Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 14 (1941-1942)

Artikel: Complexes a n dimensions et intégrales abéliennes.
Autor: Blanc, Ch.

DOl: https://doi.org/10.5169/seals-14304

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-14304
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Complexes a
n dimensions et intégrales abéliennes

CH. Bravnc, Lausanne

On sait que 1’étude de 1'équation aux différences qui donne, par
passage & la limite, I’équation de Laplace, conduit & des résultats souvent
trés analogues aux propriétés connues des fonctions harmoniques. On
a montré!) qu’en poursuivant I’analogie, on retrouvait pour les polyédres
illimités un probléme du type, dont certaines solutions partielles permettent
de penser qu’il ressemble beaucoup au probléme classique du méme nom,
et on peut espérer que les recherches consacrées a I'un feront avancer
la solution de ’autre.

Il est naturel de chercher ce qui se passe pour les polyédres finis,
analogues aux surfaces de Riemann algébriques. On retrouve une théorie
analogue & celle des intégrales abéliennes; mais alors on peut aussi, sans
compliquer notablement ’exposé, le traiter dans le cas de n» dimensions;
c’est ce que nous avons fait.

La dualité champ-forme et la dualité intersection-intégrale qui en résulte,
sont empruntées en particulier & la thése de M. de Rham?); certaines de nos
propositions se trouvaient déja énoncées dans une conférence que M. de
Rham a présentée a 1’'Université de Budapest en 1940, et qui n’a pas été
publiée. Il s’agit en particulier des théorémes de décomposition du § 3,
qui, sous la forme ou ils sont exprimés ici, appartiennent & M. de Rham.
Ils ont été énoncés déja, d’'une facon un peu moins précise, par M.
H. Whitney?®).

Introduction
On considérera un complexe C™ au sens de la topologie combinatoire.
C™ est constitué par des éléments a?, de dimension p (p =0, ..., n);

on supposera C" orientable.
Tout a? (avec p>0) posséde une frontiére, qui est un ensemble d’élé-

ments a?~!, pourvus d’une orientation; on 1’écrit f(a?).

1) Ch. Blanc: Les réseaux Riemanniens. Comm. Math. Helv., vol. 13 (1940),
p. 64—67.

%) G.de Rham: Sur I’Analysis Situs des variétés & » dimensions. J. de Math.
p. et appl. 10 (1931), p. 1156—200.

On pourra consulter également, du méme auteur, le mémoire: Uber mehrfache
Integrale, Abh. aus dem Math. Sem. der Hansischen Univ. 12 (1938), p. 313—339.

3) H. Whitney : Onproducts in a complex. Annals of Math., 39 (1938), p. 397—432
(voir en particulier le § 26, p. 430).
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A C" correspond le complexe conjugué C" (ou complexe dual, ou réci-
proque); on notera par b*—® 1’élément de C™ conjugué de a? dans C"; les
éléments conjugués de ceux de la frontiére de b»—? constituent la co-
frontiére de a? : cof (aP).

On appelle p-champ sur C™ un ensemble d’éléments a? de C™ pris
chacun avec un coefficient z(a?), nombre réel quelconque. Le p-champ
yP g’écrit

yP = Yz (aP)aP

Si z(a?) = 0, on écrit y» = 0. La frontiére f(y?) est donnée par

fy?) = 2z (a?) f (aP)
et la cofrontiére par
cof (y?) = Xx(a?) cof (aP)

Si f(y?) = 0, y? est un cycle; on vérifie que la frontiére d’'un p-champ est
un cycle. Si un p-champ est une frontiére, il est dit homologue & zéro:
y? ~ 0. La somme de deux p-champs s’obtient en additionnant leurs
coefficients ;le produit d’un champ par une constante s’obtient en multipli-
ant ses coefficients par cette constante.

Deux cycles sont homologues si leur différence est homologue & zéro.
Les k cycles 9%, ..., y; sont linéairement indépendants si I'on ne peut
pas trouver £ nombres z,, non tous nuls, avec

2y ~0

Ils sont linéairement dépendants dans le cas contraire. Soit B? le nombre
maximum de cycles linéairement indépendants sur O™ 8i44, ..., Y&, sont
Rr cycles linéairement indépendants, tout cycle y? est homologue & une
combinaison linéaire de ces y7. Ces % constituent une base.

