Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 14 (1941-1942)

Artikel: Uber die Homotopiegruppen von Gruppenraumen.
Autor: Eckmann, Beno

DOl: https://doi.org/10.5169/seals-14306

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-14306
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Uber die
Homotopiegruppen von Gruppenrdumen

Von BExo EcKMANN, Ziirich

1. Die Hurewicz’schen Homotopiegruppen') haben sich als wichtige
topologische Invarianten erwiesen; ihre Anwendung scheitert aber oft
daran, daf man ihre Struktur nur in wenigen Féllern wirklich kennt,
und daf} iiberhaupt selbst fiir spezielle Réume kein allgemein gangbarer
Weg zu ihrer Bestimmung bekannt ist. In dieser Arbeit geben wir Bei-
trige allgemeiner und spezieller Natur zur Kenntnis der Homotopie-
gruppen von Gruppenrdumen. Wir formulieren zunéchst nur die Ergeb-
nisse: die allgemeinen (Nr. 2 und 3) gestatten unmittelbare Anwendungen
auf Sphéaren (Nr. 4), die von den durch stetige Abbildungen bewirkten
Homomorphismen der Homotopiegruppen handeln; die speziellen be-
treffen gewisse Homotopiegruppen der orthogonalen Gruppen (Nr. 5) und
stehen mit dem iibrigen nur in losem Zusammenhang.

2. a) Die allgemeinen Séatze formulieren wir nicht fiir Gruppenriaume,
sondern fiir deren Verallgemeinerungen im Sinne von Hopf [3], da dies
fiir die Beweise geniigt und fiir die Anwendungen erwiinscht ist, und
halten uns dabei immer an folgende Definition: R sei ein metrischer
(zusammenhéngender, lokal zusammenziehbarer) Raum, in welchem
eine stetige Multiplikation erklart ist; das heilt: jedem geordneten
Punktepaar (@, b) von R ist als Produkt ein Punkt a - b von R zuge-
ordnet, der stetig vom Paar (@, b) abhingt (die Giiltigkeit des assozia-
tiven Gesetzes wird also nicht gefordert). Ein solcher Raum soll I'-Raum
heiflen. Besitzt die Multiplikation eine Eins, d. h. gibt es in R einen
Punkt e, derart, daB fiir alle a ¢ R

ist, so bezeichnen wir R als I',-Raum. Wir werden in diesem Fall gelegent-
lich auch annehmen, daB ,,das Inverse existiert‘‘, d. h. daf3 es zu jedem
Punkt a € R einen Punkt a—! mit

a-al=e

gibt, der von a stetig abhingt.

1) Definition s. [1], S. 114, ferner [2], S.203. — Die Zahlen in eckiger Klammer []
beziehen sich auf das Literaturverzeichnis am Schlufs der Arbeit. )
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Jeder Gruppenraum ist ein I',-Raum mit Inversem; unsere Aussagen
iiber I'- und I',-Réume gelten also insbesondere fiir Gruppenriume.

b) X sei ein Kompaktum, R¥ der Raum der stetigen Abbildungen
von X in R. Ist R ein I-Raum, so definieren wir fiir zwei Abbildungen
f, g ¢ RX ein Produkt

f:g=nheRX
durch
h(z) = f(z)-g(x) fir alle zeX.

Dadurch wird auch zwischen den Abbildungsklassen, d. h. den Klassen
homotoper Abbildungen von X in R eine Multiplikation induziert:
Bezeichnen wir die Klasse von f ¢ R mit {f}, so ist die Klasse {f'- g’}
von der Wahl von f’ e {f} und ¢’ ¢ {g} unabhingig, also durch {f} und
{9} bestimmt, und wir setzen

Bgy=1{9.

Wir lassen gewohnlich, wenn kein MiBverstandnis moglich ist, die
Klammer weg und schreiben auch fiir Abbildungsklassen nur f, g, f - g usw.

7,(R) sei die n* Homotopiegruppe von R, und fiir f, g € ,(R) bedeute
f + g die nach der Hurewicz’schen Vorschrift!) auszufiihrende Addition
der Homotopieklassen.

c) Wir werden zeigen, dall zwischen f+g¢g und f-g (f, g € 7, (R)) fol-
gende Zusammenhénge bestehen:

SatzI: R seiein I'-Raum ; firf;, g, e x,(R), 1 = 1,2 gilt bei beliebigem n

(fr +12) - (91 + 92) = (f1 - 91) + (fa* 92) -

Daraus folgt leicht (vgl. Hurewicz [1], Satz XI):
Satz II: R sei ein I',-Raum ; fir f, g e n,(R) gilt bes beliebigem n

fr9=1f+9.

In einem I'-Raum fillt also die Multiplikation f - g der Homotopie-
klassen mit der Hurewicz’schen Addition zusammen und ist somit von
selbst assoziativ (und fiir n > 2 kommutativ).

3a) In einem I',-Raum R definieren wir fiir a ¢ R die Potenz a* ¢ B

durch
a®=¢e, ak=a-a*?
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fiir alle ganzen Zahlen & > 0; wenn sogar das Inverse existiert (vgl. 1a),
auch fiir negative k = — k’, ¥/ > 0, durch

k — g—k! — (g-1)k’
a o (@—1)s" .

Ist f ¢ RX eine stetige Abbildung des Kompaktums X in R, so ist dann
klar, was unter f* zu verstehen ist:

fe(z) = (f(x))*, zeX .

Diejenige Abbildung (bzw. ihre Klasse), bei welcher alle Punkte von
X in e € R abgebildet werden, bezeichnen wir ebenfalls mit e, oder auch
mit 0 (wegen der additiven Schreibweise, die bei den Homotopiegruppen
iiblich ist): f* =e.

b) Folgerungen aus Satz II:

Satz III: R sei esn I',-Raum ; fiir f e n,(R) gilt bes beliebigem n :

f* = kf

fir alle ganzen Zahlen k > 0 und, wenn das Inverse existiert, auch fir
k<O.

Das kann man auch so formulieren: die Abbildung p,(x) = «*¥ von R
in sich bewirkt eine homomorphe Abbildung der Homotopiegruppen von
R in sich, die durch

pef = kf
gegeben ist.

