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Zur Homotopietheorie gefaserter Rdume

Von BeENno ECRKMANN, ZURICH

Einleitung

a) In dieser Arbeit werden topologische Eigenschaften gefaserter Riume
mit Hilfe von stetigen Abbildungen untersucht, insbesondere unter
Heranziehung der von Hurewicz eingefiihrten Homotopiegruppen (vgl.
Anm. ?°). Die Anwendungen der dabei gewonnenen Sitze beziehen sich
auf Gruppenrdume, Raume von Linienelementen, Felder von Vektoren
und Flachenelementen auf Sphéaren, sowie auf Abbildungen von Sphéaren
auf Sphéaren niedrigerer Dimension.

b) Unter einer Faserung eines Kompaktums R (nur mit solchen Réau-
men befassen wir uns) versteht man eine stetige Zerlegung in abgeschlos-
sene Teilmengen, die alle einem Kompaktum #F homdéomorph sind und
die man Fasern nennt; dabei sollen alle zu einer geniigend kleinen Um-
gebung U eines Punktes des Zerlegungsraumes Z (der auch Faserraum
genannt wird) gehorigen Fasern in R das topologische Produkt ¥ x U
bilden. Die stetige Abbildung von R auf Z, die jedem Punkt von R die
Faser zuordnet, auf welcher er liegt, heilt Projektion oder Faserabbil-
dung P.

Beispiele von Raumen, die in natiirlicher Weise gefasert sind, bilden
— abgesehen vom trivialen Fall der topologischen Produkte — die
Gruppenraume (in der Zerlegung in Restklassen nach einer abgeschlosse-
nen Untergruppe) und die Rdume der Linienelemente (Flachenelemente,
Vektorsysteme usw.) differenzierbarer Mannigfaltigkeiten; man kennt
aullerdem besonders einfache Faserungen von Sphéren (vgl. Nr. 2). Eine
allgemeine Theorie der gefaserten Réume, die moglichst wenige Voraus-
setzungen beniitzt, wird also ein grofes und vielseitiges Anwendungs-
gebiet haben, und ihre Aussagen lassen sich verfeinern, sobald man sich
auf speziellere Fille beschrinkt. Faserungen sind bisher insbesondere
von Seifert, Feldbau, Gysin (vgl. ?) und Whitney®) untersucht worden.*)

c) Unser Beitrag zur Untersuchung gefaserter Rdume bezieht sich
sowohl in der Fragestellung als auch in der Methode auf Homotopie-
eigenschaften. Alle unsere Aussagen beruhen auf einer Voraussetzung,

*) Zusatz bei der Korrektur : In einer C. R.-Note von C. Ehresmann und J. Feldbau
(Sur les propriétés d’homotopie des espaces fibrés, C. R. Paris 211 (1941) 945—948),
die mir soeben zugegangen ist, werden ohne Beweis Satze iiber Faserungen angekiin-
digt, die mit gewissen Teilresultaten der vorliegenden Arbeit zusammenfallen, namlich
mit dem ,,Lemma‘ (Nr. 3 d) und den ,,Hurewicz’schen Formeln‘ (Nr. 6).
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die uns fiir die Untersuchung stetiger Abbildungen und ihrer Deforma-
tionen angemessen und bequem erscheint: dafl es sich um Zerlegungen
handelt, die in einem im folgenden (Nr. lc) prazisierten Sinne ,,refra-
hierbar sind. Fiir hinreichend regulire Faserungen ist diese Voraus-
setzung immer erfiillt; anderseits werden andere Eigenschaften von
Faserungen, also auch die eingangs als Definition angefiihrten, nie
beniitzt. Wir sprechen deshalb in unseren Ausfiihrungen nie von Fase-
rungen, sondern formulieren alle Aussagen fir retrahierbare Zerlegungen,
oder, da viele Satze einen noch weitern Giiltigkeitsbhereich. haben, fiir
retrahierbare Uberdeckungen. — In dieser Einleitung soll allerdings nur
von (reguliren) Faserungen die Rede sein.

d) Ist f eine Abbildung eines Kompaktums X in R, so heillt die Abbil-
dung Pf von X in Z die Spur von f (vgl. Nr. 1d, 1f). Der Kern unserer
Betrachtungen ist ein Lemma (Nr.3d), das im wesentlichen aussagt,
daf jede zu einer Spur homotope Abbildung selbst eine Spur ist. Die Abbil-
dungssitze (Nr. 4), sowie die Zusammenhéange zwischen den Homotopie-
gruppen von R, F und Z (Nr. 6, 7), die sich daraus ergeben, stellen eine
weitgehende Verallgemeinerung von Satzen dar, die Hurewicz (a. a. O.8)
fir Restklassenzerlegungen von Gruppenraumen angegeben hat. Von
unsern Abbildungssatzen heben wir hier die folgenden hervor:

1. Wenn R auf sich wesentlich ist, d. h. wenn die identische Abbildung
von R auf sich eine wesentliche Abbildung ist, so ist die Faserabbildung P
etne wesentliche Abbildung von R auf Z (Nr. 5, Satz 1). Fir diesen Satz
ist unseres Wissens in dieser Allgemeinheit auch mit algebraischen Hilfs-
mitteln kein anderer Beweis bekannt. (Fiir Faserungen geschlossener
Mannigfaltigkeiten in Sphéaren ist der Satz von Gysin a.a. 0.%) mit Homo-
logiemethoden bewiesen worden). Er ist im folgenden Satz enthalten:

2. Die Spur einer wesentlichen Abbildung ist wesentlich (Nr. 4, Satz C).

Wichtig ist ferner (man vergleiche den Beweis eines Satzes von Wazewski
in Nr. 4d):

3. Eine Abbildung in Z, die sich auf einen Punkt zusammenziehen laft,
ist eine Spur (Nr. 4, Satz A).

e) Unter einer Schnitifliche einer Faserung verstehen wir eine Abbil-
dung von Z in R, deren Spur die Identitdt von Z ist (also eine topolo-
gische Abbildung von Z in R, bei welcher das Bild jede Faser genau
einmal trifft). Im Falle der Linienelementrdume bedeutet eine Schnitt-
fliche ein Feld (damit ist immer ein stetiges singularititenfreies Feld
gemeint) von Linienelementen, im Falle einer Gruppenzerlegung das
Zerfallen des Gruppenraumes in ein topologisches Produkt (vgl. Nr. 11).
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Die Frage, ob eine Faserung eine Schnittfliche besitzt, wird in einem
besondern Abschnitt (§ 4) behandelt; notwendig fiir die Existenz einer
Schnittfliche ist unter anderem, daf die Homotopiegruppen von R die-
selbe Struktur haben wie beim topologischen Produkt von F und Z
(Nr. 9, Satz G, II). Wenn der Zerlegungsraum Z eine Sphéare ist, kénnen
wir notwendige und hinreichende Bedingungen fiir die Existenz einer
Schnittfliche angeben, und auch fiir den Fall der Nicht-Existenz die
Struktur der Faserung, insbesondere die Homotopiegruppen, niher
untersuchen (Schnittelemente, Nr. 10).

f) Von den Resultaten, die wir durch Anwendung der allgemeinen
Satze auf spezielle Faserungen erhalten, seien hier einige erwahnt:

1. Mit Hilfe der bekannten Sphéarenfaserungen (Nr.2f) kénnen wir
die Existenz wesentlicher Abbildungen der Sphire S¥ auf die Sphire S*
in einigen mneuen, allerdings sehr speziellen Fillen nachweisen, so fir
N =8 oder 10 und n = 4, fiir N = 16 oder 18 oder 22 und n = 8.
Man kann namlich (Nr. 5, Satz 3') jedes Kompaktum, das sich. wesentlich
auf 87 abbilden 14Bt, auch wesentlich auf S* und jedes Kompaktum,
das sich wesentlich auf S5 abbilden 1at, wesentlich auf S® abbilden.

2. Fiir die Homotopiegruppen der orthogonalen und der unitar-uni-
modularen Gruppen gelten Aussagen allgemeiner Natur: die k-te Homo-
toptegruppe hat fir ,fast alle’ orthogonalen bzw. fir ,.fast alle” unitdr-
unimodularen Gruppen dieselbe Struktur (Nr. 8, Satz 9 und 10).

3. Zuriickfithrung der Homotopiegruppen der komplexen und quater-
nionalen projektiven Rdume auf diejenigen der Spharen (Nr. 8a).

4. Bestimmung einiger Homotopiegruppen der Linienelementrdume der
Sphdren.

5. Wir zeigen, daf} es auf der Sphdre 85 kein 2-Feld gibt, d. h. kein
System von 2 tangentialen Vektorfeldern, die in jedem Punkt der S5
linear unabhéngig sind.

Zum Beweis dieses Satzes (Nr. 16) beniitzen wir auller unsern Sitzen
(eine wichtige Rolle spielt dabei die Kenntnis von Homotopiegruppen
des Linienelementraumes der S*) einen Satz von Pontrjagin (vgl. 5%)
iiber unitiare Gruppen.

Eine Mannigfaltigkeit der Dimension n heilit parallelisierbar, wenn es
auf ihr ein System von 7 linear unabhéngigen tangentialen Vektorfeldern
gibt. Aus 5. folgt, daBB die Sphire S° nicht parallelisierbar ist. Damit ist
eine Frage beantwortet, die zwar spezieller Natur ist, aber doch einiges
Interesse verdient, und die sich besonders im Anschlul an Arbeiten von
Stiefel (vgl. ) und %) aufdringt: Man weil, dal die Sphiren S!, $2
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und 87 parallelisierbar sind, und daf} es auf Sphiaren gerader Dimension
nicht einmal ein tangentiales Vektorfeld gibt. Fiir alle andern Dimen-
sionszahlen » war die Frage, ob die Sphire S* parallelisierbar ist, bisher
noch offen; durch unser Resultat wird sie wenigstens fiir n = 5 ent-
schieden. *)

6. Auf Sphdren gerader Dimension n > 4 und auf der Sphire S5 gibl
es kein Feld von tangentialen 2-dimenstonalen Flichenelementen.

Dieser Satz ergibt sich daraus, daf} jedes Feld von tangentialen Flichen-
elementen auf einer Sphére ,,durch ein 2-Feld aufgespannt‘‘ werden kann
(Nr. 17, Satz 29).

g) Diese Resultate sind z.T., besonders hinsichtlich der darin auf-
tretenden Dimensionszahlen, sehr speziell. Es sei erwahnt, daB der Ver-
such, sie in naheliegender Weise auszudehnen, oft daran scheitert, daB
die Homotopiegruppen der Sphiren und anderer Raume noch in vielen
Fallen unbekannt sind, wie denn iiberhaupt eine grundsatzliche Methode
zur Bestimmung der Homotopiegruppen noch nicht existiert. Wegen
dieses letztern Umstandes mochten wir auch darauf hinweisen, daB
manchmal Faserungen als Hilfsmitte] zur Bestimmung von Homotopie-
gruppen herangezogen werden konnen, wobei die in Nr. 6 und 7 aufge-
stellten Beziehungen, die wir die Hurewicz’schen Formeln nennen, eine
besondere Rolle spielen; diese ,,Methode der Faserungen‘ hat bei uns
in einigen Féllen zum Ziel gefiihrt, wird aber natiirlich im allgemeinen
nicht ausreichen.

§ 1. Retrahierbare Uberdeckungen und Zerlegungen

1. Definitionen

a) Die Gesamtheit der abgeschlossenen Punktmengen eines Kompak-
tums R wird selbst zu einem kompakten metrischen Raum?!) A(R),
wenn man als Entfernung o(4, B) zweier Punkte A, B ¢ A(R) die ,,Ab-
weichung* der zugehorigen Punktmengen A, B c R einfiihrt; darunter
versteht man!) die untere Grenze der den Bedingungen?)

*) Zusatz bei der Korrektur : Ich habe inzwischen beweisen kénnen, daf} es all-
gemeiner auf allen Sphéren der Dimensionen 4k -4 1 kein 2-Feld gibt ; der Beweis,
in dem iibrigens eine Heranziehung unitérer Gruppen nicht mehr nétig ist, wird dem-
néchst erscheinen.

1) Alexandroff-Hopf, Topologie (Berlin 1935); S.112 und 115. — Beziiglich aller
auftretenden Begriffe der mengentheoretischen Topologie verweisen wir auf den ersten
Teil dieses Buches.

%) Fir eine Punktmenge M c R bezeichnen wir mit U(M, ¢) die &-Umgebung von M,
d.h. die Menge aller Punkte p mit o(M, p) = inf o(g, p)< & (wo g(z, y) die Ent-
fernung von z und y € R bedeutet). ¢ €M
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Ac UGB, «) , BcUA4, )
geniigenden Zahlen «. Aus ¢(4, B) < ¢ folgt also
AcU(B,e) und Bc U, e¢) .

Wir. halten immer an folgender Bezeichnungsweise fest: Fiir jeden
Punkt 4 von A(R) bedeutet A die betreffende Punktmenge von R
(4 und A bedeuten also dasselbe, einmal als Punktmenge von R, einmal
als Punkt von (R) aufgefallt).

b) Eine abgeschlossene Teilmenge Z — A(R) induziert eine Uber-
deckung 3 von R mit abgeschlossenen Mengen, wenn zu jedem a ¢ R
ein A ¢Z existiert mit @ ¢ A. Die den Punkten A ¢Z entsprechenden
Mengen A c R sind die Elemente der Uberdeckung 3, und Z soll Uber-
deckungsraum von 3 heiflen; Z ist ein Kompaktum. Wir betrachten nur
Uberdeckungen, deren Elemente echte Teilmengen von R sind. Bei einer
topologischen Abbildung des Kompaktums R auf ein Kompaktum R,
geht die Uberdeckung 3 von R in naheliegender Weise iiber in eine Uber-
deckung 3, von R,. Zwei Uberdeckungen 3 von R und 3, von R, heifien
homoomorph, wenn es eine topologische Abbildung von R auf R, gibt,
bei welcher 3 in 3, iibergeht.

¢) Definition : Die Uberdeckung 3 von R, mit dem Uberdeckungsraum Z,
heif3t retrahierbar, wenn es eine Zahl r > 0 und zu jedem Punkt A e Z eine
stetige Abbildung @ von U(A4, r) auf A c R gibt, die auf A selbst die Iden-
titat ist, und die auch von A € Z stetig abhdngt. Es soll also @(4, b) definiert
und stetig sein fir 4 ¢ Z, b ¢« U(4, r), und es soll gelten

QA,b) = aecd
und

QA,b) = b, falls bed .

DaB die Uberdeckung 3 von R retrahierbar ist, besagt also: Jedes
Element 4 besitzt eine Umgebung in R, die sich auf A4 retrahieren 148,
und zwar so ,daB die Retraktion mit A stetig variiert; dabei geniigt die
GroBe dieser Umgebungen einer GleichmaBigkeitsbedingung (r von 4
unabhéangig). Die Forderung der Retrahierbarkeit schrinkt natiirlich
den Bereich der zugelassenen Uberdeckungen wesentlich ein3).

3) So folgt z. B. aus der Retrahierbarkeit einer Uberdeckung 3, daB die Elemente A
»den gleichen Homotopietypus‘ haben (wegen dieses Begriffes vgl. man W. Hurewicz,
Beitriagezur Topologieder Deformationen III (Proc. Akad. Amsterdam, 39 [1936],
112—126, insbes. S. 125); ebenso, da sie gleiche Dimension haben.
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Die in der Definition genannte Abbildung @(4, b) ist bei festem B ¢ Z
und variablem A4 ¢ U(B, r) fiir jedes b ¢ B eine stetige Abbildung von
U(B,r)cZ in R mit der ,,Anfangsbedingung‘ @(B, b) = b, die auch
von b stetig abhingt (in der Tat: wenn A « U(B,r), so ist b« U(4, 7),
also @(4, b) definiert und stetig). Diese Abbildung ist gleichmdifig stetig
in folgendem Sinne:

Zu jedem &> 0 gibt es eine von A, A’ ¢Z und b ¢ R unabhingige
Zahl 6 > 0, so daB o(Q(4, b), Q(4’, b)) < &, wenn o(4, A’) < 6.

Beweis: Es sei 0 <7’ <r, und 7 sei die Menge derjenigen Punkte
(A, b) des (metrisierten) topologischen Produkts Z x R, fiir welche
o(4,b) < r' < r ist; wir zeigen zunichst, daB 7" in Z x R abgeschlossen ist.

(4,,b,) sei eine Folge von Punkten aus 7', die gegen (A,b) eZ X R
konvergiert; bei beliebigem A > 0 gilt also fiir geniigend grofle n

od,,A)<h und g0b,,0)<h.

Ferner gibt es wegen o(4,, b,) < r’ einen Punkt a, ¢ 4,, so daB
0(a,, by) <17,
und zu a,, gibt es einen Punkt a « 4, so da3

ela, a,) <h
ist. Also gilt

o(4, b) < ola, b) < o(a, a,) + ola,, b,) + o(b,, b) <7’ -+ 24,

also, weil b beliebig ist, o(4,b) <r’, d.h. (4,b) ¢ T, somit ist T ab-
geschlossen in Z X R.

