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Complexes à

n dimensions et intégrales abéliennes

Ch. Blanc, Lausanne

On sait que l'étude de l'équation aux différences qui donne, par
passage à la limite, l'équation de Laplace, conduit à des résultats souvent
très analogues aux propriétés connues des fonctions harmoniques. On
a montré1) qu'en poursuivant l'analogie, on retrouvait pour les polyèdres
illimités un problème du type, dont certaines solutions partielles permettent
de penser qu'il ressemble beaucoup au problème classique du même nom,
et on peut espérer que les recherches consacrées à l'un feront avancer
la solution de l'autre.

Il est naturel de chercher ce qui se passe pour les polyèdres finis,
analogues aux surfaces de Riemann algébriques. On retrouve une théorie
analogue à celle des intégrales abéliennes ; mais alors on peut aussi, sans

compliquer notablement l'exposé, le traiter dans le cas de n dimensions ;

c'est ce que nous avons fait.
La dualité champ-forme et la dualité intersection-intégrale qui en résulte,

sont empruntées en particulier à la thèse de M. de Rham2) ; certaines de nos

propositions se trouvaient déjà énoncées dans une conférence que M. de

Rham a présentée à l'Université de Budapest en 1940, et qui n'a pas été

publiée. Il s'agit en particulier des théorèmes de décomposition du § 3,

qui, sous la forme où ils sont exprimés ici, appartiennent à M. de Rham.
Ils ont été énoncés déjà, d'une façon un peu moins précise, par M.
H. Whitney*).

Introduction
On considérera un complexe Cn au sens de la topologie combinatoire.

Cn est constitué par des éléments aP, de dimension p (p 0, n);
on supposera Cn orientable.

Tout aP (avec p>0) possède une frontière, qui est un ensemble
d'éléments aP~x, pourvus d'une orientation; on l'écrit f{ap).

x) Ch. Blanc: Les réseaux Itiemanniens. Comm. Math. Helv., vol. 13 (1940),
p. 54—67.

a) G. de Rham: Sur TAnalysis Situs des variétés à n dimensions. J. de Math.
p. et appl. 10 (1931), p. 115—200.

On pourra consulter également, du même auteur, le mémoire: Ûber mehrfache
Intégrale, Abh. aus dem Math. Sem. der Hansisehen Univ. 12 (1938), p. 313—339.

3) H. Whitney : Onproducts in a complex. Aimais of Math., 39 (1938), p. 397—432
(voir en particulier le § 26, p. 430).
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A Cn correspond le complexe conjugué Gn (ou complexe dual, ou
réciproque); on notera par bn~~p l'élément de Gn conjugué de aP dans Cn\ les
éléments conjugués de ceux de la frontière de bn~p constituent la co-

froutière de aP : cof (aP).
On appelle p-champ sur Cn lin ensemble d'éléments aP de Cn pris

chacun avec un coefficient x{aP), nombre réel quelconque. Le ^-champ
yp s'écrit

yp Zx(aP)aP

Si x(aP) 0, on écrit yp 0. La frontière f(yp) est donnée par

et la cofrontière par
cof (yp) Zx(aP) cof (ap)

Si /(yp) 0, yp est un cs/cZe; on vérifie que la frontière d'un #>-champ est
un cycle. Si un ^-champ est une frontière, il est dit homologue à zéro:
yp ~0. La somme de deux ^-champs s'obtient en additionnant leurs
coefficients ; le produit d'un champ par une constante s'obtient en multipliant

ses coefficients par cette constante.
Deux cycles sont homologues si leur différence est homologue à zéro.

Les k cycles y\, y\ sont linéairement indépendants si l'on ne peut
pas trouver k nombres xi9 non tous nuls, avec

Exiy\ ~ 0

Ils sont linéairement dépendants dans le cas contraire. Soit Rp le nombre
maximum de cycles linéairement indépendants sur Cn. Si y\, yvRP sont
Rp cycles linéairement indépendants, tout cycle yp est homologue à une
combinaison linéaire de ces y\. Ces y\ constituent une base.

On définit de la même façon les ^-champs et les ^-cycles sur Cn. On

montre que Rp Rn~p.