On définit de la méme fagon les p-champs et les p-cycles sur C”. On
montre que R? = R" 7,

Intersection. af et b7~ étant deux éléments de €, resp. Cn, on pose
I(d%, b777) = 0,
(8, est égal & un si ¢ = 4, il est nul dans le cas contraire).
Etant donnés les deux p-champs 92 = Xz, (a?) a® et 9§ = Xz, (a?)a?,
et leurs conjugués 777, y,"?, on pose
I8, vs™?) = 2w, () %, (a}) I (a, b57")
= 2z, (aP) z,(aP)
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Voici quelques propriétés des p-champs que nous aurons & utiliser:

1. Deux champs y® et y2~P*! étant donnés, on a

I[fOR), 72 ?H 1 = (=P I8, f(737?1Y)]
II. 8¢ ¥% ~ 0, alors I (8, ¥2?) = 0, quel que soit le cycle Y.
IIL. 8% 5 ~ 9% et st Y377 est un cycle

I()’l: 73 p)_l(yz’ ;z-—p)

IV. 8i I(y, y37?) = 0 quel que soit le cycle y3~?, alors le cycle y% est
homologue & zéro.

V. On peut construire sur C™ une base & et sur C" une base d?~? telles
ue e
7 I(c?,dy?) =34, .

Les bases considérées dans la suite seront toujours de telles bases.

§ 1. Les p-formes

On appellera p-forme une fonction w (a?) des éléments a? de C™.

Une p-forme peut étre intégrée, par quoi il faut entendre qu’on en peut
déduire une fonction des p-champs par la définition suivante:

Si y? = Y« (a®)a®, on a

| w(@?) =2 «(@?)w(a?) .
»P

La dérivée d’une p-forme w (a?) est une (p -+ 1)-forme w’(a?+!) définie

par
w'(@) = | o(@?).
H(aPt1)

On vérifie que la dérivée de la dérivée d’une p-forme est identiquement
nulle. Si la dérivée d’une p-forme est nulle, cette p-forme est une p-forme
exacte; 8i une p-forme est dérivée d’une (p — 1)-forme, cette p-forme est
homologue & zéro.

Formule de Stockes. Etant donné un p-champ y? et une (p — 1)-forme
o (a?-1), on a

f w’(a?) = j‘ w (aP-1) .
»P 1 (yP)

11 suffit en effet de démontrer cette relation pour un élément a? : mais

alors elle constitue précisément la définition de w’.
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On en tire la conséquence immédiate suivante:

Si w (a?) est exacte, et si y? ~ 0, alors | w(a?) =0 .
»P
Par contre, si y? est un cycle, soit par exemple y? ~ 2z,c?, on a

J‘w(ap):):xi fw(ap)zz Z; 055

yp e

ou les o, sont les périodes de la p-forme exacte w (a?).

Si y? = Ja? (ensemble des éléments a? de C7), f(y?) =0 d’ou
2 w'(a?) = 0.
(2

Forme conjuguée : a toute p-forme w (aP) correspond une (n — p)-forme

o (b"?), dite forme conjuguée, définie sur O™ en posant
o (") = w(@?),

ou a? et b" P sont deux éléments conjugués.

La forme o (b"?) posséde & son tour une dérivée o’ (b"?+1), Siw’ = 0,
w est exacte, et on définit ses périodes, qui sont les périodes conjuguées
de w.

Les formes et les champs correspondants. On vient de faire correspondre
a toute p-forme w(a?) sa (n — p)-forme conjuguée. On va lui faire
correspondre deux champs 9%, et 95,?. On pose

Vo = Jw@P)a?, yrP = Yo@d*r)brr .
Réciproquement, & tout p-champ 5% correspondront une p-forme
o (aP), sa conjuguée w (b"P) et un (» — p)-champ y5,7?.

St la p-forme w (a?) est exacte, Yy, P est un cycle.