Satz IV : R sei ein I',-Raum; fir f, g e n,(R), b € % (S") gilt bes belie-
bigem n und r

(t+9)h=1h+gh,

(= Hh = —(th).

also auch

Man beachte, daB3 dieses ,,Distributivgesetz‘‘ im allgemeinen nicht zu
gelten braucht, wenn R kein I',-Raum ist?); dagegen gilt immer (f € 7,(R);
g, h e 71:,.(8 n))

flg+n)=Ffg+fh.

Die Satze I—IV werden im § 1 bewiesen.

4.a) Im § 2 (Nr.8) wenden wir diese Ergebnisse an auf den Fall einer
m-dimensionalen Sphare S™, die I',-Raum ist. Mit 7', bezeichnen wir
eine Abbildung der 8™ in sich vom Grade k. Aus Satz IV folgt:

%) Gegenbeispiel s. [2], S. 303.
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Satz V : 8™ ses ein I',-Raum ; dann ¢ilt fitr f € x,(S™) bet beliebigem n
und k:
T.f=kf.

Da bekanntlich?) 82 und §7 I'-Réume sind, gilt Satz V insbesondere
fir m =3 und 7.

Vermoge der Freudenthal’schen ,,Einhéngung*4) der Abbildungen von
Sphéaren auf Sphéren iibertragen wir (Nr. 9 und 10) die Aussage von
Satz V auch auf andere Dimensionszahlen m, wenigstens fiir gewisse n.
¥ (f) bedeute die Hopf’sche Invariante®) von f € 7,(S7), s > 27 — 1 . Dann
gilt (man beachte Anm. 11)):

Satz VI: Wenn 8™ ein I',-Raum ist, so gilt fir f €z, ,(S7) mit d < m
und r =2d + 1 und y(f) = 0
T.f=kf.

Fir r > d + 1 bedeutet y(f) = 0 keine Einschriankung. — Weil 87 ein
I''Raum ist, gilt insbesondere fiir fe s, ,(8") mit d <7, r >d + 1,

y(f)=0
T.f=Fkf.

Korollar®): Fiir f e n,,(S7), r > 3 gilt
Tsf =0.

Das folgt namlich daraus, daB fir r >3 die Gruppe =, ,(S") die
Ordnung 2 hat.

b) In Satz V, angewandt auf m = 3 und 7, ist eine Aussage iiber die
Abbildung 7'_, der 8™ auf sich vom Grade.— 1 enthalten:

Bei beliebigem n gilt fiir f € z,(S™)
T.f=-—1.

Wir schlieBen hieran in Nr. 11 noch einige Betrachtungen iiber die
Abbildung 7'_, und zeigen u. a., da fiir » > 3, f e n,(S?) im Gegensatz
zu V und VI

T.f=1
ist.

%) vgl. Hopf [4], S. 436—437.

‘) 8.[2], S. 303—304.

%) Definition: [6], S. 645ff. und [4], S. 428ff., ferner [2], S. 304—305.
) vgl. [6], Nr. 12D, Hilfssatz.
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b. Im §3 (der vom vorigen nur wenig beniitzt) bestimmen wir die
dritte, vierte und finfte Homotopiegruppe der orthogonalen Gruppen, unter
Verwendung einer von mir kiirzlich entwickelten Methode?). I', bedeute
die Gruppe aller orthogonalen (n + 1)-reihigen Matrizen mit der Deter-
minante + 1, ® die additive Gruppe der ganzen Zahlen, &, die Rest-
klassengruppe von & mod. 2 (= bedeutet isomorph).

Wir fassen die Ergebnisse des § 3 im folgenden Satz zusammen:

Satz VII :
1. Fir n >4 st n(I') =~ ®
2. Fir n =5 ist =, (I,) = 0
3. Fir n > 6 st n;(I,) = 0
Ferner gilt
4. (L) =6 ,m(ML)~6G+ 6.
5. () = Op, 7y () & Gy + O, 7, (1) = G, .
6. w5 () =0, 7;(I5) =0, n5(I) =0, m([5) = G .

§ 1. Beweis der Sitze I—IV

6.a). R sei ein zusammenhangender, lokal zusammenziehbarer metri-
scher Raum. Wir bezeichnen mit RS$"(a) c RS" den Raum derjenigen
Abbildungen f ¢ Rs", fiir welche

Qf(xo) =a

ist, wobei z, ein beliebiger, aber festgewdhlter Punkt von 8”, @ von R
ist. Die Elemente der #*" Homotopiegruppe von R, n,(R), sind die Kom-
ponenten von Rs"(a), also die Klassen homotoper Abbildungen der S»
in R ,,unter Festhaltung von a‘. Wir wahlen als Urbild statt der Sphére
S* auch den Einheitskubus E™ des n-dimensionalen Euklidischen Raumes
R, gegeben durch n reelle Koordinaten z;

O<xi<1 'I:=1,...,7b;

den Punkt mit den Koordinaten (z,, ..., z,) bezeichnen wir auch kurz
mit 2, einen Punkt auf dem Rande von E™ (d. h. fiir welchen mindestens
eine seiner Koordinaten den Wert 0 oder 1 hat) mit z,. Elemente von
n,(R) sind dann die Komponenten von RE"(a); das ist der Raum der
Abbildungen f ¢ RE", bei welchen fiir alle x,

f(zg) = a

?) 8. [6], insbesondere die Nr. 6 und 10. — Die Kenntnis der Arbeit [6] wird in Nr. 9
sowie im § 3 vorausgesetzt. Eine wesentliche Rolle spielt im § 3 der Satz ([6], Satz 27),
daB die Sphére S° nicht parallelisierbar ist.
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ist, und die Hurewicz’sche Summe!) f + g =k zweier Abbildungen
1, g € RE"(a) kann durch

2z, , x,5,...,2,) 0<z, <3}

hx =hx,...,xn =
() (2, ) g2z, —1,2,,...,2,) <z, <1

(1)

gegeben werden.