Intersection, a\ et bj"* étant deux éléments de Cn, resp. Cn, on pose

(ôis est égal à un si i j, il est nul dans le cas contraire).
Etant donnés les deux ^-champs y\ Ex^aP) aP et y\ Ux2(aP)aP,

et leurs conjugués y""1*, y2n~p> on Pose

Zxx(aP) x2{aP)
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Voici quelques propriétés des p-champs que nous aurons à utiliser:

I. Deux champs y\ et y%~p+1 étant donnés, on a

II. Si y? ~ 0, alors J(yÇ, yjf*) 0, quel que soit le cycle

III. Si y\ ~ y\ et si y"~p est un cycle

IV. Si /(yj, y?"p) 0 quel que soit le cycle y%~v, alors le cycle y\ est

homologue à zéro.

V. On peut construire sur Cn une base c\ et sur Gn une base d"~p telles

que i(d!,dr*) àti.

Les bases considérées dans la suite seront toujours de telles bases.

§ 1. Les 22-îormes

On appellera p-forme une fonction œ(aP) des éléments aP de Cn.

Une 2?-forme peut être intégrée, par quoi il faut entendre qu'on en peut
déduire une fonction des ^-champs par la définition suivante :

Si yP H,(%(aP)aP, on a

J a>(aP) Z*{aP)a){aP)
7v

La dérivée d'une ^-forme œ(aP) est une (p -f- l)-forme oo/(ap+1) définie

par
J œ(aP).

(+1)
On vérifie que la dérivée de la dérivée d'une p-forme est identiquement

nulle. Si la dérivée d'une p-forme est nulle, cette p-forme est une p-forme
exacte; si une p-forme est dérivée d'une (p — l)-forme, cette p-forme est
homologue à zéro.

Formule de Stockes. Etant donné un p-champ yp et une (p — l)-forme
co (aP~x), on a

fœ'(a?)= J (oiaP-1).
yV f(yV)

II suffit en effet de démontrer cette relation pour un élément aP : mais
alors elle constitue précisément la définition de co '\
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On en tire la conséquence immédiate suivante :

Si co (ap) est exacte, et si yp ~ 0, alors J co (aP) 0
yP

Par contre, si yp est un cycle, soit par exemple yp ~ £xt c%, on a

J co(ap) Zxt J <o(aP) I xt at,

où les a% sont les périodes de la ^-forme exacte
Si y? Ua* (ensemble des éléments aP de O), /(y») 0 d'où

Zco'(aP) 0.
cm

Forme conjuguée : à toute 2?-forme w (ap) correspond une (n — p)-îoime
cô(bn~p), dite forme conjuguée, définie sur Cn en posant

où aP et fe71-^ sont deux éléments conjugués.
La forme œ (bn~p) possède à son tour une dérivée côr (bn~p+1). Si cô; 0,

ô> est exacte, et on définit ses périodes, qui sont les périodes conjuguées
de co.

Les formes et les champs correspondants. On vient de faire correspondre
à toute p-forme co{aP) sa (n — p)-forme conjuguée. On va lui faire
correspondre deux champs y% et y2Tp- On Pose

yl Uœ (aP) ap y£+ Zœ (b"-p) b"~p

Réciproquement, à tout p-champ ypw correspondront une ^p-forme

co(aP), sa conjuguée cô(bn-p) et un (n — p)-champ y%~p •

Si la p-forme co (aP) est exacte, y^"p est un cycle.

On a en effet
yZT* Uœ(bn-p)bn~p

d'où

co (aP)] &"-*-1 £ co1 (OP+1) fe71-^-1 0

Si la p-forme co(aP) est homologue à zéro, y1^ ~ 0

En effet

alors si
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il vient
f{yfp+1) Sû{bn-^) f(bn-^)

Z[ Z S(6n-*+1)] bn~*> ;

cof ibn—P)

le conjugué de E û(bn~*>+1) est n'(aP) donc /(y£~p+1) ynu7p

et par conséquent y^7p ~ 0, d'où y^~p ~ 0.