Daraus folgt, dal 7' ein Kompaktum ist, und als Abbildung dieses
Kompaktums in R ist Q(4, b) gleichmaBig stetig in bezug auf (4, b) € T,
also auch in bezug auf 4 € Z, b ¢ U(A4, r’). Darin ist aber die Behauptung
enthalten (wenn man die in der Definition der Retrahierbarkeit auf-
tretende Zahl r durch eine etwas kleinere ersetzt).

Im folgenden soll immer, auch ohne besondere Erwahnung, R ein
Kompaktum, 3 eine retrahierbare Uberdeckung von R urfd Z den zuge-
horigen Uberdeckungsraum bezeichnen.

d) Wir bezeichnen mit Y¥ den ,,Abbildungsraum‘ eines Kompaktums X
in einen beschriankt metrisierten Raum Y : die Punkte von Y% sind die
stetigen*) Abbildungen f von X in Y, seine Metrik ist durch

4) Alle betrachteten Abbildungen sind stetig; wir lassen dieses Beiwort gewdéhnlich weg.
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Q(fﬁ g) = Max Q(f(x) ) g(x)) )

z€X

gegeben.

Definition: Wir nennen F ¢ ZX eine Spur von f e RX (beziiglich der
Uberdeckung 3 von R),

F=8pf,
wenn fir jedes x € X gilt : f(x) e F(x).

Es fragt sich nun, welche Abbildungen f ¢ R¥ Spuren besitzen, und
welche Abbildungen F' ¢ Z* Spuren sind. Die wichtigste Aussage hieriiber
wird ein spater (§ 2, Nr. 3d) formuliertes Lemma sein ; unter spezielleren
Voraussetzungen iiber 3, die wir im folgenden untersuchen, lassen sich
auBerdem noch einige, eher triviale, Aussagen machen.

e) Eine Spur der Identitit ¢ von R ist eine Abbildung I ¢« Z%, bei

welcher fiir jedes a R gilt: I(@) .

Wenn es in 3 eine Spur der Identitat gibt, so besitzt jede Abbildung
f € R (mindestens) eine Spur F, nimlich F = If:

F(z) = I(f(x)) , also f(z)eF(x) .

Wir bezeichnen die Bildmenge I(R) ¢ Z mit Z’; wenn speziell (vgl.
Nr. 1f) fiir jedes A €Z’ gilt
IQ(4,b)= A4,

dann bildet @(4, b) die Umgebung U(Ib, r) = Z’ topologisch in R ab,
und I ist eine gebietstreue Abbildung von R auf Z'.

f) Die Uberdeckung 3 von R heilt eine Zerlegung, wenn fiir alle
acRausaecAundaec B (4, B ¢Z) folgt: A = B . Wir verstehen dann
unter der Projektion P diejenige Abbildung von R auf Z, die jedem Punkt
a ¢ R die Punktmenge, in der er liegt, d. h. denjenigen Punkt A4 ¢Z,
fiir welchen a ¢ A4 ist, zuordnet; es ist also fiir alle A €Z

P14 =4.

Zerlegungen sollen immer stetig sein®); das bedeutet: zu jedem &> 0
gibt es ein 6 > 0, so daB aus p(a, B) < 6 und a ¢ 4 folgt o(4, B) < &;
dann ist aber die Abbildung P stetig, und P(R) = Z ist der Zerlegungs-
raum?®) der Zerlegung 3.

%) Wegen der Terminologie und der einfachsten Eigenschaften der Zerlegungen vgl.
man 1), S. 92 und 98.

147



Die Projektion P ist eine Spur der Identitit von R, und fiir jedes
A eZ gilt
PQ(4,b) =4 ;

somit ist (vgl. Nr. 1e) P eine gebietstreue Abbildung von R auf Z und
Q(4, b) ihre ,lokale eindeutige Umkehrung*‘.

In einer Zerlegung 3 ist eine Abbildung F ¢ ZX dann und nur denn
Spur von f € RX, wenn F = Pf ist.

Denn F(x) = P(f(x)) ist gleichbedeutend mit f(z) e F(x). — Pf ¢ ZX
soll Projektion der Abbildung f ¢ R¥ heiBen; in einer Zerlegung sind also
diejenigen Abbildungen aus Z*, die Spuren sind, identisch mit den Pro-
jektionen der Abbildungen aus R%.

Wir sagen, die Uberdeckung 3 enthalte eine Zerlegung 3’, wenn der
Uberdeckungsraum Z eine Teilmenge Z’ enthalt, die eine Zerlegung
von R induziert. Dann gilt fiir die zugehorige Projektion P von R auf
Z' c Z alles soeben Gesagte.

g) Wenn die Identitdt J von Z eine Spur ist, d. h. wenn es eine Ab-
bildung j € RZ mit j(4) ¢ A fiir alle 4 ¢Z gibt, so ist jede Abbildung
F ¢ ZX eine Spur, namlich Spur von f = jF; denn es ist

Wenn 3 eine Zerlegung ist, und die Identitit J von Z eine Spur ist,
d. h. wenn es eine Abbildung j ¢ R? gibt mit J = Pj, so nennen wir j
eine Schnittfliche der Zerlegung; j ist dann eine topologische Abbildung
von Z in R, die jedem Punkt A ¢ Z einen Punkt a ¢ 4 zuordnet.

Wir werden die Schnittflachen spéater (§ 4) naher untersuchen.

k) Es sei noch bemerkt, da man jeder Uberdeckung 3 von R eine
Zerlegung 3* eines Kompaktums B* zuordnen kann: R* sei die Menge
derjenigen Punkte (4, a) des topologischen Produktes Z X R, fiir welche
a ¢ A ist; dann bilden die Punkte (4, @) mit festem 4 eine der Menge
4 c R homdomorphe Teilmenge 4 — R*, und diese Mengen 4 bilden
eine stetige Zerlegung 3* von R*, deren Zerlegungsraum Z* dem Uber-
deckungsraum Z homoéomorph ist®). 3* ist iibrigens von selbst retrahier-
bar, wenn 3 es ist. Die Beziechung zum Raum R kommt darin zum Aus-
druck, dal auch R ein Zerlegungsraum von R* ist (Elemente dieser

) In der Theorie der ,,sphere-spaces‘ von H. Whitney (Bull. of the Am. Math. Soc.,
1937, 785—800) entspricht dem Raum R der Basisraum K des Sphirenraumes S(K), dem
Raum R* der ,,totale Raum‘ S(K) (wenn der Sphirenraum S(K) durch eine Uberdeckung
von K mit Sphéaren gegeben ist).
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Zerlegung sind die Teilmengen von R*, die aus den Punkten (4, @) mit
festem a bestehen) .

In einem gewissen Sinne laBt sich also jede Uberdeckung als Zer-
legung auffassen, was fiir die weiteren Untersuchungen bequemer ist.
Unsere Anwendungen handeln dementsprechend auch fast ausschlieSlich
von Zerlegungen.

2. Beispiele

Die folgenden Beispiele retrahierbarer Zerlegungen und Uberdeckungen
sollen nicht nur die eingefiihrten Begriffe illustrieren, sondern auch spater
zu Anwendungen herangezogen werden.

a) Das topologische Produkt X X Y zweier Kompakten X und Y ist
in natiirlicher Weise zerlegt in die Mengen der Punkte (x, ) mit festem
y € Y. Wir nennen diese Zerlegung die ,,Links-Zerlegung* von X X Y;
der zugehorige Zerlegungsraum ist dem Raum Y homéomorph, und die
Zerlegung ist offenbar retrahierbar. Sie besitzt eine Schnittfliche:

1Y) = (%, y) e X X ¥

mit beliebigem festem z, ¢ X. — (Analoges gilt fiir die ,,Rechts-Zer-
legung*.)

b) Die (unverzweigte) Uberlagerungsmannigfaltigkeit mit endlicher
Blatterzahl k einer geschlossenen Mannigfaltigkeit Z 148t sich zerlegen in
die Mengen A der Punkte a,, ..., a,, die ,,iiber einem Punkt 4 e¢Z
liegen. Dall diese Zerlegung retrahierbar ist, zeigt folgende Abbildung
Q(A4, b): r > 0 sei so gewihlt, daB fiir jedes A ¢ Z die Umgebung U(4, 7)
aus den £ homoomorphen Umgebungen U(a,,r) (t = 1, ..., k) besteht;
dann setzen wir

QA,b) =a, fir beU(a;,r) ot =1,...,k).

Hingegen ist diese , natiirliche* Zerlegung einer Uberlagerungsmannig-
faltigkeit nicht mehr retrahierbar, wenn Verzweigungspunkte auftreten
(wie bei Riemann’schen Fliachen als Uberlagerungen der Kugel).

¢) G sei eine kompakte topologische Gruppe, U eine abgeschlossene
Untergruppe von @. Die Restklassen von G nach U bilden eine Zerlegung
3 von G ; ihr Zerlegungsraum Z ist ein Wirkungsraum von G. (Ein Kom-
paktum W heit Wirkungsraum von (¢, wenn es eine transitive Gruppe
topologischer Transformationen von W auf sich gibt, die stetig homo-
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morphes Bild von G ist”)). Umgekehrt gehort zu jedem Wirkungsraum
W von @ eine Zerlegung von @ in Restklassen nach der sog. Isotropie-
gruppe, d. h. der (abgeschlossenen) Untergruppe derjenigen Transforma-
tionen von W, die einen bestimmten Punkt von W festlassen, und W ist
dem Zerlegungsraum homoomorph (das gilt im allgemeinen nur fiir kom-
pakte Gruppen).

In seinen Untersuchungen iiber solche Gruppenzerlegungen setzt
Hurewicz®) eine der Retrahierbarkeit verwandte Eigenschaft voraus, die
insbesondere fiir Lie’sche Gruppen immer erfiillt ist; man kann daraus
entnehmen (und iibrigens auch leicht direkt einsehen), dafl die Rest-
klassenzerlegung einer geschlossenen Lie’schen Gruppe nach einer abge-
schlossenen Untergruppe immer retrahierbar ist.

d) Diese Zerlegungen Lie’scher Gruppen sind vom geometrischen
Standpunkt aus Beispiele fiir die sogenannten Faserungen®): Eine Zer-
legung 3 des Kompaktums R heifit Faserung, wenn ihre Elemente,
,,Fasern‘ genannt, alle einem Kompaktum F homoéomorph sind, und
wenn fiir jede hinreichend kleine Umgebung U ¢ Z die Menge P-1U c R
(also die Vereinigungsmenge 3 A4 ) dem topologischen Produkt F x U,

A4AeU

und die durch 3 induzierte Zerlegung von P-1U der Links-Zerlegung
von F X U homoomorph ist; die Projektion P heifit in diesem Fall auch
Faserabbildung, der Zerlegungsraum Z Faserraum.

Wenn R und F geschlossene Riemann’sche Mannigfaltigkeiten sind, und
die Fasern hinreichend oft differenzierbar in R liegen, so ist die Zerlegung
retrahierbar; man kann leicht eine allen Bedingungen der Definition
geniigende Retraktionsabbildung angeben, bei welcher die Umgebung
jeder Faser F lings den zu F orthogonalen geodétischen Linien auf die
Faser ,,zusammengezogen‘ wird. Zu diesen ,,requliren Faserungen'
gehoren auch alle im folgenden untersuchten Zerlegungen; wir werden
indessen hievon keinen Gebrauch machen, sondern den Beweis der
Retrahierbarkeit durch direkte Angabe besonders einfacher Abbildungen
Q(A4, b) erbringen.

?) Man vgl. E. Cartan, Groupes finis et continus et I’Analyse Situs (Mémorial
des sc. math. 42, Paris 1930), S. 13 (Wirkungsraum hei3t dort ,,espace homogéne).

8) Beitrage zur Topologie der Deformationen I (Proc. Amsterdam 38 [1935],
112—119), S. 116 unten.

®) Vgl. J. Feldbau C. R. 208 (1939), S. 1621. Ferner: H. Seifert, Topologie drei-
dimensionaler gefaserter Rdume (Acta math. 60 [1932]); es sei bemerkt, dal die
Forderung der Retrahierbarkeit das Auftreten von ,, Ausnahmefasern‘ im Sinne von
Seifert ausschlieBt. — W. Qysin hat kiirzlich Faserungen geschlossener Mannigfaltigkeiten
in Sphéiren mit Methoden der Homologietheorie untersucht. (Comm. math. helv., Vol. 14.)
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Bei Faserungen der oben beschriebenen Art werden wir sowohl fiir die
Zerlegung 3 selbst als auch fiir den Zerlegungsraum Z oft die (der Grup-
pentheorie entnommene) Bezeichnung

R/F
verwenden und durch eine Gleichung der Form
R/ F=M

die Homoomorphie des Zerlegungsraumes zu einem Raum M zum Aus-
druck bringen.

e) Uberdeckung der Sphiren mit Grof3-Sphdren. Wir betrachten im
n-dimensionalen euklidischen Raum R" das Biischel aller ¢-dimensionalen
Ebenen £? (0 < g < n) durch einen festen Punkt 0 ¢ R*; diese Ebenen
schneiden die um 0 gelegte Einheitssphare 8”—! des R" in (¢ — 1)-dimen-
sionalen GroB-Sphéren S¢-1, die eine Uberdeckung 3 der §7-1 bilden;
den zugehorigen Uberdeckungsraum Z nennen wir den Grofkreiseraum
@,_1, - Diese Uberdeckung ist retrahierbar; wir konstruieren zum
Beweis folgende Abbildung (4, b) fiir A €eZ, b e S"*1:

N (4, b) sei die Normalprojektion des Punktes b ¢ 8”1 auf die Ebene £9,
in welcher A (das ist eine S7-1) liegt; bedeutet | y | den Abstand des
Punktes y ¢ B" von 0, so ist | N(A4, b) | eine gleichmafBig stetige Funktion
von A €Z, b e S*1; da ferner | N(4,b) | = 1 ist fiir b €« 4, so gibt es eine
Zahl r> 0, so daBl | N(4,b) | > 0 ist, wenn b €« U(A4, r). Setzen wir nun'?)

1

so ist dies eine stetige Abbildung von U(4, r) auf 4, die auch von 4 ¢Z
stetig abhingt und auf A die Identitat ist.

f) Sphdrenfaserungen. Die eben beschriebene Uberdeckung 3 der §7-1
mit GroB-Sphiren enthilt eine Zerlegung 3’, wenn es moglich ist, im
Biischel der Ebenen E? ein schlichies Biischel auszuzeichnen, d. h. eine
Schar von Ebenen K2 durch 0, derart, daB durch jeden von 0 ver-
schiedenen Punkt y des R™ genau eine Ebene der Schar geht, die stetig
mit y variiert. Solche schlichte Biischel existieren nur fiir gewisse Dimen-
sionszahlen n und ¢'!), jedenfalls fiir n = kg mit ¢ = 1,2,4 und k =

10) O sei Ursprung eines Koordinatensystems im R”, und Ay der Punkt, dessen Koordi-
naten das A-fache der Koordinaten von y € R” sind.

11) Die genauen Bedingungen fiir n und ¢ sind uns unbekannt; es sei aber bemerkt,
daB GQysin a. a. 0.?) notwendige Bedingungen angegeben hat: ¢ muf3 Teiler von n, und ¢
mul} gerade sein (oder = 1).
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2,3, ..., auBerdem mit ¢ = 8 und k£ = 2; in diesen Fillen kann man sie
namlich nach Hopf'?) unter Heranziehung hyperkomplexer Zahlsysteme
S, festlegen (&S, = reelle Zahlen, S, = komplexe Zahlen, S, = Quater-
nionen, S; = Cayley’sche Zahlen!'?)). Die gemill e) retrahierbaren 13)
Zerlegungen 3’ der 8™ in (¢ — 1)-dimensionale GroB-Sphéiren, die man
so erhilt, sind die von Hopf!?) angegebenen Sphéirenfaserungen; der
zugehorige Zerlegungsraum Z ist homéomorph dem ,,(k— 1)- demensio-
nalen projektiven S ,-Raum* P,_(S,) (den man geradezu so definieren
kann), also insbesondere fiir k = 2 der Sphare §¢. In abgekiirzter
Bezeichnungsweise (vgl. Nr. 2d) konnen wir diese Zerlegung durch
Ske-1/8¢-1 = P, (S,) beschreiben.

g) Die Stiefel’schen Mannigfaltigkeiten't) V, ,, lassen sich in nahe-
liegender Weise zerlegen.

