche (1) erfûllen und fur
welche f(a) =0 ist ; dann reprâsentieren die Randbilder r /(#) Elemente
der Grappe 3f — Kleine deutsche Buchstaben sollen bis auf weiteres
immer geschlossene Wege in K durch den Punkt 0 bezeichnen.

Unter 91 verstehen wir die Menge derjenigen Elemente von 5 > welchen
geschlossene Wege in K1 entsprechen, die in K auf einen Punkt zusammen-
ziehbar sind ; dièse Wege sind dann bekanntlich bereits in ÎT2 auf einen
Punkt zusammenziehbar ; ebenso ist bekannt oder leicht zu sehen, dafi
91 Normalteiler von g ist. G bezeichne die Kommutatorgruppe von 5 ;

die von den Elementen x r x~l r~x mit x e g r * 91 erzeugte Gruppe
heiBe (£(9Î) ; daraus, da6 91 Normalteiler ist, folgt : G(9Î) c 9î.

Wir werden jetzt eine Reihe von Tatsachen zusammenstellen, die sich
auf den Zusammenhang beziehen, der durch die Bildung der (stetigen)
Homotopie-Rànder zwischen den algebraischen Komplexen Y in K2 und
der Fundamentalgruppe 3f von K1 sowie deren Untergruppen 91 und
(£(91) vermittelt wird.

' a) r ist dann und nur dann ein Homotopie-Rand, wenn das durch r
repràsentierte Elément r von g zu 91 gehôrt.

Denn die Tatsache, daB r Homotopie-Rand ist, ist gleichbedeutend
mit der Existenz einer Abbildung / eines Elementes E fur welche

f(E) c K2, /(#) r ist, wobei q wieder den Rand von E bezeichnet;
dieselbe Bedingung ist aber auch charakteristisch dafur, daB r in K2
auf einen Punkt zusammenziehbar ist, also, wie oben bemerkt, dafûr,
daB r € 91 ist.

b) Es sei rx e 91, x e g r2 x~x rx x ; ti, r2 seien Wege, welche

rx, r% reprâsentieren ; xx sei Homotopie-Rand von Y Dann ist auch r2

Homotopie-Rand von Y
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Beweis: Da r2 x~x rx x ist, sind xx und r2 einander ,,frei homotop"
auf Kl, d. h. ti làBt sich auf 1T1 stetig in r2 deformieren, ohne daB dabei
ein Punkt festgehalten zu werden braucht13). Es gibt daher eine solche

Abbildung /' eines von zwei Kreisen qx q2 begrenzten Kreisringes R
da8 /;(^i) rx, f'(Q2) t2, f'(R) c Z1 ist. Hierbei sei qx der innere
Randkreis von R ; da xx Homotopie-Rand von Y ist, gibt es eine solche

Abbildung fx der von qx begrenzten Kreisscheibe Ex, daB fx auf qx mit
ff ûbereinstimmt und daB fx(Ex) Y ist. fx und /' zusammen bilden eine
Abbildung /2 der von q2 begrenzten Kreisscheibe E2 ; da f2(R)=ff(R) c S11

ist, liefert das Bild von R keinen Beitrag zu dem algebraischen Komplex
f2(E2), und daher ist f2(E2) fx(Ex) Y ; da auBerdem /a(ga) /'(g2)
r2 ist, ist r2 Homotopie-Rand von F

Bemerkung : Von dem hiermit bewiesenen Satz ist besonders auch der
Spezialfall wichtig, in dem r2 rx ist.

c) y sei ein zweidimensionales orientiertes Simplex von K ; unter
einer ,,Schleife um y" verstehen wir einen geschlossenen Weg folgender
Art : man lâuft erst von 0 auf einem (in K1 gelegenen) Weg w bis in einen
Eckpunkt von y, dann durchlâuft man den Rand von y einmal im
positiven Sinne, schlieBlich làuft man auf w, in der entgegengesetzten
Richtung wie zuerst, nach 0 zurûck.

Behauptung : Jede Schleife um y ist Homotopie-Rand von y Den
Beweis fuhrt man leicht durch geeignete (z. B. simpliziale) Abbildung
eines Elementes auf die aus den Punkten von y und w bestehende

Punktmenge.

d) Ist x Homotopie-Rand von Y so ist der inverse Weg t"1 Homotopie-
Rand des Komplexes — Y ; sind Xi, r2 Homotopie-Rànder von Yx, Y2,
so ist der zusammengesetzte Weg xx * r2 Homotopie-Rand von Y= Yx + Y2.

Der Beweis des ersten Teiles ist klar. Um den zweiten Teil zu beweisen,
hefte man die beiden Elemente El9 E2, welche durch fx, /2 so abge-
bildet sind, daB fi{E4) Yi, /t(^t) x{ ist, in ihren Randpunkten
% > «2 y welche duxch ft, /2 auf 0 abgebildet sind, zusammen; auf diesen

Komplex Ex + E2 bilde man ein Elément E durch eine Abbildung f
so ab, daB Ex und E2 mit dem Grade 1 bedeckt werden, daB der Rand q

von E in den aus den beiden Ràndern zusammengesetzten Weg q± • q2

iibergeht, und daB ein vorgegebener Randpunkt a von E auf ax a2

abgebildet wird; fur die Abbildung / von E die entsteht, wenn man
erst /', dann fx und /2 ausfûhrt, ist f(E) Yx + Y2, f{ç) xx • r2.

1S) Seifert-Threlfall, § 49.
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e) Durch den soeben gefuhrten Beweis ist zugleich folgendes gezeigt
worden : wenn die Komplexe Yx, Y2 Bilder f1{E1), f2(E2) von Elementen
sind — mit den Nebenbedingungen /^e^) f2(a2) =0 — so ist auch
Y Yx + Y2 Bild /(2£) eines Elementes — mit der Nebenbedingung
f(a) 0 Ferner geht aus c) hervor, daB jedes Simplex y% von K2 Bild
eines Elementes ist — ebenfalls mit der Nebenbedingung, daB ein vor-
geschriebener Randpunkt des Elementes auf 0 abgebildet wird. Durch
Kombination dieser Tatsachen ergibt sich:

Jeder Komplex Y £clyl ist Bild eines Elementes E, und zwar so,
da/3 ein vorgeschriebener Randpunkt von E auf 0 abgebildet wird ; jeder
Komplex Y besitzt daher Homotopie-Bander, und zwar solche, welche

geschlossene Wege durch den Punkt 0 sind.

f) Jeder Weg x der ein Elément r der Gruppe K(5Î) rejyrâsentiert, ist
Homotopie-Band des Nullkomplexes Y 0

Beweis: Es sei r€(£(9t); dann ist r ~JJ{xt ri x^1 r^1)-1 mit rte3{,
xt € 5 Nach a) und b) gibt es zu jedem i einen Komplex Y\ so daB
sowohl die Wege, die zu dem Elément rt, als auch die Wege, die zu
dem Elément x% r% xjl gehôren, Homotopie-Rânder von Yt sind ; nach
dem ersten Teil von d) sind die zu rj1 gehôrigen Wege Homotopie-Rànder
von — Yt ; nach dem zweiten Teil von d) sind daher die zu xt rt x^1 r^1
gehôrigen Wege Homotopie-Rànder von Yt — Yt 0 ; und ebenfalls
nach d) sind daher auch die zu r gehôrigen Wege Homotopie-Rànder
des Komplexes 0

g) Der Weg x sei Homotopie-Band des Nullkomplexes, Dann ist das
durch x reprâsentierte Elément r von 5 in (£(91) enthalten.

Beweis: Es gibt eine Abbildung / von E mit f(E) 0 f(q) r,
f(a) 0 Beim Ûbergang zu einer simplizialen Approximation von /
àndert sich weder das durch f(g) reprâsentierte Elément von $, noch,
wie sich aus den Grundeigenschaften des Abbildungsgrades ergibt, der
algebraische Komplex f(E) ; auBerdem kann man dafûr sorgen, daB 0
das Bild von a bleibt. Daher kônnen wir / von vornherein als simplizial
annehmen.

Die Simplizialzerlegung von E die der simplizialen Abbildung /
zugrundeliegt, ist ein Komplex E2; mit E1 bezeichnen wir den Kanten-
komplex von E2 ; die Fundamentalgruppe von E1 heifie 0 ; wir repràsen-
tieren ihre Elemente durch geschlossene Wege durch den Eckpunkt a ;
die Kommutatorgruppe von 0 heiBe F. Die zweidimensionalen Sim-
plexe von E2 seien rj\ ; sie seien so orientiert, daB 2Jrj\ E das orien-
tierte Elément ist. Fur jedes X sei qx eine feste ,,Schleife" um rj\, die
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analog wie tinter c) definiert ist, mit dem Anfangs- und Endpunkt a
Der Randweg des orientierten Elementes E sei q

Die Wege g, qx reprâsentieren im Sinne der Homologietheorie Zyklen
q1, qfx des Komplexes E1; aus Hr\\ E folgt

q' Zq'x. (2)

Nun ist der Zusammenhang zwischen der Fundamentalgruppe und der
Gruppe der eindimensionalen Zyklen eines Komplexes E1 bekanntlich
derart, da8 man q', q[ als diejenigen Restklassen von 0 mod. F auf-
fassen kann, welche die durch g bzw. qx repràsentierten Elemente von
0 enthalten1). Daher ist (2) gleichbedeutend mit der Tatsache, daB der
Weg q sich folgendermaBen aus den Wegen qx und einem Weg y der
ein Elément von F repràsentiert, zusammensetzen làBt :

(3)

Durch Ausûbung der Abbildung / folgt aus (3)

r c-/7rA; (4)

hierin bezeichnet c einen Weg, der ein Elément c der Gruppe f(F)
repràsentiert, und es ist j(qx) Xx gesetzt; die durch r t;\ repràsentierten
Elemente von $ seien r, rx. Unsere Behauptung, daB r€(£(9î) sei,
kônnen wir auf Grand von (4) in zwei Teile zerlegen:

(6X) C€Œ(») ; (52) i7rAe£(9î).

Beweis von (5J: Da E ein Elément ist, ist jeder geschlossene Weg
des Komplexes E1 in E auf einen Punkt zusammenziehbar; daher ist
auch das durch / gelieferte Bild eines solchen Weges in K zusammenziehbar;

das bedeutet: f(0) c5R Folglich ist f(F) in der Kommutator-
gruppe von 9Î also erst recht in deren Obergruppe (£(91) enthalten.
Mithin gilt (5J.

Beweis von (52) : Das Bild f(rjx) eines Simplexes rjx von E2 ist entweder
0 oder ein Simplex ±2^ von K2 ; im ersten Fall wird der einmal durch-
laufene Rand von rjx auf einen Punkt oder auf eine hin und her durch-
laufene Strecke abgebildet, und daher ist das Bild Xx der Schleife qx
oflfenbar in K zusammenziehbar, also ist dann rx das Eins-Element
von 2f ; im zweiten Fall ist Xx eine Schleife um ±2^. • Wir lassen nun aus
dem Produkt Ilrx p die Faktoren rx weg, die gleich 1 sind; dann ist
p als Produkt von Elementen rx dargestellt, welche Schleifen Xx um die
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Simplexe ±yt entsprechen. Dabei treten fur jedes \yt\ ebensoviele positive

wie négative Schleifen auf ; denn deren Anzahlen sind gleich den
Anzahlen der positiven bzw. negativen Bedeckungen, die das Simplex yt
durch Bilder f(rj\) erleidet, und dièse beiden Anzahlen sind einander
gleich, da f(E) 0 ist.

Wir rechnen modulo der Grappe (£(9Î) ; dann durfen wir, da r^ <¦ 9t

ist, in dem Produkt p IIt\ je zwei Faktoren r\ miteinander vertauschen ;

daher ist
p npt mod. <£(9t)

i
wobei pt das Produkt derjenigen r^ bezeichnet, welche durch Schleife»
um ±yt reprasentiert werden. Die Behauptung (52) wird bewiesen sein,

wenn wir fur jedes einzelne i gezeigt haben, da8 pt e (£(5R) ist.
rx und r2 seien zwei Schleifen um yt ; dann ist x1=wluwï\ r2 w2uw2x,

wobei u den Randweg von y% und wx w2 zwei Wege von 0 nach dem-
selben Eckpunkt von yt bezeichnen14); dann ist r2 XXiX'1 wobei
X w2 wï1 ein geschlossener Weg durch 0 ist. Zwischen den durch

rx, r2 reprasentierten Elementen rx, r2 von (Ç besteht also eine Bezie-

hung r2 xrx x~x mit x € 2f ; hieraus sieht man, daB r2 rx mod. (£(91)

ist. Bezeichnet nun st ein Elément, das durch eine feste Schleife um y%

reprasentiert wird, so ist aus dem Vorstehenden ersichthch, daB jeder der
Faktoren r^ des Produktes p% entweder mit st oder mit s~* kongruent
mod. G(5R) ist ; es ist daher pt s* mod. CC(5R), wobei ct die Anzahl der
positiven Schleifen r^ um yt, vermindert um die Anzahl der negativen
Schleifen r^ um yt ist. Wir haben oben gesehen, daB ct 0 ist; folglich
st pt 1 mod. C(9Î). Damit ist (52) bewiesen.

h) t sei Homotopie-Rand von Y ; dann besteht die Oesamtheit aller
Homotopie-Bander von Y aus denjenigen Wegen xr, fur welche r' r
mod. (£($R) ist, wobei r r1 wieder die durch x xr repràsentierten Oruppen-
élemente bezeichnen.

Der Beweis ergibt sich leicht aus f), g) und d).

i) 8 sei eine Kugelflache, g eine stetige Abbildung von S in das Poly-
eder ~K2 ; dièse Abbildung hat in jedem Simplex yi von K2 einen bestimm-
ten Grad ct, und nur endlich viele ct sind nicht 0 ; den Komplex
Y=Eclyt nennen wir ein (stetiges) ,,Kugelbild" und setzen g{S) Y. Ist
g' eine simpliziale Approximation von g, so ergibt sich aus bekannten

14) Man darf annehmen, dafi die Eckpunkte ex, e2 von yt, ni denen wx und w2 enden,
zusammenfallen ; wenn dies zunachst nicht so ist, so verlangere man w2 zu euiem Weg
w* indem man auf dem Rande von yx un negativen Sinne von e2 bis ex lâuft, und ersetze

u>2 durch wf
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Eigenschaften der simplîzialen Approximationen und des Abbildungs-
grades, daB g'(8) g(8) ist; ein Komplex 7, der stetiges Kugelbild ist,
ist also auch ,,simpliziales" Kugelbild. Naturlieh sind aile Kugelbilder
Zyklen.