Il existe une relation étroite entre les intégrales et les intersections:

Soit une p-forme œ(a?) et le (n — p)-champ yZ~v- Quel que soit le p-
champ Fp,

J

En effet,

et si

rp) * K) /K ' bTv)

Il en résulte que si y%~p est un cycle, œ(aP) est une p-forme exacte.

En effet

d'où
21 / (^ yl~p) /(/K+1) yTp

f(aP+1)

Une p-forme exacte dont toutes les périodes sont nulles est homologue à

zéro; le (n — p)-champ conjugué correspondant est aussi homologue à zéro.

Soit co(aP) cette p-forme, et y^"p le (n — p)-champ correspondant. On

a, quel que soit le cycle F*

j co(aP) 0

donc

216



d'où y£ p ^ 0. Ainsi, il existe un (n — p + l)-champ An~p+1 dont la
frontière est y2Tp. Soit Ân~v+1 Zy.b»-**1.

On a yl~p

d'où co (aP) y'{aP) etœ(aP) ~ 0.

Il résulte de ce que nous venons de dire que si y1^ ~ 0, co (aP) ~ 0.

§ 2. Intégrale du produit de deux formes

Considérons deux ^-formes œ^aP) et a)2(aP), leurs formes conjuguées
et les champs correspondants. On a la relation

J œ^aP) a>2(a?) ^/(y^ y^») (2.1)

En effet,

270)! (a»)

J («! • ft)2 •

cm

Par raison de symétrie, on a aussi

d'où

^) • (2.2)

Si, en particulier,
œ1 0)2= (o (aP)

$yl-*)>0 • (2.3)

Si œ1 et co2 sont des formes exactes, on a y^~p ~ Z oxi d"~p et

2"âM^, d'où
J o>1(

Si, en particulier, co1 co2 co, et si a> et co sont exactes
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donc, si une p-forme est exacte, ainsi que sa conjuguée, ses périodes ne

peuvent être toutes nulles, sans que la p-forme soit identiquement nulle.

Supposons maintenant que la p-ioime a>1(ap) est homologue à zéro:

et soit un ^-champ D Z(x(aP)aP. On a

J a>1.a)1 J
D D

Z [xAa?-1) Z co2{aP) oc(a?)]

donc
J (*>! co2 Z Oi

D Cn

Si en particulier le 2>-ehamp D est constitué par un ensemble d'éléments
ap pris chacun avec le coefficient un, et si /(D) F, alors

S a>x co2 Z xx (c^-i) œ'2 (bn~*>+i) + Z [xx (a*"1) Zf œ2 (b«-*) ]

où Do est l'ensemble des a?-1 appartenant à la frontière d'éléments aP

de D, mais non à F; la somme Z1 doit être étendue aux éléments ap

communs à cof(aP~1) et à D.
Si, en particulier, co2 ~ 0, soit co2= x2, on a, par symétrie

Z (#i Ô>2 — #2^() + ^ \XlZ' ft>2 — ^2 ^ Û)i] 0
Do r

Si, de plus, a>! est exacte, et si co2 0 excepté pour 6J}~P+1 où

enfin, si x2 0 sur 71,

Cette dernière relation résoud pour F un problème de Dirichlet; co2

joue le rôle de fonction de Green.

§ 3. Classification des ^-formes

Parmi les ^-formes, nous distinguerons :

1° les p-formes de première espèce: a)(aP) est de première espèce si elle
est exacte, ainsi que sa conjuguée;
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2° les p-formes de deuxième espèce: co(ap) est de deuxième espèce si elle
est homologue à zéro;

3° les p-formes de troisième espèce: œ{aP) est de troisième espèce si sa

conjuguée est homologue à zéro.

Nous allons voir qu'il existe effectivement des p-formes de chacune de

ces trois espèces; nous verrons ensuite que toute p-forme est égale à la
somme de trois ^-formes, de première, deuxième et troisième espèces.

Existence des p-formes de ^première espèce.

Etant donnés Rp nombres, non toits nuls, ol9 aRp, il existe une
p-forme de première espèce, et une seule, ayant pour périodes ces nombres at.