V,m ist definiert als Menge aller in einem festen Punkt 0 des R”
angreifenden geordneten und normierten Orthogonalsysteme ¢, , von
m < n Vektoren (q,, ..., a,,) des R", kurz m-Systeme genannt (die, in
natiirlicher Weise topologisiert, zu einer geschlossenen Mannigfaltigkeit
wird). Fassen wir nun immer diejenigen Systeme o, ,, , die in den ersten
k < m Vektoren iibereinstimmen, zu einer Teilmenge 4 der V, ,, zu-
sammen, so erhalten wir eine stetige Zerlegung 3’ der ¥V, , in Mannig-
faltigkeiten V,_, ., ; der Zerlegungsraum Z ist eine V, , :

3/ : Vn,m/V'n—k,m-—k = Vn,k .

Nachweis der Retrahierbarkeit: Fir zwei Punkte 4, BeV,,, d.h.
A= (a,...,a;) und B = (b, ..., b,) bilden wir die Determinante

G(4, B) = | (a;-b,) | & ;

gie hangt gleichmaBig stetig von 4 und B eV, , ab; G(4, A) = 1, also
gibt es eine Zahl r > 0, so daf3

G(A, B) # 0ist fir o(4, B) <.

12) H. Hopf, Uber die Abbildungen von Sphéren auf Sphéaren niedrigerer
Dimension (Fund. math. XXV [1935], 427—440), bes. S. 438ff.

13) Einen andern Beweis der Retrahierbarkeit fiir den Fall ¢ = 2, der sich &hnlich
auch bei ¢ = 4 (mit Hilfe der Quaternionen) durchfithren 148t, haben Hopf und Rueff
(Comm. math. helv. 11 [1938], S. 58) angegeben.

14) F. Stiefel, Richtungsfelder und Fernparallelismus im n-dim.Mannig-
faltigkeiten (Comm. math. helv. 8 [1935], 3—51), bes. S. 8ff.
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Ist nun b ein Punkt von Bc V, ,,, d.h. b= (by, ..., b, bryy ..+, b)),
so sind fiir o(4, B) < r die m Vektoren a, ..., az, byyy, ..., b,, linear
unabhéngig; denn aus

k m

i=1

i=k+1
folgt

k
2 Ai(a;-by) =0, Jua l, uns i,

t=1

also sind wegen G(4,B) # 0 alle 4, =0, also auch alle u;,=0.

Man kann also durch. Orthogonalisieren den m Vektoren q, ..., a,,
bii1s - - -, b, auf eindeutige und stetige Weise einen Punkt a =(a,,. . ., a,
Qpris -+ 0,) €4 von V,, zuordnen; dadurch ist eine Abbildung

Q(A4, b) fiir (4, B)<r und b ¢ B definiert, die alle in der Definition
erwahnten Bedingungen erfiillt.

h) Eine andere Zerlegung 3" der Mannigfaltigkeit V,, ,, erhalt man,
wenn man immer diejenigen Systeme o, ,, zu einer Teilmenge zusammen-
faflt, die in derselben m-dimensionalen Ebene E™ liegen und darin die-
selbe Orientierung bestimmen; der Zerlegungsraum Z ist homéomorph
dem Biischel aller orientierten m-dimensionalen Ebenen E™ des R
durch 0, £, ,,; die Elemente dieser Zerlegung sind Mannigfaltigkeiten
V n,m— (denn ein System o, ,,, das in einer festen Ebene E™ liegt und
darin eine vorgegebene Orientierung bestimmt, ist schon durch die
(m—1) ersten Vektoren eindeutig festgelegt):

3” : Vn,m/Vm,m—l = En,m

Fiir zwei Punkte a,b ¢V, ,, a = (0, ..., a,) und b = (b;, ..., b,)
ist die Determinante

G(”’? b) = | (a; - ba) Im >

wie leicht zu sehen, nur abhingig von den orientierten Ebenen 4 = Pa
und B = Pb. Insbesondere ist G(a, a) = 1, also gibt es eine Zahl r > 0,

so daB GQ(a, b) 5~ 0 ist, wenn o(4, B) <r.b’;, ..., b,, seien die Vektoren,

die durch Normalprojektion von by, ..., b,, auf die Ebene A entstehen;

dann ist a,-b;=a,-b; und aus X' A;b; = 0 folgt wegen 2 A;(a;-b;)=0
j=1

(¢=1,...,m), daB alle ; = 0 sind. Die b} sind also hnear unabhéngig
und ergeben in best1mmter Reihenfolge orthogonahslert ein System
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G,s m in der Ebene A4, d. h. einen Punkt a’ ¢ 4 ;
a’ = Q(4, b)

ist die Retraktionsabbildung der Zerlegung.

g) Man kann diese Zerlegungen 3’ und 3” der V, , kombinieren:
Man faBt alle diejenigen Systeme o, ,, zu einer Teilmenge zusammen,
die in den ersten k < m Vektoren iibereinstimmen und bei denen die
letzten m —k Vektoren dieselbe (m—k)-dimensionale orientierte Ebene
bestimmen. Auch diese Zerlegung ist, wie man leicht feststellt, retrahier-
bar; ihr Zerlegungsraum??®) gestattet seinerseits eine Zerlegung, bei wel-
cher der Zerlegungsraum eine V, , und die Elemente Ebenenbiischel
E, i m—r sind.

§ 2. Abbildungssitze

3. Vorbereitendes. Ein Lemma

a) 3 sei eine retrahierbare Uberdeckung eines Kompaktums R, Z der
zugehorige Uberdeckungsraum und @(4, b) die in der Definition (Nr. 1¢)
genannte Abbildung; X sei ein Kompaktum. @(A4, b) induziert in folgen-
der Weise eine Abbildung zwischen den Abbildungsriumen RX und Z% : ¥
und_@ seien zwei Abbildungen aus Z*¥ mit o(F, ) < r, und F sei Spur
von f € RX¥ (Nr. 1d), also f(x) € F(x) fiir alle x ¢« X; dann verstehen wir
unter ¢ = Q(G, f) das durch

9(z) = Q(G(x), f(x)) , zeX

erklirte Element von R%. Fiir dieses gilt @ = Sp g. In Z* besteht also
die ganze r-Umgebung einer Spur F aus Spuren, und durch @(G, f) wird
bei festem f eine Abbildung von U(F,r) c Z* in RX mit der ,,Anfangs-
bedingung‘ QF, f) = [ definiert, derart, dafj tmmer

G =8pQ@G, 1
28t.
Diese Abbildung ist stetig. Beweis: Es sei g = Q(@, f) und ¢’ = Q(G", {).
Dann ist

e(g(x) , g'(x)) = o[@(G(2) , f(2) , QG () ,f(x))]
wegen der gleichméBigen Stetigkeit der Abbildung Q(4, b) (s. Nr. lc)

15) Ein Beispiel eines solchen Raumes ist (¢ = 1, m = 3) die Mannigfaltigkeit der an
die Sn—1 tangentialen orientierten Fliachenelemente (vgl. Nr. 17).
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kleiner als eine beliebige Zahl ¢ > 0, wenn o(G(z), G'(x)) < (&), wobei 6
von x nicht abhiangt; also ist (g, ¢’) < &, wenn (G, Q') < 6 .

b) Aus den Eigenschaften von @(4, b) folgt ferner fiir das eben er-
klirte Element g = Q(G, f) « RX:

Wenn, fiir einen bestimmten Punkt z, von X, G(z,) = F(x,) ist, dann
ist auch g(z,) = f(x,) .

Beweis : g(x) = Q(F(%o) , (%)) = Q(F (%), f(0)) = f(). —

Wenn fir die Teilmengen X c X und Z,cZ git (X, cZ,,
dann ist g(X,) c Ry, wo Ry, = X 4.

A€Z,

Beweis: Fiir alle z <X, ist g(x) = Q(G(x), f(#)) ¢ G(@) c R,.

c¢) Deformationen : Eine Deformation einer Abbildung f ¢ ¥Y¥ (Y sei
ein beliebiger metrischer Raum) ist gleichbedeutend mit einem Weg «
in Y, der im Punkte f beginnt, d. h. einer stetigen Abbildung «(t) der
Einheitsstrecke 0 <<t <{ 1 in Y¥ mit «(0) = f. Zwei Abbildungen f und ¢
heilen homotop, wenn es in Y¥ einen Weg « gibt mit «x(0) = f und
(1) = ¢g. Man kann diesen Homotopiebegriff verschérfen, indem man
verlangt, dall bei der ganzen Deformation « jede der Abbildungen
a(t) (0 <t < 1) einen Punkt xz,e¢ X auf einen vorgegebenen Punkt
Yo € Y, oder eine Teilmenge X, c X in eine Teilmenge Y, — Y abbildet,
d. h. indem man nur Wege « auf einen Teilraum (¥Y%), von Y¥ zulaBt;
man muB dann genauer sagen, f und g seien ,,homotop in (¥%),*.

Eine Abbildung f ¢« Y¥, die (in Y<) einer Abbildung auf einen einzigen
Punkt von Y homotop ist, heit zusammenziehbar (in Y¥); eine Abbildung
f € YX heiBt wesentlich, wenn fiir jede zu ihr homotope Abbildung g die
Bildmenge g(X) = Y ist.

Eine (kompakte) Teilmenge M c Y heillt zusammenziehbar in Y, wenn
die identische Abbildung von M auf sich in Y¥ zusammenziehbar ist.
Ein Kompaktum Y heit wesentlich auf sich, wenn die identische Abbil-
dung von Y auf sich in Y¥ wesentlich ist.

Ist y in der Uberdeckung 3 ein Weg in RX, I' ein Weg in Z* und fiir
0 <t <1 I't) = Sp y(t), so nennen wir I" eine Spur von y (und sagen
auch, die Deformation I sei eine Spur).

d) Lemma: Wenn der Anfangspunkt eines Weges I' in ZX eine Spur
ist, so ist der ganze Weg I' eine Spur. Genauer: Wenn I'(0) =F = Sp |,
so gibt es einen Weg y in R¥ mit y(0) = f, derart, dal I'= Sp y .

Anders formuliert: Jede zu einer Spur F ¢ ZX homotope Abbildung
G ¢ Z% ist eine Spur. Genauer: Wenn F = Sp f, und G zu F homotop ist,
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dann ist G Spur einer zu f homotopen Abbildung g « R*, und die ganze
Deformation von F ist Spur der Deformation von f.

Beweis: Der Weg I' ist gegeben durch I(¢) eZ%, 0 <t <1, mit
I'(0) = F = Sp f. Man kann eine Zahl § > 0 sowéhlen, daB fiir | ¢ — ¢t/ |[<6
gilt

o(T0), Ith) <.
Dann seien
O=fH<ti<. .- <t, =1
n -+ 1 Zahlen mit

b —t <d,r=1,...,nm.
Wir setzen nun
y(0) = f
und
y(t) = Q(F(t)’ 7("/i—1)) firt, , <t<t,1=1,...,n.

Dadurch ist ein Weg y in R¥ definiert, der in f beginnt, und fiir welchen
gilt
') = Spy) (0<t<1);

die Existenz eines solchen Weges war aber gerade nachzuweisen.

e) Aus dem in Abschnitt b) dieser Nummer Gesagten ersieht man,
daBl das Lemma und seine Konsequenzen (Nr. 4) auch giiltig bleiben,
wenn man allen betrachteten Abbildungen von X in R und Z eine oder
mehrere Bedingungen der folgenden Typen 1 und 2 auferlegt (d. h. sich
auf einen gewissen Teilraum von Z* und einen zugehérigen Teilraum
von R% beschrinkt):

1. z,, a,, 4, seien vorgeschriebene Punkte bzw. von X, R, Z, mit
a, € 4,. Es werden nur solche Abbildungen f ¢ R und F ¢ Z* zugelassen,
bei welchen f(x,) = a, bzw. F(x,) = A4, ist.

2. X, und Z, seien Teilmengen von X bzw. Z,und R,= Y 4 c R.

A€z,
Es werden nur Abbildungen f und F zugelassen, bei welchen f(X,) c R,
bzw. F(X,) c Z, ist.
f) Wir nehmen nun speziell an, 3 sei eine Zerlegung. Dann bewirkt die
Projektion P (s. Nr. 1f) von R auf den Zerlegungsraum Z eine Abbildung
von R¥ in Z%, die dem Punkt f ¢ R¥ den Punkt

F = PfZ%

zuordnet und die wir ebenfalls mit P bezeichnen; wegen der gleichmafigen
Stetigkeit der Projektion ist sie selbst stetig.
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Wenn R (und infolgedessen auch Z, wie man mit Hilfe der Abbildungen
P und @ leicht zeigen kann) zusammenhéngend und lokal zusammen-
ziehbar!®) ist, und wenn das Kompaktum X endlich-dimensional ist,
dann sind nach Hurewicz!?) die Komponenten von R¥ (bzw. Z¥) offene,
durch stetige Wege zusammenhingende Mengen, also identisch mit den
Klassen homotoper Abbildungen von X in R (bzw. Z). Wir bezeichnen
die Abbildungsklasse, zu welcher f gehort, mit {f} (oder wenn kein MiB3-
verstandnis moglich ist, ebenfalls mit f).

Da die Abbildung P von R% in Z% stetig ist, bildet sie jede Komponente
{f} = R in die Komponente {Pf} c Z¥ ab; nach dem Lemma ist aber
jede Abbildung G' aus der Klasse { Pf} Spur einer zu f homotopen Abbil-
dung g, d. h. G = Pg; P bildet also {f} auf { Pf} ab, und man kann fiir
eine Zerlegung 3 dem Lemma die kurze Form geben!®):

P{fy = {Pf} .

g) Wir fithren zur bequemern Formulierung der folgenden Sitze noch
eine Bezeichnung ein: Wenn 3 eine Uberdeckung von R ist, so soll eine
Abbildung f e RX relativ-zusammenziehbar (beziiglich 3) heiBlen, wenn
sie einer Abbildung g homotop ist, bei welcher die Bildmenge ¢g(X) ganz
in einem Element 4 der Uberdeckung 3 enthalten ist. Eine Teilmenge
M c R heillt relativ-zusammenziehbar, wenn die identische Abbildung
von M auf sich (als Abbildung aus R¥) relativ-zusammenziehbar ist.

4. Hauptsiitze

3 sei eine retrahierbare Uberdeckung des Kompaktums R, Z der
zugehorige Uberdeckungsraum, X ein beliebiges Kompaktum.

Satz A : Jede zusammenziehbare Abbildung F e ZX ist eine Spur.

Satz B: Wenn eine Abbildung f ¢ RX eine zusammenziehbare Spur be-
sitzt, dann ist | relativ-zusaommenziehbar beziiglich 3.

Der Beweis von Satz A und Satz B ergibt sich direkt aus dem Lemma
(Nr. 3d) und der Bemerkung, dal eine Abbildung G von X auf einen
Punkt A ¢ Z Spur einer Abbildung f ¢ AX ist.

Korollar zu Satz A : Wenn X in sich zusammenziehbar ist, so ist jede
Abbildung F ¢ Z* eine Spur.

Korollar zu Satz B: Wenn 3 eine Zerlegung von R ist, und P die Pro-
jektion von R auf Z, so ist eine Abbildung f ¢ R* dann und nur dann
relativ-zusammenziehbar, wenn Pf ¢ Z%¥ zusammenziehbar ist (,,dann‘

18) das bedeutet: jede Umgebung U enthélt eine in U zusammenziehbare Umgebung.
17) s. 8), S.113.
18) Vgl. fiir Gruppenzerlegungen: Hurewicz8), S. 117, Satz VIII.
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folgt aus Satz B, ,nur dann‘ aus der Stetigkeit der Abbildung P von
R¥ in Z%).

Satz C: Wenn 3 eine Zerlegung von R ist, so ist die Spur einer wesent-
lichen Abbildung f ¢ R* wesentlich.

Beweis: f besitzt genau eine Spur, namlich F = Pf; wenn F einer
Abbildung G' homotop ist, bei welcher 4 € Z nicht zur Bildmenge G(X)
gehort, so ist nach dem Lemma f einer Abbildung g (mit G = Pg) homo-
top, bei welcher 4 c R nicht zur Bildmenge g(X) gehort. Bei einer
wesentlichen Abbildung f ist das nicht moglich.

Korollar zu Satz C : Wenn 3 eine Zerlegung von R ist, und wenn R auf
sich wesentlich ist, dann ist die Projektion P von R auf Z eine wesentliche
Abbildung (also muBl auch Z auf sich wesentlich sein).

Satz D : Die Uberdeckung 3 von R enthalte eine Zerlegung 3’ (Defini-
tion s. Nr. 2f) mit dem Zerlegungsraum Z’' < Z. Wenn R auf sich wesent-
lich ist, so ist die Projektion P von R auf Z'in Z® nicht zusammenziehbar,
also Z' in Z nicht zusammenziehbar.