Die Struktur von x,(R) ist von der Wahl von @ ¢ R unabhingig (man
kann in naheliegender Weise vermittelst eines Weges von @ nach b ¢ R
zwischen den zu @ und b gehorigen Gruppen =,(R) einen Isomorphismus
herstellen.

b) R sei nun ein [-Raum (Nr. 2); dann ist fiir die Abbildungen (sowie
ihre Klassen) f, g ¢ RE" das Produkt

f-geRE
definiert.
Aus den vier Abbildungen f,, fs, 9, g2 € RE*(a) bilden wir die Abbildung

b= (fy 4+ f2) * (g1 + g2)

2z , ...,x,) 9122 , ...,2,) 0<zr<}
f2(2x1—-1,...,xn)'gz(le—l,...,xn) %gxgl,

das ist aber definitionsgemafl die Abbildung (f,-g,) + (f;*¢.) . Es gilt
also (Satz I):

(fr -+ 7o) (91 + g2) = (fr- g0) + (f2: 92) - (2)

Man beachte, dal aus f, g ¢ RE"(a) folgt
[+9 € RMa-a);

in Gleichung (2) stehen also auf beiden Seiten Abbildungen aus RE*(a - a).

Satz I ist damit nicht nur fiir Elemente der (zu beliebigem a ¢ R geho-
rigen) Homotopiegruppen, sondern fiir die Sphirenabbildungen selbst
bewiesen.

c) In einem I-Raum R bezeichnen wir mit I, die bei festem a und
variablem b € R durch
l,(b) =a-b

gegebene Abbildung von R in sich, analog mit r, die Abbildung
r,(0) =0-a.
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X gei ein Kompaktum, f ¢ R*, und die Abbildung von X in R, bei welcher
alle Punkte von X auf a ¢ R abgebildet werden, sei auch mit a bezeichnet.
Es gilt dann fiir f, a € R

f‘azraf

a-f=1Lf.
Aus (2) folgt also fiir 2 Abbildungen f, g ¢ RE"(a):
f+a)-(a+g9)=f-atag=rf+1lyg.

Da aber f 4 a zu f und g 4 a zu g homotop ist (in RE"(a)), gilt fiir die
Klassen von f und g in RE"(a):

f'gzraf_i_lag' (3)
7.a) In dieser Nummer soll R ein I',- Raum sein (Nr.7); wir zeichnen
fiir die Bildung der Homotopiegruppen von R den Punkt e ¢ R aus und

betrachten ausschlieBlich Abbildungen f ¢ BRE"(e). Da sowohl r, als auch
I, die Identitdt von R ist, folgt aus (3) fiir 2 Elemente f, g € 7,(R) der

Stz I - frg=1+g. (@

Daraus folgt unmittelbar (wenn die Potenzen a*, a ¢ R, bzw. f*,
f e #,(R) gemaB Nr. 2 erklart sind)

fo=f- =+t
und durch vollstdndige Induktion der Satz 111 fir k > 0: Fiir f € n,(R) ist
fF=k-f; ()

fiir negative k folgt er aus

frft=f4fr=o,
fr=—t. (5

b) Es seien f, g Elemente von 7,(R) und % ein Element von x,.(S"),
bzw. Abbildungen, die die betreffenden Klassen repriasentieren. Nach
(4) ist

also

t+9)h=1(f 9)h;
eine Abbildung dieser Klasse ist durch

f(h(x)) ) g(h(x)) sy X € Sr
gegeben, es gilt also
(f+9)h=tfh-gh=fh+ gh.
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Also gilt fiir einen I',-Raum das ,,Distributivgesetz (Satz IV) fiir die
Homotopiegruppen: wenn f, g € #,(R) und % € 7, (S"), so ist

(t +9)h=1fh+gh. (6)
Wegen
(f—=Nh=fh+(—Hh=0
folgt hieraus
(— Hh = — (th). (6)’
Es gilt also insbesondere fiir alle ganzen Zahlen % :
(kf)h = k(fh) . (6)"

(DaB fir f e 7, (R), ¢, k € 7, (S*) das Distributivgesetz

Hg+h) =fg+fh
immer gilt, geht direkt aus der Definition (1) hervor.)

§ 2. Abbildungen von Sphéren auf Sphéren

8.a) Mit 7', bezeichnen wir immer eine Abbildung (oder Abbildungs-
klasse) der orientierten r-dimensionalen Sphére S auf sich vom Grade &
(r und k beliebig). Fallt man 7', als Element der Homotopiegruppe
a,(S) auf, so ist

T.=FkT,. (7)

Wenn die Sphire S™ ein I',-Raum ist, gilt also nach Satz IV (Formel
(6)""):
Tif=E&T)f=KTHy=Ekf ,
Tyf=Fkf . (8)

Damit ist Satz V bewiesen.

b) Fiir den Fall einer I,-Sphiare 8™ ist also der durch 7', € =, (S™)
bewirkte Homomorphismus der Gruppen z,(S™) in sich durch 7', f =kf
gegeben.

Man kann ganz allgemein die Abbildungen 7', € 7,(8") als Operatoren
der Homotopiegruppen mx,(S") auffassen; fiir sie gilt bei beliebigem

femy(8,)

Te(Te=Twf, (9)

hingegen nicht immer
(Te+ To) =T+ Te f , (10)
241
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wie das Beispiel » = 27 — 1 bei geradem r zeigt (dann gilt namlich fiir
die Hopf’sche Invariante?) y

Y((Tk = Tk')f) = Y(Tyyn f) = (b + k’)27(f)
YTl + Tw ) =y(Te) + v(Te ) = &+ E?) (),

was fiir y(f) # 0, k £ 0, k' 5% 0 unmoglich gleich sein kann).
Fiir I',-Sphéren folgt (10) natiirlich aus (8). — Es sei hier noch erwahnt,
daB fiir f e 7,(82)

aber

Tof =k
ist?).