Considérons en effet une p-forme exacte £(a#) ayant pour périodes les

at. Il en existe certainement une : soit le (n — p)-cycle y%~p £otd1l~p
2Jx(bn~p) bn~p. La p-forme x(ap) est exacte, puisque y%~p est un cycle.
De plus, sa période relative à cP est

Ensuite, ^{aP-1) étant une (p — l)-forme quelconque, C(a^) x(aP) +
oc '(ap) est aussi exacte, et a également les périodes at. L'intégrale J Ç2(aP)

est bornée inférieurement, puisque les at ne sont pas tous nuls. Parmi
toutes les formes f (a2*), exactes et de périodes at, il en est une au moins

pour laquelle le minimum de j*£2 (ap) est atteint : on considère en effet une
suite £i> £2? • • • Pour laquelle Jt!^) tend vers sa borne inférieure. On

peut extraire de cette suite une suite qui converge en tout aP, et la limite
constitue la p-forme cherchée: elle est exacte, ses périodes sont les a{.
Soit œ(aP) cette p-forme. Posons Ç(aP) co{aP) + Xocf(aP) et calculons

On a

Puisque Jco2»< fé2 quel que soit A et oc(aP'-1),

Jû>.«' 0 ;

or

et y%7p est un (n — p)-champ ~ 0, mais à part cela, quelconque. Soit,

par exemple,

219



alors

c'est-à-dire

quel que soit rélément b%~p+1. Donc f(yli) 0, y£ est un cycle, et â) est
exacte; il existe ainsi au moins une p-forme satisfaisant aux conditions
de l'énoncé. Mais elle est unique: en effet, si on en avait deux, leur
différence serait de première espèce, avec des périodes nulles, elle serait
identiquement nulle. Le théorème est ainsi démontré.

On appellera p-formes normales de première espèce les p-formes de

première espèce s^aP) de périodes aih àik(i, k 1, R*>)

Existence des p-formes de deuxième espèce.

Il existe une p-forme de deuxième espèce, et une seule, dont la conjuguée
a une dérivée égale à une dérivée donnée.

Reprenons le raisonnement que nous venons d'utiliser. Soit y(bn~p) la
(n — p)-forme dont la dérivée est la dérivée donnée. Considérons les

p-formes Ç(aP) y{aP) + u(aP), û(bn~v) étant ~ 0. On a Ç'(bn-P+1)
y'(bn~p+1). On forme l'intégrale j*£2 qui est bornée inférieurement, si y
n'est pas identiquement nulle (ce que nous supposerons). Le minimum
de cette intégrale est atteint pour une p-forme œ(aP). On démontre,
comme plus haut, qaea)'(aP+l) 0; si q>x, <p2, sont les périodes de co,

la p-forme

satisfait entièrement aux conditions de l'énoncé. Elle est unique, car la
différence de deux solutions du problème est de première espèce, avec des

périodes nulles.
Prenons en particulier

— 1 si bn~* b«

y (bn-v)
0 si &»-*#£

èj}"-* étant un élément choisi arbitrairement. On appellera p-forme normale
de deuxième espèce la p-forme t(aP, a%) dont la conjuguée a une dérivée
égale à ^(ô*-*^1).

Le p-champ y\ + a* est alors un cycle, soit
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les Xi(a%) sont les périodes de t (bn~p, a%). Il faut remarquer qu'il s'agit ici
d'une généralisation de la notion de période, qu'on n'avait définie au § 1

que pour les formes exactes.

Existence des p-formes de troisième espèce.

La même méthode de démonstration nous conduirait au théorème:

II existe une p-forme de troisième espèce, et une seule, dont la dérivée est

égale à une dérivée donnée.

Si la dérivée donnée est celle de la

— 1 si ap al
0 si ap =£ al

on a la p-forme normale de troisième espèce z(ap, al) Ses périodes
sont définies par la relation

Décomposition d'une p-forme quelconque.
Toute p-forme œ (ap) est la somme d'une p-forme de première espèce, d'une

p-forme de deuxième espèce et d'une p-forme de troisième espèce.