Beweis: Es geniigt vorauszusetzen, daBl R beziiglich 3’ nicht relativ-
zusammenziehbar ist; dann folgt die Behauptung direkt aus Satz B,
weil P eine Spur der Identitat von R ist. — Wenn man voraussetzt, dafl R
auf sich wesentlich ist, so kann man die Behauptung verschéirfen: P laBlt
gsich in ZF nicht in eine Abbildung F ¢ Z’E deformieren, bei welcher die
Bildmenge F(R) eine echte Teilmenge von Z’ ist; also auch: Z’ 148t sich
in Z nicht in eine echte Teilmenge von sich deformieren.

b. Anwendungen

a) Satz 1: Bei einer reguliren Faserung (Nr.2d) der geschlossenen
Mannigfaltigkeit R ist die Faserabbildung eine wesentliche Abbildung von R
auf den Faserraum.

Beweis: Eine geschlossene Mannigfaltigkeit ist auf sich wesentlich??);
die Behauptung folgt also direkt aus dem Korollar zu Satz C.

Ein Korollar zu Satz 1 ist der von Hurewicz2?) bewiesene Satz, daB
eine geschlossene Lie’sche Gruppe sich wesentlich auf ihre Wirkungs-
raume abbilden 148t.

b) Wir konnen den Satz D auf die in Nr. 2e, f beschriebenen Uber-
deckungen der Sphare S"~! mit GroB-Sphiren S?-! (anwenden: Fiir
n==ky(q=1,2,4; k= 2,3,... und ¢ = 8; k = 2) enthalt diese Uber-
deckung eine Zerlegung mit dem Zerlegungsraum P, ,(S,) und es gilt

19) g, 1), 8. 519, Satz II.
20) g, 8), S. 118, oben.
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Satz 2 : Der projektive S ,-Raum P, ,(S,)(¢=1,2,4;k=2,3,... und
q=8; k= 2)ist im GroBkreisraum G, ; ,, nicht zusammenziehbar.

Insbesondere gibt es in G5, ; ,; ein topologisches, nicht zusammen-
ziehbares Bild der §¢.

c) Die Anwendung von Satz C auf die Hopf’schen Spharenfaserungen
(s. Nr. 2f)

Ska-1/84-1 = P, (S),q=1,2,4; k=2,3,...undg=8; k=2
ergibt:

Satz 3: Ein Kompaktum X, das sich wesentlich auf S¥a— abbilden lipft,
lapt sich auch wesentlich auf P,_(S,) abbilden.

Korollar : Es gibt eine wesentliche Abbildung der 8% auf P, (S,).

Beschranken wir uns auf £ = 2, so konnen wir P,(S,) durch die damit
homéomorphe S¢ ersetzen und erhalten (wenn wir den uninteressanten
Fall ¢ = 1 weglassen):

Satz 3': Fir q = 2, 4, 8 lipt sich ein Kompaktum X, das man wesent-
lich auf S abbilden kann, auch auf S wesentlich abbilden.

Korollar: Fir g = 2, 4,8 gibt es eine wesentliche Abbildung der
S2-1 guf die S9.

Diese letzte Aussage ist in einem allgemeinern Satze von Hopf?!)
enthalten (der besagt, daf} sie fiir alle geraden ¢ gilt); es ist aber bemer-
kenswert, dall nach unserer Methode2?2) der Beweis der Wesentlichkeit
ohne Heranziehung von Homologiebegriffen gefiihrt wird.

Wir machen noch Gebrauch von folgendem Resultate aus der Freuden-
thal’schen Theorie der Sphirenabbildungen?3): Die S¥ 148t sich wesent-
lich auf die 8™ abbilden, (u.a.) wenn N —n = 1,3, Tund n > N—n-+2
ist. Es gibt also wesentliche Abbildungen der 8¥ auf die S¥2-1 fiir N = kg,
kg + 2, kq + 6, falls diese Zahlen kleiner sind als 2 k¢ — 3, und nach
Satz 3 infolgedessen auch wesentliche Abbildungen der S~ auf P,_(S,).
Setzen wir wieder speziell k£ = 2 (wobei wir ¢ = 1 und ¢ = 2 weglassen),
so erhalten wir

Satz 4: Fir ¢ = 4 und N = 8, 10, ferner fiir ¢ = 8 und N = 16, 18, 22
gibt es wesentliche Abbildungen der S¥ auf die 8.

d) Mit Hilfe der in Nr. 2e beschriebenen Zerlegung der Stiefel’schen
Mannigfaltigkeit V,, ,,

Vn,m/vn—-k,'rn—k = Vn,lc ’ 0< k<m<mn ,

1) g, 12), 8. 431, Satz II.
22) nach welcher Hurewicz (vgl. 8)) den Fall ¢ = 2 (unter Beniitzung der Tatsache,
da S? Gruppenmannigfaltigkeit ist!) behandelt hat.

3) H. Freudenthal, Uber die Klassen der Spharenabbildungen I (Comp. math.V,
1937, 299—314), bes. S. 301.
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worin wir speziell m = n — 1 setzen, koénnen wir in einfacher Weise
folgenden Satz von Wazewski®?) beweisen:

Satz 5 (Satz von Wazewski): X sei eine Vollkugel (beliebiger Dimen-
sion), B eine Matrix von n Spalten und %k < n Zeilen, deren Elemente
reelle stetige Funktionen von z ¢ X sind, und die in jedem Punkte
xz ¢ X den Rang £k hat. Dann kann man B zu einer n-reihigen quadra-
tischen Matrix erginzen, deren Elemente stetige Funktionen von x ¢ X
sind, und die in jedem Punkt x ¢ X nicht-singulér ist.

Beweis: Es geniigt offenbar, den Fall zu behandeln, wo B orthogonal
ist, d. h. ihre k Zeilenvektoren ein System ¢, ; bilden und zu zeigen,
dall man dieses System zu einem System ¢, , ;, erginzen kann, das
stetig von x ¢ X abhéngt (denn man kann die Vektoren dieses Systems
0nn1 8ls Zeilenvektoren einer orthogonalen Matrix auffassen und diese
Matrix in eindeutiger Weise zu einer quadratischen orthogonalen mit
der Determinante + 1 ergianzen). Mit andern Worten: es geniigt zu zeigen,
dafl die durch B gegebene Abbildung von X in V, , beziiglich der oben
genannten Zerlegung von V, , , eine Spur ist. Das ist aber nach dem
Korollar zu Satz A (s. Nr. 4) der Fall, weil X in sich zusammenziehbar ist.

§ 3. Homotopiegruppen bei retrahierbaren Zerlegungen

6. Die Hurewicz’schen Formeln

a) Voraussetzungen : 3 sei eine retrahierbare Zerlegung des Kompak-
tums R, Z der zugehoérige Zerlegungsraum. R sei zusammenhéngend und
lokal zusammenziehbar; dann gilt dasselbe auch fiir Z. (Vgl. Nr. 3f.)
A c R sei ein Element der Zerlegung, das (in sich) lokal zusammen-
ziehbar ist. Wir zeichnen in Z den Punkt A, in R einen Punkt a ¢ 4 fiir
die Bildung der Homotopiegruppen?®) aus; das besagt: von jeder im
folgenden betrachteten Abbildung einer Sphire in R, 4 oder Z wird
verlangt, daBl dabei ein fester Punkt z, dieser Sphire in den Punkt a
bzw. 4 ibergeht.

b) Unter diesen Voraussetzungen sind die Homotopiegruppen der
Raume R, A und Z von hochstens abziahlbarer Ordnung und handeln
von Eigenschaften der Réume im GroBlen; die Elemente der »-ten Homo-
topiegruppe von R sind (vgl. Nr. 3f) die Komponenten von RS", d. h.
die Klassen homotoper Abbildungen der 8" in R ,unter Festhaltung

) T, Wa,,;_ewski, Sur les matrices dont les éléments sont des foncetions con-

tinues (Comp. math. IT [1935], 63—68), bes. S. 63).
25) 'Wegen der Definition der Homotopiegruppen vgl. man: Hurewicz®), S. 114; Freuden-

thal®?), S. 302.
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von a‘‘ (das Entsprechende gilt fiir z,(4) und =,(Z)); die Klasse der
zusammenziehbaren Abbildungen ist das Neutralelement der Gruppe,
das wir mit 0 bezeichnen2é).

Dre Klassen der bezilglich 3 relativ-zusammenziehbaren (s. Nr. 3g) Abbil-
dungen, d. h. die Komponenten von RS", die Abbildungen aus A" ent-
halten, bilden eine Untergruppe von n,(R), die wir mit ¢, (3) bezeichnen.
Ferner bilden die Klassen derjenigen Abbildungen aus A5, die in R
zusammenziehbar sind, eine Unitergruppe y,(Z) von n,(4). Wir werden
bei Faserungen R/F = Z statt ¢,(3) und v,(3) auch ¢, (R/F) und
¥a(B/F) schreiben. — Offenbar ist ¢,(3) isomorph der Faktorgruppe
von ,(d) nach y,(3))

Pa(3) = 7 (A)/ pal3) - (1)

c¢) Aus der Definition der Summe?3) f + g zweier Abbildungen f und
g € RS" ersieht man direkt, daf3 fiir die Projektion P von R auf Z gilt:

P(f+g)=Pf+ Pyg.

Die Projektion P, die jede Komponente von RS" auf eine solche von
Zs" abbildet, bewirkt also einen Homomorphismus von 7,(R) in =,(Z)

7u(R) ~ Pr,(R) c 7,(Z)*)

dessen Kern (darunter verstehen wir wie iiblich die Untergruppe, die bei
dem Homomorphismus auf die 0 der Bildgruppe abgebildet wird) gema
dem Korollar zu Satz B (Nr. 4) genau aus den Klassen der relativ-
zusammenziehbaren Abbildungen besteht:

Pﬂn(R) ~ nn(R)/(pn(B) M (2)

d) V" seieine n-dimensionale Vollkugel, 2’1 ihre Randsphire (n > 0).
Wir bezeichnen mit R?" den Raum derjenigen Abbildungen f von V*
in R, bei denen X"! in A abgebildet wird (unter Beachtung der in
Nr. 6a genannten Bedingungen); die zu f gehérige Abbildung der X'7-1
in 4 bezeichnen wir mit rf (als Abbildung f’ ¢ R="" aufgefaBt, ist sie
in R="" zusammenziehbar!). Fiir n > 2 definieren wir die Summe f 4 ¢
zweier Abbildungen f, g ¢ RV", indem wir die auf 2! fiir f/ = rf und

26) Vgl. 35), Fiir n =2 sjnd die Homotopiegruppen abelsch; wir bezeichnen aber auch
fir n = 1 (Fundamentalgruppe) die Gruppenoperation als Addition.

#7) & isomorph, ~ homomorph.
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g’ = rg nach der Hurewicz’schen Vorschrift erklarte Addition ins Innere
der V* fortsetzen; dabei ist also

rt+9)=rf+rg. (3)

Vermoge dieser Addition werden die Komponenten von R¥" zu Ele-
menten einer Gruppe »,(3) .

V sei eine stetige Abbildung der V* auf die 8", welche 2'*~1 auf den
Punkt z, ¢ 8" und das Innere der V" topologisch auf 8* — z, abbildet.
Durch Vermittlung von V konnen wir die Abbildungen der S* in Z ein-
eindeutig denjenigen Abbildungen von V* in Z zuordnen, bei welchen
21 guf den Punkt A ¢ Z abgebildet wird, d. h. x,(Z) auch als Gruppe
der Klassen solcher Abbildungen F der ¥V” in Z auffassen; mit Z7" werde
immer nur der Raum dieser Abbildungen bezeichnet. Nach dem Korollar
zu Satz A (Nr. 4) ist jede Abbildung F' ¢ Z¥" eine Spur (man beachte das
in Nr. 3e Gesagte), und zwar einer Abbildung f ¢ R?". Umgekehrt ist
die Spur Pf jeder Abbildung aus R¥" eine Abbildung aus Z¥". P bildet
also »,(3) auf =,(Z) ab, und zwar homomorph wegen

P(f+9) = Pf + Pg.

Der Kern dieses Homomorphismus ist 0, denn jede relativ-zusammen-
ziehbare Abbildung f ¢ R?" ist zusammenziehbar; somit

va(3) = 7,(Z) - (4)

Es sei noch bemerkt, dafl in diesem Isomorphismus der Untergruppe
Prn,(R) von m,(Z) die Untergruppe derjenigen Komponenten von RV"
entspricht, die Abbildungen f mit f(2'"*1) = a enthalten; wir bezeichnen
diese Untergruppe von »,(3) mit u,(3):

#nl3) = Pr,(R) . (5)

e) Zu jeder Abbildung f ¢ R7" gehort eine in R="" zusammenziehbare
Abbildung f’' = rf e A2"", und umgekehrt gibt es zu jeder solchen
Abbildung g’ ¢ A="" eine Abbildung g ¢ Rv" (die ,,Zusammenziehung*
von ¢') mit g’ = rg . Dabei wird jeder Komponente von R¥" eine Kom-
ponente von A=""" zugeordnet, und man erhélt wegen (3) einen Homo-
morphismus von »,(3) in 7,_,(4), genauer auf y,_i(3); sein Kern bestebt
aus den Klassen derjenigen Abbildungen f ¢ RV", fiir welche rf in 4=
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zusammenziehbar ist, d. h. er ist identisch mit der eben genannten Gruppe

#a(3): '
vn(B)/'un(B) ~ 'Pn-1(3) ’ (6)

oder vermoge des durch P bewirkten Isomorphismus (4):

7n(Z) [ Preo(R) =5 9,4(3) - (7)

Die Formeln (2) und (7) wollen wir als Hurewicz’sche Formeln bezeich-
nen; sie sind eine Verallgemeinerung von Ergebnissen, die Hurewicz
fiir Gruppenzerlegungen angegeben hat?s).

Zusammengefa3t:

Satz E : Unter den Voraussetzungen 6a) und mit den Bezeichnungen
6b) gilt fir die Zerlegung 3 von R:

ﬂt"(Z)/Pﬂ'n(R) ~ Qpn-l('B) ’ n 2

=
Pr,(R) = 7, (R)/ ¢u(3), n =1
=

Pu(3) = 7u(d) /9a(3) , 7 =1

f) Zusatz fiir den Fall n» = 1 (Fundamentalgruppe):

Wenn A zusammenhingend ist, so gilt fir n» = 1 an Stelle von Formel (7)
Pm(R) = m(Z) ; (1)

denn jeder geschlossene Weg in Z, d. h. jede Abbildung von §! in Z ,
kann dann als Spur eines geschlossenen Weges in R aufgefafit werden.

Fiir den Fall einer Gruppenzerlegung gilt Formel (7) unverandert auch
fiir » = 1, wenn man unter y,(3) die Komponenten-Gruppe der Unter-
gruppe A von R versteht, und Pr,(R) ist dann im Zentrum von ,(Z)
enthalten. (Man vgl. Hurewicz 2).)

g) Nach (7) ist (n > 2) p,_1(3) = 0 gleichbedeutend mit

7,(Z) = Pn,(R) ;
also:

Korollar zu Satz E: Dann und nur dann ist v, ,(3) = 0, wenn jede
Abbildung F e Zs" Spur ‘einer Abbildung f ¢ BS" ist.

1) g, 8), §. 118, Satz XII.
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7. Eine Verschiirfung

&) Geometrische Anwendungen legen folgende algebraischen Betrach-

tungen nahe:
Wir nehmen an, man koénne die in der Nummer 6e) betrachtete homo-
morphe Abbildung (f, f’ etc. bedeuten hier Abbildungsklassen)

von »,(3) auf v, ,(3) (» > 2) durch einen Homomorphismus H von
¥n-(3) in #,(3) umkehren in dem Sinne, daB fiir jedes ' € y,_,(3)

rHf = f/

ist. Dann ist H ein Isomorphismus (von v, ,(3) in #,(3)); denn aus
Hf'=0 folgt rHf'=f'=0. Ferner ist der Durchschnitt Hy,_,(3) N #.(3)

leer: aus Hf' e u,(3) folgt
rHf' = f' =0,

also Hf'=0,

und jedes Element f e7,(3) laBt sich als Summe eines Elementes von
#4(3) und eines Elementes von Hy,_,(3) darstellen:

| = (f — Hrf) + Hrf

mit rf — Hrf) =rf —rf =0,
also (f — Hrf) € pa(3) -
Also ist »,(3) direkte Summe von x,(3) und Hy,_,(3)
val3) = #a(3) + Hpaa(3), n =2, (8)
oder vermoge des durch P bewirkten Isomorphismus von »,(3) auf x,(Z):
7n(Z) = Pny(R) + PHy, 4(3), (9

wobei PH die Gruppe vy, ,(3) isomorph in x,(Z) abbildet, also auch
7,(Z) = Pr,(R) + v, 4(3) - (9")

*

Dies ist eine Verschirfung der Formel (7), (aber nur dann, wenn beide
Summanden rechts von 0 verschieden sind).
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b) In folgendem Spezialfall 148t sich ein Homomorphismus mit den
genannten Eigenschaften leicht angeben:

Das Element 4 der Zerlegung 3, d.h. die Teilmenge 4 von R sei
tn R zusammenziehbar (dann gilt tibrigens dasselbe fiir alle Elemente der
Zerlegung, und wir wollen in diesem Falle 3 kurz eine zusammenziehbare
Zerlegung nennen). Dann ist iibrigens v,(3) = n,(4), und ¢,(3) = 0,
also Pn,(R) =~ =n,(R).