9.a) Nach Freudenthal?) verstehen wir unter Einhingung € eine homo-
morphe Abbildung der Homotopiegruppe =#,(87) in =, ,(87+) (fiir belie-
bige » und r), die folgendermaflen gegeben ist: E* sei die Einheitsstrecke
0 <t < 1; fiir x « S" bedeute (x, t) einen Punkt des topologischen Pro-
dukts S*xE*, fiir y € S, (y, t) einen Punkt von S”xH1. f sei eine Abbildung
der 8" in 87, F' die durch

F(z,1) = (f(2),1) @S, f(x) e

gegebene Abbildung von S"xE!' in S"xK'. Identifiziert man S”x(1) und
S7x(0) und ebenso S7x(1) und 87x(0) zu je einem Punkt, so kann man F
als Abbildung von S»+! in S7+! auffassen; diese Abbildung bzw. ihre
Klasse heifit €f .

b) Hilfssatz 1: Fir g € n,(S"), f € x,(S7) gilt
(/) (Eg) = C(fg) .
Beweis: €f sei gegeben durch die Abbildung ¥ von S*xE' in S'xE!
Flu,t) = (fu),t) weS flu)es
und €g durch die Abbildung ¢ von S*xKE* in S*xE!
G(z,t) = (g(x),t) xS, g(x)eS" .
Dann ist (€f) (Eg) gegeben durch die Abbildung FG von S*xE' in SrxE*:
F(@(z,0)=Fg(),1) = (fg(2), 1) ;

durch diese Abbildung ist aber gerade €(fg) erklart.

8) 8. 5), ferner [5], S. 653.
%) die Klassen f € 7,(S?%) sind durch die Invariante y(f) bestimmt, vgl. [6], Nr. 12D,
im Beweis des Hilfssatzes.
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¢) Tsei wie in Nr. 6a) erklirt; der obere Index (r) soll hervorheben,
daf es sich um ein Element von x,(S”) handelt.

Hilfssatz 2 : Fir jedes fem, (S7) ist

TYH (€f) = €T -
Beweis : Offenbar gilt
TG = G T,
somit nach Hilfssatz 1

T (€f) = (€ TY) (€f) = €(Tf) -

10. Beweis von Satz VI.
a) Wenn fir ein Element f € 7, (S7) und eine ganze Zahl k
T k f=kf
gilt, dann gilt dies auch fir jede Abbildungsklasse, die aus f durch (evil.
wiederholte) Einhdingung hervorgeht.

Dies folgt aus Hilfssatz 2 und der Tatsache, daBl € ein Homomorphis-
mus ist. — Allgemein gilt

T\(Cf) — k(€f) = C(T+f — kf). (11)
b) 8™ sei eine I',-Sphéare; dann gilt nach Satz V fiir f e #,(S™)
ka = k fa

und diese Formel 148t sich fiir gewisse, in Satz VI genannte Zahlen r
und d auf f em, ,(87) mit p(f) = 0 iibertragen (y(f) ist die Hopf’sche
Invariante 3) von f). Wir unterscheiden fiir den Beweis die Fille

r>m, m>=4d
und
r<m, r>=d-+1

(r = m ist in Satz V enthalten), die man in der Form

m>=d, r>=d+1
zusammenfassen kann.

¢) r>m,m >d. In diesem Falle 1aBt sich jedes Element f € 7, ;(S")
mit p(f) = 0 durch (evtl. mehrfache) Einhingung aus einem KElement

h e, (S™) erzeugen (nach einem Satze von Freudenthall®); nach
Nr. 10a) gilt also T, f =k f .

10y 12], 8. 300, Satz I.
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d) r<m,r>d-+ 1. Ein Element f ¢z, 4(8") geht durch (m — r)-
fache Einhéngung iiber in ¢ e =, 4(S™), und gleichzeitig wegen (11)
T.f—kfin Ty,9g — kg = 0. Ferner folgt aus y(f) = 0

V(T f— k)= —k)y(f)=0

und nach Freudenthal'!) folgt aus €h = 0, y(h) = 0 immer % = 0, also
T.f—kf=0.

11a) Wir schlieBen noch einige Bemerkungen iiber den durch die
Abbildung T'_, der Sphére S auf sich vom Grade — 1 bewirkten Homo-
morphismus von 7,(8") an, die nur teilweise mit dem vorigen zusammen-
héngen.

In Satz V ist enthalten, dafl fiir m = 3 und 7 und beliebiges » und

f e m,(Sm) gilt
" T, f=—f. (12)

Diese Formel gilt iibrigens nach Freudenthal'?) fiir jedes eingehingte
Element f = g einer Homotopiegruppe =x,(S") .

b) Wir beniitzen im folgenden den Begrift der retrahierbaren Zerlegung
3 (oder Faserung) eines Kompaktums R %) und der zugehorigen Projek-
tion P (oder Faserabbildung) von R auf den Zerlegungsraum Z, ferner
verschiedene fiir solche Zerlegungen geltende Beziehungen, die ich an
anderer Stelle [6] bewiesen habe.

L, sei der Linienelementraum der 87, d. h. der (in natiirlicher Weise
topologisierte) Raum aller an die 87 tangentialen Einheitsvektoren; er
ist gefasert in die Teilmengen der in einem bestimmten Punkt der S*
angreifenden Einheitsvektoren; diese Teilmengen sind alle der S
homoomorph. Diese Zerlegung 3 ist retrahierbar4), und ihr Zerlegungs-
raum ist zur 8" homdomorph und sei mit ihr identifiziert. Eine Abbildung
F eines Kompaktums X in die 8" heilt Spur in L,, wenn es eine Abbil-
dung f von X in L, gibt, derart, da}

F = Pf
ist.

11) 12], 8. 300, Satz II. Der Fall »r < m, r = d -} 1 fiir ungerades » wird von diesem
Satz allerdings nur fir r = 1, 3, 7 erledigt; fiir die iibrigen ungeraden r folgt der Satz II
von [2] erst aus einer Mitteilung von Freudenthal (Proc. Akad. Amsterdam 42 (1939),
S. 140), deren Beweis noch nicht erschienen und mir unbekannt ist; auf Grund dieser
Mitteilung wiirde Satz II von [2] die Form erhalten: fir f € 7,4 4(S"),r>d + 1, Ef =0,
y(f) = 0 folgt f = 0.

12) 5. [2], S. 304, Nr. 3.7.

