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Zur Homotopietheorie gefaserter Râume

Von Beno Eckmann, Zurich

Einleitung
a) In dieser Arbeit werden topologische Eigenschaften gefaserter Baume

mit Hilfe von stetigen Abbildungen untersucht, insbesondere tinter
Heranziehung der von Hurewicz eingefuhrten Homotopiegruppen (vgl.
Anm. 25). Die Anwendungen der dabei gewonnenen Satze beziehen sich
auf Gruppenraume, Raume von Linienelementen, Felder von Vektoren
und Flachenelementen auf Spharen, sowie auf Abbildungen von Spharen
auf Spharen niedrigerer Dimension.

b) Unter einer Faserung eines Kompaktums R (nur mit solchen Rau-
men befassen wir uns) versteht man eine stetige Zerlegung in abgeschlos-
sene Teilmengen, die aile einem Kompaktum F homoomorph sind und
die man Fasern nennt ; dabei sollen aile zu emer genugend kleinen Um-
gebung U eines Punktes des Zerlegungsraumes Z (der auch Faserraum
genannt wird) gehorigen Fasern in R das topologische Produkt F x U
bilden. Die stetige Abbildung von R auf Z, die jedem Punkt von R die
Faser zuordnet, auf welcher er liegt, heiBt Projektion oder Faserabbil-
dung P.

Beispiele von Raumen, die in naturlicher Weise gefasert sind, bilden
— abgesehen vom trivialen Fall der topologischen Produkte — die

Gruppenraume (in der Zerlegung in Restklassen nach einer abgeschlosse-

nen Untergruppe) und die Raume der Linienelemente (Flachenelemente,
Vektorsysteme usw.) differenzierbarer Mannigfaltigkeiten ; man kennt
auBerdem besonders einfache Faserungen von Spharen (vgl. Nr. 2). Eine
allgemeine Théorie der gefaserten Raume, die moglichst wenige Voraus-

setzungen benutzt, wird also ein groBes und vielseitiges Anwendungs-
gebiet haben, und ihre Aussagen lassen sich verfeinern, sobald man sich

auf speziellere Falle beschrankt. Faserungen sind bisher insbesondere

von Seifert, Feldbau, Gysin (vgl.9) und Whitney6) untersucht worden.*)

c) Unser Beitrag zur Untersuchung gefaserter Raume bezieht sich
sowohl in der Fragestellung als auch in der Méthode auf Homotopie-
eigenschaften. Aile unsere Aussagen beruhen auf einer Voraussetzung,

*) Zusatz bei der Korrektur : In einer C. K.-Note von C. Ehresmann und J. Feldbau
(Sur les propriétés d'homotopie des espaces fibres, C R.Paris 211 (1941) 945—948),
die mir soeben zugegangen ist, werden ohne Beweis Satze uber Faserungen angekun-
digt, die mit gewissen Teilresultaten der vorhegenden Arbeit zusammenfallen, namhch
mit dem ,,Lemma" (Nr 3 d) und den ,,Hurewicz'schen Formeln" (Nr. 6).
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die uns fur die Untersuehung stetiger Abbildungen und ikrer Deforma-
tionen angemessen und bequem erscheint: daB es sich um Zerlegungen
handelt, die in einem im folgenden (Nr. le) pràzisierten Sinne ,,retra-
hierbar" sind. Fur hinreichend regulàre Faserungen ist dièse Voraus-
setzung immer erfiïllt; anderseits werden andere Eigenschaften von
Faserungen, also auch die eingangs als Définition angefùhrten, nie
benûtzt. Wir sprechen deshalb in unseren Ausfiïhrungen nie von
Faserungen, sondern formulieren aile Aussagen fur retrahierbare Zerlegungen,
oder, da viele Sâtze einen noch weitern Gtiltigkeitsbereich haben, fur
retrahierbare Vberdeckungen. — In dieser Einleitung soll allerdings nur
von (regulàren) Faserungen die Rede sein.

d) Ist / eine Abbildung eines Kompaktums X in R, so heiBt die Abbiî-
dung Pf von X in Z die Spur von / (vgl. Nr. ld, If). Der Kern unserer
Betrachtungen ist ein Lemma (Nr. 3d), das im wesentlichen aussagt,
dafi jede zu einer Spur homotope Abbildung selbst eine Spur ist. Die Abbil-
dungssàtze (Nr. 4), sowie die Zusammenhânge zwischen den Homotopie-
gruppen von R, F und Z (Nr. 6, 7), die sich daraus ergeben, stellen eine

weitgehende Verallgemeinerung von Sàtzen dar, die Hurewicz (a. a. O.8)

fur Restklassenzerlegungen von Gruppenrâumen angegeben hat. Von
unsern AbbUdungssâtzen heben wir hier die folgenden hervor:

1. Wenn R auf sich wesentlich ist, d. h. wenn die identische Abbildung
von R auf sich eine wesentliche Abbildung ist, so ist die Faserabbildung P
eine wesentliche Abbildung von R auf Z (Nr. 5, Satz 1). Fur diesen Satz

ist unseres Wissens in dieser Allgemeinheit auch mit algebraischen Hilfs-
mitteln kein anderer Beweis bekannt. (Fur Faserungen geschlossener

Mannigfaltigkeitenin Sphâren ist der Satz von Gysin a. a. O.9) mit Homo-
logiemethoden bewiesen worden). Er ist im folgenden Satz enthalten:

2. Die Spur einer wesentlichen Abbildung ist wesentlich (Nr. 4, Satz C).

Wichtig ist ferner (man vergleiche denBeweis eines Satzesvon Wazewski
in Nr. 4d):

3. Eine Abbildung in Z, die sich auf einen Punkt zusammenziehen lafit,
ist eine Spur (Nr. 4, Satz A).

e) Unter einer Schnittflàche einer Faserung verstehen wir eine Abbildung

von Z in R, deren Spur die Identitât von Z ist (also eine topolo-
gische Abbildung von Z in R, bei welcher das Bild jede Faser genau
einmal trifft). Im Falle der Linienelementràume bedeutet eine Schnittflàche

ein Feld (damit ist immer ein stetiges singularitàtenfreies Feld
gemeint) von Linienelementen, im Falle einer Gruppenzerlegung das

Zerfallen des Gruppenraumes in ein topologisches Produkt (vgl. Nr. 11).

142



Die Frage, ob eine Faserung eine Schnittflâche besitzt, wird in einem
besondern Abschnitt (§ 4) behandelt; notwendig fur die Existenz einer
Schnittflàche ist unter anderem, daB die Homotopiegruppen von R die-
selbe Struktur haben wie beim topologischen Produkt von F und Z
(Nr. 9, Satz G, II). Wenn der Zerlegungsraum Z eine Sphâre ist, kônnen
wir notwendige und hinreichende Bedingungen fur die Existenz einer
Schnittflâche angeben, und auch fur den Fall der Nicht-Existenz die
Struktur der Faserung, insbesondere die Homotopiegruppen, nâher
untersuchen (Schnittelemente, Nr. 10).

f) Von den Resultaten, die wir durch Anwendung der allgemeinen
Sâtze auf spezielle Faserungen erhalten, seien hier einige erwàhnt :

1. Mit Hilfe der bekannten Sphàrenfaserungen (Nr. 2f) kônnen wir
die Existenz wesentlicher Abbildungen der Sphâre SN auf die Sphàre Sn

in einigen neuen, allerdings sehr speziellen Fâllen nachweisen, so fur
N 8 oder 10 und n 4, fur N =- 16 oder 18 oder 22 und n 8.
Man kann nâmlich (Nr. 5, Satz 3) jedes Kompaktum, das sich wesentlich
auf S7 abbilden lâBt, auch wesentlich auf 8* und jedes Kompaktum,
das sich wesentlich auf S15 abbilden lâBt, wesentlich auf S8 abbilden.

2. Fur die Homotopiegruppen der orthogonalen und der unitâr-uni-
modularen Gruppen gelten Aussagen allgemeiner Natur : die k-te Homo-
topiegruppe hat fur ,,fast aile" orthogonalen bzw. fur ,,fast aile" unitâr-
unimodularen Gruppen dieselbe Struktur (Nr. 8, Satz 9 und 10).

3. Zuruckfuhrung der Homotopiegruppen der komplexen und quater-
nionalen projektiven Ràume auf diejenigen der Sphàren (Nr. 8a).

4. Bestimmung einiger Homotopiegruppen der Linienelementràume der

Sphàren.