Wir legen eine bestimmte Zusammenziehung von 4 in R zugrunde,
d. h. eine stetige Schar von Abbildungen F, (0 <<t < 1) von 4 in R, bei
welcher F, die identische Abbildung von 4 auf sich und F, die Abbildung
von A auf einen Punkt von R ist. Wir kénnen dann in naheliegender
Weise fiir jedes f’ ¢ A="™ die Abbildungsschar F,f’ (0 <t < 1) als Ele-
ment f = Hf’ von R¥" auffassen, derart, daB

rHf' = Fof ' =}’

ist. Die Zuordnung f = Hf' vermittelt dann die gesuchte homomorphe
Abbildung von v, ,(3) = #,_,(4) in »,(3). Nach Formel (9) gilt also

n,(Z) = Prn,(R) + PHn, ,(4), (10)

wobei P und PH Isomorphismen sind.

Satz F : Unter den in Nr. 6a) genannten Voraussetzungen gilt fiir eine
zusammenziehbare Zerlegung 3 von R:

o(Z) R 7o B) + 7os(4),  m =2,
8. Anwendungen
a) Die in Nr. 2d) behandelten Spharenfaserungen
Sha1 /8071 = Py 4(S,)

sind zusammenziehbare Zerlegungen; wir konnen also die Hurewicz-
schen Formeln in der verschirften Form (Satz F) anwenden:

Satz 6: Fiir die projektiven S -Riume P, ,(S,) (¢=1,2,4; k=
2,3,... und ¢ = 8; k = 2) gilt

xﬂ(Pk-l(Gq)) ~ nn(Skq—l) + 7'tﬂ-—l(Sqml)’ n ,2 2.
Satz 6': Fir ¢ = 2, 4, 8 gilt
mn(8Y) R 7, (8%Y) + 7, 5(80Y) ,  m =2,
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« Korollar zu Satz 6: 1. Fiir den reellen projektiven Raum P,_,(S,) =
Pr-1 gilt®)
‘ (P R (8%, m =2,

was auch aus einem Satz von Hurewicz (s. 8), Satz IV) folgt.

2. Fiir den komplexen projektiven Raum P,_,(S,) = K,_, gilt??)

ny(Kpy) = m(SY) = 6
und

Bemerkung zu Satz 6’: Es ist kein Fall bekannt, wo beide Summanden
von 0 verschieden sind. Fiir ¢ = 2 erhalt man den Hurewicz’schen Satz3!),
daB fiir n > 3 x,(S?) = #,(8%) ist. Fiir ¢ = 4 und 8 entsteht die Dar-
stellung von x,(S?) als direkte Summe gema3 Formel (10) mit den dor-
tigen Bezeichnungen folgendermafen:

7,(89) = Pn,(8%~1) + PHm, ,(877),
wobei Pr,(8%1) & x,(8%-') und PHn, ,(S%') & n,_,(S1) ist 32).

b) Die Anwendung der Hurewicz’schen Formeln (Satz E) auf die in
Nr. 2e) beschriebenen Zerlegungen 3’ der Stiefel’'schen Mannigfaltig-
keiten V,, ,,

Vam/ Var,mte= Vo » O<k<m<mn (also n = 3)
ergibt (unter Verwendung der in Nr. 2d und 6b erklarten Bezeichnungen):

70, Vﬂ,k)/ Pr (V. w) = vV ! Vaic, m—x) fiirr > 2,
nl(Vn,k) = Pnl(Vn,m)

Pr (Vo m) = AVo, m)/ 9V, m/V pettyms) ~ firr =1,

“@( Vn, i Vn—k, m—t) = 7, Vn-—k, m—10)/ ¥ Vn,m/ Vo, m—t) firr>1.

%) Es ist 7;(S") = 0 fiir k <n, 7,(S") die unendliche zyklische Gruppe, die von der
Klasse der Identitat der S™ erzeugt wird, und #,(S8) = 0 fiir n = 2. Vgl. 8), S. 115 oben
(diese Aussagen stiitzen sich auf bekannte Séatze, s. 1), Kp. XIII).

30) Wir bezeichnen immer mit ® die additive Gruppe der ganzen Zahlen, mit (®, die
Restklassengruppe von % mod. 2.

3) g 8), S.119.

31) Wie man direkt einsehen kann, ist PH hier nichts anderes als die Freudenthal’sche
Einhéngung € (vgl. 3%)); wir werden dies spater (Nr. 10h und 13a) im Rahmen allgemeine-

rer Uberlegungen zeigen.

 (11)
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(Die zweite dieser Formeln folgt aus (7'), weil V,_, ,_, zusammen-
hingend ist.)

Wir setzen in (11) k = 1, alsom > 2; V,,, ist der S*! hom6éomorph,
also ist =, (V, ;) = 0 fir r <n — 2, also folgt:

wr——l(Vn,m/Vn-—l,mwl) =0 firr<n—2,
oder YVlVum/Vaama) =0 firr<n—3,
ferner Pr(V,,)=0 firr<n—2,

&ISO ﬂ,-( Vn,m) = I‘/’r( Vn,m/Vn—l,m-—l) ~ .‘TE,-( Vn-—l,m-l) flll‘ r < n — 3 ;

anders formuliert:
Satz 7: Fir alle n > r 4 2 ist m,( Vo, m) = 7 Va1, mi1) -

c) Aus Satz 7 ergeben sich leicht einige Folgerungen.
Wenn n — m + 1 > r 4+ 2 ist, so gilt

Jl',-( V'n,m) ~ 71',( Vn—-l,m—l) N & 715,-( Vn—m+1,1) ;

aber V,_,..,, ist der S"~™ homoomorph, und da wir r <n —m — 1
voraussetzen, ist #(V,_,,) =0, und wir erhalten ein schon von
Stiefel®?) angegebenes Resultat:

Satz 8: Wenn r < n —m — 1 ist, so ist #(V, ,) =0 .

Korollar : Wenn n — m > 2 ist, soist V,, ,, einfach zusammenhéngend.

Setzen wir in Satz 7 m = n — 1, so folgt fir » > r + 2:

7 Vn+1,n) ~ ”r( Vn,n-—l) N = ﬂ,( Vr+2,r+1) »

V 411, 186 zur Gruppe aller (n 4 1)-reihigen orthogonalen Matrizen mit
der Determinante + 1, also zur Gruppe aller eigentlichen Drehungen
der 8" homdomorph ; wir bezeichnen diese Gruppe mit I',. Dann kénnen
wir das letzte Resultat so formulieren:

Satz 9 : Fir die Homotopiegruppen der Qruppe I, (aller (n 4 1)-reihigen
orthogonalen Matrizen mit der Determinante + 1) gilt

nr(Fn) ~ n,(F,+1)
far alle n >r + 1.

33) g, 14), 8.19, Satz 8.
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Die r-te Homotopiegruppe von I', hat also fiir ,,fast alle n‘‘, namlich
fiir alle » > r + 1, dieselbe Struktur. Diese ist fiir r =1 und r = 2
schon bekannt34): es ist m,(I;) = ®,%°) und =ny,(I) = 0 (daB =, (1)
zyklisch von der Ordnung 2 ist, folgt aus der Homoomorphie von I, zum
reellen 3-dimensionalen projektiven Raum P3; auf den Fall » = 2 kommen
wir in Nr. 13 zuriick). Es sei hier erwahnt, dal ich auch firr = 3,4 und 5
die Struktur von =,(I,,) habe bestimmen konnen3?); es ist 2°)

ny(y) = ©, 7y(L5) = 0, 75(Lg) = 0.

d) Einen zu Satz 9 analogen Satz erhalten wir fir die unitér-uni-
modulare Gruppe 4,, d.h. die Gruppe der unitiren (n + 1)-reihigen
Matrizen mit der Determinante - 1, wenn wir von folgender Rest-
klassenzerlegung (s. Nr. 2¢) dieser Gruppe ausgehen:

U sei die Gruppe derjenigen Matrizen (u,,) von 4, (n = 2), fiir welche
Uy = Ok =1, ..., n + 1)ist; sie ist mit 4,_; isomorph. Zwei Matrizen
von A, gehodren in dieselbe (Links-) Restklasse nach U, wenn sie in der
ersten Zeile iibereinstimmen. Jede Restklasse ist also durch die (n + 1)
komplexen Zahlen u,, mit :fi’i | #,,| 2 = 1 charakterisiert, d.h. der Zer-
legungsraum dieser Restklassenzerlegung ist der 82"*! homdomorph, und
wir konnen sie nach Nr. 2d kurz durch

An/An-l = i

beschreiben. Nach Nr. 2¢ ist es eine retrahierbare Zerlegung. — §%tt1
1aBt sich also als Wirkungsraum von 4, auffassen; das laf3t sich auch so
deuten: man kann jeder Matrix a € 4, eine unitire Transformation 7',
in (n 4 1) komplexen Variabeln, oder, wenn man 7', in reelle Gleichungen
aufspaltet, eine orthogonale Transformation in (2z + 2) reellen Varia-
beln (eine Drehung der 82**1) zuordnen.

Wir wenden den Satz E auf die Zerlegung 4,/A4, , = S*+(n > 2) an
und erhalten:

nr(82"+1)/P“r(An) ~ 'Pr—l(An/An-l) r > 2

also v(4,/4,5) =0 fir r < 2n,

oder v(d4,/4,,) =0 firr<<2n—1.

Ferner | Pr(A,) =0 fir r <2n,auch firr=1,

also 7t A,) X w(Apy)/p(An/4,y) firl <r << 2n
und n(4,) ~ 7, (4,,) fir 1 <r<<2n-—1.

#) Wegen x,(I'y) vgl. man: Stiefellt), 8. 13, Nr. 4; wegen ay(I'y) Whitney (Bull. Am.
Math. Soc. 43 [1937], S. 798).
) Der Beweis wird demnichst verdffentlicht werden.
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Diese letzte Gleichung wenden wir wiederholt solange an, als noch

1. . .
n = rti ist und erhalten je nach der Paritat von r:

2
Tasi1(An) R Mg 1(Ayy) -+ =S 790 44(4,) <1
ool An) R Moy Ay) R - R Ty(A,) g
und m(d,) R m(d,) =R md,).

Satz 10 : Far A,, die unitir-unimodulare Gruppe in (n + 1) Variabeln,
gult, wenn m >8> 0 ist:

7!23+1(A") ~ n23+1(As) und nZs(An) ~ nZs(As) ’

ferner fir n > 1: x,(4,) =~ m,(4,).
A, ist der multiplikativen Gruppe der Quaternionen vom Betrage 1
isomorph, also der 83 homéomorph; also ist 39)

m(4;) = 0, my(4,) = 0, m3(4,) X 75(B) = © .

Korollar zu Satz 10 : Firn > 1ist n,(4,) = 0, my(4,) = 0, m5(4,)~6.

Avuf #n,(A4,) und zn;(A4,) kommen wir in Nr. 16 zuriick (es ist z,(4,) = 0
und 75(4,) ~ ® fir n > 2).

§ 4. Sitze iiber Schnittflichen und Schnittelemente

9. Notwendige Bedingungen fiir die Existenz einer Schnittfliche

a) 3 sei eine retrahierbare Zerlegung des Kompaktums R; fiir alle
Ausfithrungen dieses Paragraphes sollen dabei die Voraussetzungen und
Bezeichnungen der Nummern 6a) und 6b) gelten.

Unter einer Schnittfliche von 3 verstehen wir (vgl. Nr. 1g) eine
Abbildung j € R%, deren Spur Pj ¢ ZZ die Identitit von Z ist.

Die natiirliche Zerlegung des topologischen Produktes Z X 4 (wo Z
und 4 Kompakten sind), deren Zerlegungsraum mit Z homéomorph ist,
besitzt immer eine Schnittfliche (vgl. Nr. 2a).

b) Wenn die Zerlegung 3 von R eine Schnittfliche besitzt, so ist jede
Abbildung F € Zs" Spur einer Abbildung f ¢ BS", nimlich von f = jF':

Pf—= PjF =F.
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Nach dem Korollar zu Satz E ist also fir n > 2

1/’1&-—1(3) =0.

(Als Punkt @ € 4 im Sinne von Nr. 6a ist dabei j(4) zu wihlen.)

¢) Ordnen wir der Abbildungsklasse von F ¢ Z$" die Abbildungsklasse
von jF ¢ RS" zu, so ist dadurch eine homomorphe Abbildung von x,(Z)
in n,(R) gegeben. Wir schreiben der Kiirze halber auch fiir diese Abbil-
dungsklassen ' und jF (das ist zwar nicht ganz korrekt, weil nicht jede
zur Abbildung jF homotope Abbildung in der Form jG, G ¢ Zs", dar-
stellbar zu sein braucht, und man somit zwischen j{#} und {j#} unter-
scheiden miiBite; fiir das Rechnen in den Homotopiegruppen macht es

aber nichts aus). Wegen
PjF =F

ist die genannte Zuordnung j sogar ein Isomorphismus:

7nZ) = j7,(Z) © 7, R) -

Der Durchschnitt der Untergruppen j=z,(Z) und ¢,(3) von =, (R) ist
die Null; denn aus f € ¢,(3) folgt Pf = 0, und hieraus, wenn f € jx,(Z)
ist, auch f = 0 (weil P die Gruppe jx,(Z) isomorph abbildet). Ferner
1aBt sich jedes Element f von &, (R) als Summe eines Elementes von ¢,(3)
und eines Elementes von jx,(Z) darstellen:

f=(f —1Pf) + jPf,
wobei P(f — jPf) = Pf — Pf =0, also (f — jPf) e p,(3) ist.
Also ist ,(R) direkte Summe von jx,(Z) und ¢,(3) (n > 2):
Teo(R) = j7,(Z) + @al3)- (12)

Wegen y,(3) = 0 ist auBerdem p,(3) = 7,(d) (n>1) .

Satz G: Wenn die Zerlegung 3 von R eine Schnitifliche besitzt, so gilt
(vgl. Nr. 6a und 6b)

) 7,(R) = wa(Z) + 7u(4)

S S
VvV WV
-
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Satz @ gilt insbesondere fiir das topologische Produkt Z x A4 ; das kann
man auch leicht direkt (ohne Beniitzung einer Schnittfliche) einsehen3®).
Wichtig ist, dal in der Struktur der Homotopiegruppen eine Zerlegung 3
mit Schnittfliche sich nicht vom entsprechenden topologischen Produkt
unterscheidet.

Fiir zusammenziehbare Zerlegungen 3 (Nr. 7b) von R koénnen wir die
Bedingung v,(3) = 0(n > 1) weiter diskutieren. In diesem Falle ist
namlich

vu(3) = 7ml(4) m>1.
Somit gilt folgendes

Korollar zu Satz @, I : Wenn die zusammenziehbare Zerlegung 3 von B
eine Schnittfliche besitzt, so ist 7, (4) = 0 fiir alle n > 1.

Wenn 4 endlichdimensional ist, so bedeutet das Verschwinden samt-
licher Homotopiegruppen von 4, daB 4 (in sich) auf einen Punkt zu-
sammenziehbar ist (Hurewicz3?). Wir konnen also das Korollar auch so
formulieren:

3 sei eine zusammenziehbare Zerlegung, thre Elemente seien (endlich-
dimensional und) nicht in sich zusammenziehbar; dann besitzt 3 keine
Schnittfliche.

So besitzt z. B. die Faserung einer Sphére in geschlossene Mannigfaltig-
keiten sicher keine Schnittfliche (was auch leicht aus Homologiebetrach-
tungen folgt).

10. Sphirische Zerlegungen (Z = 8™).

a) Wir nennen eine Zerlegung von R sphdrisch und bezeichnen sie
mit 3,,, wenn ihr Zerlegungsraum Z der m-dimensionalen Sphire S™
homoéomorph ist (m = 2).

Fiir eine solche Zerlegung 3,, von R kénnen wir leicht eine hinreichende
Bedingung fiir die Existenz einer Schnittfliche angeben, niamlich

wm-l(sm) =0;

daraus folgt nimlich nach dem Korollar zu Satz E (Nr. 6), dall jede
Abbildung f € Zs™ eine Spur ist. Wir koénnen als Urbildsphére fiir die
mte Homotopiegruppe auch Z selbst (und als ausgezeichneten Punkt x,

36) etwa so, wie in Seifert-Threlfall, Lehrbuch der Topologie, 8. 156, in § 43 der
dort als Beispiel 1 angefiihrte Satz bewiesen wird.,
37) Proc. Akad. Amst. 38 (1935), 8. 522, Satz IV, in Verbindung mit Satz IIL.
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(vgl. Nr. 6a) den Punkt 4 ¢Z) wahlen; ist y, ,(3,,) = 0, so mufl also
die Identitit von Z eine Spur sein. Also gilt mit Riicksicht auf Satz G, I:

Satz 11: In einer sphdrischen Zerlegung 3,, von R gibt es dann und nur
dann etne Schnittfliche, wenn v,, 1(3,,) = 0 1st.

b) 3,. sei eine sphérische Zerlegung von R, und Z ihr Zerlegungsraum.
Wir verwenden im folgenden dieselben Bezeichnungen wie in Nr. 6d,
und fassen wie dort die Gruppe =,(Z) als Gruppe der Komponenten von
Zv" auf (wo Zv" den Raum derjenigen Abbildungen F von V" in Z be-
deutet, fiir welche F(X2' 1) = A €Z ist).