Soit en effet y{aP) une p-forme de deuxième espèce avec yf(bn~p+1)
co'(bn-p+1); soit ensuite z{aP) une p-forme de troisième espèce, avec
z'(ap+1) co/((P)+1). La p-fbrme x(ap) co(ap) — y(ap) — z{aP) est

exacte, ainsi que sa conjuguée; elle est par conséquent de première
espèce, ce qui démontre notre affirmation.

Cette décomposition est unique : en effet, soient deux décompositions

x{aP) + y{aP) + z(ap) Xl[pP) + yx(aP) + z^aP) ;

y(ap) — yx{ap) est une p-forme de deuxième espèce, dont la conjuguée a

une dérivée identiquement nulle ; donc y yx. De même z zlf puis,

par conséquent, x xx.

On en déduit un théorème de décomposition des champs :

Un p-champ yp est la somme de trois champs : une frontière, une co~

frontière, et un cycle dont le conjugué est un cycle. Cette décomposition est

unique.

Les ^-formes de chaque espèce peuvent à leur tour se décomposer en

sommes de p-îormes normales.
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Si a) (aP) est une p-forme de première espèce, de périodes a{, on a

et cette représentation est unique.

La démonstration en est immédiate.
Nous verrons plus loin la décomposition des ^-formes de deuxième et

de troisième espèces.

§ 4. Relations entre les périodes

En reprenant les relations (2.1) et (2.2), nous établirons une série de

relations entre les périodes des ^-formes ou celles de leurs conjuguées.
Soient deux ^-formes normales de première espèce 8t et sk ; (2.2) donne,

pour les périodes a des conjuguées

SM cr,jfc ; (4.1)
si i k, il vient

* (4.2)

Si maintenant, on fait dans (2.2) co1 st-(ap) et co2 t(aP, ag), alors:

d'où

et

donc

Si, ensuite, <»! «(a^jOg) et a)2 t(aP,af) alors

*()*,, ySrp) —««.«S)
donc

t{al,al) t(al,al) (4.4)

On ^>e^^, dans une p-forme normale de deuxième espèce, permuter Vargu-
ment et le paramètre.

Si a%= a% il vient
$ t*(aP, a*) —t(al, a%) > 0

donc

*«,<)< 0 (4.5)
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Soit maintenant a>1 s{ {aP) et co2 z (aP, al) ; alors yj,t ~ 0

d'où

et

La relation (4.6) constitue un système de Rp équations entre les Rp
périodes Çk(a%). Le déterminant de ce système n'est pas nul; car s'il en
était ainsi, il existerait une p-forme de première espèce, non identiquement

nulle, mais dont la conjuguée aurait toutes ses périodes nulles, ce

qui est impossible. En résolvant le système (4.6), on a alors une relation

Soit enfin oix =z(aP, ag) et eo2 z(aP, af Ici

Yl7~ S C* (a?) 3"-'- K-p ; y17 ~ 2" ?» K) 3--»- érp ;

d'où, si a0 ^ «!
a?) 2K,<) (4.8)

et si a0 ax

z«,ag)<0 (4.9)

On peut encore prendre a^ t(aP,al) et co2 z(aî',aï); alors

et

or

/(y^+a

de plus

donc
2

-n-p

'S
» ^ùTv ^(ySi

2J^j

T1 '

K) f,
fe«) i

-n-

:*(«) — *(«

l-t

+<,br*)
rp)—iw,bnrp)

\,brp);

brp). (4.io)
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Retour sur les décompositions.

Calculons, ù)(aP) étant une p-îonm de deuxième espèce, la somme

£co(a%) t(aP,avi) étendue à tous les éléments a? de Cn. D'après (4.4)

et, puisque y£~* ~ 0,
Eoy{a^)t{aP,ar)= - œ(aP)

donc
œ(aP) - 2>«)*K,^) •

II faut remarquer que cette décomposition n'est pas unique.