Ist Y Kugelbild, Y g(8), so gibt es auch eine solche Abbildung gx
einer Kugel 8X, daB Y g^S^ ist, und daB ein Punkt ax von 8X auf
0 abgebildet wird. Um gx zu konstruieren, befestige man eine Strecke s

mit einem Endpunkt q an S und erweitere g zu einer Abbildung gf von
s + S, indem man s auf einen Streckenzug in K abbildet, der 0 mit
g(q) verbindet ; ferner sei h eine Abbildung von #! auf s -\- 8 welche al
auf den freien Endpunkt von s die Halbkugel, deren Mittelpunkt ax
ist, auf s den Âquator, der die Halbkugel begrenzt, auf q und die andere

Halbkugel mit dem Grade 1 auf 8 abbildet ; dann leistet die Abbildung
g1== gfh das Gewunschte. Man erhalt also auch dann aile Kugelbilder
in K, wenn man nur solche Abbildungen einer Kugel 8X zulaBt, bei
denen ein Punkt ax auf 0 abgebildet wird ; die so erhaltenen Bilder Y
sind aber offenbar identisch mit denjenigen Bildern f(E) eines Elementes
E bei denen das Bild des Randes q nur aus dem Punkt 0 besteht. Dies
konnen wir auch so ausdrucken:

Die Kugelbilder in K sind diejenigen Komplexe Y, welche einen Homo-
topie-Band haben, der nur aus einem Punkt besteht.

Auf Grand von h) ist dièse Aussage gleichbedeutend mit der folgenden :

Y ist dann und nur dann Kugelbild, wenn die Homotopie-Bander von
Y die Elemente der Gruppe (£(91) reprdsentieren.

j) Jedem geschlossenen Weg x in K1 ist in bekannter Weise ein ein-
dimensionaler Zyklus X zugeordnet: fur jedes eindimensionale orien-
tierte Simplex st von K1 gebe die Zahl b% an, wie oft st im algebraischen
Sinne von x durchlaufen wird; mit anderen Worten: ist x f(g) q
eine Kreislinie, so ist bt der Grad der Abbildung / in st ; dann ist X=
Zbtst. Wir setzen X=B(x). Die Zuordnung B ist homomorph in dem
Sinne, daB B{xx • x2) JSfe) + B(x2), B(x-X) — B(x) ist. Bekanntlich
ist dann und nur dann B(x) 0, wenn das durch x reprasentierte
Elément von 3f in der Kommutatorgruppe C von gf enthalten ist. 1)

Hieraus und aus der Homomorphie-Eigenschaft folgt noch: dann und
nur dann ist JSfo) B(x2), wenn die durch xx, x2 reprasentierten
Elemente von g einander kongruent mod. G sind.

Fur zweidimensionale Komplexe Y, yt sollen Y, y% ihre Rànder im
Sinne der Homologietheorie bezeichnen. — Wir behaupten:

Ist x Homotopie-Band von Y, so ist B(x) Y
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Beweis: Sind x,Xr zwei Homotopie-Rànder von Y, so sind nach h)
die durch sie reprâsentierten Elemente r,rf einander kongruent mod.
(£($R) ; sie sind also, da (£(91) c (£ ist, einander auch kongruent mod. G ;

folglich ist, wie oben bemerkt, B{x) B(xf) Daher genugt es, die fur
aile Homotopie-Rânder von Y ausgesprochene Behauptung fur einen
speziellen Homotopie-Rand r von Y zu beweisen.

Es sei Y Zc^i, wobei yi wieder zweidimensionale Simplexe sind.
Pur jedes i sei rt- eine Schleife um yt ; aus e) und d) folgt, daB t IIxc{
ein Homotopie-Rand von Y ist. Fur die Schleifen rf folgt aus der
Définition von B unmittelbar, daB B(x{) yt ist; aus der Homomorphie-

Eigenschaft von B folgt JB(r) ZciB{xi) ; somit ist JB(r) ^lciyi Y
In dem hiermit bewiesenen Satz ist der folgende enthalten :

Y ist dann und nur dann Zyklus, wenn die Homotojpie-Bander von Y
Elemente der Gruppe (£ repràsentieren.

Denn daB Y Zyklus ist, ist gleichbedeutend mit : Y 0 ; und daB r
ein Elément von G reprâsentiert, ist gleichbedeutend mit: 2ï(r) 0

k) Wir fassen unsere bisherigen Ergebnisse zusammen. Auf Grand
von a), e) und h) ist jedem Komplex Y eine bestimmte Restklasse der
Grappe 91 modulo (£(9t) zugeordnet, nâmlich diejenige, deren Elemente
durch die Homotopie-Rânder von Y reprâsentiert werden; wir nennen
dièse Restklasse T( Y) Die Grappe der zweidimensionalen Komplexe Y
in K heiBe fi2 ; dann ist also T eine Abbildung von fi2 in die Grappe

; aus a) folgt, daB dies eine Abbildung auf die ganze Grappe
ist, und aus d), daB die Abbildung ein Homomorphismus ist.

Nehmen wir noch die Sàtze i) und j) hinzu, so erhalten wir folgenden
Satz:

Satz I. Fur jeden zweidimensionalen algebraischen Komplex Y in K
bilden diejenigen Elemente der Gruppe g welche durch die Homotopie-
Bânder von Y reprâsentiert werden, eine der Bestklassen, in welche die

Gruppe 31 modulo (£(5R) zerfâllt ; nennen wir dièse Restklasse T( Y) so

ist T eine homomorphe Abbildung der Gruppe fi2 aller Komplexe Y auf
die Faktorgruppe 5R/(£(5R) ; der Kern dièses Homomorphismus — also die

Urbildmenge der Eins der Bildgruppe — besteht aus denjenigen Y, welche

Kugelbilder sind. Die Zyklen sind unter den Komplexen Y dadurch aus-
gezeichnet, dafi die Elemente der Bestklassen T( Y) der Gruppe G angehoren ;
die Gruppe 32 der Zyklen wird also durch T auf die Faktorgruppe
(«fi <£)/<£(») abgebMet.

Dabei ist — um daran zu erinnern — : 5 die Fundamentalgruppe des

Kantenkomplexes K1 von K ; 5R die Untergruppe von g die durch die
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in K zusammenziehbaren Wege reprâsentiert wird; (£(9t) die von allen
Elementen x r x~x r~x mit x e 5 r * 5R erzeugte Gruppe; (£ die Kom-
mutatorgruppe von g

9. Die Oruppen 2?2/S2 und ffi* Die zweidimensionalen Zyklen des

Komplexes K bilden eine Untergruppe 32 von £2. Auch die Kugelbilder
bilden eine Gruppe; das kann man sowohl leicht direkt beweisen, als
auch dem Satz I entnehmen, da die Kugelbilder den Kern des Homo-
morphismus T bilden; dièse Gruppe heiBe S2. Sie ist Untergruppe
von 32- Diejenigen Zyklen, welche homolog 0 in K sind, bilden eine
Untergruppe £>2 von 32 î gie wird von den Ràndern der dreidimensionalen
Simplexe von K erzeugt, und dièse Simplexrànder sind natûrlich Kugelbilder;

folglich ist §2 c ®2. Die Bettische Gruppe S2, also die Gruppe
der Homologieklassen, ist als die Faktorgruppe 32/*02 definiert15). Daraus,
da8 £>2 c S2 ist, folgt, da8 eine Homologieklasse entweder zu G52 fremd
oder in S2 enthalten ist ; die in S2 enthaltenen Homologieklassen, also

diejenigen, deren Zyklen Kugelbilder sind, bilden die Untergruppe
g2 __ @2y^2 von 332 j)a QÎns Homologieklasse, die stetige Kugelbilder
enthâlt, auch simpliziale Kugelbilder enthàlt, ist es ùbrigens klar, daB
die Gruppe S2, ebenso wie SB2, eine topologische Invariante des Poly-
eders K ist.

Bei dem naturlichen Homomorphismus von 32 auf ^B2> der jedem
Zyklus die ihn enthaltende Homologieklasse zuordnet, ist S2 das Urbild
von S2 ; daher ist

32/S2^932/S2 (6)

Nach dem Satz I bildet T die Gruppe 32 homomorph auf die Gruppe
(9t f| C)/(£(9l) ab, und der Kern dièses Homomorphismus ist S2 ;

daher ist

^ (7)

Jetzt betrachten wir die Fundamentalgruppe © von K und die mit
ihr gemàB Nr. 6 verknûpfte Gruppe ©f Es liegt ein natiirlicher
Homomorphismus F von 2f auf © vor: jedem Elément x von g » ^ Wege-
klasse von K1 aufgefaBt, ist diejenige Wegeklasse X F(x) in K — also
ein Elément von © — zugeordnet, in welcher die Klasse x enthalten
ist. Der Kern dièses Homomorphismus F ist 9t. 5 ist als Fundamental-

18) Ber Koeffizientenbereich fur die Zyklen und Homologien ist in dieser Arbeit imnier
der Ring der ganzen Zahlen.
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grappe eines eindimensionalen Komplexes eine freie Gruppe16). Baher
ist nach Nr. 6 17)

<5?^(»n <£)/<£(») (8)

Mit (6), (7) und (8) haben wir das folgende Hauptresultat erhalten:

Satz II. Fur jedes zusammenhangende (endliche oder unendliche) Poly-
eder sind die Bettische Gruppe 932, die Gruppe S2 der Homologieklassen,
die Kugelbilder enthalten, und die Fundamentalgruppe © durch die Be-
ziehung

miteinander verknûpft ; dabei ist ©f die Gruppey die gemâfl Nr. 6 in alge-
braischer Weise durch die Gruppe © gegeben ist.

10. Der Satz II lâfit sich noch prâzisieren. Die in (9) stehenden Grup-
pen sind ja nicht nur als abstrakte Gruppen gegeben, sondern sie haben
fur den Komplex K — und sogar fur das Polyeder K — bestimmte
geometrische Bedeutungen : die Elemente von 932 und von S2 sind Homo-
logieklassen, die Elemente von ©* sind Klassen von Systemen von
Elementen der Fundamentalgruppe ©, und die Elemente von © werden
durch geschlossene Wege reprâsentiert. Es gibt nun zwischen den iso-
morphen Gruppen 932/ S2 und ©* auch eine isomorphe Abbildung, die
eine bestimmte geometrische Bedeutung hat; sie ergibt sich leicht aus
dem Satz I und dem § 1 ; sie soll ûbrigens ohne Bezugnahme auf die
Gruppe g charakterisiert werden.

Die Elemente der Fundamentalgruppe © von K nennen wir X{,
Yi9... ; wir reprâsentieren sie durch geschlossene Wege xi} t)t-,... in K1
mit gemeinsamem Anfangs- und Endpunkt 0 ; wie im § 1 sind die Système
oc (Il5 Y19..., Xn, Yn) die Elemente von /"$; das Kommutatorwort
G ist wie in Nr. 2 erklàrt. Die zweidimensionalen Zyklen in K2 nennen
wir Z

Wir definieren: Z wird von oc (Xl9..., Yn) ,,aufgespannt", wenn es

8olche Repràsentanten X1,...,X)n der Xl9...,Yn gibt, da/i der Weg

C(3ti,...,î)w) Homotopie-Rand von Z ist.

Die Prâzisierung des Satzes II lautet nun:
Satz Ha. Zu jedem ZyJclus Z gibt es Elemente oc, die ihn aufspannen9

und zwar bilden dièse oc eine der Klassen, welche die Elemente der Gruppe

u) K. Reidemeister, Einfûhrung in die kombinatorische Topologie (Braun-
schweig 1932), 107.

17) Es ist d (£5, (£(91) <Efc(9l).
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<5f sind. Jedes Elément oc aus einer Klasse, die Elément von (5* ist, spannt
gémisse Zyklen Z auf, und zwar bilden dièse Z eine der Restklassen von
32 modulo S2 ; oder, was auf Grund des natûrlichen Isomorphismus (6)
dasselbe ist: die Homologieiclassen dieser Z bilden eine der Restklassen

von S2 modulo S2. Die so zwischen Klassen von Elementen oc und Klassen
von Zyklen Z hergestellte Beziehung vermittelt einen Isomorphismus (9).

Beweis: F soll im folgenden der naturliche Homomorphismus der
Fundamentalgruppe 3f von K1 auf die Fundamentalgruppe © von K
sein, den wir schon in Nr. 9 erwàhnt haben und der die Eigenschaft hat :

wenn der Weg x das Elément x von g repràsentiert, so ist F(x) das durch
X repràsentierte Elément von © Die Abbildung qF hat dieselbe Bedeu-

tung wie in Nr. 5, T dieselbe Bedeutung wie im Satz I. Unter qF(oc)

und T(Z) sind also Restklassen der Gruppe 9Î n (£ modulo SR(d) zu ver-
stehen. — Wir behaupten : Dann und nur dann wird Z von oc aufgespannt,
wenn

qF{<x) T(Z) (10)
ist.

Um dies zu beweisen, nehmen wir zuerst an, daB (10) gelte, wobei
oc (Xx,..., Yn) sei; wir wàhlen die Elemente xx,..., yn von g so, daB

Ffa) =Xi, F(yi) Ti ist ; nach Définition von qF ist C{x1,..., yn) eqF{oc) ;

nach (10) ist also C(x1,..., yn) e T(Z) ; das bedeutet nach Satz I: sind
Xi9 X)i Reprâsentanten von xi9 yi9 ist also C(x1}..., t)J Repràsentant von
O(x1,..., yn), so ist C{xx,..., X)n) Homotopie-Rand von Z Infolge der
oben genannten Eigenschaft von F sind dieselben xt, t)* Reprâsentanten
der X{, Y{ ; folglich wird Z von oc aufgespannt.

Es werde zweitens Z von oc (Xlf..., Yn) aufgespannt; dann gibt
es also solche Reprâsentanten xif t)* von Xif Y{, daB Cfa,..., X)n)

Homotopie-Rand von Z ist; x{, yt seien die durch xiy t)* repràsentierten
Elemente von g ; dann ist nach Satz I C(x1,..., yn) e T(Z). Da x{, t)t-

auch die Elemente -F(#t), FiyJ repràsentieren, ist F(x{) X{, FiyJ
Yi ; nach Définition von qF ist daher C(x±,..., yn) e qF(oc) Da somit die
Klassen T(Z) und qF(oc) ein Elément gemeinsam haben, gilt (10).

Somit ist (10) in der Tat gleichbedeutend damit, daB Z von oc

aufgespannt wird. Hieraus ergeben sich leicht die Behauptungen des Satzes

lia. Erstens: Z sei gegeben; nach Satz I ist T(Z) eine Restklasse von
91 n G modulo (£(9t); nach Nr. 5 gibt es daher Elemente oc, fur die (10)

gilt, und dièse bilden eine Klasse, die Elément von © * ist ; nach Nr. 6

ist dies ein Elément von ©f Zweitens: oc sei gegeben und in einer
Klasse enthalten, die Elément von ©f ist ; dann ist qF(oc) nach Nr. 6
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eine Restklasse von 9t n Œ modulo (£(91) ; nach Satz I gibt es daher
Zyklen Z, fur die (10) gilt, und dièse bilden eine Restklasse von 32
modulo ©2. Dafi drittens die so zwischen den Elementen von ©f und
denen von 32/©2 hergestellte Beziehung ein Isomorphismus ist, ergibt
sich daraus, dafi dièse Gruppen durch qF bzw. T isomorph auf
(5R n (£)/<£(») abgebildet werden.