T sei eine stetige Abbildung von V™ auf Z, bei welcher das Innere von
V™ topologisch auf Z — 4 und 2™ ! auf A abgebildet wird. (Die Klasse
von 7T in Z¥™ ist eines der beiden erzeugenden Elemente von x,(Z) =
7,.(S™) ~ ®.) Es gibt immer eine Abbildung ¢ ¢ R¥™, derart, da Pt = T
ist; ¢ ist im Innern von V™ topologisch. (¢7'-! ist eine Abbildung von Z
in R, deren Spur die Identitit von Z ist; sie ist aber im allgemeinen in 4
nicht eindeutig !)

Wir nennen ¢ ein Schnittelement der Zerlegung 3,,; sein ,,Rand® rt =
t’ e A" wird sich als besonders wichtig fiir die Struktur der Zer-
legung erweisen (Bedeutung von r s. Nr. 6d).

Die Abbildungsklasse von ¢, aufgefaBt als Element von »,(3,) ist,
ebenso wie die Klasse von 7', bis auf das Vorzeichen eindeutig bestimmd.
Wir setzen noch fest, daB ¢ (bei fester Orientierung von V™ und Z, die
auch im folgenden immer beibehalten werde) den Abbildungsgrad -1
haben soll; dann st die Klasse von t bestimmdt.

Die folgenden Uberlegungen gestatten nun, bei sphérischen Zerle-
gungen 3, mit Hilfe eines Schnittelementes ¢ die Gruppen %,_,(3m)
wenigstens fiir gewisse Dimensionszahlen » naher zu beschreiben, also
diejenigen Abbildungen von 2"—!in 4 anzugeben, welche in R zusammen-
ziehbar sind; Abbildungen, die aus einer Abbildung von 2"~ auf X2'm-1
und der Abbildung ¢’ von X' ™1 in A zusammengesetzt sind, haben sicher
diese Eigenschaft, fiir gewisse n sind es — wie wir sehen werden — die
einzigen.

¢) Wir definieren nun fiir jede Abbildung A von X2'*-! in X' ™1 eine
Abbildung Ek von V* in V™ vermoge folgender Zuordnung, die ,,Kin-
hingung’’ heiBen soll; x (bzw. p) sei ein Vektor des R" (R™), in welchem
V™ (V") durch ¥2 < 1 (2 < 1) dargestellt wird; % sei gegeben durch die
fiir x2 = 1 definierte Vektorfunktion

p=nhx) mit (RkE)2=1.
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Dann wird Eh definiert durch

n:mn(—l%) fir 0<|z| <1

1):0 fir x=20.

F = T(Eh) ist eine Abbildung von V* in Z, fiir welche F(X' ") = 4 ist,
d.h. F ¢Z"v"; sie bestimmt also ein Element 7'(Eh) der Gruppe x,(Z)
oder 7,,(S™). Verstehen wir unter € die Einhingung im Sinne von Freuden-
thal®®), und unter kb jetzt das durch die Abbildung %~ von "1 in 3 '™1
bestimmte Element von =, ,(S™1), so gilt fiir das Element 7'(£4) von
7, (8™) entweder T(EhR) = -+ Ch oder T(Eh) = — Gh ; bei der am
SchluB von Nr. 10b gemachten Festsetzung iiber 7' ist

T(Eh) = Gh .

d) f = t(Eh) ist eine Abbildung von V* in R mit f(X"!)c 4, also
eine Abbildung aus RV". Setzen wir ¢’ = 7t , so ist

r(t(Eh)) = (rt)h = t'h . (18)

= {(Eh) bestimmt eine Klasse {(Eh) e,(3,,); fir diese gilt wegen
Pt=1T
P({Eh)) = PH{Eh) = €h . (14)

Wir ordnen nun jedem Element von =z, ,(8™-1), reprasentiert durch
eine Klasse % von Abbildungen der Sphire 2" in J'™-1, diejenige Klasse
von Abbildungen der ™! in 4 zu, in welcher ¢’k enthalten ist, und
nennen diese Klasse, aufgefaBt als Element von =, _,(4), auch ¢’A. Da
fir 2 Abbildungen &,, k, von 3" in Jm-}

t'(hy + hg) = t'hy + t'hy

ist, bedeutet diese durch ¢’ = rt vermittelte Zuordnung eine homomorphe
Abbildung von 7,_,(8™1) in x,_,(4):

s (8™Y) ~ 1 7, 4 (S™1) © 7, 4(4)
Zunachst folgt nun aus (13):

t,nn—l(sm—l) c Wn-—l(Bm) .

38) Definition der Einhéngung s. 33), S. 303.
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In der Tat: wenn f’ en, ,(A) von der Form ¢'h ist (h € n,_,(S™1)), so
gibt es ein Element f € v,(3,,), derart, dal f’ = rf ist, namlich f = {(Eh).
— Aus (14) folgt, daB fiir dieses f gilt: Pf = €h. Nun entspricht aber
(Nr. 6d) jedem Element F' ¢ x,(Z) ein wohlbestimmtes Element f € v,(3,,),
derart, dal Pf = F ist, und wenn wir 7f = f’ setzen, so ist die Zuordnung

F—f’

&
eine homomorphe Abbildung von =,(Z) auf y,_,(3,.). Wenn nun F = Gh
18t, 5o muB nach (14) das zugehorige f € v,(3,,) von der Form f = t(Eh)
gein, dann ist also f’ = t’h. Das gilt fiir jedes Element & von x,,_,(S™1).

Insbesondere gilt also folgender

Hilfssatz: 3,, sei eine sphirische Zerlegung, ¢ ein Schnittelement von
3m und ¢’ =rt. Es gibt eine homomorphe Abbildung von x,(Z) auf
Yu1(3.) (es ist die oben erklirte Zuordnung F — f’), bei welcher die
Untergruppe Gn,_,(8™ 1) von n,(Z) auf die Untergruppe t’'m,_,(S™1)
von v, ,(3,,) abgebildet wird.

e) Gemal der Freudenthal’schen Theorie der Abbildungen von Sphéren
auf Sphéaren laBt sich 3°) fiir alle n < 2m —1 (und bei ungeradem m
auch fir n = 2m — 1) jedes Element von x,(8™) bzw. von x,(Z) durch
Einhingung erzeugen; es ist also fiir diese n

n,(Z) = Cm,_,(S™1),
und aus dem Hilfssatz folgt dann:

Satz 12: 3, set eine sphdrische Zerlegung, t etn Schnittelement von 3,,
(Definition s. Nr. 11b) und t’' = rt. Dann ist fir n<2m—1 (und bei
ungeradem m auch fir n = 2m—1)

wn—l(Bm) = tlnn-—l(sm_l) .

Insbesondere ist also v, 1(3m) = t'7py(S™), d. by, (3,) tst die
von der Klasse von t’ erzeugte Untergruppe von n,_4(A4).

Beweis der letzten Behauptung: Bezeichnen wir mit e die Klasse der
Identitat der S™1, so ist ¢t’e die Klasse von ¢’ in 7,,_,(A4), ferner fiir das
Element % € 7, ,(S™ 1) mit dem Abbildungsgrad ¢

h=g-e
also t'’h=1t'(g-e) = g-t'e.

39) 8. 23), S. 300, Satz I.
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t'7,,_1(S™1) ist also genau die Untergruppe aller Vielfachen der Klasse
von ¢’ in #,,_,(4).
Korollar zu Satz 12 : In der zusammenziehbaren (s. Nr. 7b) sphérischen

Zerlegung 3,, mit dem Schnittelement ¢ und ¢’ = rt gilt fiir » < 2m — 1
(und n = 2m — 1 bei ungeradem m)

7"'n---l(z) = t,nn—l(sm—l) ¢

f) Satz 13 : 3,, sei eine sphéarische Zerlegung von R, t ein Schnittelement
von 3,,. Wenn der durch ¢’(= 7t) bewirkte Homomorphismus von
7,1 (8™ 1) in 7, ,(A) ein Isomorphismus auf v,_,(3,,) ist, dann zerfallt
n,(Z) in die direkte Summe

”n(z) = PJI,,(R) + (Enn-—-l(sm—l) ’
und die Einhéingung € bildet =, ,(S™-!) isomorph ab; also
nn(Z) = Pr,(R) + 7, ,(S™1).

Beweis: Wenn die Voraussetzung erfiillt ist, so entspricht jedem Ele-
ment f'=t'h ey, ;(3,) ein bestimmtes Element % ez, ,(S™-1). Die
Zuordnung f’— Hf' = t(£h) ist dann ein Homomorphismus von ¢, _,(3,,)
in »,(3,,) mit den in Nr. 7a geforderten Eigenschaften; nach Formel (9)
gilt also

7,(Z) = Pry(R) + Pi(Em, (8™

= Pn,(R) + Cm,_,(S™).
Da PH dabei die Gruppe v, _(3,,) isomorph in x,(Z) abbildet, ist

PH wn—l(Sm) = (Snn-l(sm—l ~ wn-l(sm) ’
ferner nach Voraussetzung

'pn-—l(gm) = t/nn—l('gm_l) ~ nn—l(sm—l) ’
also %n_l(Sm-l) ~ nn—l(sm—l) ’

und dieser Isomorphismus wird offenbar gerade durch die Einhdngung €
vermittelt.

Korollar zu Satz 13 : Fiir n < 2m — 1 (und bei ungeradem m auch fiir
n = 2m — 1) gilt: Wenn die durch ¢’ bewirkte Abbildung von z,_,(8™-1)
in #,,_,(4) isomorph ist, so ist Px,(R) = 0.
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Beweis: Fiir diese n ist nach Satz 12 ¢, ,(3,,) = t'7,,(S™ 1), und
aullerdem Cn,_,(S™ 1) = x,(S™) (was im Beweis von Satz 12 beniitzt
wird).

g) Wir betrachten nun noch den speziellen Fall einer sphirischen Zer-
legung 3,, von R, bei welcher A der Sphdre 8™ homéomorph ist. t sei
ein Schnittelement von 3,,; die Klasse der Abbildung ¢’ = ¢ von X' ™1
in 4 1aBt sich durch den Abbildungsgrad k charakterisieren, der bei
geeigneter Orientierung von A nicht-negativ ist. Wir bezeichnen eine
Abbildung einer (m — 1)-dimensionalen Sphére in eine andere vom
Grade k& (in unserem Fall der 2' ™! in 4) immer mit 7', oder ausfiihrlicher
mit 7.

Die Klasse von ¢t ¢ R"™ (also auch die von ¢’ = rt ¢ AZ™!) ist nach
Nr. 10¢ durch die Zerlegung 3,, eindeutig bestimmt. Zu 3,, gehort also
eine nicht-negative ganze Zahl k, die die Eigenschaft hat: fiir jedes
Schnittelement ¢ von 3, ist 7 = T¢y~'. Wir nennen k die charakteri-
stische Zahl der Zerlegung 3,, .

Aus den Satzen dieser Nummer folgt fiir den betrachteten Spezialfall:

Satz 14: 3,, sei eine sphirische Zerlegung von R, bei welcher A der S™1
homéomorph ist, und k sev thre charakteristische Zahl. Dann gilt

a) Fir n<2m — 1 (und bei ungeradem m auch n = 2m — 1) st
'Pn-l(Bm) = Tzn-lﬂn—l(sm-.l) ¢

b) Wenn k # 0 ist, dann tst Px, (R)= 0 .

Beweis: a) folgt direkt aus Satz 12, b) aus dem Korollar zu Satz 13,
wenn man bemerkt, da8 fiir £ = 0 die durch ¢’ = 7', bewirkte Abbildung
von x,_,(8™1) in z,_,(4) isomorph ist: 7', sei eine Abbildung vom
Grade I von X ™! in sich; wegen T, T, = T,; e AZ™ ! folgt aus T, T, = 0
auch k.1 =0, also I = 0.

Fiir n = m folgt aus Satz 14a) leicht (mit denselben Voraussetzungen
und Bezeichnungen):

Korollar : Eine Abbildung von 4 in sich ist in B4 dann und nur dann
zusammenziehbar, wenn ihr Grad ein Vielfaches von k ist.

h) Insbesondere ist dann und nur dann die Zerlegung, von der in Satz 14
die Rede ist, zusammenziehbar (d. h. 4 in R zusammenziehbar), wenn
k =1 ist. In diesem Falle sind fiir alle n > 2 die Voraussetzungen von
Satz 13 erfiillt; daraus folgt:
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Satz 15: In einer zusammenziehbaren sphirischen Zerlegung 3,,,, n
welcher A der 8™ homéomorph ist, gilt fir alle n > 2

nﬂ(Z) = P]Z“(R) + %ﬂ_l(Sm—-l) ’
wober P und € Isomorphismen von n,(R) bzw. =, _,(S™1) in n,(Z) sind.

Dieser Satz geht nur insofern iiber die Formel (10) und den Satz F
(Nr. 7b) hinaus, als er zeigt, dall unter der Voraussetzung Z = S§™ und
A = 8™1 die a. a. 0. PH genannte Abbildung von 7, ;(4) in 7,(Z) mit
der Freudenthal’schen ,,Einhdngung‘ identisch ist (vgl. auch Nr. 8a);
fiir den Beweis dieser Tatsache allein wiren natiirlich die meisten Sétze
dieser Nummer in ihrer Allgemeinheit entbehrlich gewesen.

11. Gruppenzerlegungen

a) 3 sei die Zerlegung einer kompakten topologischen Gruppe G in
Restklassen nach einer abgeschlossenen Untergruppe U ; der Zerlegungs-
raum Z ist ein Wirkungsraum von G (vgl. Nr. 2¢). 3 sei retrahierbar; das
ist sicher der Fall, wenn G eine Lie’sche Gruppe ist (Nr.2c). Als aus-
gezeichneten Punkt im Sinne von Nr. 6a wahlen wir die Gruppeneins e
von G (also A = Pe, und 4 = U). Ist j eine Schnittfliche von 3, so
kénnen wir immer annehmen, daf3 j(4) = e ist.

b) Wenn diese Zerlegung 3 von @ eine Schnittfliche j besitzt, so ist
durch
flu, B) = u-j(B) ueU,BeZ

(wo - die Multiplikation in der Gruppe G bedeutet) eine topologische
Abbildung des topologischen Produkts U X Z auf G gegeben, bei welcher
f(U, B) = B ist; dann ist also G dem topologischen Produkt U X Z
hom&omorph, und 3 ist der Links-Zerlegung von U X Z homdomorph
(Nr. 1b) (d. h. der natiirlichen Zerlegung von U X Z , deren Zerlegungs-
raum Z ist). Also

c) Satz 16 : Ist W ein Wirkungsraum der geschlossenen Lie’schen Gruppe
G mit der Isotropiegruppe U, und besitzt die Zerlegung 3 von G tn Rest-
klassen nach U eine Schnittfliche, so ist G dem topologischen Produlkt
U x W homéomorph, und 3 ist der Links-Zerlegung von U X W homdo-
morph.
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Hieraus und aus Satz 11 folgt das

Korollar : Die Sphéare S™ sei ein Wirkungsraum der geschlossenen Lie-
schen Gruppe G, und 3,, die zugehorige (spharische) Zerlegung von @
in Restklassen nach der Isotropiegruppe U. Dann gilt:

Wenn o, ,(3) = 0 ist, so ist G dem topologischen Produkt U x Sm
homéomorph.

§ 5.-Anwendungen, inshbesondere auf Sphiiren

12. Vorbereitendes iiber Sphirenabbildungen

a) Wir beniitzen in diesem Paragraphen fclgende bekannten Resultate
aus der Theorie dex Abbildungen von Sphéren auf Sphiren, die wir als
Aussagen iiber die nte Homotopiegruppe =,(8S™) der m-dimensionalen
Sphiare 8™ formulieren (vgl. auch Anm.??) 39):

7, (S) =0 firn >2
7, (8™) =0 firn <m-—1
.8 ~ ® fir m > 1
Amn(8™) =~ Gy fir m >3 19)
Tpa(8™) =0  fir m >3 1),

b) Mit T3 (oder T',) bezeichnen wir eine Abbildung der Sphire S™ in
sich vom Grade k. Ist f eine Abbildung der 8" in die 8™, so ist auch T'3'f
eine solche, und wir bezeichnen auch ihre Abbildungsklassen mit f und
T.f (statt |f| und {TFf]). Ordnet man dem Element f ez,(S™) das
Element T%f zu, so entsteht eine homomorphe Abbildung von =, (S™)
in sich. — € bedeute die Freudenthal’sche Einhéngung38).