On a en effet
yo? = Yo P)br

d’ol
[P P)=2o@®?) fOrP)=2] X wo@?)]br
cof (pn—P-1)
=3[ 2 ow@]brt=23 o (@) 1=0.
j(aPt+1)
8t la p-forme w (a?) est homologue & zéro, yy, * ~ 0 .
En effet
w(a?) = u’'(a?) ,

alors si
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y;p‘z—p+1 Z u (bn—p+1) bn——p+1
il vient
famPth) = 2 udrr+) f(omP+Y)

=X[ X u@prey]e-r;

cof (b 7—P)

le conjugué de X u(b"P+) est u'(a?) , donc f(ypPt)=7yn"?,
cot (b "—7P)

et par conséquent y%? ~ 0, d'oll Y%7 ~ 0.

Il existe une relation étroite entre les intégrales et les intersections:

Soit une p-forme w(a®) et le (n — p)-champ Y5 ~?. Quel que soit le p-
champ I'P,
f w(ap) = I(Pp")’w )
e
En effet,
I(I?, yo?) = X w2 I(I'?, b*7)
et si
I'’" = Y«(a?)a? ,

I(I?,yy") =2 w®7") «(af) I}, b;7")
= 2 w(a?) «(a?) .

Il en résulte que si y;, P est un cycle, w(a?) est une p-forme exacte.
En effet
o (a?) = I(a® , yg ") ,
d’ol
o' (@t) = 2 Ia?yy ") =1({a*"),yy ")
t(aPt1)

— £ I(a, fFEP)) =0 .

Une p-forme exacte dont toutes les périodes sont nulles est homologue a
zéro; le (n — p)-champ conjugué correspondant est aussi homologue & zéro.

Soit w (a?) cette p-forme, et y%? le (n — p)-champ correspondant. On
a, quel que soit le cycle I'?
j w(aP) =
e

I(I'?, p%?) = 0,

donc
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d’ott %P ~ 0. Ainsi, il existe un (n — p -+ 1)-champ A"P+! dont la
frontiére est Y277, Soit An—P+1 = Sy bn—p+1,

On a P = f(Arpr) = Dy f(brr)
= 2y’ (a?) b*-?
d’oll w (a?) = y'(a?) et w(a?) ~ 0.

11 résulte de ce que nous venons de dire que si y%? ~0, w(a?) ~0.

§ 2. Intégrale du produit de deux formes

Considérons deux p-formes w, (a?) et w,(a?), leurs formes conjuguées
et les champs correspondants. On a la relation

j. w, (@P) w, (aP) = I(?’w1 ) Vw, ?) (2.1}
Cn
En effet,

I(7%,, Vw,") = 2 @,(a7) 0y (b777) I(af, b5"
= 2 w,(a?) @, (b"~7)

=§w1'w2 .
on

Par raison de symétrie, on a aussi

j‘ Wy Wy = I(r?i,z ) ?ﬁ,}"”)

o
d’ou _ _
I(y%,, va,”) = 1(¥%,, ve, ") - (2.2)
Si, en particulier,
w; = Wy = w (aP)
fw2(@®) =1(%,y57)>0. (2.3)
cn

Si w, et w, sont des formes exactes, on a Y57 ~ X 0y ; di7? et 9%,
~ X 02 y e, d’ou
jwl wzap)—-Zal,az,.

Si, en particulier, w, = w, = w, et si w et w sont exactes
| w?@?) =20,0,>0 ;

cn
217



done, st une p-forme est exacte, ainsi que sa conjuguée, ses périodes nme
peuvent étre toutes nulles, sans que la p-forme soit identiquement nulle.

Supposons maintenant que la p-forme w, (a?) est homologue & zéro:
w, (ap) = x{ (ap) ’

et soit un p-champ D = X «(a?)a?. On a
,f wl-wzz‘fx{(a,p) w4 (a?)
b D

= X [x,(a?) X w,(a?) x(a?)],
cn cof (a?1)
donc

j‘ w0y = X [x1 @) X wy(b"P) &(b"_p)] .
Cn

D flon—rp+1)

Si en particulier le p-champ D est constitué par un ensemble d’éléments
a® pris chacun avec le coefficient un, et si f(D) = I, alors

J or0s = Z (@) 6 + Z[m @) oy (6"

ou D, est ’ensemble des aP—! appartenant & la frontiére d’éléments a?
de D, mais non & I'; la somme 2’ doit étre étendue aux éléments a?

communs & cof (a?~1) et & D.
Si, en particulier, w, ~ 0, s0it w, = 73, on a, par symétrie

2 (% 03 — ) + X[, X w3 — 2, X' 0] =0 .
Dy r *
Si, de plus, w, est exacte, et si w, = 0 excepté pour b~ ?*! ou
w (B3PF) =1,
2, (@) = — %' (2,2 w, — 2, X @,] ;
enfin, si , = Osur I,

‘ xl(ag_l) = — %' [x, 2’ 62] .