11. Die Fundamentalgruppe © eines Komplexes K ist gewôhnlich
durch erzeugende Elemente Ex, E2,... und Relationen R1(E1, E2,...

1 R2(EX, 2?2,...) 1 zwischen den E€ gegeben. Dièse Erzeu-

gung lâBt sich bekanntlich auch so deuten: Man betrachte gleichzeitig
eine freie Grappe g mit freien Erzeugenden ex, e2, die den EX,E2,...
eineindeutig zugeordnet sind; jedem 5,Wort" W(el9 e2,...) in den
Elementen et von 5 ordne man das durch dasselbe Wort dargestellte Elément
WiEj^, E2,... von © zu ; dièse Zuordnung ist ein Homomorphismus F
von g auf © und der Kern von F ist der von den Elementen R^, c2,...
erzeugte Normalteiler von 5 • Man kann also sagen, daB © gewôhnlich
durch einen solchen Homomorphismus gegeben ist ; dabei ist g natûrlich
im allgemeinen nicht wie bisher die Fundamentalgruppe von K1. Daher
ist, besonders auch fur die Behandlung von Beispielen, der folgende Satz
wichtig, der sich ohne weiteres aus dem Satz lia und dem § 1 ergibt:

Satz IIb. Es sei F ein Homomorphismus einer freien Gruppe g auf die

Fundamentalgruppe © von K ; der Kern von F heifie $R Dann ist

««/©¦^(«nŒ^/ŒçC») ; (11)

und zwar entsteht eine isomorphe Abbildung, wenn man erstens 232/S2

gemâfl Satz lia auf ©f abbildet und zweitens die durch qF vermittelte

isomorphe Beziehung zwischen ©* und (5R H (£5)/(E<y(9l) herstellt.

% 3. Folgerungen und Beispiele

12. Wir stellen hier einige Folgerungen aus dem Satz II zusammen.

a) Die, durch die Fundamentalgruppe © bestimmte, Gruppe ©f ist
homomorphes Bild der Bettischen Gruppe 932.

Bei gegebener Fundamentalgruppe © kann also 232 nicht ,,zu klein"
sein; insbesondere:

Wenn ©f ^ 0 ist, so ist auch SB2 ^ 0, der Komplex K ist dann also
nicht ,,azyklischu in der zweiten Dimension.
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b) Ein Komplex K heifie ,,homologie-asphârisch" (in der zweiten
Dimension), wenn in ihm jedes Kugelbild homolog 0 also wenn S2 0
ist. - Aus Satz II folgt:

Ist K homologie-aspharisch, so ist SB2 ©f
Ein Korollar ist folgender Satz : Zwei homologie-asphârische Komplexe

mit isomorphen Fundamentalgruppen haben isomorphe zweite Bettische
Ghruppen.

Dies steht in Zusammenhang mit einem Satz aus der Homotopie-
Theorie von Hurewicz. Ein Komplex K soll in der r-ten Dimension
f,homotopie-asphàriscli" heiBen, wenn jedes stetige Bild einer r-dimen-
sionalen Sphâre in K auf einen Punkt zusammenziehbar ist. Ein homo-
topie-asphârischer Komplex ist a fortiori homologie-asphârisch, denn ein
stetiges Sphârenbild, das zusammenziehbar ist, ist auch homolog 0 ;

andererseits ist es leicht, Komplexe anzugeben, die (in der zweiten Dimension)

homologie-asphârisch sind, ohne homotopie-asphârisch zu sein18).
Der betreffende Satz von Hurewicz lautet19): ,,Zwei in den Dimensionen
r 2,..., n homotopie-asphàrische Komplexe mit isomorphen
Fundamentalgruppen haben isomorphe n-te Bettische Gruppen." Der Spezial-
fall dièses Satzes mit n 2 ist in unserem obigen Korollar enthalten,
das insofern allgemeiner ist, als in ihm nur der homologie-asphârische
Charakter vorausgesetzt wird. Der fur beliebige n gûltige Satz von Hurewicz

weist auf die Richtung hin, in der man Verallgemeinerungen unserer
Théorie auf hôhere Dimensionen zu suchen hat. Die Frage, auf welche
Weise die Struktur der in dem Satz genannten n-ten Bettischen Grappe
cfurch die Fundamentalgruppe bestimmt sei, ist fur n 2 durch die
Angabe der Gruppe ©* beantwortet.

c) Bisher durfte der Komplex K endlich oder unendlich sein; jetzt
setzen wir seine Endlichkeit voraus ; dann lâBt sich der Satz b) umkehren:

Wenn K endlich und SB2 ©f ist, so ist K homologie-asphârisch. Denn
wenn K endlich ist, so ist S2 eine Abelsche Gruppe mit endlich vielen
Erzeugenden, und fur eine solche folgt aus der Isomorphie 932/S2 $82

leicht, daB S2 0 ist.
Die Sâtze b) und c) zeigen: bei endlichen Komplexen K kànn man den

Strukturen von © und SB2 ansehen, ob K homologie-asphârisch ist oder
nicht.

u) Beispiel: die ,,Summe" zweier Exemplare Tt, T2 des topologischen Produktes von
drei Kreisen, die man erhàlt, wenn man aus Tx und T% je eine Vollkugel ausbohrt und
dann die Randfiàchen zusammenheftet.

lf) 1. c.7), (IV), 221 (die dort formulierte Voraussetzung, daB die Kâume in allen
Dimensionen > 2 asphârisch seien, ist fur den Beweis offenbar unnôtig).
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d) In diesem Zusammenhang verdient der folgende Hilfssatz Interesse :

,,Ist © eine vorgegebene Gruppe mit endlich vielen Erzeugenden und
endlich vielen Relationen, so gibt es einen (endlichen) Komplex, der die
Fundamentalgruppe © hat und homologie-asphàrisch ist."

Ich deute den Beweis an: Es gibt zunâchst bekanntlich20) einen (end-
Kchen) Komplex K mit der Fundamentalgruppe © Seine Grappe S2
ist eine Abelsche Grappe mit endlich vielen Erzeugenden, also direkte
Summe von endlich vielen (endlichen oder unendlichen) zyklischen
Gruppen; zx,..., zm seien Zyklen aus den Homologieklassen, welche dièse

zyklischen direkten Summanden von <52 erzeugen; dièse zi sind simpli-
ziale Kugelbilder. Falls sie sogar topologische Kugelbilder und falls sie

ûberdies paarweise fremd zueinander sind, so erweitere man K durch
Anfugen von m dreidimensionalen Elementen Ex,..., Em, deren Rânder
man mit zlf..., zm identifiziert, zu einem Komplex K '; man iiberzeugt
sich leicht davon, daB auch Kr die Fundamentalgruppe © hat, und daB
die einzige Ânderung der zweiten Bettischen Gruppe, die beim Ûbergang
von K zu Kf eintritt, gerade darin besteht, daB die Kugelbilder homolog
0 werden; folglich hat K f die gewiinschten Eigenschaften. Falls die zi
nicht topologische, zueinander fremde Kugelbilder sind, so erweitere
man K zunâchst zu einem topologischen Produkt K X W, wobei W
ein dreidimensionaler Wurfel ist; dann ist © auch die Fundamentalgruppe

von Kx W und die zt bilden auch eine Basis der Gruppe S2

von K X W ; in K X W aber kann man durch eine kleine Verschiebung
der Eckpunkte der z€ dièse Kugelbilder in topologische und zueinander
fremde Kugelbilder verwandeln, ohne daB die z{ dabei ihre Basis-Eigen-
schaft verlieren; nunmehr verfahre man wie vorhin.

Aus diesem Hilfssatz und dem Satz b) folgt:
Ist © eine Gruppe mit endlich vielen Erzeugenden und endlich vielen

Relationen, so gibt es einen (endlichen) Komplex K mit der Fundamental-

gruppe © fiir den S2 ©f ist.

In a) wurde festgestellt, daB ©f in einem bestimmten Sinne eine

,,untere Schrankeu der mit © als Fundamentalgruppe vertrâglichen
zweiten Bettischen Gruppen ist; der soeben bewiesene Satz zeigt: ©f
ist die ,,genaue" untere Schranke dieser Grappen S2.

e) Aus Satz II folgt unmittelbar:
Dann und nur dann sind in K aile zweidimensionalm Zyklen Kugel-

bilder, wenn ©f 0 ist.

*°) Seifert-ThrelfaU, 180, Aufgabe 3.
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Zum Beispiel ist fur einfach zusammenliângende Komplexe, also wenn
(5 0 ist, ©f 0 ; in einfach zusammenhângenden Komplexen sind
also aile zweidimensionalen Zyklen Kugelbilder; dies ist auch in einem
allgemeineren und schârferen Satz von Hurewicz iiber einfach zusammen-
hângende Ràume enthalten21). Jedoch gibt es (Nr. 13, Nr. 14) auch viele
von 0 verschiedene Gruppen © mit ©* 0

Ferner gilt folgender Satz:

Zu einer gegebenen Gruppe © mit endlich viélen Erzeugenden und endlich
vielen Belationen gibt es dann und nur dann einen Komplex K, der die
Fundamentalgruppe © hat und in der zweiten Dimension azyklisch ist,
wenn ©f 0 ist.

Denn ist K ein Komplex mit den genannten Eigenschaften, so folgt
aus a), dafi ©f 0 ist; andererseits gibt es zu einer Gruppe ©, fur die
©* 0 ist, nach d) einen Komplex K mit der Fundamentalgruppe ©
und mit 23* 0

13. Beispiéle. Es handelt sich hauptsâchlich darum, zu gegebenen
speziellen Gruppen © die Strukturen der zugehôrigen Gruppen ©* zu
ermitteln. Hierfûr gibt es zwei Methoden; erstens die geometrische : man
gibt einen homologie-asphàrischen Komplex mit der Fundamentalgruppe
© an; seine zweite Bettische Gruppe hat nach Nr. 12 b dieselbe Struktur
wie ©f ; zweitens die algebraische Méthode: © sei durch Erzeugende
und Relationen gegeben, also (man vgl. Nr. 11) durch einen Homomor-
phismus F einer freien Gruppe 5 mit dem Kern 51 ; dann ist nach Nr. 6,

(17),
• (1)

aus dieser Formel leite man durch gruppentheoretische Ûberlegungen
Eigenschaften von ©* her.

a) Wenn © eine freie Gruppe ist, so ist ©* 0

Geometrischer Beweis: Zu einer freien Gruppe © (mit endlich oder
abzàhlbar unendlich vielen freien Erzeugenden) gibt es einen eindimen-
sionalen Komplex mit der Fundamentalgruppe © ; fur ihn ist 932 0 —

Algebraischer Beweis : Man kann g © 5R 0 annehmen ; nach Formel

(1) ist dann ©* 0.
Aus diesem Satz und Nr. 12 e folgt: In einem Komplex, dessenFundamentalgruppe

eine freie Gruppe ist, sind aile zweidimensionalen Zyklen
Kugelbilder.

«) l. c7), (il), Satz I.
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b) © sei eine freie Abelsche Gruppe mit p Erzeugenden; dann ist ©f
eine freie Abelsche Gruppe mit —-Erzeugenden, (Eine freie Abelsche

Gruppe mit n Erzeugenden ist — bei additiver Schreibweise — die direkte
Summe von n unendlichen zyklischen Gruppen.)

Beweis (geometrisch): Der Komplex K sei das topologische Produkt
von p Kreislinien ; seine Fundamentalgruppe ist die gegebene Gruppe © ;

er ist bekanntlich homotopie-asparisch (in allen Dimensionen ^2), also
erst recht homologie-aspharisch ; seine zweite Bettische Gruppe ist, wie
den bekannten Regeln zur Bildung der Bettischen Gruppen von Produkt-
komplexen aus denen der Faktoren zu entnehmen ist, die freie Abelsche

Gruppe mit o—— Erzeugenden.
Ai

Einen algebraischen Beweis werden wir hier nicht geben ; im Gegenteil,
die Formel (1) soll benutzt werden, um aus dem soeben geometrisch
bewiesenen Satz einen gruppentheoretischen Satz herzuleiten. Die
Gruppe © ist in naturlicher Weise als homomorphes Bild der freien
Gruppe g mit p Erzeugenden darzustellen; der Kern ist dabei 91 (£5;
daher ist 9t n £$ G5 und Œs(9l) &%(<£%) (£| ist die ,,zweite
Kommutatorgruppe" von g • Aus (1) folgt daher:

Bezeichnen (£^ und (£| die erste und die zweite Kommutatorgruppe der

freien Gruppe gf mit p Erzeugenden, so ist (Eg/(E| die freie Abelsche Gruppe

'- Erzeugenden 22)
2

Der geometrisch-gruppentheoretische Zusammenhang, den wir hier vor
uns haben, laBt sich mit Hilfe der Satze Ha und IIb noch prazisieren.
Die freien Erzeugenden von 5 seien xx,..., x9\ die ihnen entsprechenden
Erzeugenden der Abelschen Gruppe © seien Xx,..., Xp; mit xl9.. .,XP
bezeichnen wir geschlossene Wege in der Produkt-Mannigfaltigkeit K,
die die Xt reprasentieren, dièse xt kann man als die p Faktor-
Kreise von K auffassen. Aus den bekannten und leicht zu ubersehenden

Eigenschaften von K sieht man: es gibt eine zweidimensionale Homo-
logiebasis, die aus Zyklen Ztk mit 1 < i < k < p besteht, wobei die Zik
durch Torusflachen reprasentiert werden; und zwar besitzt Ztk den Weg
C(xt, xk) xt Xk X'1 Xk1 als Homotopie-Rand ; daher ist <x (Xi, Xk)
ein Elément von F& das Zlk aufspannt ; das dem Zyklus Zlk in der
Gruppe (91 n £S)/S5(9l) =(£5/(£| zugeordnete Elément qF(oc) ist daher
diejenige Restklasse von (£% modulo (£|, welche das Elément C(xti xk)

M) Das ist der einfachste Spezialfall eines Satzes von E. Witt: Treue Barstellung
Liescher Ringe, Oelles Journal 177 (1937)» 152—160, Satz IV.
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xi xh xïx x~ix enthâlt. Da die so zwischen SB2/®2 932 und ç§
hergestellte Beziehung ein Isomorphismus ist, und da die Zi1c eine Basis
in 232 darstellen, ergibt sich zu dem obigen gruppentheoretischen Satz
noch der folgende Zusatz :

Sind xlt..., x9 freie Erzeugende von gf, so bilden diejenigen ——

Restklassen von G^ modulo (£|, welche die Elemente xt xk xjx x^1 mit
1 < i < Je < p enthalten, eine Basis der Gruppe (£^/C£|

c) Jetzt sei © eine beliebige Abelsche Grappe mit endlich vielen
Erzeugenden. Wir schreiben sie additiv. Unter %m verstehen wir immer
eine zyklische Gruppe der Ordnung m wobei % eine unendliche zyklisehe
Grappe sein soll. (5 gestattet Darstellungen als direkte Summe

® «mi + 3CWl H h «mff (2)

Unter den môglichen Darstellungen (2) wâhlen wir eine aus. Es sei etwa

mi> 1 flir i < g — p mi= 0 fur i > q — p Wir betrachten einen
Komplex K der das topologische Produkt von p Kreislinien und von
q — p dreidimensionalen Linsenrâumen ist, deren zyklischen Fundamen-
talgruppen die Ordnungen ml9..., mq_p haben23). Dann ist © die Funda-
mentalgruppe von K Sowohl die Kreislinie als auch jeder Linsenraum
ist homotopie-asphârisch in der zweiten Dimension (fur die Linsenràume
folgt dies daraus, da6 sie von der dreidimensionalen Sphàre ùberlagert
werden24)) ; daher 24) ist auch K in der zweiten Dimension homotopie-
asphârisch, und folglich erst recht homologie-asphârisch. Nach Nr. 12 b
ist somit ©f mit der Gruppe S2 von K isomorph. SB2 lâBt sich nach
bekannten Regeln fur Produktkomplexe aus den nullten, ersten und
zweiten Bettischen Grappen der Faktoren bestimmen25) ; da die zweiten
Bettischen Grappen der Faktoren Nullgrappen und da die ersten
Bettischen Grappen die Grappen 31^ aus (2) sind, liefert die Anwendung
der erwâhnten Regeln die folgende Darstellung von 932 als direkte Summe :

hierin bezeichnet (mt., mk) den grôfiten gemeinsamen Teiler von m{ und

mk, wobei (0,0) 0 zu setzen ist; 9^ ist die Nullgruppe.