Hilfssatz®?): Fir m > 3 ist T9'n,,.,(8™) = 0. — Oder: Fiir jede Ab-
bildung f der S™*1 in die S™(m > 3) ist T',f zusammenziehbar.

Beweis: Es seim > 3 und f € x,,,,(S™); nach einem Satze von Freuden-
thals®) gibt es in der Klasse f eine ,,eingehéngte‘ Abbildung:

f=GCyg.

40) g, Freudenthal®®), S.301. Ferner: L. Ponirjagin (C.R. Acad. Sc. de I'U.R.8.S.
[1938] XIX, 147—149).

41) L. Pontrjagin (C. R. Acad. Sc. de I'U.R.8.8. [1938] XIX, 361—363).

42) Dieser Satz und ebenso das Korollar zu Satz 17 ergeben sich leicht aus allge-
meinern Betrachtungen iiber den Homomorphismus T’l’: von 7,(Sm) in sich, auf welche
wir an anderer Stelle eingehen werden. Wir riehen es vor, hier einen kurzen direkten
Beweis fiir den Hilfssatz anzugeben.
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Nun kann man aber leicht verifizieren, dafl fiir beheblges n,m und &

und g e azn_l(S""l) Tm @ © Tm—-1g

ist. Die Abbildungsklasse 7'3f geht also durch (evtl. Wiederholtej Ein-
hangung aus 7',k hervor, wo h-ein Element von na(Sz) ist. Fiir die Hopf—
sche Invariante?®) y von T3k gilt: ;L

y(T3h) = 4y(h) = p(4h) .

Die Elemente von 7,(S?) sind aber durch die Invariante y charakterisiert;
denn y ist ein ganzzahliger, nichttrivialer Charakter von 74(S?%), und nach
Satz 6/ ist 7,(S?) = 74(5?) eine unendliche zyklische Gruppe. Also folgb

T2h = 4h,
also €Tsh = €(4h) = 4-Ch = 0,

weil 7,(8%) ~ ®, ist. Also ist auch

T = GE--- GT2h =0, q.e.d.

13. Sphéirenfaserungen
a) Die in Nr 2d beschriebenen Sphirenfaserungen

S-1/8e-1 — Sa, g =2 4,8

sind zusammenziehbare sphérische Zerlegungen 3J,, deren Elemente
(g — 1)-dimensionale Spharen sind. Nach Satz 15 (Nr 10h) gilt also
fir n > 2

7,(87) = Pnn(qu_l) + €m,4(8977) ,

wobei P die Gruppe x,(S8%¢-!) und € die Gruppe =,_,(8?!) isomorph in
7,(82) abbildet Das ist genau der Satz 6’ (Nr 8a), nur dahin prézisiert,
daf3 die dort PH genannte Abbildung von x,_,(82-1) in x,(S?) mit der
Einhangung identisch ist. Wesentliche Abbildungen (fiir Abbildungen in
Sphéren ist ,,wesentlich und ,,nicht-zusammenziehbar gleichbedeu-
tend) der S auf §? entstehen also auf 2 Arten: einerseits durch Projektion
(beziiglich der Zerlegung 3,) wesentlicher Abbildungen der 8" auf S22,
andererseits durch Einhingung wesentlicher Abbildungen der Sr-1 auf
Sa-1

43) H. Hopf, Uber die Abbildungen der 3-dimensionalen Sphare auf die

Kugelfliche (Math. Ann. 104 [1931], 637—655), vgl. auch!?). Bewels, daB y ein Cha-
rakter von 7z4(S%) ist: Freudenthal®3), S. 305.
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b) Wir heben noch den Teil dieses Resultates, der die Einhéngung
betrifft und der ein interessantes Gegenstiick zu Satzen von Freuden-
thal44) ist, besonders hervor (fiir ¢ = 2 trivial):

Satz 17 : Fiir ¢ = 4 und 8, und fiir beliebiges n = 2 bildet die Einhdngung
€ die Qruppe m,_,(ST1) isomorph in die Gruppe =, (S9) ab (d. h. aus
f em,_,(8%1), €f = 0 folgt f = 0).

Nach Freudenthal®) gilt immer

Cf + T,f)=0;
also folgt aus Satz 17 das

Korollar®?): Fir m = 3 und 7, und beliebiges », und f e =, (S™) gilt

T—lf = - f .
(Dagegen ist z. B. fir n = 3 und m = 2 immer 7'_,f = {.)

14. k-Felder auf Sphiren

a) Wir bezeichnen mit L,, , die (in natiirlicher Weise topologisierte)
Mannigfaltigkeit aller an die m-dimensionale Sphire 8™ tangentialen
k-Systeme des R™t! (8. Nr. 2e), 0 < k < m. Fassen wir in jedem Punkt
der 8™ die dort angreifenden tangentialen k-Systeme zu einer Teilmenge
von L, , zusammen, so ist diese Teilmenge eine Mannigfaltigkeit V,, ,
(Nr. 2g), und alle solchen Teilmengen bilden eine Zerlegung (sogar eine
,,regulire Faserung®) von L,, ,; ihr Zerlegungsraum ist der S™ homoo-
morph. Wir nennen sie die natiirliche Zerlegung von L,, ;, und beschreiben

sie kurz durch
Lm,k/Vm,k = 8§m .

Eine Schnittfliche der natiirlichen Zerlegung von L,, ; heillt auch %)
ein k-Feld auf S™; man kann ein k-Feld auf 8™ auffassen als System von
k tangentialen Vektorfeldern auf 8™, die in jedem Punkt der S™ paar-
weise orthogonal sind. Ein 1-Feld ist dasselbe wie ein tangentiales Vektor-
feld; L., , ist der Raum der gerichteten Linienelemente der S™.

b) L, , ist der Mannigfaltigkeit V., ;,; homdomorph, und die
natiirliche Zerlegung von L,, , ist der Zerlegung V.1 111/ Vo e =Vpi1a
(Nr. 2g) homodomorph, also retrahierbar. L,, ,, ist der orthogonalen
Gruppe I',, (Nr. 8¢) homéomorph.

4“) g, 1), Satz II.
45) g, 23), S. 304 (Nr. 3.8).
48) vgl. Stiefellt), § 4.1.
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c) Aus Satz 11 (Nr. 10a) folgt:

Satz 18: Es gibt dann und nur dann ein k-Feld auf S"‘ , wenn
YouiLom x/ V1) =0 st (0<k<m).

Bei geradem m gibt es kein k-Feld auf 8™ (denn es gibt nicht einmal ein
tangentiales Vektorfeld); also ist ¢, (L, ./ Vo, i) 70, & fortiori also
TV ) 0. Oder

Korollar zu Satz 18 : Fir ungerades m und 0 < k < m ist

nm(Lm,k) # 0.

Darin ist der Satz von Feldbau*’) enthalten, der aussagt, daf fiir unge-
rades m immer x,(I",,) # 0 ist.

Satz 19 : Wenn die Sphire 8™ parallelisierbar ist, so ist die Gruppe I,
dem topologischen Produkt I',,_, X S™ homdbomorph.

Beweis : Parallelisierbarkeit ist gleichbedeutend mit der Existenz eines
(m — 1)-Feldes auf S§™, also einer Schnittfliche der Zerlegung
r,/r,_,==~m. Die Behauptung folgt also aus Satz 16.

Da die Spharen S® und 87 parallelisierbar sind*8), ist Iy dem topolo-
gischen Produkt I'; X §® und I, dem topologischen Produkt I'y x S?
homoéomorph.

d) Nach Satz G, II gilt fiir die n-te Homotopiegruppe von I'; und I:
7t’l’l(‘lwfn) N nﬂ(sm) + nﬂ(rﬂl"‘l) ’ m = 3’7 *

Insbesondere ist my(I%;) 2 74(S3) + ny([,); da I'y zum 3-dimensionalen
projektiven Raum P? homoomorph ist, folgt nach Nr.8a m,(I,) ~
75(8%) = 0, also my(l3) = 0. In Verbindung mit Satz 9 folgt hieraus fiir
alle n >3

“2(11 n) =0

Ferner ist auch 7,(]}) =8 ws(V,, 1) = 7,(8') = 0. Also
Satz 20 : Fur alle orthogonalen Gruppen I', (n = 1,2, « ) tst my(I,)=0.

(Das ist iibrigeng in einem allgemeinen Satze von Cartant?) enthalten.)

e) ,,Ein k-Feld zu einem (k-1)-Feld erginzen‘, heiBt: ein Vektorfeld
angeben, welches mit den & Vektorfeldern des k-Feldes zusammen ein
(k+1)-Feld bildet.

47) J. Feldbau®), S.1623.

18) g, 1), 8. 45.
49) E. Cartan, La topologie des groupes de Lie (act. scient. et industr. 358), S. 14.
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Satz 21: Man kann a) fir m > 3 jedes (m — 2)-Feld auf S™ zu einem
(m — 1)-Feld, und b) fir m = 6 jedes 2-Feld auf 8™ zu einem 3-Feld

erganzen.
-Bemerkungen: zu a) Ein (m — 1)-Feld auf S™ kann man immer zu

einem m-Feld erginzen; zu b) Die Bedingung m > 6 erweist sich spater
(wegen Satz 27) als iiberfliissig.
Beweis von Satz 21: a) Wir betrachten die 3 Zerlegungen

3: Vm+1,m/Vm,m—1 = V'm+1,1
3,: Vm+1,m/V2,1 = Vm+1,m——1
3”: Vm+1,m-—-1/Vm, m—2 Vm+1,1

und bezeichnen. die zugehorigen Projektionen bzw. mit P, P’ und P”.
Wenn man den Zerlegungsraum von 3’ mit V., ,, und die Zerle-
gungsriume von 3 und 3” mit V., , identifiziert, so gilt offenbar

P=P’P’.

Wir nehmen an, es gebe auf der S™ ein (m — 2)-Feld; das bedeutet,
daB es in 3” eine Schnittfliche gibt, d. h. eine Abbildung j, von V,,,, ,
in V.1 m1, deren Spur P"j, die Identitdt J von V,,,, , ist.

Fir 3’ folgt aus der Homoomorphie von V,, zu 8, daB8 fiir m > 3

V’m—1(Vm+1,«m/ V2,1) =0
ist, also nach Satz E (Korollar), da83 jede Abbildung einer S™in V,,,; .4

beziiglich 3’ eine Spur ist. Es gibt also eine Abbildung j von V.,
in ¥, m, fiir welches P’j = j, ist, also ist

P? — P”P,j —_ P/I?-I — J,

d. h. j ist eine Schnittfliche von 3, deren Projektion beziiglich 3’ die
Schnittfliche §; von 3” ergibt. Das ist aber gerade die Behauptung a),
wenn man nur 3. und 3” durch die'dazu homoomorphen Zerlegungen
Lymis/Vama=8und L, pns/V mo=S™ ersetat.

" Der Beweis von b) verliuft ganz analog, wenn man von den Zer-

legungen

J: Vm+1,4/Vm,3 = Vm+1,1
3" Vai,a/ Vo1 = Vs
3”: Vm+1,3/Vm,2 = Vm-l—l,l

ausgeht und beriicksichtigt, daf fir m > 6

182



1V m—2,1) R Ty (8™3) = 0
ist, und somit auch

'/’m-l(Vm+1,4/Vm—2,1) =0.

16. Linienelementriume der Sphiiren

a) Wir untersuchen jetzt speziell den Raum L, , aller gerichteten
Linienelemente der S™.

Bei ungeradem m gibt es auf der 8™ ein stetiges Vektorfeld (man kann
leicht eines explizit angeben); d.h. die natiirliche Zerlegung von L, ,
besitzt eine Schnittfliche, und aus Satz G (Nr. 9) folgt5):

Satz 22: Fur alle Homotopiegruppen des Linienelementraumes L, ,
etner Sphire ungerader Dimension m gilt

nn(Lm,l) ~ nn(Sm) + nn(Sm_l) *

b) Die natiirliche Zerlegung von L,, , ist eine sphérische Zerlegung 3,
deren Elemente der 8™-! homdéomorph sind. Zu 3,, gehort also nach
Nr. 10e eine charakteristische Zahl k. Man konnte leicht direkt einsehen,
daB k gleich der Euler’schen Charakteristik der S™ sein muf3. Wir ziehen
es aber vor, ein besonders einfaches Schnittelement der Zerlegung 3,.
anzugeben, aus welchem man entnimmt, daf bei geradem m die Zahl
k = 2 ist (und bei ungeradem m natiirlich £ = 0).

c) Als Vorbereitung betrachten wir eine spezielle Abbildung s einer
Sphire 2'™ auf eine gleichdimensionale Sphire S™. '™ sei im (m 4 1)-
dimensionalen euklidischen Raum R+ mit den Koordinaten %, ..

m-1

U,y durch 2 uZ=1 und S™ in R™+ mit den Koordinaten z,, .
i=1

b

* e xm+l
m-41

durch 2’ z?=1 gegeben. Die Abbildung s

t=1

x = 8(u) xeSm, ued™

I

sel durch
c=2mu — 08, , 1=1,2,...,m+1
definierts?).

§0) Ein analoger Satz gilt offenbar fiir den Linienelementraum jeder Mannigfaltigkeit
Mmn mit der Charakteristik 0. Es ist bemerkenswert, daf8 in diesem Falle sowohl Homo-
topie- als auch Homologiegruppen des Linienelementraumes mit denen des topologischen
Produktes Mn X Sn—1 {ibereinstimmen (wegen der Homologiegruppen vgl. Gysin?)).

51) Identifiziert man Rm+1 mit R'I”‘*'l, so ist s(u) derjenige Punkt von ¥m, den man
durch Spiegelung von =7 an dem durch « gehenden Durchmesser aus dem Punkt (1,0,...,0)
€ R’l” erhilt. (Diese bzw. eine ahnliche Abbildung wird von Hopf an verschiedenen Stellen,
z. B. 12), beniitzt.)

183



Wir bezeichnen mit X'm-1 den Aquator u, = 0 von 2™ und mit H™
die Halbsphire %, > 0 von 2'™, ferner mit p den Punkt z; = — §, von
Sm. Dann gilt:

s2m) =p ,

und man sieht leicht, dal H™ topologisch auf 8™ — p abgebildet wird

(mit dem Grad 4 1; die Orientierung der Sphiren sowie der Halbsphéren
sei durch die natiirliche Orientierung des einbettenden euklidischen
Raumes bestimmt).

" Antipodische Punkte von 2'™ haben bei der Abbildung s denselben
Bildpunkt auf S™. Da die Spiegelung von 2'™ an ihrem Zentrum den
Grad 4 1 oder — 1 hat, je nachdem m ungerade oder gerade ist, folgt
hieraus, daB der Abbildungsgrad von 8 bei ungeradem m den Wert 2
und bei geradem m den Wert 0 hat.

d) Wir stellen L, , dar als Mannigfaltigkeit V,,, o im euklidischen
Raum R™+! d.h. als Menge aller Paare (x, y) von orthogonalen nor-
mierten Vektoren z und y des R™t! (mit den Komponenten x; bzw.
Y:,t =1, ..., m + 1). Der natiirlichen Zerlegung von L,, ,(m > 2) ent-

spricht dann die Zerlegung 3
Vm+1,z/ Vm,l = Vm+1,1 )

deren Zerlegungsraum wir als Sphéare S™ und deren Projektion wir durch

' Plx y) =2z 8™
geben konnen.
Vm sei die ,,Vollkugel* H™ 4 J'm-1 c }'m (Bezeichnungen wie in c).
Wir definieren eine Abbildung ¢ von V™ in V,, 5 durch

x; = 2u; u; — 0,

Yi = 2u; ug — 0y

m+1 m+1 m--1
Man verifiziert, daB X' z,y,=0 und 2’ 2} = X' y?=1 ist. Die Spur P¢

i=1 i=1 i=1
dieser Abbildung ist nichts anderes als die oben s genannte Abbildung;
sie bildet also H™ topologisch auf S™ — p und X' ™1 auf p (das ist der
Punkt mit den Koordinaten x,= — d,;) ab. ¢ ist also ein Schnittelement:

von 3.
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Die Abbildung ¢’ = 7t von 2'™-1 (n, = 0) auf das zu z = p gehorige
Element der Zerlegung 3 kann man als Abbildung

yi=2uiu2_6‘a i=2,...,m+1

m+1
von X'™1 guf die zu V,, hombomorphe Sphire Sm-1 (X y?=1) auf-
i=2
fassen; sie hat nach den Uberlegungen von c) bei geradem m den Grad 2
und bei ungeradem m den Grad 0.