18) [6], § 1.
1) [6], Nr. 14.
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c) Ist r gerade und F ¢ S*X eine Spur in L,, so ist T_,F zu F homotop.

Beweis: Wenn r gerade ist, so hat die Spiegelung der S an ihrem Mittel-
punkt, die jeden Punkt @ € S in seinen Antipodenpunkt a’ abbildet, den
Grad — 1; wir kénnen also fiir 7_, diese Abbildung wéhlen.

F € 8" sei eine Spur in L,; das bedeutet, dall wir dem Punkt F (z) ¢ 8"
in stetiger Weise einen in F () angebrachten tangentialen Einheitsvektor
und infolgedessen einen durch F'(r) gehenden gerichteten GroBkreis der
S™ zuordnen koénnen. LaBt man fiir jedes « ¢ X den Punkt F (x) auf dem
zu ihm gehorigen gerichteten GroBkreis in den Antipodenpunkt F'(z) =
T_,F (x) wandern, so wird F stetig in 7'_,F iibergefiihrt.

d) Wenn eine Abbildung von X in 8" Spur in L, ist, so ist auch, jede zu
ihr homotope Abbildung Spur in L,%); wir sagen deshalb auch von einer
Abbildungsklasse (oder einem Element einer Homotopiegruppe), sie sei
Spur in L, .

Wenn f € x,(S") eingehingt, d. h. von der Form f = €g ist, und wenn
bei geradem r f eine Spur in L,, bet ungeradem r g eine Spur in L,_, ist,
so w8t 2f = 0.

Beweis: Wenn f = g ist, so ist?)

T f=—1;
r sei gerade: Wenn f Spur in L, ist, soist 7_, f = f, also
f=—1.

r sei ungerade: Wenn g Spur in L,_, ist, so ist T_;g = g , also nach Hilfs-
satz 2
T ,f=T_,Cg=CT_9=Cg=f

f=—1.
e) Jedes Element f € 7,(S%) mit beliebigem n = 3 ist Spur in L, .
Beweis: Wegen m,_,(S!) = 0 (n > 3) ist dies eine unmittelbare Folge-

rung aus den an anderer Stelle'®) bewiesenen ,,Hurewicz’schen Formeln‘‘.
Aus 9c¢) folgt also: Fiir jedes Element f € z,(8%) (n > 3) gilt

T..f=f. (13)

Aus 94) folgt: Fiir jedes eingehéingte Element f = €g € 7,(8%) , (n > 4)

15) [6], Nr. 3d (Lemma).
16) [6], Nr. 6, Satz E mit Korollar.

also
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§ 3. Einige Homotopiegruppen der orthogonalen Gruppen

12.a) Die Methode, mit welcher wir in diesem Paragraphen die 3., 4.
und 5. Homotopiegruppe der orthogonalen Gruppen bestimmen, habe
ich an anderer Stelle [6] ausfihrlich entwickelt; wir geben hier nur die
wichtigsten Bezeichnungen und Beziehungen an, soweit sie fiir das Fol-
gende benotigt werden.

b) I',, sei die (topologische) Gruppe aller (m -+ 1)-reihigen orthogo-
nalen Matrizen a = (a;;) mit der Determinante + 1. Die Untergruppe
der Matrizen (a,;) mit

alk:(Slk k:].,...,m“l"l

ist zur Gruppe I',,_, isomorph und werde ebenfalls mit I",,_, bezeichnet.
Die Zerlegung 3,, von I',, in Restklassen nach der Untergruppe I',,_, ist
retrahierbar®); ihr Zerlegungsraum ist zur Sphire S™ homoomorph:
jede Restklasse von I',, nach I, _, umfaflt genau alle diejenigen Matrizen
(@;;), die in den Elementen a,, der ersten Zeile iibereinstimmen, und ist

somit gegeben durch (m + 1) reelle Zahlen a,,, die der einzigen Bedingung
m+1

2 a3, =1 geniigen, und die man somit in einem (m - 1)-dimensionalen
k=1

euklidischen Raum R™+! a]s Koordinaten eines Punktes v = (u,, .. .,% 1)
der Sphéire S™ ml

2 oui=1

k=1

deuten kann.
Die Abbildung von I',, auf 8™, die jedem Punkt @ = (a,,) von I,
seine Restklasse, d. h. den Punkt »

uk:alk k=1,-.',m+1

der Sphiare 8™ zuordnet, heillt Projektion und wird mit P,, bezeichnet.

c) Bei der Bildung der Homotopiegruppen von I',, sei der Punkt
e = (d;;) € I',, ausgezeichnet (vgl. 4a), bei denen von §™ der Punkt u,
mit den Koordinaten d,,:
P,e=u,.

Yu(3m) set die Untergruppe derjenigen Elemente von =, (I,_,), d.h.
Abbildungsklassen von S* in die Untergruppe I',,_, von I',,, die in der
0-Klasse von m,(I",,) enthalten sind.

@ul3.m) ser die Untergruppe derjenigen Elemente von x,(I",), die, als
Abbildungsklassen aufgefapt, Elemente von =, (I,,_,) enthalten.
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Es gelten die ,,Hurewicz’schen Formeln‘!®) (= bedeutet isomorph)

I ﬂn(sm)/Pm nn('r'm) ~ '/"’n--l(3m) 1
II P (ly) = ap(l'n)/ @n(3m) (14)
III ¢n<3m) ~ nn(Pm—l)/wn(Sm)

fiir beliebiges n > 1 (y4(3,,) ist = 0 zu setzen) und m > 2 . Der Isomor-
phismus (14), II wird durch die Projektion P,, selbst vermittelt.
Eine Folge dieser Beziehungen ist insbesondere!?): Fiir m > n + 1 ist

nn(r’m) ~ ”n(rn+1) .