Cette derniére relation résoud pour I un probléme de Dirichlet; w,
joue le role de fonction de Green.

§ 3. Classification des p-formes

Parmi les p-formes, nous distinguerons:
10 les p-formes de premiére espéce : w(a®) est de premiére espéce si elle
est exacte, ainsi que sa .conjuguée;
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20 les p-formes de deuxiéme espéce : w(aP) est de deuxiéme espéce si elle
est homologue & zéro;

30 les p-formes de troisiéme espéce : w(aP) est de troisiéme espéce si sa
conjuguée est homologue & zéro.

Nous allons voir qu'’il existe effectivement des p-formes de chacune de
ces trois espéces; nous verrons ensuite que toute p-forme est égale & la
somme de trois p-formes, de premiére, deuxiéme et troisiéme espéces.

Existence des p-formes de premiére espéce.

Etant donnés RP mombres, mon tous nuls, o,, ..., ogp, 1l existe une
p-forme de premiére espéce, et une seule, ayant pour périodes ces nombres o;.

Considérons en effet une p-forme exacte {(a?) ayant pour périodes les
o;. Il en existe certainement une: soit le (n — p)-cycle p?? = Y o,d" P =
2 z(bmP) bmP. La p-forme x(a?) est exacte, puisque y; ? est un cycle
De plus, sa période relative a c¥ est

f x(aﬁ:l(c”,yw “?) = o,

?

Ensuite, «(a?-!) étant une (p — 1)-forme quelconque, {(a?) = x(a®) +

o’ (aP) est aussi exacte, et a également les périodes ¢;. L’intégrale j' ;% (aP)
cn

est bornée inférieurement, puisque les o, ne sont pas tous nuls. Parmi

toutes les formes {(a?), exactes et de périodes ¢;, il en est une au moins
pour laquelle le minimum de j'Zj 2(a?) est atteint : on considére en effet une
suite {,, {;, ... pour laquelle j'Ci(wp) tend vers sa borne inférieure. On
peut extraire de cette suite une suite qui converge en tout a?, et la limite
constitue la p-forme cherchée: elle est exacte, ses périodes sont les ;.
Soit w (a?) cette p-forme. Posons {(a?) = w(a?) + Aa’(aP) et calculons
f¢2(ar). Ona
IC2(aI’) j'w2 ) + 21_fw ol + lﬂzx” '

Puisque [w?s< [¢? quel que soit 4 et «(a?™?),
j' w.x' =0 ;
or

fo-o =TI, var?) ,

et %77 est un (n — p)-champ ~ 0, mais & part cela, quelconque. Soit,
par exemple,
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var? =f(b7"*) ;
alors
I(ys, fg™?™) =0

¢’est-a-dire
I(f(y2), by ?™™) =0

quel que soit I'élément d3~?*1. Done f(y%) = 0, 9%, est un cycle, et w est
exacte; il existe ainsi au moins une p-forme satisfaisant aux conditions
de I’énoncé. Mais elle est unique: en effet, si on en avait deux, leur
différence serait de premiére espéce, avec des périodes nulles, elle serait
identiquement nulle. Le théoréme est ainsi démontré.

On appellera p-formes mormales de premiére espéce les p-formes de
premiére espéce s;(a?) de périodes o; , = 6; (5, k=1, ..., R?) .

Existence des p-formes de deuxiéme espéce.
11 existe une p-forme de deuxiéme espéce, et une seule, dont la conjuguée
a une dérivée égale & une dérivée domnée.