5. Wir zeigen, dafi es auf der Sphâre S5 kein 2-Feld gibt, d. h. kein
System von 2 tangentialen Vektorfeldern, die in jedem Punkt der 8S

linear unabhângig sind.
Zum Beweis dièses Satzes (Nr. 16) benutzen wir auBer unsern Sàtzen

(eine wichtige Rolle spielt dabei die Kenntnis von Homotopiegruppen
des Linienelementraumes der /S4) einen Satz von Pontrjagin (vgL 62)

ûber unitàre Gruppen.
Eine Mannigfaltigkeit der Dimension n heiBt parallelisierbar, wenn es

auf ihx ein System von n linear unabhàngigen tangentialen Vektorfeldern
gibt. Aus 5. folgt, daB die Sphâre S5 nicht parallelisierbar ist. Damit ist
eine Frage beantwortet, die zwar spezieller Natur ist, aber doch einiges
Interesse verdient, und die sich besonders im AnschluB an Arbeiten von
Stiefel (vgl.14) und 53) aufdràngt: Man weiB, daB die Sphàren S1, /S3



und S1 parallelisierbar sind, und daB es auf Sphàren gerader Dimension
nicht einmal ein tangentiales Vektorfeld gibt. Fur aile andern Dimen-
sionszahlen n war die Frage, ob die Sphàre 8n parallelisierbar ist, bisher
noch offen; durch unser Résultat wird sie wenigstens fur n — 5 ent-
schieden.*)

6. Auf Sphâren gerader Dimension n ^ 4 und auf der Sphâre 85 gibi
es hein Feld von tangentialen 2-dimensionalen Flâchenelementen.

Dieser Satz ergibt sich daraus, daB jedes Feld von tangentialen
Flâchenelementen auf einer Sphàre ,,durch ein 2-Feld aufgespannt" werden kann
(Nr. 17, Satz 29).

g) Dièse Resultate sind z. T., besonders hinsichtlich der darin auf-
tretenden Dimensionszahlen, sehr speziell. Es sei erwâhnt, daB der Ver-
such, sie in naheliegender Weise auszudehnen, oft daran scheitert, daB
die Homotopiegruppen der Sphàren und anderer Ràume noch in vielen
Fâllen unbekannt sind, wie denn ùberhaupt eine grundsàtzliche Méthode
zur Bestimmung der Homotopiegruppen noch nicht existiert. Wegen
dièses letztern Umstandes môchten wir auch darauf hinweisen, daB
manchmal Faserungen als Hilfsmittel zur Bestimmung von Homotopiegruppen

herangezogen werden kônnen, wobei die in Nr. 6 und 7 aufge-
stellten Beziehungen, die wir die Hurewicz'schen Formeln nennen, eine
besondere Rolle spielen; dièse ,,Methode der Faserungen" hat bei uns
in einigen Fâllen zum Ziel gefuhrt, wird aber naturlich im allgemeinen
nicht ausreichen.

§ 1. Retrahierbare tlberdeckungen und Zerlegungen
1. Deflnitionen

a) Die Gesamtheit der abgeschlossenen Punktmengen eines Kompak-
tums R wird selbst zu einem kompakten metrischen Raum1) 3I(iî),
wenn man als Entfernung q(A B) zweier Punkte A, B € %{R) die ,,Ab-
weichung" der zugehôrigen Punktmengen 2ï, B c R einfuhrt; darunter
versteht man1) die untere Grenze der den Bedingungen2)

Zusatz bei der Korrektur : Ich habe inzwischen beweisen kônnen, daB es all-
gemeiner auf allen Sphâren der Dimensionen 4 k -\- 1 kein 2-Feld gibt ; der Beweis,
in dem ûbrigens eine Heranziehung unitârer Gruppen nicht mehr nôtig ist, wird dem-
nâchst erscheinen.

x) Alexandroff-Hopf, Topologie (Berlin 1935); S. 112 und 115. — Bezûglich aller
auftretenden Begriffe der mengentheoretischen Topologie verweisen wir auf den ersten
Teil dièses Bûches.