Es ist also von besonderem Interesse, die Gruppen z,, (I, ;) zu bestimmen.

d) Unter einem Schnittelement t der Zerlegung 3, verstehen wir eine
stetige Abbildung ¢ der m-dimensionalen Vollkugel V™ in I",,, bei welcher
die Randsphire 2'™-1 von V™ in die Untergruppe I',,_, von I’,, abge-
bildet wird, und derart, da die Abbildung P,, t das Innere von V™ topolo-
gisch auf 8™ — u, abbildet. Die zugehorige Abbildung ¢’ von X'™-1 in
I, (bei welcher ein bestimmter Punkt &, e 2’ ™1 aufe ¢ I",,_, abgebildet
werden soll) heilit Rand des Schnittelements. Fiir alle n < 2m — 1 (und
bei ungeradem m auch fir » = 2m — 1) ist?8)

Tnun-—l(3m) = t,nn—l(zm—l) 5

insbesondere ist also v,,_(3,,) die von ¢’ en,,_,(I",-;) erzeugte Unter-

gruppe von 7,_y(I'py) -
Vermoge dieser Beziehung erlaubt die Konstruktion eines Schnitt-

elements in einigen Féllen die Bestimmung von y,_,(3,,) und wegen (14)
auch von =,(I,,) .

13.a) Wir untersuchen zunichst die Gruppe n;(l,). Da I, zum
3-dimensionalen reellen projektiven Raum homdomorph ist, mull sz,( 1)
(nach [1], Satz IV) eine unendliche zyklische Gruppe sein; genauer:
In der Zerlegung 3, gilt nach (14):

75(82)/ Py 705( 1) = 95(32) © 70o(L) = 0,
weil I, dem Kreis S! homtomorph ist, also

73(82) = Py i5(1y) = 7y(1)/ 93(32) = 73(1)

1) [6], Satz 9 (NT. 8).
18) [6], Satz 12 (Nr. 10).
19) [8], Satz 19 (Nr. 14).
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denn nach (14), III ist @4(3,) einer Faktorgruppe von 7my(I;) = 0 iso-
morph. Wir finden also
P i Ty) = 5(%) (15)

und dieser Isomorphismus wird durch die Projektion P, von I', auf S2
vermittelt. Die KElemente von x,(S%) lassen sich aber durch die
Hopf’sche Invariante charakterisieren ?). :
Jedes Element | € ny(I'y) kann also durch eine ganze Zahl y(f) charak-
terisiert werden, ndmlich durch die Hopf sche Invariante von P, fem,(S?) .

b) I'; ist dem topologischen Produkt S°xI’, homéomorph, und zwar
gibt es eine solche topologische Abbildung @ von I'; auf 83x I',, da3 dabei
jede Restklasse von I'; nach I', genau auf eine der Mengen (u)x I, (% ¢ S3)
abgebildet wird. Diese Abbildung

D) =(u,v) ael;, ueS, vel, (16)
konnen wir geben durch w= P,a
v = Pia,

wo Pj folgendermaBen erklart ist:
Wir bilden aus den Elementen der ersten Zeile der Matrix a = (a,;) € I';

die Vektoren v,(a) (k =1, 2, 3):

D; = (— @y, Ay, — Ay, @y3)
0, = (— a3, Q14 Ay, — G)
D3 =(—@Qy, —a3, Ay , @) .

Wir kdénnen sie auffassen als paarweise orthogonale Tangentialvektoren
der Sphire 8%, die im Punkt P,a € S° angreifen (also ein stetiges tangen-
tiales 3-Feld??) auf 82 bilden). a,(k = 1, 2, 3, 4) seien die Zeilenvektoren
der Matrix @ == (a,;); a,, 03, a, konnen ebenso wie v,, v,, v, als paar-
weise orthogonale Tangentialvektoren der S® im Punkte P,a der S? auf-

gefaflt werden.
Wir betrachten nun die skalaren Produkte

vik(a) = at’-}-l'nk(a’) i: 1:29 3; k = 1: 2’ 3

(d. h. die Komponenten von a,,, beziiglich des durch die v,(a) gebildeten
cartesischen Koordinatensystems) als Elemente einer orthogonalen Matrix

v(a) = (v,(a)) e Iy
und setzen
Pya = v(a) ;

20) [7], 8. 27 und 8. 45.
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das ist eine stetige Abbildung von I'; auf I',, bei welcher jede Restklasse
von I'; nach I, d. h. jede Teilmenge aller der Matrizen @, die im ersten
Zeilenvektor a, iibereinstimmen, topologisch auf I', abgebildet wird.

c¢) Die Homotopiegruppen von I zerfallen also wie die von 83x I, in
direkte Summen?!)
nn(P:B) ~ n’n(Sa) + 7zn(112) H

und dieser Isomorphismus kann durch die topologische Abbildung &
vermittelt werden: fir f e () ist

wo P, fen,(S?) und P, fem,(I).

Insbesondere ist 7,(1') ein 2-gliedriger Modul, den wir folgendermaflen
beschreiben konnen: jedes Element f e ,(I;) ist charakterisiert durch 2
ganze Zahlen ¢ und y, namlich

¢ = Grad von P, f e 7,(S3) ,

y = Invariante von P} f € ny(I7,) (vgl. 11a).

Bezeichnen wir das zu ¢ und y gehorige Element f e 7,(’;) mit f, ,,, so ist

fc,7+ fc',y' = fc+c', y+y’ 0

/c,y"—: c'fl,() -+ 7f0,1 .

also

Durch die bisherigen Ausfithrungen haben wir Satz VII, 4) bewiesen und
prézisiert.

14. Uniersuchung einer speziellen Abbildung.

a) Wir bestimmen die Invarianten ¢ und y folgender Abbildung s der
Sphiare 2% in I : die Punkte x ¢ 2’3 seien durch 4 reelle Koordinaten
4

&y, Ty, Xy, T, mit Y 7 = 1 gegeben; a = (a;;) sei ein Punkt von I ; durch
i=1
aik(w):—aik*—-zxixk ?:=1,2,3 k:]., 2, 3,4 (17)

ist eine Matrix
a=3s(x)el,

1) [6], Satz G (Nr. 9).
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bestimmt (die vierte Zeile einer orthogonalen Matrix mit der Determi-
nante -+ 1 ist durch die 3 ersten festgelegt). Man verifiziert, da@3

ké'la,-k(x) c (%) = 8, — dxgx; + 4z, x,.é'lxi = d;
ist. Bedeutet x, ¢ 2% den Punkt (0, 0, 0, 1), so ist
8(x,) = €.
b) Die Abbildung P,s der Sphire 2% auf S3 ist gegeben durch

@y () = 6y — 27, 2, k=1,2,3,4;

diese Abbildung hat bekanntlich®?) den Grad 2 .