Reprenons le raisonnement que nous venons d’utiliser. Soit y (b%?) la,
(n — p)-forme dont la dérivée est la dérivée donnée. Considérons les
p-formes ((a?) = y(a®) + u(a?), u (b ?) étant ~ 0. On a /(bmP+1) =
y'(b»®+1), On forme l'intégrale j'C 2 qui est bornée inférieurement, si y
n’est pas identiquement nulle (ce que nous supposerons). Le minimum
de cette intégrale est atteint pour une p-forme w(a?). On démontre,
comme plus haut, que w’(a?*!) = 0; si ¢,, @,, ... sont les périodes de w,
la p-forme

t(a?) = w(a?) — 2 @, 8,(a?)

satisfait entiérement aux conditions de I’énoncé. Elle est unique, car la
différence de deux solutions du probléme est de premiére espéce, avec des
périodes nulles.
Prenons en particulier
—1 8 b*P =057

7 (b= —
y (™) 0 si b2 b7 '

by étant un élément choisi arbitrairement. On appellera p-forme normale
de deuxiéme espéce la p-forme t(a?, aj)) dont la conjuguée a une dérivée
égale & y' (bn—2+1),
Le p-champ »§ 4 af est alors un cycle, soit
¥+ ah ~ X 7, (af) &
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les 7,(a?) sont les périodes de t(b»—?, a3). Il faut remarquer qu’il ’agit ici
d’une généralisation de la notion de période, qu'on n’avait définie au § 1
que pour les formes exactes.

Existence des p-formes de troisiéme espéce.
La méme méthode de démonstration nous conduirait au théoréme:

11 existe ume p-forme de troisiéme espéce, et une seule, dont la dérivée est
égale a une dérivée donnée.

Si la dérivée donnée est celle de la p-forme

—1 s1 aP=a}

a?) =
y (@) 0 si a? #af

on a la p-forme normale de troisiéme espéce z(aP, af) . Ses périodes {,(a})
sont définies par la relation

2 li(@h) dyTP ~ TP BT

Décomposition d’une p-forme quelconque.
Toute p-forme w (aP) est la somme d’une p-forme de premiére espéce, d’une
p-forme de deuxiéme espéce et d’une p-forme de trovsiéme espéce.

Soit en effet y(a?) une p-forme de deuxiéme espéce avec y'(b"—2+1) =
o’ (b*P+1); soit ensuite z(a?) une p-forme de troisiéme espéce, avec
z/(a?+) = o’ (a?*t). La p-forme z(a?) = w(a?) — y(a?) — z(a?) est
exacte, ainsi que sa conjuguée; elle est par conséquent de premiére
espéce, ce qui démontre notre affirmation.

Cette décomposition est unique : en effet, soient deux décompositions

z(aP) + y(aP) + z(a?) = x,(a®) + y,(a?) + z,(aP);

y(aP) — y,(a?) est une p-forme de deuxiéme espéce, dont la conjuguée a
une dérivée identiquement nulle; donc y = y,. De méme z = z,, puis,
par conséquent, xr = x;.

On en déduit un théoréme de décomposition des champs:

Un p-champ y® est la somme de trois champs: une frontiére, une co-
frontiére, et un cycle dont le conjugué est un cycle. Cette décomposition est
unique.

Les p-formes de chaque espéce peuvent & leur tour se décomposer en
sommes de p-formes normales.
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Si w (a®?) est une p-forme de premiére espéce, de périodes o;, on a
w(aP) = X 0,8,(a?)
et cette représentation est unique.

La démonstration en est immédiate.
Nous verrons plus loin la décomposition des p-formes de deuxiéme et
de troisiéme espéces.

§ 4. Relations entre les périodes

En reprenant les relations (2.1) et (2.2), nous établirons une série de
relations entre les périodes des p-formes ou celles de leurs conjuguées.