2) Fût eine Punktmenge M c R bezeichnen wir mit U(M, £) die £-Umgebung von M,
d. h. die Menge aller Punkte p mit ç(M, p) inf ç(q, p) <: e (wo ç(x, y) die
Entfernung von x und y € R bedeutet). q € M

1U



A cl U(B,oc) BczU(A,oc)

genùgenden Zahlen oc. Aus q(A,B)<s folgt also

Z c U(B, e) und ~B c Ï7(l, e)

Wir# halten immer an folgender Bezeichnungsweise fest : Fur jeden
Punkt A von %{R) bedeutet A die betreffende Punktmenge von R
{A und A bedeuten also dasselbe, einmal als Punktmenge von R, einmal
als Punkt von ty(B) aufgefaBt).

b) Eine abgeschlossene Teilmenge Z c 5l(i2) induziert eine Ùber-

deckung 3 von B mit abgeschlossenen Mengen, wenn zu jedem a € R
ein A e Z existiert mit a e A. Die den Punkten A eZ entsprechenden
Mengen A c: R sind die Elemente der Ûberdeckung 3> und Z soll tjber-
deckungsraum von 3 heiBen; Z ist ein Kompaktum. Wir betrachten nur
Ûberdeckungen, deren Elemente echte Teilmengen von R sind. Bei einer
topologischen Abbildung des Kompaktums R auf ein Kompaktum Bx
geht die Ûberdeckung 3 von B in naheliegender Weise uber in eine
Ûberdeckung 3i von Rx. Zwei Ûberdeckungen 3 von B und 3i von Bx heiBen
homoomorph, wenn es eine topologische Abbildung von R auf Rx gibt,
bei welcher 3 in 3i ubergeht.

c) Définition : Die Uberdeckung 3 von R, mit dem Vberdeckungsraum Z,
heifit retrahierbar, wenn es eine Zahl r > 0 und zu jedem Punkt A e Z eine

stetige Abbildung Q von U(A, r) auf A c R gibt, die auf A selbst die Iden-
titat ist, und die auch von A eZ stetig abhangt. Es soll also Q(A, b) definiert
und stetig sein fur A eZ, b e U(A, r), und es soll gelten

Q(A,b) a eï
und

__
Q(A,b) b, falls b eï

DaB die Ûberdeckung 3 von ^ retrahierbar ist, besagt also: Jedes
Elément A besitzt eine Umgebung in R, die sich auf A retrahieren laBt,
und zwar so ,daB die Retraktion mit A stetig variiert ; dabei genùgt die
GroBe dieser Ûmgebungen einer GleichmaBigkeitsbedingung (r von A
unabhangig). Die Forderung der Retrahierbarkeit schrankt natùrlich
den Bereich der zugelassenen Ûberdeckungen wesentlich ein3).

3) So folgt z. B. aus der Retrahierbarkeit einer Ûberdeckung 3> dafî die Elemente A
,,den gleichen Homotopietypus" haben (wegen dièses Begrifïes vgl. man W. Hurewicz,
Beitragezur Topologieder DeformationenlII (Proc. Akad. Amsterdam, 39 [1936],
112—126, insbes. S. 125); ebenso, dafi sie gleiche Dimension haben.
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Die in der Définition genannte Abbildung Q(A, b) ist bei festem B e Z
und variablem A e U(B, r) fur jedes b c ~B eine stetige Abbildung von
U(B} r) dZ in R mit der 5?Anfangsbedingung" Q(B, b) b, die auch
von b stetig abhangt (in der Tat: wenn A e U(B, r), so ist b c U(Â, r),
also Q(A, b) definiert und stetig). Dièse Abbildung ist gleichmajiig stetig
in folgendem Sinne:

Zu jedem e > 0 gibt es eine von A, Ar eZ und 6 e^ unabhangige
Zahl à > 0, so da8 g(Ç(4, 6), Ç(4', 6)) < e, wenn e(4, 4') < à.

Beweis: Es sei 0<rf<r, und T sei die Menge derjenigen Punkte
{A,b) des (metrisierten) topologischen Produits Z x R, fur welche
^(^4,6) ^ r; < r ist ; wir zeigen zunachst, daB T in Z x R abgeschlossen ist.

(An, bn) sei eine Folge von Punkten aus T, die gegen (A, b) eZ X R
konvergiert ; bei beliebigem h > 0 gilt also fur genugend groBe n

g(An, A)<h und ç(bn, b) <h

Ferner gibt es wegen @(An, bn) ^r' einen Punkt an eÂn, so daB

g(an, bn) < rf,

und zu an gibt es einen Punkt a e Z, so daB

g{a, an) < h
ist. Also gilt

1, b) < e(a, b) < ^(a, an) + e(an, ôw) + q(bni b) < r; + 2A,

also, weil A beliebig ist, £>(^4, 6) < r7, d. h. (A,b) e T, somit ist T
abgeschlossen in Z x jR.