Die zu s gehorige Zahl 9 ist nach Nr. 11 definiert als die Hopf’sche
Invariante von P, P;s € m,(S?) . Es geniigt also, von der Matrix

: v(s(x)) e I
(vgl. Nr. 11b) die erste Zeile

v (s(x)) k=1,2,3

zu berechnen ; sie gibt uns die Abbildung P, P;s von 2’3 auf S2 .
c¢) Nach 11b) ist
Uik (s(x)) = az(f”) * Dy (S(x)) k=1,2,3;

dabei bedeutet a,(x) den zweiten Zeilenvektor der Matrix s(x):

ay(2) = (— 2x,2, , 1 — 2“73 y — 2wyx5 , — 2x,%4) ;

v, (s(x)) sind die Vektoren

0,(s(z)) = (22, x, , 1— 22} 2z, 2, , — 2@, @)
0,(s(x)) = 2wy 25 , — 22,7, , 1—24f, 2z, x,)
05(s(x)) = (22, x, , 2,43 , —2x, @, , 1-—2a%).

1) Identifiziert man 2'® mit S?, so ist 8(x) derjenige Punkt von 2%, der aus dem Punkt
(1, 0, 0, 0) durch Spiegelung an der zum Durchmesser von z orthogonalen Diametralebene
hervorgeht; vgl. [6], S. 434—435.
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Also wird

'Uu(s(x)) = — 47} 23+ (1—2a}) (1—223) — 4, 7, &3 2, + 42, T, 73 7,
v1:(8(x)) = — 42 &, 2, — 2(1— 223) z, ,—2(1 — 22%) x, 2, —4x, 23 2,
vy3(8(x)) = — 4o} @, 2+ 2(1—223) @, x,+ 42, @5 2, —2(1—22}) z, 2, ,

also, wenn wir statt v,(s(z)) = u,(x) schreiben

uy (%) = 1 — 2(23 + 3)
Uy () = — 2(2y24 + X,5)
us (®) = 2(2125 — X5%) .

FafBt man die Koordinaten von x ¢ 23 durch

Wy = T, — 1%,

Wy = — Ty + 1,

zu komplexen Zahlen zusammen, so kann man also die Abbildung
P,P;s von X3 auf die Sphére S? (deren Punkte » durch die reellen Koor-
dinaten u,, u,, %;, gegeben sind) in der Form

u, =1 — 2w, w, (18)
uz -l"’l:u:;: 2;0_1102

darstellen. Das ist aber nichts anderes als die von Hopf??) angegebene
,,Faserabbildung* p von 23 auf 82 (projiziert man namlich 82 stereo-
graphisch auf die Ebene der komplexen Zahlen u, 4 tu,, so wird bei der
Abbildung (18) dem Punkt x ¢ 2% mit den (komplexen) Koordinaten
w,, w, der Punkt w, : w, dieser Zahlenebene zugeordnet); fiir diese Abbil-
dung hat aber die Hopf’sche Invariante den Wert 1 (bei geeigneter Orien-
tierung von 23) .

Fir die Abbildungsklasse von s gilt also (vgl. 11¢): 8 = f,,; € m5(I) .

15.a) Wir konstruieren nun ein Schnittelement ¢ (s. Nr. 10d) der Zer-
legung 3, von I', in Restklassen nach der Untergruppe I;. Die Voll-
kugel V* ersetzen wir dabei durch die Halbsphéare H*, die im R5 mit den
Koordinaten z,, ..., z; durch

gegeben sei; die Randsphire 2’3 ist also durch z; = 0 bestimmdt.
) [4], 8. 664.
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t sei die folgende Abbildung von H*in I';:

t(x) = (au(x)) e 'y,

wobei i=1,284
a;(x) = 0, — 22; 2,
* o k=1,2,3,4,5,

und die fiinfte Zeile durch die 4 ersten bestimmt ist. Dann ist P,¢ gegeben

durch
Ay (2) = 013 — 22, 7, k=1,2,3,45 ;

das ist eine topologische Abbildung??) der offenen Halbsphire z, > 0 auf
S* — uy (u, ist der Punkt (1,0, 0,0, 0) der Sphire S*), wahrend die
Randsphire 2'3(z; = 0) durch ¢ in die Untergruppe I'; von I', abgebildet
wird: ¢ ist also ein Schnittelement von I',. Der Rand dieses Schnitt-
elements, d. h. die Abbildung ¢’ von 2’3 in I'; hat die Form

i =234
k=234,5

d. h. ¢/ ist genau die in Nr. 12 untersuchte Abbildung s von 2% in I} .
Da die Abbildungsklasse des Randes eines Schnittelementes ¢ durch die
Zerlegung eindeutig bestimmt ist?¢), gilt also:

@i (X) = 85 — 2, @,

Far den Rand eines Schnittelementes t der Zerlegung 3, gilt
t' = fo1 € my(I'y) - (19)

b) Die Gruppe y,(3,) ist nach Nr. 10d) die von f,,, € #;(I';) erzeugte
Untergruppe von n,(1), also zyklisch von unendlicher Ordnung

vi(3a) = (fe)) = 6.
Aus den Formeln (14) folgt ferner:
Pymy(I5) =0,

da es sich nach (14), I um eine Untergruppe von 7,(S*) = 0 handelt;
nach (14), IT und III ist also

nis(Iy) = @3(3a) = 73(15) /3(34) -

Die Faktorgruppe von my(Il) nach v;(3,) = (f,,,) ist aber zyklisch
von unendlicher Ordnung; das sieht man, wenn man als Basis des zwei-

) [6], Nr. 10b.
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gliedrigen Moduls 7,( ') statt f,,, und f,,, die Elemente f,,, und f,,, wihlt
(der Ubergang wird durch die unimodulare Matrix (; (1)) vermittelt).