Soient deux p-formes normales de premiére espéce s; et s,; (2.2) donne,
pour les périodes ¢ des conjuguées

Ek,i == Ei,k ; (4.1)
si ¢ = k, il vient
5,-’,- = Zsi(ap) >0 . (4.2)

Si maintenant, on fait dans (2.2) w, = s,(a?) et w, = t(a?, af), alors:

PP ~0 s~ Z 5, o
Vo~ Z T (af) & —af  yuT ~dy?

d’ou ) i

I('}’wz ? 7w1 ) = 2 L7} (a’g) I(C? ’ d?—p) i I(ao ’ ywl )

= ;i (a'(z)’) -— 8, (a/‘z;)
et
Iy, 7a?) =0

donec

7 (af) = 8;(af) . (4.3)
Si, ensuite, w, = t(a?,al) et w, = t(a?,a?) , alors

I(5,, va,?) = —t(a}, af)
done
t(af, af) = t(ay, al) . (4.4)

On peut, dans une p-forme normale de deuxiéme espéce, permuter U'argu-
ment et le paramétre.
Si af = a? , il vient
f t2(a?, af) = —t(af, af) >0
done
t(ak,al) <O . (4.5)
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Soit maintenant w, =s;(a?) et w,=12(a?,af) ; alors y5 ~0

Vir? ~ 3 @) T — 5
d’ou _
I(Vg;la yz;‘”) =2 0.k $x(af) — 8;(af)
1%, 757 = 0

8; (ap) = 2 0, Ci(ad) . (4.6)

et

La relation (4.6) constitue un systéme de R? équations entre les R?
périodes (. (ad). Le déterminant de ce systéme n’est pas nul; car §’il en
était ainsi, il existerait une p-forme de premiére espéce, non identique-
ment nulle, mais dont la conjuguée aurait toutes ses périodes nulles, ce
qui est impossible. En résolvant le systéme (4.6), on a alors une relation

r(ah) = ZAk,isi(ag) . (4.7)
Soit enfin w;, =2(a?,al) et w,=2z2(a?,a}) . Ici

Yo,~0 5 yo,~0;
Vol X 0p(@d) di P — by 5 Yt~ X C(a]) dpP— by

d’ot, si ay # a,
z(at, af) = z(ag , af) (4.8)
et 8i gy, = a,
z(ah,a) < 0 . (4.9)

On peut encore prendre w, = t(a?,a}) et w, = z(a?,a}); alors

I(ye,, ve,?) =0
et

I('}’wl ’ ngp) - (72}1 +a€ ’ V&;p) _"I(ag ’ ywzp) ’
or

I (%, +a8, ¥u,?) =1, + ab, 2 &, (@) dy™®) — I(v%,+af, b177)

= X 7,(a}) L(@d) I(c, dy?) —I(¥h,, b17") —I(af b7 77

= 2 7(a}) Cp(a]) —t(af, af) — I(af, by™") ;
de plus
I(ag, ve,?) =z2(a}, o) ,
done
2 v (@) (p(al) = 2(af, af) + t(a], af) + L(af, b777) .  (4.10)
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Retour sur les décompositions.
Calculons, w(a?) étant une p-forme de deuxiéme espéce, la somme
2 w(a?) t(a?, a¥) étendue & tous les éléments af de C™. D’aprés (4.4)

3 o(@)t(@r,a) = 3 o(a)t(a,ar)
= I[Z7.(aP) ¢} — a?,757"] ,
et, puisque y%? ~ 0,
2 w(@})t(a?,af) = — w(a?) ,
donc
w(@?) = — Y w(al)t (a?,ab) . (4.11)

Il faut remarquer que cette décomposition n’est pas unique.
Si on fait, en particulier, w (a?) = t(a®? a3), il vient

t(a?,af) = — 2't(a},af) t(af,aP) ,
ce que 'on savait déja.
Pour les p-formes de troisiéme espéce, on trouvera pareillement

o (a?) = — Sl (ab) z (a?,a8) . (4.12)

Terminons ce paragraphe par la remarque suivante: soit un ensemble
I' de R? éléments af ; le déterminant du systéme

2 z;8,(a%) =0 k=1,...,R?
B

ne peut étre identiquement nul (c’est-a-dire quel que soit le choix de I').
En effet, 8’il I’était, il existerait une relation linéaire entre les s, , ¢’est-a-
dire une homologie entre les cycles c%, ce qui est exclu. Il en résulte que
Pon peut choisir arbitrairement les valeurs d’'une p-forme de premiére
espéce pour R? éléments, sauf peut-étre dans certains cas exceptionnels.