8S) Seifert-ThrelfaU, 210, 215.
**) 1. c.7), (I), Satz IV; (IV), 216.

«) Alexandroff-Hopf, 308, Fonnel (12).
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Damit ist folgendes bewiesen:

Besitzt die Abelsche Gruppe © die Darstellung (2), so ist

©* ^ Z %{mumk) (3)

© besitzt, wie jede Abelsche Gruppe mit endlich vielen Erzeugenden,
solche Darstellungen (2), daB die mt Teiler der mt+1 sind (wobei 0 als
Teiler von 0 gilt); durch dièse Bedingung sind die Zahlen mt und ins-
besondere aueh die Anzahl der direkten Summanden eindeutig bestimmt ;

dièse Anzahl heiBe q±, und die Anzahl der unendlichen unter den %mt

heiBe px. Wir setzen voraus, daB die rechte Seite von (2) eine solche

,,Normalform" sei. Dann ist, wenn mt und mfc beide ^ 0 sind, (mt} mk)
die kleinere der beiden Zahlen; ist eine von ihnen 0, so ist (mt> mk) die
andere (auch wenn dièse 0 ist) ; infolgedessen treten auch in (3) als Ord-

nungen der Summanden 31 keine anderen Zahlen auf als in (2); bei

geeigneter Anordnung der Summanden ist daher auch auf der rechten
Seite von (3) die Teilbarkeits-Bedingung fur die Ordnungen der 91 erfûllt,
und daher ist die rechte Seite von (3) die Normalform der Gruppe ffif
Ist hierbei die Anzahl aller Summanden q*, die Anzahl der unendlichen
unter ihnen p*, so ist

Jetzt sei K irgend ein (endlicher) Komplex mit der Fundamental-

gruppe © In der Normalform seiner zweiten Bettischen Gruppe 932

sei q2 die Anzahl der Summanden, p2 die Anzahl der unendlichen unter
ihnen. Nach Nr. 12 a ist ©f homomorphes Bild von 932 ; daraus folgt

q* < q2 P* < Vi - (5)

Die Gûltigkeit der zweiten dieser Ungleichungen ist ohne weiteres klar;
die erste ergibt sich daraus, daB einerseits jedes homomorphe Bild von
SB2 direkte Summe von hôchstens q2 Summanden ist, andererseits be-

kanntlich jede Darstellung von ©f als direkte Summe zyklischer Gruppen
aus mindestens g* Summanden besteht. Aus (4) und (5) ergibt sich der

folgende Satz, wobei wir noch beachten, daB pt und p% die erste bzw.
zweite Bettische Zahl von K ist:

Der endliche Komplex K habe eine Abelsche Fundamentalgruppe ©
Dann gilt fur die beiden ersten Bettischen Zahlen:
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bezeichnen ferner qx und q2 die Anzdhlen der direkten Summanden in den
Normalformen der beiden ersten Bettischen Gruppen 23* © und 232, so

gilt auch

*>> g'(V1} (7)

Aus (7) liest man noch folgendes Korollar ab: Wenn die Abelsche

Fundamentalgruppe nicht zyklisch (d. h. wenn qx > 1) ist, so ist 232 ^ 0

d) Mit derselben geometrischen Méthode, die wir in den Abschnitten
b) und c) angewandt haben, gelingt es auch fur manche andere Gruppen
© die Strukturen der zugehôrigen Gruppen ©f zu bestimmen; dies
gelingt nàmlich immer dann, wenn wir einen Komplex K finden, der die
Fundamentalgruppe © hat, der homologie-asphârisch ist, und dessen
zweite Bettische Grappe wir kennen. Ist z. B. © die Fundamentalgruppe
einer geschlossenen Flàche, welche nicht mit der Kugel homôomorph
ist, so ist die Flàche selbst ein solcher Komplex; daher ist ©f eine
unendliche zyklische Gruppe oder die Nullgruppe, je nachdem die Flàche
orientierbar oder nichtorientierbar ist. Hieraus ergibt sich unter anderem
folgender Satz:

Ein Komplex, der dieselbe Fundamentalgruppe hat wie eine geschlossene
orientierbare Flàche positiven Oeschlechtes, hat immer eine positive zweite
Bettische ZahL

In der nâchsten Nummer werden wir die Flâchengruppen als Spezial-
fâlle allgemeinerer Gruppen noch einmal algebraisch behandeln.

14. In dem nachfolgenden Beispiel, in dem wir Gruppen © unter-
suchen, die durch Erzeugende und Relationen gegeben sind, stellen wir
uns auf den Standpunkt, der in Nr. 11 auseinandergesetzt worden ist;
wir deuten also die Erzeugung der Gruppe zugleich als homomorphe
Abbildung einer freien Gruppe 5 auf © Eine Relation R(E1,..., Em) 1

zwischen den Erzeugenden Ei von © soll ,,wesentlich" heiBen, wenn das
Elément R(e1,..., em) der von den freien Erzeugenden e{ erzeugten
freien Gruppe Qf nicht das Eins-Element ist. -— Wir behaupten:

© sei durch endlich viele Erzeugende Ex,..., Em gegeben, zwischen denen
eine einzige wesentliche Relation R(Ely..., Em) 1 besteht. Faits das
Elément r B(el9..., em) der von den freien Erzeugenden e4 erzeugten
freien Gruppe g nicht Kommutator-Element ist, so ist © * 0 ; faits r
Kommutator-Element von Qf ist9 so ist © * eine unendliche zyklische Gruppe.
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Beweis : Der von r erzeugte Normalteiler 9î von % der der Kern des

Homomorphismus F von g auf © ist, besteht aus allen Elementen
rf IliyJ1 r y,)±x mit y$ € g Rechnet man modulo (£^(91), so darf
man r mit jedem y^ vertauschen ; daher Ià8t sich jedes Elément rf von
9t in der Form

r' rn-c mit c € (E5(9l) (8)
darstellen.

Es sei nun erstens r nicht in der Kommutatorgruppe (E*y enthalten;
da die Faktorgruppe 3f/(£g eine freie Abelsche Gruppe (von m Erzeu-
genden) ist, also kein Elément endlicher Ordnung auBer dem Eins-
Element enthàlt, ist dann auch keine Potenz rn mit n ^ 0 in (£^ enthalten ;

da (£&(9Î) c G^ ist, ist daher aus (8) zu sehen, daB nur diejenigen Ele-
mente rr von 91 in (Eg enthalten sind, fiir die in (8) n 0 ist, die also
Elemente von 2^(91) sind. Somit ist 9î n £% c: (£^(9Î) ; andererseits ist
immer G^(9Î) c 5R n £% ; es ist also 91 n &% ŒÇ(SR), und aus (1) folgt :

®f 0

Es sei zweitens r € G^ ; dann ist 9î c (£^ also 91 n C$ 91, also
nach (1): ©f 9î/(£$(9î) ; hieraus und aus (8) ist ersichtlich, daB unsere
Behauptung, ©f sei unendlich-zyklisch, gleichbedeutend mit folgender
Behauptung ist : Fur n =£ 0 ist rn nicht e S^(9Î) Die Richtigkeit dieser

Behauptung wiederum ist, da in ihr r ^ 1 ist, eine Folge des nachste-
henden Hilfssatzes :

r sei ein Elément der freien Gruppe 5 mit endlich vielen Erzeugenden,
9î der von r erzeugte Normalteiler von 3f, und es gebe ein solches n ^ 0

daB
rn € <Eç(») (9)

ist. Dann ist r 1

Fur den Beweis des Hilfssatzes ziehen wir die hôheren Kommutator-
Gruppen (f| von g heran, die rekursiv durch G^ gr, G|+1 G5(C|)
erklàrt sind, und wir benutzen folgende beiden Eigenschaften der (£| : (oc)

die Faktorgruppen (£|/(£|+1 sind freie Abelsche Gruppen mit endlich
vielen Erzeugenden26) ; (p) der Durchschnitt aller (£| besteht nur aus
dem Eins-Element27).

Unsere Behauptung r 1 ist nach (/?) bewiesen, sobald fur jedes h
gezeigt ist, daB

r«Œ| (10)

ist. Fur le 0 ist (10) trivialerweise richtig; (10) sei fiir ein gewisses k
bewiesen; dann ist 91 c (£|, 6^(91) c (£|+1, also nach (9): rn€(£;|+1;

¦•) Tfitt, 1. c.M).
17) Tfi«, 1. c, Satz 12; sowie W. Magnus, Math. Annalen 111 (1935), 259—280, speziell

269.
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hieraus, aus (10) und ans (oc) folgt: r € (£|+1. Folglich gilt (10) fur aile k
w.z.b.w.

Aus dem hiermit bewiesenen Satz und aus den Sâtzen von Nr. 12

ergeben sich jetzt die folgenden Tatsaehen fur die Komplexe K, deren
Fundamentalgruppen © von endlich vielen Elementen E1,..., Em erzeugt
werden, zwischen denen eine einzige (wesentliche) Relation B(E1}..., Em)

1 besteht:

Falls das Elément r iJ(el3..., em) der von den et erzeugten freien
Gruppe g nicht Kommutator-Element ist, sind aile zweidimensionalen
Zylden Kugelbilder ; in diesem Faile gibt es auch Komplexe mit der Funda-
mentalgruppe © die in der zweiten Dimension azyklisch sind. Falls dagegen

r Kommutator-Element ist, sind immer Zyklen vorhanden, die nicht Kugelbilder

sind, und die zweite Bettische Zahl ist nicht 0

In diesem zweiten Fall ist die Gruppe 932/S2 unendlich-zyklisch ; ihr
erzeugendes Elément làBt sich leicht angeben; denn aus dem obigen
Beweis geht hervor, daB die mit ©* und daher auch mit SB2/®2 isomorphe
Gruppe 3Î n Œ$/(£ç(9t) durch diejenige Restklasse von 5R D G5 modulo
(£g(5R) erzeugt wird, welche r enthàlt; daher folgt aus Satz IIb :

Um — imFaïle r € (£^ — das erzeugende Elément der unendlich-zyklischen
Gruppe 332/S2 zu bestimmen, nehme man solche Elemente xx,..., yn von
5 daji C(x1,..., yn) r ist, und einen Zyklus Z von K, der von (Xx,..., Yn)
aufgespannt wird, wobei Xx,..., Yn die Elemente von © sind, die den

xi î • • • 9 Vn entsprechen ; dann erzeugt die Restklasse von 232 modulo S2,
die die Homologieklasse von Z enthàlt, die Gruppe S2/®2 —

"Dbrigens lassen sich die beiden hier unterschiedenen Fâlle — r nicht
€ (£^ und r e (£ç — auch durch das Verhalten der ersten Bettischen Zahl
charakterisieren : im ersten Fall ist sie m — 1 im zweiten Fall m Dies
erkennt man, wenn man beachtet, daB ein System von Erzeugenden und
definierenden Relationen fur die Fundamentalgruppe dadurch in ein
solches System fur die erste Bettische Gruppe ûbergeht, daB man die
Erzeugenden als miteinander vertauschbar auffaBt.

§ 4. Fundamentalgruppe und Schnitt-Produkte in Mannigfaltigkeiten

15. Vorbemerkungen. a) Mn sei eine w-dimensionale, geschlossene,
orientierte Mannigfaltigkeit. Fur je zwei Homologieklassen U und Z der
Dimensionen r und r1 in Mn ist in bekannter Weise das Schnittprodukt
U • Z erklârt ; es ist eine Homologieklasse der Dimension r + rf — n ;

ist r + r' < n, so ist es gleich 0 zu setzen. Das Produkt erfûllt die
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distributiven Gesetze und das assoziative Gesetz ; auBerdem ist
Z • U (— 1) <n~r) <n-r/) U • Z

Wir werden, wenn es sich um Homologien handelt, in den Bezeich-

nungen oft keinen Unterschied zwischen Zyklen und ihren Homologie-
klassen machen. Wenn U und Z Zyklen sind, so bezeichnet U • Z einen
beliebigen Zyklus aus der Homologieklasse, die das Produkt der Homolo-
gieklassen von U und von Z ist.

b) Wenn r -f- rf n ist, so ist U • Z ~sP wobei s eine Zahl und P
ein durch einen einfachen Punkt reprâsentierter nulldimensionaler
Zyklus ist. s ist die ,,Schnittzahl" von U und Z

Ist dabei einer der beiden Faktoren U, Z ein Torsions-Elément, so
ist s 0 ; denn ist z. B. U Torsions-Elément, d. h. gibt es eine Zahl
m 7^ 0, so daB m U ~ 0 ist, so ist ms 0 also s 0

c) Unter einem ,,Charakter" einer Abelschen Gruppe § soll eine
homomorphe Abbildung von § in die additive Gruppe der ganzen Zahlen
verstanden werden. Die Charaktere von § bilden in bekannter Weise
eine Gruppe; wir nennen sie (£ï) § Sie ist, wenn § von endlich vielen
Elementen erzeugt wird, eine freie Abelsche Gruppe, deren Rang gleich
dem Rang von § ist. 28)

d) Die r-te Bettische Gruppe von Mn heiBe 58r die r-te Torsionsgruppe
Zr; unter 93J verstehen wir die Restklassengruppe fôr/Zr; sie ist eine
freie Abelsche Gruppe, deren Rang die r-te Bettische Zahl ist. Fiir U € 3?r

sei immer Uo das Elément von 2?J mit U e Uo
Bezeichnen wir fiir U € 23n~r, Z e 23r die Schnittzahl von U und Z

mit sv(Z), so ist sv ein Charakter von 23r Die Zuordnung U ^-su ist
eine homomorphe Abbildung h von 23w~r in (£lj 2îr5 die — nach dem Poin-
caré-Veblenschen Dualitâtssatz — die folgenden beiden Eigenschaften
hat: 1. Zu jedem Charakter s von 93r gibt es ein solches U e SB"-11, daB

s — sv ist; 2. dann und nur dann ist sv(Z) 0 fur aile Z € 23r, wenn
U e %n~r ist. Aus diesen Eigenschaften folgt leicht : h bewirkt eine
isomorphe Abbildung von 2îJ~r auf (£ï) SBr Diesen Isomorphismus nennen
wir / ; er ist folgendermaBen charakterisiert : es ist IU0 su fur
U € UQ ; es ist also

/93rf C^93r (0)

Da Œ&SB^»; îst, folgt aus (0) JBJ"r=»5, also der Hauptteil des

Poincaréschen Dualitâtssatzes. tïbrigens ist (£f) SBr (£ï) 95J da jeder
Charakter fur die Elemente endlicher Ordnung von SBr den Wert 0 hat.