Also: T = 6 . (20)

Wegen =, (I',)~ n,(I',.,) fir alle m >n 4 1 (vgl. 10¢) ist damit
Satz VII, 1) bewiesen.

¢) Nach Nr. 10d) gilt fiir die Untergruppe v,(3,) von m,(I)

vo(34) = f2’1754(23) s Jan € my(1);

da 7,(2%) =~ G, nur 2 Elemente besitzt, kann y,(3,) also hochstens 2
Elemente haben. Wir behaupten:

Yu(34) = G, . (21)

Beweis: h e 7,(23) sei die (einzige) Klasse wesentlicher Abbildungen von
8¢ auf 2'3. Dann ist

fz,l h = (fzso + .fo,l)h s

f2,1 h = fz,oh + fo,1 h.

also nach Satz IV

Nach Satz V ist
P3f2’0h=T2h=2k=O :

wegen
P; fz,o h=0
ist also
fz,o h =0
und
f2,1h = fo,l h.
Ferner ist

P, P; fo,l = P € m,(5?)

die Hopf’sche Faserabbildung (bzw.ihre Klasse) von 23 auf 8% (vgl.
Nr. 12¢), also P, Pl b= ph e m,(S%)

die Abbildung, die man erhilt, wenn man die Sphire S* wesentlich auf
2% und dann X'® vermoge der Faserabbildung p auf S? abbildet; diese
Abbildung ist wesentlich ; denn wenn F irgendeine wesentliche Abbildung
auf 2’3 ist, so ist pF immer wesentlich?®). Also ist

ph #0
) 8. [1], S. 118, oder [6], Satz C (Nr. 4).
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und infolgedessen auch fo,,h = f,,,2 % 0; v,(3,) enthilt also 2 Elemente,
q. e. d.

d) Nach (14), I ist
7y(S)/Pyty(Iy) = 93(3) = 6 ;
das ist nur moglich, wenn
Pny(Ily) =0
ist. Somit ist

ny(Is) = @a(34) = 7y(13)/9a(34) -
Nach 11c¢) ist aber

7y(L') = 7,(S3) + 7y(1y) = 7,(82) 4 7,(S3) = B, + 6,

weil I', zum reellen projektiven Raum von 3 Dimensionen homéomorph
ist und dessen Homotopiegruppen (auBler der ersten) mit denen von S3
iibereinstimmen?$). Wir erhalten also

ny(Iy) = 6, . (22)
(Die Aussagen von Satz VII, 5) sind damit bewiesen.)
¢) Wir kénnen nun Satz VII, 2) beweisen. Nach (14), I ist nimlich
Pyry(I5) =0,

7y(15) = @a(35) = L) /9a(3s) -

also
¥4(3;) kann also hochstens 2 Elemente enthalten ; ich habe aber an anderer
Stelle2?) bewiesen, daB3

) va(3s) = 0

ist (das ist dquivalent damit, daB die Sphéare S5 nicht parallelisierbar
ist); es mul} also

v4(3s) = G, (23)
sein, und fiir z,(I;) folgt

my(l3) =0, (24)
also

7wy (I',) =0 fir alle m > 5.

16. Die funfte Homotopregruppe der I',, . Wir beweisen in dieser Nummer
Satz VII, 3) und 6).

a) DaBl n;(I,) = 0 ist, folgt aus
7t5(1'y) =2 75(8S®)

36) [1], Satz IV. #) [6], Satz 27 (Korollar).
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und dem Satze von Pontrjagin?), daBl jede Abbildung von S5 in S?
unwesentlich ist, ebenso
7t5(Iy) = 705(8%) + 75(I) = 0.

b) Nach (14), I und (21) ist
75(84)/ Pyres(I'y) = 94(34) = G5

wegen 7;(S*) &~ ®, ist also
P47{5(P4) =0 ’

75(Ly) = @5(34) 5

aber ¢;(3,) ist einer Faktorgruppe von m;(I’;) = 0 isomorph, also

also

o\ Ty) = 0. (25)
c) Nach (14), I und (23) ist
75(8°%)/ Ps m5( 1) = 94(35) = ©, ,
also
Pyre(I5) = 2m5(S°) .
Anderseits ist aber
Pyr(I5) =~ 7w5(15)/ 9s5(35) »

wobei
@5(3s) = 705(1y)/p5(35) = 0O
ist, also
Pyry(I5) = m5(15)
75(1s) =~ 2m5(8°) =~ 6 , (26)

und dieser Isomorphismus wird durch die Projektion P; vermittelt.
Jedes Element f e n;(I5) tst also durch eine gerade Zahl charakterisiert,
ndmlich durch den Grad von Pyf € 75(S®) .

d) Ganz dhnlich wie in Nr. 13a) konstruieren wir ein Schnittelement
der Zerlegung 3, von Iy in Restklassen nach der Untergruppe Iy durch

die Abbildung ) (4. (@) € T,
aik(x)zaik““zxixk, 7:=1,...,6 kzl,...,’]

(letzte Zeile ¢ = 7 durch die iibrigen bestimmt) der Halbsphare H® :

7
2x§=1 9 x1>0

$=1

18) Comptes Rendues de I’Acad. des Sc. de 'URSS., 1938, XIX, 5.
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in die Gruppe ;. Der Rand ¢’ dieses Schnittelements ist gegeben durch
die Abbildung von 2'%(z; = 0) in I5:

aik(x) - 61:’0 - 2x'xk ’ i = 2, oo vy 6

und die Abbildung Py’ von 2'% auf S5

a2k(x) - 6216 - 2x2$k ) k = 2, e oy 7

hat den Grad 2; folglich ist ¢’ € 7;(I;) nach (26) ein erzeugendes Element
von my(I;). Anderseits ist y;(I) die von ¢’ erzeugte Untergruppe von
n(I5), also

v5(3s) = 75([5) (27)
und aus den Formeln (14) folgt: '
Pgmy(Ig) =0,

75(Ls) = @s(36) = 75(L5)/w5(36)
also
7t5(I%) = 0. (28)

Damit ist Satz VII in allen Teilen bewiesen.
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