§ 6. Les p-formes rationnelles

Appelons p-forme rationnelle toute p-forme égale a la somme d’une
p-forme de deuxiéme espéce et d’une p-forme de troisiéme espéce.
Une p-forme rationnelle w (a?) est orthogonale a toute p-forme de premiére
espéce, ¢’est-a-dire que
| o@®)s@)=0 (5.1)
on
quelle que soit la p-forme de premiére espéce s(a®).
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11 suffit de le montrer pour les p-formes normales de premiére espéce.
Mais on a
w(ar) = t(a?) + z(a?)

t(a?) étant de deuxiéme espéce, z(a?) de troisiéme espéce. Il résulte du
paragraphe précédent qu’elles sont orthogonales & toute p-forme normale
de premiére espéce; cela démontre notre affirmation.

La réciproque est vraie: s _fw (a?) s (@P?) = 0 quelle que soit la p-forme
de premiére espéce s(aP), w(aP) est rationnelle.

Soit en effet w (a?) = 8 (a®) + t(a?) + z(a?) la décomposition de w (a?)
en trois p-formes, une de chaque espéce. On a vu que

{s(@r)i(@?) =0 fs@?)z (@) =0,
donc
fw(@?)s (@)= [s@)8@)=0,

et cette quantité ne peut étre nulle pour toute p-forme de premiére
espéce 8(a®?) que si S(a?)= 0.

L’existence de p-formes rationnelles est assurée, puisque toute combi-
naison linéaire de p-formes de deuxiéme et de troisiéme espéces est une
p-forme rationnelle. Nous allons chercher le nombre de p-formes ration-
nelles, linéairement indépendantes, satisfaisant & certaines conditions qui
seront précisées.

Nous démontrerons tout d’abord trois lemmes.

Lemme 1 : soit un systéme d’équations linéaires, homogénes

1 4
Zai,kxk=0 7:-—'_—'-'1, ...,p (5.2)
k=1

et soit r; le rang de la matrice M,

M, =

Si (5.2) posséde une solution pour laquelle x, est différent de zéro, alors

¥y == Ty
En effet, r, est égal, ou bien a r,_,, ou & r,_,+ 1. Posons
v—1
fo(x) = 2 ay2y
On a 1

fz(w) = — 07,
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et puisque z, = 0, le systéme f,(u) = a,, a une solution. On peut supposer
que le systéme a été écrit de facon que, si j > r,_,,

Ty—1

ff(x)=k§1 Vit Fr(2) j=r,_,+1, ...

et par conséquent
Ty—1
@iy = X Vik Cry >
1
d’olr il résulte que M, a le méme rang que M,_; .

Lemme 2 : si, réciproqguement, r, = r,_,, (5.2) a une solution o x, est
différent de zéro.

On le voit immédiatement, en écrivant le systéme de facon que

Ty—1
fi(@) = %' Vikfa(@) . (5.3)
k
Lemme 3 : ordonnons les éléments de C™: of , af, ... et soit I'Y=3al.
1

Pour tous les I'} , excepté pour R? d’entre eux, le systéme
k
2 x;8;(af) =0 1=1,...,RP (5.4)
1

admet une solution telle que x, - 0.

Considérons en effet la matrice

81(af) -.. 81(af)
M= : . ;

Spo(al)...sgo(a})

son rang 7, ne peut dépasser R?, mais pour k assez grand, il est égal a
R? exactement. Il y a donc R? valeurs de k pour lesquelles r,, est supérieur
d’une unité & r,_, (en posant r, = 0). Le systéme (5.4) a donc toujours
une solution avec z, # 0, excepté pour ces R? valeurs lacunaires de k.

11 faut remarquer qu’en général ces R? valeurs sont les R? premiers
nombres naturels.

R?» — r, est le nombre de solutions linéairement indépendantes du
systéme (5.4): u;, = R? — r, est donc le nombre de p-formes de premiére
espéce, linéairement indépendantes et nulles sur I'Z: on les appellera les
multiples de I’ensemble I'%.
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Revenons maintenant aux p-formes rationnelles @ (a?). On a vu que
Pon a, pour tout 1,

2w (aP)s;(a?) = 0; (5.5)

reprenant I’ensemble I'} du lemme 3, on dira que w (@) est un diviseur de
I} si elle est nulle en dehors de I';. Nous nous proposons de déterminer
le nombre de solutions de (5.5), linéairement indépendantes, et diviseurs
de I'}. Cela revient & résoudre le systéme

k
2 x;8,(a%) =0 . t=1,...,RP (5.6)
7=1

Disons que a% est congru & I'} §’il n’existe aucune solution de (5.6)
telle que z, = O:

L’élément af est congru a I'}, pour RP valeurs de Uindice k.