") Cf. Ahxandroff-Hvpf, 586ff.
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e) Die Fundamentalgruppe von Mn sei © ; ihre Elemente seien in
bestimmter Weise als Wegeklassen in Mn realisiert. Fur jedes X e ©
sei X ' diejenige Restklasse von © modulo der Kommutatorgruppe Of^

welche X enthàlt ; die X ' bilden die Gruppe ©! ®/(S<g FaBt man die
X ' als Klassen geschlossener Wege auf, so sind sie bekanntlich als iden-
tisch mit den eindimensionalen Homologieklassen in Mn zu betrachten;
in diesem Sinne ist also 29)

©'^SB1. (1)

f) Wir vereinigen (1) mit (0) fur r 1 Da in Mn keine (n — 1)-
dimensionale Torsion vorhanden ist, ist SBo"1 SB*1""1, Uo U zu
setzen; ferner setzen wir I~x I2 ; dann ist I2 ein Isomorphismus
von (£ï) ©' auf SB*1"1, der fur jedes U e SB1*-1 durch I2sv U gegeben

ist ; es ist also
I^ffi^®-1. (2)

g) Zu der Fundamentalgruppe © gehôrt nach § 1 eine bestimmte
Gruppe ©* deren Elemente gewisse Klassen ôc von Systemen oc

(Xi,..., Yn) sind, wobei Xx,..., Yh Elemente von © sind und
C(Xl9...Yh) 1 ist. Die Untergruppe S2 von 932 ist in Nr. 9 erklàrt
worden; fur jedes Z e 332 verstehen wir unter Z das Elément der Rest-
klassengruppe SB2/S2, zu dem Z gehôrt. Nach Satz Ha gibt es einen
Isomorphismus 73 von ©f auf 232/S2, der folgendermaBen charakteri-
siert ist: es ist I3<x — Z wenn die Z eZ von den oc € oc aufgespannt
werden ; es ist also

/,©? 5B2/S2 • (3)

h) Diejenigen W e SBn~2, welche die Eigenschaft haben, daB W • Z 0

fur aile Z e Q2, also fur aile Kugelbilder, ist, bilden eine Untergruppe
2Bn~2 von 33n~2 ; nach b) ist 2n~2 c 2Bn-2 ; wir setzen 2Bn-2/3:n-2
2BJ"2; fur jedes W €2Bn-2 ist Wo das Elément von SBU""8, zu dem PF

gehôrt.
Die Elemente von 2Bn~2 sind unter allen Elementen von 5Bn~2 dadurch

ausgezeichnet, daB sie durch den unter d) besprochenen Homomorphismus
h auf diejenigen s € (CE) SB2 abgebildet werden, die fur allé Elemente von
S2 den Wert 0 haben; dièse s kônnen aber als identisch mit den Charak-
teren sr der Gruppe SB2/S2 betrachtet werden ; es liegt also ein Homomorphismus

2BW""2 -> (£Ij(232/(S2) vor; aus den unter d) genannten Eigen-

ss) Um ganz korrekt zu sein, sollte man nicht sagen, daB (£>' mit 551 identisch ist,
sondern dafi eine natûrliche isomorphe Abbildung Ix von ©' auf iB1 vorliegt; statt (1)
hat man dann zu schreiben: Jx®' 931.
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schaften 1 und 2 folgt, daB dieser Homomorphismus einen Isomorphismus
V von 2BJ~2 auf £ï)(932/S2) bewirkt; I'W0 ist also der Charakter von
232/S2, der mit dem Charakter IW0 sw von 332 als identisch zu be-
trachten ist. Nun besteht auf Grund von (3) eine isomorphe Beziehung
zwischen den Charakteren von ©f und denen von 932/®2 : die Charaktere
s* c ©f) (5* und s' e (Eï)(932/S2) sind einander zugeordnet, wenn s*Çx)

s '(Z) fur I3ot Z ist. Dieser Isomorphismus und der Isomorphismus /'
vermitteln einen Isomorphismus 74 von (£t) ©* auf 2BJ""2, der folgender-
maBen charakterisiert ist: es ist /4s* WQ wenn s*(<x) — sw(Z) fur
W e Wo beliebiges oc ç ©f und fur die von den oc € a aufges'pannten Z ist ;
es ist also

/4G;i)©1*=2Br2 (4)

Aus (4) ist zu sehen, daB 2Bq ~2 eine freie Abelsche Gruppe und daB ihr
Rang gleich dem gemeinsamen Rang von ©* und 932/<52 ist. Wenn ©'
kein Elément endlicher Ordnung (auBer der 0) enthàlt, so besitzt Mn
keine eindimensionale, also auch keine (n — 2)-dimensionale Torsion;
dann ist 2BJ"2 2Bn-2.

i) Durch die Beziehungen (1), (2), (3), (4) samt den Erklârungen der
Isomorphismen /2, Is, /4 sind im wesentlichen unsere bisherigen Kennt-
nisse des Einflusses ausgedrûckt, den die Fundamentalgruppe auf die

Homologiegruppen einer Mannigfaltigkeit hat. Das Ziel dièses Para-
graphen ist die Feststellung, daB auch die Bildung der Schnitt-Produkte
zwischen je einem (n — l)-dimensionalen und einem zweidimensionalen

Zyklus sowie zwischen je zwei (n — l)-dimensionalen Zyklen durch die

Fundamentalgruppe bestimmt ist.

16. Zwei Schnitt'Formeln. In Mn sei Z ein zweidimensionaler Zyklus;
er werde von (Xl9 Y1}..., Xh, Yh) aufgespannt (Nr. 10). Die Elemente

X[,..., Yrh von 931 sind wie in Nr. 15e erklârt. U sei ein (n — l)-dimen-
sionaler Zyklus in Mn

Die Grundlage fur unsere weiteren Ûberlegungen ist die folgende
Formel: h

(5)

wir werden sie in Nr. 17 beweisen. Jetzt leiten wir aus ihr eine weitere
Formel her. F sei ein zweiter (n — l)-dimensionaler Zyklus; dann ist
F • U ein (n — 2)-dimensionaler Zyklus, und nach dem assoziativen
Gesetz ist

V-(U.Z) ~ (V-U)-Z ~ 8v.v(Z)P

AOA
19 Commentarii Mathematici Helvetici *°*



wobei P wieder einen einfach gezàhlten Punkt bezeichnet ; wendet man
dies auf der linken Seite von (5) und wendet man auf der rechten Seite
das distributive Gesetz an, so erhàlt man:

(6)

17, Beweis von (5). Die Tatsache, daB Z von (Xl9..., Yh) aufgespannt
wird, bedeutet: sind xi91),- Wege, die die Elemente Xi9 Y{ reprâsentieren,
so ist der Weg r C(xl9. - .,X)h) Homotopie-Rand von Z ; das heiBt:
es gibt ein orientiertes Elément E mit dem Randweg q und eine solche

Abbildung / von E in Mn, daB /(JE?) Z und I(q) X ist. Infolge der
besonderen Gestalt des Kommutator-Wortes C sieht die Abbildung /
von g folgendermaBen aus: q ist in 4h Bôgen geteilt, die wir der Reihe
nach li,^, fi,i/i, l2î..., S[9Vh nennen, und es ist £t. auf xi9 ^ auf x^1,

rj{ auf X)i, % auf X)JX abgebildet. Man identifiziere nun fur jedes i den

positiv durchlaufenen Bogen i{ mit dem negativ durchlaufenen Bogen ^
und verfahre ebenso mit den rj{ und rj^ ; dann entsteht aus dem Elément E
eine geschlossene orientierbare Flàche vom Geschlecht h ; sie heiBe C2.

Die Bôgen £,., ^ gehen dabei in geschlossene Wege ûber, die wir auch

|t, rji nennen wollen. Auch nach der Identifizierung, die wir vorgenommen
haben, ist / eine eindeutige und stetige Abbildung; bezeichnen wir den
orientierten Grundzyklus der Flâche C2 ebenfalls mit C2, so haben wir
also eine solche Abbildung / von f2 in Mn daB

f(Cs)=Z, (7)

ist ; statt dieser letzten Gleichungen notieren wir die Homologien, wobei
wir fo r)( als eindimensionale Zyklen auffassen:

/(W~ZJ f(tit)~T't (8)

Die Zyklen fl5..., rjh bilden eine eindimensionale Homologiebasis in
C2 ; ihre Schjiitt-Relationen sind bekanntlich die folgenden, wobei wir
unter n die durch einen Punkt reprâsentierte Homologieklasse verstehen :

fit • ^ an n
0
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Wir ziehen nun den Umkehrungs-Homomorphismus <p von / heran30) ;

er bildet die Homologieklassen ans Mn eindeutig auf Homologieklassen
aus f2 ab und hat die folgenden drei Eigenschaften : (A) q> ist ein
additiver und multiplikativer Homomorphismus ; (B) fur die
Homologieklassen U aus Mn und co aus f2 gilt

f{V(U).œ)~U.f(œ) ; (10)

(C) ist U eine r-dimensionale Homologieklasse aus Mn, so ist (p(U) eine
(r — n + 2)-dimenBionale Homologieklasse aus C2.

Da der Grundzyklus £2 bei der Multiplikation die Rolle der Eins spielt,
folgt aus (10), wenn man co C2 setzt, und aus (7)

f<p(U)~U-Z (11)

fur jeden Zyklus U aus Mn
U sei (n — l)-dimensional; dann ist q>(U) nach (C) eindimensional;

daher besteht in C2 eine Homologie

q>{U)^Z(aJt + btrit) (12)

mit ganzzahligen Koeffizienten at,bt Ûbt man auf beide Seiten von
(12) die Abbildung / aus, so folgt nach (11) und (8)

U-Z~Z(atX[ + KYi) (13)
Aus (12) und (9) folgt

(p(U) • £ ~ -b%n <p(U) - rjt~at7t ; (14)

ubt man hierauf / aus und wendet man (10), (8) sowie die Homologie
f(n) ~ P an, wobei P wieder einen einfachen Punkt in Mn bezeichnet,
so erhalt man

U-X[ btP U- Y[~atP
also

Setzt man dies in (13) ein, so ergibt sich die Formel (5), die zu beweisen

war.

30) H. Hopf, Zut Algebra der Abbildungen von Mannigfaltigkeiten, Crelles
Journ 163 (1930), 71—88 Wegen weiterer Literatur sowie der obigen Eigenschaft (C)
vgl man auch même Arbeit in den Comment. Math. Helvet. 13 (1941), 219—239, speziell
219 und 235f.
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18. Ein Korollar. Wir definieren: Der zweidimensionale Zyklus Z
heiBt ,,minimal", wenn fur aile (n — l)-dimensionalen Zyklen U die
Schnitt-Zyklen U • Z ~ 0 sind. 15)

Dann lautet ein Korollar der Formel (5):
Aile Kugélbilder sind minimal. 31)

Denn'wenn der Zyklus Z Kugelbild ist, so hat er einen Homotopie-
Rand, der nur aus einem Punkt besteht (Nr. 8i); Z wird also unter
anderem von dem System (E E) aufgespannt, wobei E das Eins-
Element von © ist ; da Er das Null-Element von ©r 931 ist, ist dann
die rechte Seite von (5) fur beliebige U gleich 0

Aus diesem Korollar folgt weiter: Wenn die Zyklen Z± und Z2 zu dem-
selben Elément Z der Gfruppe S32/S2 gehoren, so ist U • Zx~ U - Z2 fur
jeden (n — \)-dimensionalen Zyklus U

Infolgedessen kann man die Produkte U • Z die wir bisher als Pro-
dukte von Elementen der Grappe SB71"1 mit Elementen der Grappe 932

aufgefaBt haben, auch als Produkte U • Z von Elementen U der Grappe
SB*1"1 mit Elementen Z der Grappe $82/<S2 auffassen.

Eine weitere Konsequenz des Korollars: Sind U, V zwei (n — 1)-
dimensionale Zyklen, und ist Z ein Kugelbild, so folgt aus U • Z ~ 0

da8 auch V - {U - Z) (V - U) - Z ~0 ist; folglich gehôrt die Homo-
logieklasse von F • U zu der Grappe 2Bn-2 (Nr. 15h).

Wir werden spàter statt des Produktes F • U das ,,reduzierte" Pro-
dukt (F- U)o betrachten, d. h. die Restklasse von 9!BW-2 modulo Xn~2,

zu welcher F • U gehôrt ; das reduzierte Produkt zweier Elemente von
SB""1 ist also ein Elément der Grappe 2BJ"2.