Si on fait, en particulier, œ (aP) t (aP a\), il vient

ce que Ton savait déjà.
Pour les 2>-ft>rmes de troisième espèce, on trouvera pareillement

l(aP,a^ (4.12)

Terminons ce paragraphe par la remarque suivante : soit un ensemble

F de Rp éléments a% ; le déterminant du système

27*4«»(aÇ) 0 k=l,...,R*
i

ne peut être identiquement nul (c'est-à-dire quel que soit le choix de F).
En effet, s'il l'était, il existerait une relation linéaire entre les sk, c'est-à-
dire une homologie entre les cycles c|, ce qui est exclu. Il en résulte que
l'on peut choisir arbitrairement les valeurs d'une ;p-forme de première
espèce pour Rp éléments, sauf peut-être dans certains cas exceptionnels.

§ 5. Les />-forines rationnelles

Appelons p-forme rationnelle toute p-forme égale à la somme d'une
p-forme de deuxième espèce et d'une p-forme de troisième espèce.

Une p-forme rationnelle m (aP) est orthogonale à toute p-forme de première
espèce, c'est-à-dire que

J co{a?)s(aP) 0 (5.1)
en

quelle que soit la p-forme de première espèce s(aP).
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Il suffit de le montrer pour les p-îormes normales de première espèce.
Mais on a

z(aP)

t(aP) étant de deuxième espèce, z(aP) de troisième espèce. Il résulte du
paragraphe précédent qu'elles sont orthogonales à toute p-forme normale
de première espèce ; cela démontre notre affirmation.

La réciproque est vraie: si ^œ(ap) s (aP) 0 quelle que soit la p-forme
de première espèce s(aP), co(aP) est rationnelle.

Soit en effet co (a?) 8 (aP) + t(ap) + z(aP) la décomposition de a>(aP)

en trois p-formes, une de chaque espèce. On a vu que

$s(aP)t(aP) 0 $s(aP)z(aP) 0
donc

$ œ{aP)s {aP) j s{a?) S {aP) 0

et cette quantité ne peut être nulle pour toute p-forme de première
espèce s(aP) que si 8(aP)=: 0

L'existence de p-formes rationnelles est assurée, puisque toute combinaison

linéaire de p-formes de deuxième et de troisième espèces est une
p-forme rationnelle. Nous allons chercher le nombre de p-formes rationnelles,

linéairement indépendantes, satisfaisant à certaines conditions qui
seront précisées.

Nous démontrerons tout d'abord trois lemmes.

Lemme 1 : soit un système d'équations linéaires, homogènes

Zaiikxk 0 i 1, (5.2)

et soit rô le rang de la matrice Mi

alx... aX

Si (5.2) possède une solution pour laquelle xv est différent de zéro, alors

r y

En effet, rv est égal, ou bien à rv-1, ou à rv__x -f- 1 Posons

v-l
fi(x) H aikxk

On a x
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et puisque xv =£ 0, le système ft (u) atv a une solution. On peut supposer
que le système a été écrit de façon que, si j > rv-1,

rv—1

U(x) 27 y]kfk(x) j r^ + 1

et par conséquent

»,„ 27 y,*»*,i
d'où il résulte que Mv a le même rang que Jfv-i •

Lemme 2: si, réciproquement, rv rv__x, (5.2) a une solution où xv est

différent de zéro.

On le voit immédiatement, en écrivant le système de façon que

k
Lemme 3: ordonnons les éléments de Cn : a\,a\, .et soit JPf=

i
Pour tous les F\, excepté pour Rp d'entre eux, le système

admet une solution telle que xk =£ 0.

Considérons en effet la matrice

/M«î) ••• <

\sRP(al)...sRP(al)/

son rang rk ne peut dépasser Rp, mais pour k assez grand, il est égal à
Rp exactement. Il y a donc Rp valeurs de k pour lesquelles rk est supérieur
d'une unité à rk^1 (en posant r0 0). Le système (5.4) a donc toujours
une solution avec xk =fi 0, excepté pour ces Rp valeurs lacunaires de k.

Il faut remarquer qu'en général ces Rp valeurs sont les Rp premiers
nombres naturels.