En effet, I'élément af est congru & I'} si la matrice M, de (5.6) a un
rang d’une unité supérieur au rang de M,_,; le rang atteint, pour % assez
grand, la valeur R? sans la dépasser. Le théoréme est ainsi démontré.

Les solutions de (5.6) dépendent linéairement de k¥ — r (/%) constantes
arbitraires, ou, en posant r(I'}) = R? — u,,dek — [R? — u,] constantes.
Par conséquent:

Enire le nombre N, de p-formes rationnelles linéairement indépendantes
diviseurs de I'%, et le nombre p,, de p-formes de premiére espéce nulles sur
I'}, on a la relation

Ny=1Fk — (B? — u) (5.7)

C’est ’analogue du théoréme de Riemann- Roch.

Considérons maintenant un ensemble I'} tel que r(I'%) = R? — 1 et tel
que l’adjonction d’un seul élément, quel qu’il soit, éléve le rang d’une
unité. Décomposons I'? en deux ensembles 4 et B, de », et v, éléments,
et de rangs r(4) et »(B). On a N, =k — (R? — 1). Ecrivons qu’une
p-forme rationnelle est diviseur de A : on peut le faire de deux facgons:
ou bien, directement, et la relation (5.7) nous donne le nombre N’ de
constantes arbitraires qui interviennent; ou bien, on écrit qu’une p-forme
diviseur de I'} est nulle sur B. La premiére méthode nous donne

N'=wv —r(d)=r» — (B” — u)

ou u, est le nombre de multiples, linéairement indépendants, de 4. La
seconde méthode donne
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N'=Fk— (R* — 1) — r(B)
=k — (BR? — 1) — (R? — p,)
d’ol, en égalant, :
vy— R? +py =k —2R? + 1+ p,

ou

My = piy — ¥ + BP — 1 ;
par symsétrie

ﬂ1=ﬂ2—71+R‘p'— ]..

On obtient, par addition et soustraction,

k=2Rr —2
28y — o) = v, — ¥y . (5.8)
Ce sont les formules de réciprocité, analogues & celles de Brill-Noether.

Appelons ensemble canonique tout ensemble tel que ’ensemble I'% qui
vient d’étre considéré:

St I'} est canonique, et st I'f =a} + A + B, Uélément af est congru a
Vun des deux ensembles (A + aB) ou (B 4+ ad), et a Uun seulement.

Si », et v, sont les nombres d’éléments de 4 et B,

v+ v+ 1=2Rr —2

et
2r(4A +af) — (v, + 1) = 2r(B) — »

or(d) — vy = 2r(B +af) — (3 + 1),
d’ol1 en soustrayant
r(4 + af) — r(4) + r(B + af) —r(B) = 1;
il en résulte que I'une des deux expressions
r(d+ap) —r(d), 7B+ af)—r(B)
est égale & un, 'autre est nulle. D’ot1 le théoréme.

Cette propriété caractérise les ensembles canoniques parms les ensembles
de 2 R? — 2 éléments.

Soit en effet I un ensemble de 2 R? — 2 éléments af, o}, ...; 4%
étant I’ensemble vide, posons
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a,=Ad3+a} , B=Bl,—a} , B=I7;

on a, par ’hypothése faite,
r(4%) —r(dy) + r(Bi_;) —r(BY) =1

d’ou, en faisant la sommede 1 =132 =2R? — 2

r(I'?) —r (A7) — r (Bige_2) + 7 (B) = 2R? — 2
done
27(I') = 2R? — 2
et
pl)=1,

ce qui démontre notre affirmation.

Remarque: nous n’avons pas utilisé toutes les hypothéses de 1’énoncé:
il n’est pas nécessaire de supposer que la réciprocité a lieu pour toutes les
décompositions de I'?, mais pour une suite de décompositions seulement.

(Regu le 26 juin 1941.)
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