19. Zwei Grwp'pen-Produkte. © sei jetzt eine beliebige Grappe, die
unabhângig von irgend einer Mannigfaltigkeit gegeben ist; wir setzen

nur voraus, daB © von endlich vielen Elementen mit endlich vielen defi-
nierenden Relationen erzeugt werden kann. Wie im § 1 betrachten wir
die Menge F& der Système oc (Xx, Yl9..., Xh, Yh) mit Xt e ©, Ft- e ©
und die Grappe © * deren Elemente gewisse Klassen oc von Elementen
oc sind. Ferner betrachten wir die Restklassengruppe © ' von ffi modulo
der Kommutatorgruppe (£$ ; wie in den letzten Nummern verstehen wir
fur jedes X € © unter X' das Elément von ©7, zu dem X gehôrt. AuBer-
dem werden die Charakterengruppen (SX) © ' und (BE) ©f auftreten. —

Wir brauchen den folgenden Hilfssatz:

31) Das ist ein Spezialfall eines allgemeineren Satzes, der auch fur hohere Dimensions-
zahlen gilt: H. Hopf, Ûber die Topologie der Gruppen-Mannigfaltigkeiten und
ihrer Verallgemeinerungen, Annals of Math. 42 (1941), 22—52; Nr. 34, 35.
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oc sei ein Elément von ©f, und ocx (Xl9 Yl9..., Xh9 Yh), oc2

(Px, Qx,..., Pk, Qk) seien zwei Elemente aus oc ; ferner sei s ein Charakter
von ©'. Dann ist — bei additiver Schreibweise von ©' —

Fiir den Beweis dièses Hilfssatzes ziehen wir eine Mannigfaltigkeit Mn
heran, deren Fundamentalgruppe © ist32) ; da © von endlich vielen Ele-
menten mit endlich vielen Relationen erzeugt wird, gibt es eine solche
Mn 20). Da oc1€ oc und oc e ©f ist, gibt es nach Satz Ha in Mn einen Zyklus
Zl9 der von (Il5..., Yh) aufgespannt wird; ebenso gibt es in Mn einen
Zyklus Z2, der von (Pl9..., Qk) aufgespannt wird. Da ocx und oc2 zu der-
selben Klasse oc gehôren, gehôren nach Satz lia die Zyklen Zx und Z2

zu derselben Restklasse Z von SB2 modulo (S2 ; nach Nr. 18 ist daher
U • Zx ~ JJ Z% fur jeden (n — l)-dimensionalen Zyklus U in Mn. Man
kann U so wâhlen, daB sn mit dem gegebenen Charakter s von © ' 931

ubereinstimmt (Nr. 15d, e) ; dann ist nach Formel (5) U • Zx mit der
linken Seite von (15), U • Z2 mit der rechten Seite von (15) homolog.
Da U • Zx ~ U • Z2 ist, stellen also die beiden Seiten von (15) dasselbe
Elément der Grappe S1 ©; dar; folglich gilt (15).

Auf Grand dièses Hilfssatzes hàngt das durch die linke Seite von (15)
gegebene Elément von ©' nur von 8 und oc, aber nicht von dem speziellen
Elément oc (Xl9..., Yh) e oc ab; wenn wir also

l (16)
t=l

mit beliebigem oc (X1,..., Yh)€oc setzen, so haben wir durch (16)
in eindeutiger Weise ein ,,Produkt" definiert, wobei der erste Faktor
s € (Bf) ©', der zweite Faktor "oc c ©f, das Produkt [s * 'oc] e ffi7 ist; wir
nennen dies das ,,erste, zu © gehôrige Gruppen-Produkt". Dièses
Produkt ist ubrigens distributiv in bezug auf beide Faktoren (wir denken

uns nicht nur (£t) ©', sondern auch ©f additiv geschrieben).
Wir definieren jetzt das ,,zweite, zu © gehôrige Gruppen-Produkt";

in ihm sind beide Faktoren Elemente von (£ï) ©', und das Produkt ist
ein Elément von CP) ©* ; ist nâmlich s e £ï) © ', t e (0f) ©;, oc € ©*, so

verstehen wir unter {t • s} denjenigen Charakter von ©f, der durch

{*.*}(*) *([*•*]) (17)

82 Ein solcher geometrischer Beweis ist an dieser Stelle nnseres Gedankenganges
natûrlicher und bequemer als ein rein algebraischer Beweis; ein solcher, der aus metho-
dischen Grûnden erwûnscht ist, wird in dem ,,Anhang" angegeben werden.
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gegeben ist; ausfûhrlicher: ist [s • oc] Xf, so wird durch {t • s} dem
Elément oc die Zahl t(Xr) zugeordnet. Ist wieder (Xl9..., Yh) irgend
ein Elément von F^, das in der Klasse oc ist, so folgt aus (17) und (16),
daB {t • s} durch

{t • s} (*) Z p(Zj) «(FJ) — I(FÎ) *(Zj) ] (17')

bestimmt ist. Auch dièses Produkt ist distributiv in bezug auf beide
Faktoren; ferner ist ubrigens, wie man aus (17r) abliest, {s • t} — {t-s},
also speziell {s • s} 0

20. Die Bestimmung von Schnitt-Produkten durch die Fundamental-

gruppe. Wir fahren in der Untersuchung einer Mannigfaltigkeit Mn fort.
Es seien wieder : Z eine zweidimensionale Homologieklasse ; Z das Elément
von SB2/®2» zu dem z g^hôrt; ôc die Menge der oc (Xl9..., FJ, die Z
aufspannen; U, V zwei (^ — l)-dimensionale Homologieklassen; sv,sv
die durch die Schnitte mit U, V erzeugten Charaktere von 231. In den
Bezeichnungen aus Nr. 15 ist also

U I28jj V I2SV Z I2SV ZOC

Nach Nr. 18 kônnen wir auf der linken Seite der Formel (5) statt U • Z
auch U • Z schreiben; die rechte Seite von (5) ist nach (16) gleich \sv • ~ôc\ ;

die Formel (5) ist also gleichwertig mit 33)

17.Z=[J2-i£7./3-iZ] (5*)

Nach Nr. 18 ist V • U c 2Bn-2, (V-U)0€ 2B£~2 ; die linke Seite von (6)
ist daher nach Nr. 15h gleich s*(ôt), wenn man Iî\V • U)0—s* setzt;
die rechte Seite von (6) ist nach (17;) gleich {sF • £#}(<%) ; da (6) fur be-

liebige Z gilt, ist (6) also gleichbedeutend mit

oder, was dasselbe ist, mit
(V-U)n It{I?V.I?U) (6*)

Da die Bestimmung der Gruppen-Produkte auf den rechten Seiten

von (5*) und (6*) algebraisch, ohne Bezugnahme auf die Mannigfaltigkeit
Mn erfolgt, zeigen dièse Formeln, daB die Bildung der Schnitt-Produkte
U • Z und F • U)o durch die Fundamentalgruppe bestimmt ist. Wir
formulieren dièses Ergebnis noch einmal:

33) Fûhrt man wie in FuÛnote 29 den Isomorphismus I1 ein, so hat man statt (5*)
zu schreiben: U-Z Ix [i? UI^XZ\.
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Satz III. Durch die Fundamentalgruppe © einer Mannigfaltigkeit Mn
sind nicht nur — gemap (1), (2), (3), (4) — die Gruppen SB1, S*1"1, SB2/S2,
2BJ~2, sondern auch — gemafi den Formeln (5*), (6*) — die Bildung des,

in SB1 gelegenen, Schnitt-Produktes je eines Elementes von SB*1""1 und eines
Elementes von SB2/S2 sowie die Bildung des, in 2B£~2 gelegenen, reduzierten
Schnitt-Produktes je zweier Elemente von SB*1"1 bestimmt.

Hierin ist enthalten:

Satz III1'. Fur zwei Mannigfaltigkeiten Mn und M^1 mit isomorphen
Fundamentalgruppen sind nicht nur die Gruppen SB1, SB*1"1, SB2/S2, 2B?~2

von Mn mit den Gruppen SB1, SB"1""1, 932/S2, ÎBS1"2 von M^ isomorph,
sondern es sind auch die soeben genannten Produktbïldungen in der einen

Mannigfaltigkeit isomorph mit den entsprechenden Produktbildungen in der

anderen.34)

Mit den Sàtzen III und III7 ist das Hauptziel dièses Paragraphen
erreicht.

21. Wir heben eine Konsequenz des Satzes III hervor. Diejenigen
oc e (5*, fur welche [s-oc] 0 mit allen s € G^ (S7 ist, bilden eine Unter-
gruppe yRfy von ©*. Aus (5*) geht hervor: der Zyklus Z ist dann und nur
dann minimal (Nr. 18), wenn I^Z e SDÎ^ ist. Die minimalen Homologie-
klassen Z bilden eine Untergruppe 9K2 von SB2, die nach Nr. 18 die
Gruppe S2 enthâlt; wir haben soeben gesehen, da6 I^iW/Q2) =501©
ist. Hieraus und aus (3) folgt weiter, da8 /3 auch eine isomorphe Ab-
bildung von ©*/9Jl© aufdie Restklassengruppe von SB2/S2 modulo 9ft2/<52

vermittelt, die mit S82/SDt2 isomorph ist. Wir haben also folgendes Korollar
zu Satz III :

Bezeichnet S012 die Gruppe der minimalen Elemente von SB2, so sind die

Gruppen 2U2/<52 und SB2/9Jl2 durch © bestimmt ; Iz vermittelt nàmlich die
folgenden Isomorphien:

22. Beispiele. Âhnlich wie in Nr. 13 und Nr. 14 haben wir zwei Metho-
den zur Behandlung von Beispielen zur Verfûgung: die erste besteht
darin, da6 man zu der Mn, die man untersuchen will, eine Ml1 findet, die
dieselbe Fundamentalgruppe besitzt, deren Schnitt-Eigenschaften man
aber bereits kennt, und daB man dann Satz III ' anwendet ; zweitens kann
man Mn direkt mit Hilfe des Satzes III, also der Formeln (5*), (6*) oder,

•*) Die Frage bleibt offen, ob auch die nicht-reduzierten Produktbildungen je zweier

Elemente von SB"""1 bzw. von 93Wl-1 miteinander isomorph sind.

295



was auf dasselbe hinauskommt, der Formeln (5), (6) untersuchen; die
Hauptsehwierigkeit besteht dabei ûbrigens oft in der Bestimmung der
Gruppe (5*, also in der Lôsung einer gruppentheoretischen Aufgabe,
die mit Schnitt-Eigenschaften nichts zu tun hat, sondern in den Problem-
kreis des § 2 gehôrt. Wir werden hier meistens die zweite der beiden
Methoden, gelegentlich aber auch die erste anwenden.

a) Es sei ©* 0 ; dann ist 932/S2 0 also sind aile zweidimen-
sionalen Zyklen Kugelbilder ; nach Nr. 18 ist daher U • Z 0 fur beliebige
U€ÏBn-1,Z€Ï8* ; aus 932/S2 0 folgt 2BJ"2 0 also ist auch
(F • U)o 0 fur beliebige F € S"-1, U e 93*-1

Die Voraussetzung ©f 0 ist speziell erfûllt, wenn © eine freie Gruppe
ist (Nr. 13 a). Dann ist ûbrigens keine eindimensionale, also auch keine
(n — 2)-dimensionale Torsion vorhanden, also F • U)o F • U Somit
gilt:

Ist die Fundamentalgruppe von Mn eine freie Gruppe, so sind die Schnitt-
Produkte je eines (n — \)-dimensionalen und eines zweidimensionalen
Zyhlus sowie je zweier (n — \)-dimensionaler Zyklen homolog 0

b) © sei Abelsch. In diesem Fall ist ©* nach Nr. 13b, c bestimmt.
Die Untersuchung ist hier darum besonders einfach, weil fur je zwei
beliebige Elemente X, Y von © der Kommutator G(X, Y) 1 ist, das

System a (X, Y) also immer zu einem Elément oc von ©* gehôrt.
Wir wollen aber hier keine vollstândige Diskussion aller Schnitt-Eigenschaften,

die von dem Satz III erfafit werden, durchfiihren, sondern nur
einige spezielle Punkte hervorheben.

Da © ' © ist, brauchen wir nicht zwischen den Elementen X e ©,
X ' € © ' zu unterscheiden. Die Elemente Xx,..., Xq môgen eine
eindimensionale Homologiebasis bilden, d. h. SB1 © sei direkte Summe

von q zyklischen Gruppen, dievon den Xh erzeugt werden ; fur h 1,..., p
seien dièse zyklischen Gruppen unendlich, fur h> p endlich ; dann ist
p die erste Bettische Zahl.

Wenn p 0 also © endlich ist, so ist SB*1""1 0, die Untersuchung
also uninteressant ; das gleiche gilt, wenn q 1, also © zyklisch ist,
da dann nach Nr. 13 c ©f 0 ist, nach dem obigen Satz a) also aile in
Frage kommenden Produkte verschwinden. Interesse verdienen also nur
die Fàlle p ^ 1, q ^ 2, also diejenigen Abelschen Gruppen ©, die unendlich

und nicht zyklisch sind.
q

Setzt man fur jedes Elément X JJ a^X^ € S1

ah &= l,...9p (18)
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so sind hierdurch p Charaktere sh von 231 definiert; zu ihnen gehôren
(n — l)-dimensionale Zyklen Uh durch die Festsetzung : sUh sh ; dièse

Uh bilden die zu {Xl5..., Xp} ,,duale" Basis von SB""1

Unter Zik verstehen wir einen von (X{, Xk) aufgespannten Zyklus

(die tf ^ —' Zyklen ZtA. mit 1 < i < Je ^ g reprâsentieren ubrigens eine

Basis von 232/S2 ; dies kann man aus Nr. 13b, c entnehmen; wir werden
es aber nicht benutzen).

Wir bestimmen Uh • Zik nach den Formeln (5) und (18):

Uh • Zik s^XJXt - ^(X,)Z, Ô^Xi - ôhiXk
also

^.^.^-C/.-Z^^X, fur i^k; l*')
[7^ • Zik 0 fur h^i9 h^k ; Uh-ZH 0

Hieraus sieht man unter anderem :

oc) Wenn p ^ 1 q ^ 2 wetm afôo die Abelsche Gruppe © unendlich
und nicht zyklisch ist, so gibt es einen (n — \)-dimensionalen Zyklus U
und einen zweidimensionalen Zyklus Z, so dafi U • Z ^ 0 ist.

Denn man kann in der ersten Gleichung (19) k 1, i 2 wàhlen.

Aus (19) — oder auch aus (6) — und aus (18) folgt

wobei ô*\ gleich 1 oder 0 ist, je nachdem die ungeordneten Indexpaare
(j, h) und (i, k) miteinander ubereinstimmen oder nicht. Aus (20) folgt:

/S) Die o—- (n — 2) -dimensionalen Zyklen Uj-Uh,
sind in der Gruppe 2Jq~2 Unewr unabhangig.

Denn aus

— wobei dies eine ,3schwacheu Homologie, d. h. eine Homologie modulo
der Torsionsgruppe Zn~2 ist — ergibt sich durch Multiplikation mit
Zik und Anwendung von (20), da8 ajh 0 fiir aile h, j mit 1 < h < j < p
ist. (Man beachte ubrigens : die Unabhângigkeit in ©J"2 besagt mehr als
die Unabhângigkeit in ©n~2.)

Da fur je zwei (n — l)-dimensionale Zyklen U, ZJf in einer beliebigen
Marmigfaltigkeit Mn die Regel V • V — Uf • U gilt, ist immer
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U • U 0 und dalier auch immer U • V 0 falls U und 17' linear
abhângig sind. Wir behaupten :

y) Ist © Abelsch und sind U, Uf zwei linear unabhangige Elemente
von S*-1, so ist U • W j± 0 (in 23J"2).