Rp — rk est le nombre de solutions linéairement indépendantes du
système (5.4) : juk Rp — rk est donc le nombre de ^-formes de première
espèce, linéairement indépendantes et nulles sur r% : on les appellera les

multiples de l'ensemble F\.
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Revenons maintenant aux p-formes rationnelles co(ap). On a vu que
l'on a, pour tout i,

0; (5.5)

reprenant l'ensemble F\* du lemme 3, on dira que <jo{oP) est un diviseur de

F\ si elle est nulle en dehors de F\. Nous nous proposons de déterminer
le nombre de solutions de (5.5), linéairement indépendantes, et diviseurs
de Fvk. Cela revient à résoudre le système

Zxjsi(a?) 0 i l, ...,Rp (5.6)

Disons que a\ est congru à F\ s'il n'existe aucune solution de (5.6)
telle que xk 0:

L'élément dPh est congru à F% pour Rp valeurs de l'indice k.

En effet, l'élément al est congru à Fvk si la matrice Mk de (5.6) a un
rang d'une unité supérieur au rang de Mk__x ; le rang atteint, pour k assez

grand, la valeur Rp sans la dépasser. Le théorème est ainsi démontré.
Les solutions de (5.6) dépendent linéairement de k — r(F%) constantes

arbitraires, ou, en posant r(F%) Rp — fj,k,dek — [Rp — /ik] constantes.
Par conséquent :

Entre le nombre Nk de p-formes rationnelles linéairement indépendantes
diviseurs de F^, et le nombre /ik de p-formes de première espèce nulles sur
FI, on a la relation

Nk k-(Rp-f*k) (5.7)

C'est l'analogue du théorème de Riemann-Roch.

Considérons maintenant un ensemble F\ tel que r(JT|) Rp — 1 et tel
que l'adjonction d'un seul élément, quel qu'il soit, élève le rang d'une
unité. Décomposons F\ en deux ensembles A et JS, de vx et i>2 éléments,
et de rangs r(A) et r(B). On a Nk k — (Rp — 1). Ecrivons qu'une
2?-forme rationnelle est diviseur de A : on peut le faire de deux façons:
ou bien, directement, et la relation (5.7) nous donne le nombre Nf de
constantes arbitraires qui interviennent; ou bien, on écrit qu'une p-forme
diviseur de FI est nulle sur B. La première méthode nous donne

N'=Vl- r(A) v± - (Rp - ft)
où fa est le nombre de multiples, linéairement indépendants, de A. La
seconde méthode donne
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N'=k — (R*> — l) — r(B)

d'où, en égalant,
vx — R*> + ^ k -

ou
ju2 fa— v2 + Rp

par symétrie
^1 ^-^ + 1^

On obtient, par addition et soustraction,

-/1,) v,- ^ (5.8)

Ce sont les formules de réciprocité, analogues à celles de Brill-Noether.

Appelons ensemble canonique tout ensemble tel que l'ensemble rph qui
vient d'être considéré:

Si F% est canonique, et si JTJ ag + A + B, Vêlement a\ est congru à

Vun des deux ensembles (A + aj) ou (B + ag), et à Vun seulement.

Si vx et v% sont les nombres d'éléments de A et J?,

et
2r(A + al) - K + 1)

d'où en soustrayant

r(A + al) - r(A) + r(B + a%) - r(B) 1;

il en résulte que l'une des deux expressions

r(A + al) - r(A), r(B + a%) - r(B)

est égale à un, l'autre est nulle. D'où le théorème.

Cette propriété caractérise les ensembles canoniques parmi les ensembles

de 2R*> — 2 éléments.

Soit en effet f* un ensemble de 2RP — 2 éléments af, a|, ; ^ï
étant l'ensemble vide, posons
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on a, par l'hypothèse faite,

r(A\+1)-r(A\) + r^) -r(flj)
d'où, en faisant la somme de i 1 à i 2 R*> — 2

(f) fk,,) + (» 2»- 2

donc
2r(r) 2JBP — 2

et

ce qui démontre notre affirmation.
Remarque : nous n'avons pas utilisé toutes les hypothèses de l'énoncé :

il n'est pas nécessaire de supposer que la réciprocité a lieu pour toutes les

décompositions de jT^, mais pour une suite de décompositions seulement.

(Reçu le 26 juin 1941.)
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