Satz 23: Die charakteristische Zahl k der natiirlichen Zerlegung des
Linienelementraumes L, , einer Sphire gerader Dimension hat den Wert 2
(und einer Sphire ungerader Dimension den Wert 0).

Es sei noch bemerkt, da man die Abbildung ¢ auch als tangentiales
Vektorfeld auf S™ — p deuten kann; man erhalt dasselbe Feld, wenn
man das Vektorfeld (0, — 1,0, ...,0) in der Aquatorebene x, = 0
stereographisch vom Punkt p aus auf die 8™ projiziert. Der Index der
Singularitat in p ist dabei dasselbe wie die charakteristische Zahl k.

e) Folgerungen aus Satz 23. Aus Satz 14 (Nr. 10) und unter Anwen-
dung des Hilfssatzes aus Nr. 12 folgt nun bei geradem m fir L,, , und
seine natiirliche Zerlegung L, ,/V, ,= 8™ (oder L, ,/S™1 = 8m)
fir m > 2:

Vo1 Lmy /8™ ) = Ty (8™ ) R 26 = 6 %)

YulLmy /8™ 1) = Ty, (8™1) = 0
an(Lm,l) =0.

Fir die Homotopiegruppen der Dimension m — 1,m und m + 1
erhilt man hieraus:

Wegen x,,_,(8™) = 0 ist Pn,_,(L,,) = 0, also nach Satz E :
y':m—-l(l:’m,l) ~ nm—l(Sm_l)/'Pm—-l(Lm,l/Sm—l) ~ 62 30) .

Ebenso folgt aus Pr,(L,,;) = 0 firm > 4 :
Ton(Lrny) R T (8™ ) [ YLy /8™ 7) R 7(S™1) RS By

Wegen y,,(L,,,/8™ ) = 0 ist ferner Px,, (L, 1) = 7pn.(S™), also
nm+l(Lm,1) /‘Pm+1(Lm,1 /8™ ) R 7,42 (8™) 5
aber wegen x,, (8™ ') = 0 ist auch ¢, ,;(Ly,,/8™?) = 0, somit

7tm+1('Lm,l) ~ nm+1(Sm) ~ Gza fiir m > 4.
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Satz 24 : Fiir den Linienelementraum L,,, einer Sphire gerader Dimen-
sion m > 4 qilt

”m-—l(Lm,l) ~ nm(Lm,l) ~ 7zm-<|—1(-Lm,1) ~ (52 .

. Die Tatsache, daB v,(L,,/S8™ ') = 0 ist, konnen wir nach Satz E
(Korollar) auch so formulieren (gilt auch fiir m = 2):

Satz 24': Fur den Linienelementraum L., , einer Sphiire gerader Dimen-
ston gilt: Jede Abbildung einer 8™+l ¢n S™ ist beziiglich der nmatiirlichen
Zerlegung von L,,, eine Spur.

(Fiir Sphéiren ungerader Dimension ist dieser Satz trivialerweise giiltig,
weil die Zerlegung von L,,, eine Schnittfliche besitzt.)

16. Ein Satz iiber 2-Felder auf Sphiiren. Nicht-Parallelisierbarkeit der
Sphiire S5

a) Satz 26: Wenn es auf der Sphire 8™ ein 2-Feld gibt, so kann man
jedes 1-Feld auf 8™ zu einem 2-Feld erginzen.

Beweis: m sei ungerade > 5; denn nur dann sagt der Satz etwas aus.
Wir beweisen ihn in folgender Form: Es seien 2 tangentiale Vektorfelder
auf §™ gegeben ; wenn man das eine der beiden zu einem 2-Feld ergéinzen
kann, dann auch das andere. 3 sei die Zerlegung

Lm,2/ Vm-—l,l = Lm,l

des Raumes L, ,; ihre Elemente sind die Teilmengen derjenigen an
die S™ tangentialen 2-Systeme, die im selben Punkt der 8™ angreifen
und im ersten Vektor iibereinstimmen; ihr Zerlegungsraum sei mit L,,,
identifiziert. 3 ist zur Zerlegung

Vm+1,3/ Vm-—l,l = Vm+1,2
homomorph.

Die beiden gegebenen Vektorfelder konnen wir als Abbildungen von
8™ in L,,, auffassen. Dann lautet die Behauptung: Wenn eine dieser
Abbildungen beziiglich 3 eine Spur ist, dann auch die andere. f,, f, €
% m(L 1) seien die Klassen dieser Abbildungen. Wenn wir zeigen konnen,
daB g = f, — f, beziiglich 3 eine Spur ist, so ist der Satz bewiesen.

In der natiirlichen Zerlegung 3’ von L,,, :

Lm,l/Vm,l = Sm

ist Pf, = Pf, die Klasse der Identitidt von S™, also
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Pg= P(f, — f;) = Pf; — Pfy =0,
somit g€ PmLni/Vmi) - (s. Nr. 6)

Viu1€ L, sei ein bestimmtes Element der Zerlegung 3’; alle die zu
Punkten von V,,, gehorigen Elemente V,_,, der Zerlegung 3 bilden
zusammen eine Mannigfaltigkeit V,,c L, ,, in welcher die Zer-

legung 3 eine Zerlegung 3”
Vm,z/ Vm—l,l — Vm,l

induziert; 3” ist zur natiirlichen Zerlegung von L,_;;, homsomorph.

Fir die Klasse g =/f; — fy e, (L) gilt g€ (L, /V,y); wir
konnen sie also durch eine Abbildung von 8™ in V,,, reprisentieren,
und diese ist nach Satz 24 bei ungeradem m > 5 in 3” (also auch in 3)
eine Spur. Nach dem grundlegenden Lemma (Nr. 3) ist also g in 3 eine
Spur, q.e.d.

b) Es sei m ungerade, m = 2k — 1. In einem mit festem Koordinaten-
system versehenen euklidischen Raum R?* gei

¥ = (2, s Lag)
der Ortsvektor der Sphire §™: x2 = 1. Mit % bezeichnen wir den Vektor

X == (x2’ T Xy veey gy — x2k—1) :

Durch ¥ ist wegen

ein tangentiales Vektorfeld auf 8™ gegeben. Die Frage, ob es auf 8™ ein
2-Feld gibt, ist nach Satz 25 dquivalent mit der Frage, ob sich dieses

spezielle Vektorfeld ¥ zu einem 2-Feld erganzen laBt, oder: ob man eine
stetige Vektorfunktion 1y von x angeben kann, derart, da fiir jeden
Punkt x der 8™ gilt

P=1 m=1m=0.

~ (Wenn dies moglich ist, so hat man iibrigens gerade ein 3-Feld auf S™;
der Vektor 6 liefert namlich das dritte Vektorfeld, weil offenbar

xgz—xt):O und ;5=x1)=0
ist).
187



Wir fassen nun den R%* auf als unitdren Raum in k komplexen Dimen-
sionen, U,, ordnen also dem Ortsvektor x des R2%* den Vektor u mit
den &k komplexen Komponenten

u‘=x2’__1+1/xz’ S 7-—-'—'1,...,’6

zu und dem Vektor 1) = (y,, ..., ¥2:) den Vektor v mit den Komponenten

V= Yg;a+ 1Yy, J=1,...,Fk .
Die Bedingungen x? = 1n? = 1 bedeuten dann
uu=ov0=1,
und die Bedingungen ¥1) = ¥y = 0 gehen wegen

uv =xn 413y
iiber in
uv = 0.

Damit ist gezeigt:

Satz 26 : Es gibt dann und nur dann ein 2-Feld auf der Sphdre S2%-1,
wenn man im k-dimensionalen unitiren Raum U, eine fir ut =1 defi-
nierte stetige Vektorfunktion v des Ortsvektors u finden kann, fir welche
vd = 1 und uo = 0 ist.

c) Im Falle m = 5 (k = 3) konnen wir die Frage nach einem 2-Feld
auf 8™ nochmals anders formulieren:

Ganz analog zur Darstellung der orthogonalen Gruppe I, als Vektor-
mannigfaltigkeit V3, kann man nimlich die Gruppe 4, aller 3-reihigen
unitdr-unimodularen Matrizen darstellen als Mannigfaltigkeit aller im
Ursprung von U, angreifenden unitér-orthogonalen Vektorpaare. Die
zum Wirkungsraum 8; von A4, (vgl. Nr. 8d) gehorige Zerlegung von A4,,

A2 Al - Ss

entsteht in dieser Mannigfaltigkeit, wenn man jeweils alle diejenigen
Vektorpaare zu einem Element der Zerlegung zusammenfafit, die den-
selben ersten Vektor haben (man vgl. die Zerlegung V,,/Vyy = V3, ,
die zu I'y/I'} = 8% homtomorph ist); bezeichnen wir diesen Vektor mit
u, so bedeutet die in Satz 26 genannte Vektorfunktion v von u nichts
anderes als eine Schnittfliche der Zerlegung A4,/4, = S°®. Wir sehen
somit:
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Satz 26’ : Falls es auf der Sphdire S° ein 2-Feld ¢ibt, so besitzt die Rest-
klassenzerlegung A,/A, = 8% der unistir-unimodularen Gruppe A, eine
Schnittfliche (und umgekehrt).

d) Auf Grund einer Untersuchung von Pontrjagin konnen wir die
Frage der Existenz einer solchen Schnittfliche weiter verfolgen. Pontrja-
gin hat namlich gezeigt?): A4, sei eine bestimmte Restklasse der Zer-
legung A,/A, = S5; es gibt eine wesentliche Abbildung von S* auf Aj, die
in A, zusammenziehbar ist. (Diese Abbildung sowie ihre Zusammenzie-
hung werden dabei explizit angegeben, und man stellt iibrigens leicht
fest, daB} es sich bei dieser Konstruktion, wenn wir unsere Terminologie
verwenden, um ein Schnittelement der Zerlegung handelt, dessen Ra.nd
die wesentliche Abbildung von S* auf 4, ist.) Das bedeutet

va(4y/4,) #0
die Zerlegung A,/A, = 8% besitzt also keine Schnittfliche, und daraus
folgt wegen Satz 26:

Satz 27 : Es gibt auf der 5-dimensionalen Sphdre S® kein 2-Feld.

Korollare : a) Die Sphdre S tst nicht parallelisierbar.5®) —

b) wa(Is/Ty) #0 .
e) Aus der Tatsache, daB y,(A4,/4,) % 0, genauer

v(do/A;) = my(4,) = 7, (8°) =~ O,

ist, folgt fiir die unitéar-unimodularen Gruppen:
Wegen Prn,(A4,) = 0 ist
my(\As) = 7y(A4y) [pa(A2/4y) =0 ,

also nach Satz 10:
7y(A,) = 0 fiir alle s > 2;

%) L. Pontrjagin, Uber die topologische Struktur der Lie’schen Gruppen
(comm. math. helv. 13, S. 277—283). Das wichtige Ergebnis, da8 A4, nicht dem topo-
logischen Produkt S% X S8® homdomorph ist, hat Pontrjagin ohne Beweis schon friither
ausgesprochen: Homologies in compact Lie groups (Recueil math. de Moscou,
Bd. 6 [48], 3890—422), S. 417.

83) Wir weisen darauf hin, da8 es nicht bekannt ist, ob auler S, 8% und 87 (vgl. 14),
8. 45) noch andere Spharen parallelisierbar sind; hingegen hat E. Stiefel (Comm. math.
helv. 13 [1941], 201—218) bewiesen, daB unter den reellen projektiven Réumen hochstens
die der Dimension n = 2A — 1 parallelisierbar sein kiénnen.
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daraus folgt, daBl keine Gruppe 4,(s > 2) einem topologischen Produkt
homdomorph sein kann, in welchem ein Faktor eine S? ist. (Diese Konse-
quenzen, die wir hier nur in unserer Terminologie formuliert haben,
bilden zusammen mit der oben genannten Konstruktion den Inhalt der
zitierten Arbeit 52) von Pontrjagin.)

f) Aus y,(4,/4,) ~ &, folgt ferner
75(8%) / Prs(A,) = Gy

also
Pry(4,) = 2n(S°) = G .
Wegen
m5(A;) = 75(8%) = 0
ist
@5(ds/4,) = 0,
also

Pry(A,) =~ 7m5(4,) = 6 .

Die Klassen der Abbildungen f von 85 in A4, sind also charakterisiert
durch eine gerade Zahl, namlich durch den Grad der Abbildung Pf von
S® auf S5.

Dafl 7;(4,) =~ ® ist, folgt iibrigens auch ohne Kenntnis von y,(4,/4,)
d. h. ohne Beniitzung des Satzes von Pontrjagin daraus, dafl y,(4,/4,)
hochstens eine zyklische Gruppe der Ordnung 2 sein kann.

Satz 28 (vgl. Satz 10): Fiir die unitir-unimodularen Gruppen A, (s = 2)
gilt

a) my(4,) =0 (Pontrjagin).

b) 7(4,)~ & .

17. Felder von Flichenelementen auf Sphiren

a) Wir bezeichnen mit E,, , das Biischel aller 2-dimensionalen, orien-
tierten Ebenen des BR™ durch einen festen Punkt 0 des B™ (auch ,,Flachen-
elemente’“ genannt, genauer: orientierte Fldichenelemente); als Mannig-
faltigkeit aufgefalt, ist £, , dem Zerlegungsraum einer retrahierbaren
Zerlegung von V,, , homdomorph (Nr. 2h):

Vm’z/Vz,l = E,m’g .

(Da V,, zur §* homdomorph ist, folgt hieraus leicht, daBl fiir » >3
nn(Em,B) R 70,( Vm,z) = ﬂ'n(Lm—l,l) ist.)
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b) F, sei die Mannigfaltigkeit aller an die S™ tangentialen Flichen-
elemente; sie tritt auf als Zerlegungsraum folgender Zerlegung 3’ von
L, ,: Man fasse jeweils alle die an die S™ tangentialen 2-Systeme zu-
sammen, die im selben Punkt der S™ angreifen und dort dasselbe Flichen-
element aufspannen (vgl. Nr. 2i) : :

3" Lm,2/V2,1=Fm .

Wenn eine Abbildung F eines Raumes X in F,, beziiglich 3’ Spur von
f ist, so bedeutet das: fiir jedes z ¢ X liegt das 2-System f(x) im Fliachen-
element F(x). Wir sagen dann, F sei ,,durch f aufgespannt‘.

c) F,, besitzt eine natiirliche Zerlegung 3”, deren Elemente die Biischel
E,, . aller im gleichen Punkt der §™ angebrachten tangentialen Flichen-
elemente, und deren Zerlegungsraum die Sphéire S™ ist (vgl. Nr. 2i)

3”: F,m/Em’z':——-’Sm .

Ein Feld von Flachenelementen auf 8™ bedeutet eine Schnittfliche
von 3”.

Ist P/ bzw. P” die zu 3’ bzw. 3” gehorige Projektion, und P die Pro-
jektion in der natiirlichen Zerlegung 3 von L,, ,

3 . Lm,z/Vm,2 = Sm)
so gilt
P = P'P’.
d) Wegen
wm—l(Lm,2/ V2,1) =0 s m > 3 ’

ist jede Abbildung der 8™ in F,, eine Spur beziiglich 3’. Wir nehmen nun
an, 3” besitze eine Schnittfliche 7,, d. h. es gebe eine Abbildung j, der
Sm in F,, derart, daB P”j, die Identitit der S™ sei. Dann ist j; Spur
in 3, d. h. es gibt eine Abbildung j der 8™ in L,, , , derart, dal}

P'j =jy,
also
Pj —— P”P,?’ — P”jl
die Identitdat der S™ ist: j ist Schnittfliche von 3.
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Damit ist gezeigt:
Satz 29: Jedes Feld von Flichenelementen®) auf 8™ kann von einem
2-Feld auf 8™ aufgespannt werden (m = 3).

Korollare : a) Auf einer Sphire gerader Dimension > 4 gibt es kein
Feld von Flichenelementen.

Aus Satz 27 folgt ferner: b) Auf der Sphiire S° gibt es kein Feld von
Flichenelementen.

Aus der letzten Aussage kann man wegen des in Nr. 2f beschriebenen
Zusammenhanges zwischen der Sphiare 85 und der komplexen projek-
tiven Ebene K, = P,(S,) leicht folgern, daf es auch in der komplexen
projektiven Ebene K, kein Feld von Flichenelementen gibt. '

In diesen Ergebnissen hat man unter Fliachenelementen immer orien-
tierte Flachenelemente zu verstehen; man kann aber, wie leicht zu sehen,
jedes Feld von nichtorientierten Flichenelementen auf einer Sphére
s,orientieren‘ (d. h. jedem Flachenelement des Feldes eine seiner beiden
Orientierungen zuordnen, so daB ein Feld von orientierten Fliachen-
elementen entsteht). Satz 29 und seine Folgerungen gelten also unver-
dndert auch fiir Felder von michforientierten Flachenelementen.

84) gemeint sind immer tangentiale Flachenelemente der Sm .

(Eingegangen den 17. Juni 1941.)
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