Denn ist U 270,17*, V 27a* #fc so ist

U-U' ^Zata'tUt-U* l^i^p ,l<k^p
also

[7. 17' 27(a,a£ — a*«»î) U^Uk l<i<fc<p
Nach P) sind daher, falls U*U' — 0 ist, aile Determinanten ata^--afca^

0 also sind dann U und Ur linear abhângig.
Wir wollen den unter oc) ausgesprochenen Satz noch etwas anders for-

mulieren, indem wir die Gruppe S012 heranziehen (Nr. 21). Der Satz oc)

besagt: Ist p ^ 1 q ^ 2 so ist 9ft2 ^ 232, also 232/2R2 ^ 0
Im Hinblick auf eine spàtere Anwendung (Nr. 27) betrachten wir

besonders den Fall p > 1 q 2 ; dann ist nach Nr. 13c ©* zyklisch,
nach Nr. 21 daher auch 932/SOt2 zyklisch. — Wir haben also folgendes
spezielles Ergebnis:

d) Ist p ^ 1, q 2, also © direktes Produkt zweier zyklischer Gruppen,
von denen wenigstens eine unendlich ist, so ist 352/2R2 eine von 0 verschie-
dene zyklische Gruppe.

Aile hiermit bewiesenen Sàtze ûber Mannigfaltigkeiten mit Abelschen

Fundamentalgruppen kann man auch dadurch beweisen, daB man ihre
Gûltigkeit fur die in Nr. 13 b und c betrachteten speziellen Produkt-
Mannigfaltigkeiten verifiziert und dann den Satz III ' anwendet.

c) © sei isomorph mit der Fundamentalgruppe der geschlossenen orientier-
baren Floche M2 vont Geschlecht p > 0 Da man die Schnitteigenschaften
der Zyklen in M2 kennt, kann man unter Anwendung des Satzes III/
den folgenden Satz fur eine beliebige Mannigfaltigkeit Mn mit der
Fundamentalgruppe © aussprechen:

Es gibt zueinander duale Homologiebasen {X[, Y[,... Xrpi Yfv) und

{Ul9 F1?..., Ug, Vp} der Dimensionen 1 und n — 1 sowie zwei Zyklen
Z und W der Dimensionen 2 und n — 2, so da/5 die folgenden Schnitt-
Belationen bestehen:

ui-z -Y'i> VrZ^x'i-,
UrVk=~Vk- Ut ôikW U< ¦ Uk Vt • F, 0



Dieser Satz ist auch als Spezialfall in dem Ergebnis der nâchsten
Nummer enthalten; dort werden wir direkt mit den Formeln (5) und (6)
arbeiten; dadurch wird die Tatsache beleuchtet werden, dafi die bekann-
ten und soeben benutzten Schnitteigenschaften auf den Flàchen gesetz-
màfiige Folgen von Eigenschaften der Fundamentalgruppen der Flàchen
sind.

23, © sei eine Gruppe, die von endlich viélen Elementen Ex,..., Em
erzeugt wird, zwischen denen eine einzige Relation R{EXi..., Em) 1

besteht. Wir haben dièse Gruppen bereits in Nr. 14 untersucht, und wir
benutzen die dortigen Bezeichnungen und Resultate. Wir verstehen also

unter ex,..., em freie Erzeugende einer freien Gruppe 5, die homomorph
so auf © abgebildet ist, daB die E{ den et- entsprechen, und wir betrachten
wieder das Elément r R(e1,..., em) von 5 •

Wir haben gesehen: wenn r nicht Kommutator-Element ist, so ist
(g* 0 ; daher folgt aus Nr. 21a :

Wenn r nicht Kommutator-Element ist, so sind aile Schnitte je eines

(n — l)-dimensionalen und eines zweidimensionalen Zylclus sowie je zweier

(n — îydimensionaler Zylden homolog 0

Es sei r c (£ç. Die Gruppe ©' 231 wird von den Elementen E[,..., E'm

erzeugt; ein System definierender Relationen fur SB1 erhàlt man, indem
man in einem Relationen-System fur © die Erzeugenden als miteinander
vertauschbar ansieht ; in unserem Fall verschwindet dabei, da r € (E^

ist, die einzige Relation R 1 ; daher ist S1 die von den Erh erzeugte
freie Abelsche Gruppe. E[,..., E'm bilden eine eindimensionale Homo-
logiebasis; die zu ihr duale (n — l)-dimensionale Basis sei {Ul9..., Um};
es ist also (J?r. Â ,onSUk\Eh) °kh • (21)

Nach Nr. 14 ist die Gruppe 952/S2 unendlich-zyklisch ; folglich ist
auch 2Bq~2 unendlich-zyklisch, und da keine eindimensionale Torsion
vorhanden ist, 2Bn~2 2Bo~2 (Nr-15h)- Der Zyklus Z reprâsentiere,
wie in Nr. 14, das erzeugende Elément von S2/®2 und der Zyklus W
das erzeugende Elément von 9Bn-2 ; dann ist

sw(Z) 1 (22)

Es gibt solche Zahlen ochj, daB

U, ¦ Z S «„ K (23)
ist; hieraus folgt

Uk.VrZ S<xMUk.E'h,
also nach (21)

»uk.v,W «« (23')
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da nach Nr. 18 Uk- U; €2Bn~2, also Uk*Uf ein Vielfaches von W ist,
folgt aus (22) und (23')

Uk • U, <xkjW (24)

Durch (23) und (24) sind aile Schnitt-Relationen gegeben, die fur uns
in Frage kommen. Unsere Aufgabe besteht darin, die Zahlen ochi aus den
Eigenschaften des Elementes r e g zu ermitteln. Da iibrigens, wie man
aus (24) sieht, ocjh — ahi ist, genugt die Bestimmung der <xhi fur
1 < h < j < m

Die Restklassengruppe Cg/d| ist eine freie Abelsche Gruppe vom

Range —^—^ -, und die Kommutatoren C(eh, e4) mit 1 ^ h < i ^ m

repràsentieren eine Basis dieser Gruppe (Nr. 13b). Daher erfûllt r, wie
jedes Elément von (£^, eine Kongruenz

r IIC(eh, e^hi mod. Œ| 1 < h < i < m (25)

Wir behaupten :

«« y« • (26)

Beweis. Die Zahlen y7li, die bisher nur fur h < i erklârt sind, defi-
nieren wir fur aile h, i aus der Reihe 1,..., m durch die Festsetzung

Yih — Ym •

Dann sei

es ist

fur aile h, i aus der Reihe 1,..., m Da immer C(y, #) C(x, y)"1 ist,
kônnen wir statt (25) schreiben:

^< > 0 (27")

r IIC(eh e/A* mod. (£|,l<A<m, l<i<m ; (25')

dièse Kongruenz ist gleichbedeutend mit einer Gleichung

r nC(eh e/*« • Z7O(ar,, y,) (25")

wobei fur jeden Index y wenigstens eines der Elemente xt tmd y^ in (Es

enthalten ist.
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Nach Nr. 14 wird, wenn r C{xlf..., yt) ist, der Zyklus Z von dem
System oc (Xl9... 9Yt) aufgespannt. Aus (25") sieht man, dafi es ein
solches System oc (Xl9 Yl9..., Xq9 Yqy..., Xt, Yt) gibt, das fol-
gende Eigenschaften hat: fur k ^ q ist jedes Paar (Xk, Yk) mit einem
Paar (Eh9 Et) identisch, und zwar kommt fur feste (h, i) das Paar (2?^, Et)
genau y^-mal vor; fur jedes k > q ist wenigstens eines der Elemente
Xk, Yk Kommutator-Element von (g, also wenigstens eines der Elemente
X'k, Fi von ©'gleich 0.

Bilden wir fur irgend einen Charakter s der Grappe (5r das Gruppen-
produkt [$•<%], wobei oc e oc ist, so ist infolge der eben genannten
Eigenschaften von oc

also nach (27;)
[s-x] =Zyhis(E/i)E'h (28)

wobei h und i immer von 1 bis m laufen. Setzen wir in (28) s sjji9
so erhalten wir nach (5*) und mit Rucksicht auf (21)

Hieraus und aus (23) folgt die behauptete Gleichheit (26).

Es gilt also folgender Satz:

Ist r e G^, so erfûllt r eine Kongruenz (25), und durch die in ihr auf-
tretenden Exponenten yhi ocM sind die Schnitt-Belationen (23) und (24)
in Mn bestimmt.

Ist r € d|, so sind aile yhi 0; ist nicht r e (£|, so ist wenigstens ein

yhi z£ 0; daraus folgt:
Ist r e (£|, so sind aile Schnitte je eines (n — lydimensionalen und eines

zweidimensionalen Zyklus sowie je zweier (n — \)-dimensionaler Zyklen
in Mn homolog 0 — ebenso wie es der Fall ist, wenn r nicht Kommutator-
Element ist. Ist dagegen r zwar in (£5, aber nicht in (£| enthaltent so gib
es Elemente U e 33*-1, V e 93*-1, Z € 932, so dafi V • U ^ 0, U • Z # 0 ist

In dem letzten Fall ist, wenn z. B. y12 =£ 0 ist, nach (23) U1 • mZ =£ 0
fur m t^ 0; minimal (Nr. 18, 21) sind daher nur die Kugelbilder; folglich
gilt:

Ist r e (£s, aber nicht € G|, so ist die Gruppe 932/S0l2 unendlich-zyklisch ;
ist dagegen r nicht e Gcj, oder ist r € (£|, so sind aile zweidimensionalen
Zyklen minimal, es ist also 232/30t2 0
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Die Schnitteigenschaften der geschlossenen Flàchen (Nr. 22 c) ergeben
sich aus (23), (24), (25), wenn man m 2p und yl2 yM — ...=-.
72 m-1,2»»

1 aHe anderen yhi 0 setzt.

24. Verallgemeinerungen, Die Sàtze dièses Paragraphen lassen sich in
zwei Richtungen verallgemeinern.

Erstens braucht man sich fur die (n — l)-dimensionalen Zyklen nicht
auf den ganzzahligen Koeffizientenbereieh zu beschrànken. Die Formel
(5), die ja der Ausgangspunkt fur ailes Weitere ist, behàlt nàmlich samt
ihrem Beweis ihre Gûltigkeit, wenn man unter U einen (n — l)-dimen-
sionalen Zyklus in bezug auf irgend einen Koeffizientenbereieh 3 ver-
steht; dann ist 8V ein 3~Charakter von SB1, d. h. eine homomorphe Abbil-
dung der (ganzzahligen) Bettischen Gruppe 931 in die Gruppe 3? "und die
rechte Seite von (5) stellt ein Elément der ersten Bettischen Gruppe
33îj in bezug auf 3 dar. In der Formel (6) wird man voraussetzen, daB
fur U und F ein beliebiger Koeffizienten-Ring zugrundeliegt. Man wird
iibrigens bereits gentigende Verallgemeinerungen und Verfeinerungen
unserer Sàtze erzielen, wenn man als Koeffizientenbereiche nur die Rest-
klassenringe modulo m mit m ^ 2 heranzieht. Fur die zweidimensionalen
Zyklen Z allerdings wird man wohl nicht auf die Ganzzahligkeit ver-
zichten kônnen, wenigstens nicht ohne erhebliche Abânderungen der
Begriffe und Sâtze aus § 2.

Zweitens kann man die Sâtze, die wir fur Mannigfaltigkeiten bewiesen
haben, auf beliebige Komplexe ubertragen, wenn man die alte Schnitt-
theorie durch die neuere Produkttheorie ersetzt.3) Man hat dann die
Charaktere der Gruppe 331 als eindimensionale Kohomologieklassen zu
deuten, und dièse treten an die Stelle der (n — l)-dimensionalen Homo-
logieklassen U ; ebenso sind die (n — 2)-dimensionalen Zyklen W durch
zweidimensionale Kozyklen zu ersetzen. Die linke Seite der Formel (5)
ist dann das Ôech-Whitneysche Produkt — das ,,cap"-Produkt — einer
eindimensionalen Kohomologieklasse mit einer zweidimensionalen Homo-
logieklasse, und die linke Seite von (6) ist das Kolmogoroff-Alexandersche
Produkt — das ,,cupu-Produkt — zweier eindimensionaler Kohomologieklassen;

der im Beweis von (5) verwendete Umkehrungs-Homomor-
phismus existiert auch in der allgemeinen Produkttheorie35). Den Inhalt
von Nr. 19 (samt dem § 1 und dem Anhang dieser Arbeit) kann man als
eine rein algebraische Begrundung der cap- und cup-Produkte fur die

genannten kleinen Dimensionszahlen auffassen, aus welcher hervorgeht,
daB dièse Produkte in einem Komplex durch dessen Fundamentalgruppe
bestimmt sind.

85) Whitney, 1. c.8), Theorem 6.
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§ 5. Dreidimensionale Mannigîaltigkeiten

25. Fur jede Abeteche Gruppe § mit endlich vielen Erzeugenden
sollen die Zahlen #>(§), q($) analog erklârt sein wie in Nr. 13 c: in der
Normalform von <r>, also in derjenigen Darstellung von § als direkte
Summe zyklischer Gruppen, in welcher die Ordnung jedes Summanden
Teiler der Ordnung des folgenden Summanden ist, ist q($) die Anzahl
aller Summanden, und £}(<?>) ist — iibrigens in jeder Darstellung von <r>

als direkte Summe zyklischer Gruppen — die Anzahl der unendlich-
zyklischen Summanden. Zu jeder Gruppe © (mit endlich vielen
Erzeugenden und Relationen) gehôren also, wenn © ' und ©* dieselben Be-
deutungen haben wie bisher, Zahlen

3»(©') ft <?(©') qt ?(©*) p* ?(©*) q*

Fur jeden Komplex K mit der zweiten Bettischen Gruppe 932 setzen
wir p(S&2) P2> #(232) Q2 - Is^ © die Fundamentalgruppe von K, so

folgt aus Nr. 12a, wie schon in Nr. 13 c, Formel (5), hervorgehoben
wurde,

q* < «72 (i)

(sowie 2>* ^ p2, was wir aber im folgenden nicht brauchen).
Jetzt sei K M3 eine dreidimensionale, geschlossene, orientierbare

Mannigfaltigkeit. Nach dem Poincaréschen Dualitàtssatz ist p2 <px ;

ferner ist, da keine zweidimensionale Torsion vorhanden ist, q2 p2.
Hieraus und aus (1) folgt, wenn wir noch die trivialen Beziehungen

Vi ^ (Zi> V* ^ ?* notieren:

Ist © die Fundamentalgruppe einer M3, so bestehen zwischen den durch
© bestimmten Zahlen Pi,Qi, p*, q* die Beziehungen

p*<q*<p1<q1 (2)

Korollar: Ist die Fundamentalgruppe © einer M3 endlich, so ist ©f 0

Denn aus der Endlichkeit von © folgt px 0, aus (2) also q* 0.

26. Wir behaupten zweitens, indem wir die gemâfi Nr. 21 zu jeder
Gruppe © gehôrige Gruppe SW© heranziehen:

Ist © die Fundamentalgruppe einer M3, so ist ©f/SOI© nicht eine von 0

ver8chiedene, zyklische Gruppe.

Beweis: Nehmen wir an, fur die Fundamentalgruppe © von M3 sei

fc zyklisch und nicht 0 Dann ist nach Nr. 21 auch JB2/2R2 zyklisch
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und nicht 0; es gibt also einen solchen zweidimensionalen, nicht mini-
malen Zyklus Zx, daB sich jeder zweidimensionale Zyklus U als Summe
J7 Z70 + mZ1 darstellen lâBt, wobei UQ minimal ist. Da Zx nicht minimal
ist, gibt es einen zweidimensionalen Zyklus U mit U - Zx ^ 0; schreiben
wir U in der soeben angegebenen Form, so folgt, da Uo minimal ist:
U • Zx — mZ1 • Zx=fi 0 Dies ist unmôglich, da fur (n — l)-dimensionale
Zyklen Zx, Z2 in einer Mn immer Z2* Zx= — Z±* Z2) also Z± • Zx 0 ist.

27. Die Fundamentalgruppe © von M3 sei Abelsch. Nach (2) und nach
Nr. 13 c, Formel (4), ist dann

(3)

Man ûberzeugt sich ohne Muhe davon, daB die einzigen Paare von
ganzen, nicht negativen Zahlen (q^Px), welche (3) erfûllen, abgesehen
von dem trivialen Fall qx px 0, die folgenden sind: qx 1,^ 0;
?i=l>Pi=l; ?i 2,Px l; ^i 2, p1 2; ?1 3, ^ 3

Nach Nr. 22b, Satz ô, folgt aus qx 2, ^ > 1, daB 932/ÏR2 zyklisch
und nicht 0, also nach Nr. 21, daB auch ©f /SIR© zyklisch und nicht 0

ist; nach Nr. 26 ist dies fur eine Mz unmôglich; es bleiben fur qL und px
also nur folgende Môglichkeiten iibrig:

«i 1
y Pi < 1 ; ?i Pi 3 •

grx 1 bedeutet : © ist zyklisch, und zwar endlich oder unendlich, jenach-
dem px 0 oder px 1 ist ; qx px 3 bedeutet : © ist direktes Pro-
dukt von drei unendlich-zyklischen Gruppen. Dièse Gruppen treten
wirklich als Fundamentalgruppen auf, nâmlich fur die Linsenrâume, fur
das topologische Produkt von Kreis und Kugel und fur das topologische
Produkt von drei Kreisen. Damit ist bewiesen:

Die einzigen Abelschen Fundamentalgruppen geschlossener, orientier-
barer, dreidimensionaler Mannigfaltigkeiten sind die zyklischen Gruppen
und das direkte Produkt von drei unendlich-zyklischen Gruppen.

Das ist ein Satz von Reidemeister. 3Ô)

8e) 1. c.4). Es ist bemerkenswert, daB auch bei Reidemeister die Fâlle q1 2, VX>1,
besonders behandelt w^rden mûssen; ob ein innerer Zusammenhang zwischen den beiden
Methoden besteht, ist mir nicht klar.
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28. Aus Nr. 23 und Nr. 26 ergibt sich — in analoger Weise, wie wir
soeben die Pâlie mit qx 2 ausgeschaltet haben — folgender Satz :

Die Gruppe © werde von Elementen Ex,..., Em erzeugt, zwischen denen
eine einzige Relation R(EX,..., Em)=1 besteht ; dos Elément r= R(e1 ,.*.fem)
der von den freien Erzeugenden ex,..., em erzeugten Gruppe 3f sei in G5,
aber nicht in Ê| enthalten. Dann kann © nicht Fundamentalgruppe einer
M3 sein.

Die Voraussetzungen tiber © sind insbesondere erfûllt, wenn — man
vgl. Nr. 23 — © mit der Fundamentalgruppe einer geschlossenen, orien-
tierbaren Flàche positiven Geschlechtes isomorph ist; dièse Gruppen
treten also nicht als Fundamentalgruppen dreidimensionaler Mannig-
faltigkeiten auf.

Ich kenne ûbrigens ûberhaupt kein Beispiel einer M3, deren
Fundamentalgruppe derart erzeugbar ist, daB zwischen den Erzeugenden eine

einzige Relation R 1 besteht, wobei r c G^ ist (abgesehen von dem
trivialen Fall r 1).

29. Bezeichnen wir mit ©£ die Faktorgruppe von & nach der Gruppe
der Elemente endlicher Ordnung in ©^ so ist, wenn © die Fundamentalgruppe

von M3 ist, S2 ©o ; auBerdem ist 332/®2 ®* • Da ©2 eine
Abelsche Gruppe mit endlich vielen Erzeugenden ist, kann man aus den
Strukturen von SB2 und von 232/S2 die Struktur von S2 bestimmen,
z. B. durch Berechnung des Ranges und der Range mod. m fur m > 2

Daher gilt folgender Satz :

In einer M3 ist die Struktur der Gruppe S2, also der Gruppe der Homo-
logieklassen, die Kugelbilder enthalten, durch die Fundamentalgruppe ffi
bestimmt.

Speziell ergibt sich :

M3 ist dann und nur dann homologie-asphârisch (Nr. 12b), wenn

©r s ©j (4)
ist.

Die Isomorphie (4) ist also insbesondere eine notwendige Bedingung
dafur, daB eine Gruppe © als Fundamentalgruppe einer M3 auftreten
kann, deren universeller Ûberlagerungsraum der euklidische Raum ist;
denn jede solche M3 ist sogar homotopie-asphârisch.

Die folgende Frage erscheint mir intéressant : Kann man aus den Eigen-
schaften der Fundamentalgruppe auch erkennen, ob oine M3 homotopie-
asphârisch ist?

20 Commentai*! Mathematici Helvetici



ANHANG
Àlgebraische Einfûhrung der Gruppen-Produkte

Den Hilfssatz in Nr. 19, der die Définition der Produkte [s • <x\ und
{s • t} ermôglieht, haben wir dort unter Benutzung topologischer Hilfs-
mittel bewiesen, die nicht elementar sind. Hier soll ein rein algebraischer
Beweis gefiihrt werden; dabei wird sich noch zeigen, da8 die fruhere
Formulierung des Hilfssatzes unnôtig eng war und daB daher die beiden
Produkte einen grôBeren Definitionsbereich haben als den, der frûher
angegeben wurde.

a) g sei eine freie Gruppe, {e^ ein freies Erzeugendensystem von 5î
die Màchtigkeit dièses Systems ist gleichgultig. Fur jedes x c g bezeichne
Si(x) die Anzahl der Faktoren ei9 vermindert um die Anzahl der Faktoren
ej1 in einer Darstellung von x als Produkt von Erzeugenden ej1 ; da die
e{ ein freies Erzeugenden-System bilden, ist 8{(x) eindeutig bestimmt.

#i> Vu* • • » #n> Vn seien Elemente von 5 î ^e seien als Produkte von
Erzeugenden ef-1 dargestellt; die dabei vorkommenden ei seien etwa

et,..., eq ; die von el9... 9eQ erzeugte Untergruppe von Qf heiBe 3ra ;

sie ist eine freie Gruppe, und die el9..., eQ sind freie Erzeugende von Ça.
Die Kommutator-Worte G seien wie in Nr. 2 erklàrt.

Wir behaupten: Setzt man

E [««(«*) • sh(yh) - s{(yh) • sk(xh)] yik (1)
h

so ist
9ekyik mod. C2^ ; (2)

dabei ist (£| die zweite Kommutatorgruppe von 5a; da (£s /(£| Abelsch

ist, kommt es auf die Reihenfolge der Faktoren des Produktes in (2)
nicht an.

Der Beweis dieser Behauptung ergibt sich durch eine einfache Rech-

nung, indem man xl9..., yn als Produkte der e^1,..., e-1 schreibt und
dann die -- in jeder Gruppe (5 gultigen — Regeln

c) C(a9 c) • C(b9 c), C(a9 6-c) C(a9 b) • C(a9 c) mod. (£^

anwendet, von denen die erste trivial ist und die beiden letzten durch
eine kleine Rechnung verifiziert werden kônnen37).

w) Cf. Witt, 1. c.M), § 4; (die dortigen ©« sind unsere Œj"1).
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b) Wir behaupten weiter: Ist C(xli. ..3i/M) l, so sind aile yik 0

Beweis: Da jedes Elément c von (E^ in der Form c C(xly..., yn)

mit xh,yh€$q geschrieben werden kann, sieht man aus (2), daB die

Restklassen von (£5 mod. (£| welche die ~—- Elemente C{e{, ek)

mit 1 < i < k < q enthalten, die Gruppe (£5 /(£| erzeugen ; dièse Grappe
ist nach einem Satz von Witt38) eine freie Abelsche Gruppe vom Range

—- ; daher bilden die genannten Restklassen eine Basis in ihr.

Folglich sind die Exponenten yih in (2) nieht nur durch das System

(xl9..., yn), sondern sogar durch das Elément C(xl9..., yn) eindeutig
bestimmt. Daraus folgt : wenn C(xx,..., yn) c (£| ist, so sind aile yik 0

Hierin ist die Richtigkeit der obigen Behauptung enthalten.

c) J5 sei vorlàufig eine beliebige Gruppe, frei oder nicht ; wie im § 1

verstehen wir unter F% die Menge aller Système (xl9 ylf..., xn, yn)
mit xh, yh € g ; gemàB Nr. 3 sind in F% Addition und Bildung des Inversen
erklârt. Ist <p (xl9..., yn), so schreiben wir statt C(xl,..., yn) kurz
C((p). Fur beliebige <p \p ist

± V) C(<p) • Cty)*1 (3)

5; sei wieder die Gruppe fÇ/Œ^ und fur jedes a; c 5 sei # ' das Elément
von JÇ7, zu dem a; gehôrt; wir schreiben Qf' additiv. Ferner betrachten
wir Charaktere / von %', also homomorphe Abbildungen von Ç; in die
additive Gruppe der ganzen Zahlen.

Fur beliebiges cp — (xî,..., yn) € F% und fur einen beliebigen Charakter
/ von g ' definieren wir das Produkt [/ • 9?] als

[f • <p] ist also ein Elément von $'. Die Produktbildung ist distributiv:

sie ist ùbrigens auch distributiv in bezug auf /
Von jetzt an sei 5 wieder eine freie Gruppe; die durch (xl9..., yn)

38) 1. c.22); auf unseren Beweis in Nr. 13 b dûrfen wir uns nicht berufen, da der obige
,fAnhang" einen rein algebraischen Charakter haben soll.
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bestimmten Zahlen yik sind wie in a) erklàrt. Wir behaupten: Ist
(p (a?!,..., yn), 80 ist

Beweis: Aus der Définition von s^x) folgt

x'k E*i(xh) e{ y£ 27«*(y») 4 •

Setzt man dies auf der rechten Seite von (4) ein, so erhàlt man auf Grund
von (1) die behauptete Gleichung (6).

Aus (6) und aus b) folgt: Ist C(<p) 1 so ist [/ • <p] 0 fur aile
Charaktere f von JÇ '.

Aus diesem Satz, aus (5) und aus (3) ergibt sich:

Ist 5 eine freie Gruppe, und sind <p, xp Elemente von F% mit C{(p) C(y>),

so ist [/ • <p] [/ • ip] fur aile Charaktere f
d) © sei eine Gruppe, auf welche die freie Gruppe g durch einen

Homomorphismus F abgebildet ist. F vermittelt Abbildungen von F%

auf Fq und von $' auf ©;, die wir ebenfalls F nennen: ftir
Ç> (Xi,-..,itn)*r% îst F(<p) (F(x1),...,F(yn)), und fur jedes x € g
ist F(xf) (F(x) ' ; ferner ordnet F jedem Charakter s von ©' einen
Charakter / von $' zu, nàmlich den Charakter / sF, der fur das
Elément xf von 2f! denselben Wert hat wie s fur das Elément F(xf)
Mit Hilfe der Définition (4) bestâtigt man die Regel

F([sF'9])=[s'F(<p)] (7)

fur jedes p«/ç und jeden Charakter s von © '.
KF habe dieselbe Bedeutung wie in Nr. 4 und 5 ; KF ist also die Menge

derjenigen oc € r®, zu denen es solche <p e F% gibt, daB F(<p) oc und
C(<p) e ÇCç(9l) ist, wobei 5R den Kern des Homomorphismus F bezeichnet.
Wir behaupten:

Ist oc e KF, so ist [s • a] 0 fur aile Charaktere s von ©'.
Beweis: Es sei a c jSTj,, also a F(q>), C(q>) e 6^(91) ; dann ist C(q>)

IIC(xh, yn), wobei fur jedes A wenigstens eines der Elemente xh, yh in
91 enthalten ist; wir setzen (xl9 yl9...) y) ; dann ist O(g?) (?(^), also
nach c) [/ • ç>] [/ • y] fur jeden Charakter / von g'• Nun folgt mit
Hilfe von (7) fur jeden Charakter s von © ' :
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wobei wir F(xh) Xh9 F(yh) Th gesetzt haben. Da nun fur jedes h
wenigstens eines der Elemente xh, yh in 91, also wenigstens eines der
Elemente Xh, Yh die Eins von ©, also wenigstens eines der Elemente
X'h, Yfh die Null von ©' ist, ist in der Tat [s • oc] 0

Aus dem hiermit bewiesenen Satz und aus (5) folgt:

Ist ocx — oc2 € KF, so ist [s • oct] [s • oc2] fur aile s

e) Die in Nr. 5 erklârte Gruppe ©* ist eine Restklassengruppe von
r$, und ihr Kern ist KF Daher ist dann und nur dann ocx — oc2 e KF f
wenn ocl und <x2 demselben Elément « von ©* angehôren. Mithin enthàlt
der soeben bewiesene Satz den Hilfssatz aus Nr. 19.

Wir haben aber in zwei Richtungen mehr bewiesen als diesen Hilfssatz.

Erstens ist oc jetzt ein beliebiges Elément von (5*, wàhrend fruher
auBerdem C(oc) 1 fur a c oc, also ~ôc c ©f sein muBte. Zweitens haben
wir fruher vorausgesetzt, daB © von endlich vielen Elementen mit end-
lich vielen Relationen erzeugbar sei, wâhrend jetzt © ganz beliebig sein

kann, da jede Gruppe © homomorphes Bild einer freien Gruppe, im
allgemeinen einer solchen mit unendlich vielen Erzeugenden, ist. Auf
Grund dieser Verallgemeinerungen sieht man: Die Gruppen-Produkte
[s • oc] und {s • t} sind fur beliebige Gruppen © und beliebige #€©*,
s, t e (£1)©; definiert ; und zwar ist [s• oc] e ©7 {s• t} e (£J) ffi*.

Weitere Verallgemeinerungen erhâlt man in naheliegender Weise,
wenn man auBer den ganzzahligen Charakteren auch Charaktere modu-
lo m mit m ^ 2 oder noch allgemeinere Charaktere von © ' betrachtet.

(Eingegangen den 12. September 1941.)
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