Daraus folgt, daB T ein Kompaktum ist, und als Abbildung dièses

Kompaktums in R ist Q(A, b) gleichmaBig stetig in bezug auf (A, b) e T,
also auch in bezug auf A eZ, b e U(A, rf). Darin ist aber die Behauptung
enthalten (wenn man die in der Définition der Retrahierbarkeit auf-
tretende Zahl r durch eine etwas kleinere ersetzt).

Im folgenden soll immer, auch ohne besondere Erwahnung, R ein
Kompaktum, 3 eine retrahierbare Ûberdeckung von R uifd Z den zuge-
hôrigen Ûberdeckungsraum bezeickaen.

d) Wir bezeichnen mit Yx den ,,Abbildungsraumii eines Kompaktums X
in einen beschrankt metrisierten Raum Y : die Punkte von Yx sind die
stetigen4) Abbildungen / von X in Y, seine Metrik ist durch

4) Aile betrachteten Abbildungen sind stetig, wir lassen dièses Beiwort gewohnlich weg



Q(f, g) Max Q(f(x) g(x))
gegeben. * € x

Définition : Wir nennen F e Zx eine Spur von f e Rx {bezilglich der
Vberdeckung 3 von R),

wenn fur jedes x e X gilt : f(x) eF(x).

Es fragt sich nun, welche Abbildungen / e Rx Spuren besitzen, und
welche Abbildungen F e Zx Spuren sind. Die wichtigste Aussage hieriiber
wird ein spàter (§2, Nr. 3d) formuliertes Lemma sein; unter spezielleren
Voraussetzungen liber 3> die wir im folgenden untersuchen, lassen sich
auBerdem noch einige, eher triviale, Aussagen machen.

e) Eine Spur der Identitât i von R ist eine Abbildung / e ZR, bei
welcher fur iedes a e R gilt : •=—° a e I(a)

Wenn es in 3 euie Spur der Identitât gibt, so besitzt jede Abbildung
/ € Rx (mindestens) eine Spur F, nàmlich F If:

F(x) I(f(x)) also f(x) e F(x)

Wir bezeichnen die Bildmenge I(R) czZ mit Z1 \ wenn speziell (vgl.
Nr. If) fur jedes A aZ1 gilt

dann bildet Q(A, b) die Umgebung U(Ib, r) aZf topologisch in R ab,
und / ist eine gebietstreue Abbildung von R auf Zr.

f) Die Ûberdeckung 3 von R heiBt eine Zerlegung, wenn fur aile
a e R aus a e A und a e B (A, B e Z) folgt : A B Wir verstehen dann
unter der Projektion P diejenige Abbildung von R aufZ, die jedem Punkt
a € R die Punktmenge, in der er liegt, d. h. denjenigen Punkt A eZ,
fur welchen a e J ist, zuordnet; es ist also fur aile A eZ

P-*A A

Zerlegungen sollen immer stetig sein5) ; das bedeutet : zu jedem e > 0

gibt es ein ô > 0, so daB aus o(a, ~B) < ô und a €~Â folgt q(A, B) < s;
dann ist aber die Abbildung P stetig, und P(R) Z ist der Zerlegungs-
raum5) der Zerlegung 3-

5) Wegen der Terminologie und der einfachsten Eigenschaften der Zerlegungen vgl.
man *), S. 92 und 98.
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Die Projektion P ist eine Spur der Identitât von R, und fur jedes
A e Z gilt

PQ(A,b) A ;

somit ist (vgl. Nr. le) P eine gebietstreue Abbildting von R auf Z und
Q(A, b) ihre ,,lokale eindeutige Umkehrung".

In einer Zerlegung 3 ^t eine Abbildung F çZx dann und nur dann
Spur von f e Rx, wenn F Pf ist.

Denn F(x) P(f{x)) ist gleichbedeutend mit f(x) eF(x). — Pf *ZX
soll Projektion der Abbildung / e Rx heiBen ; in einer Zerlegung sind also

diejenigen Abbildungen aus Zx, die Spuren sind, identisch mit den Pro-
jektionen der Abbildungen aus Rx.

Wir sagen, die tîberdeckung 3 enthalte eine Zerlegung 3 \ wenn der
Cberdeekungsraum Z eine Teilmenge Z' enthàlt, die eine Zerlegung
von R induziert. Dann gilt fur die zugehôrige Projektion P von R auf
Z1çzZ ailes soeben Gesagte.

g) Wenn die Identitât J von Z eine Spur ist, d. h. wenn es eine
Abbildung j e Rz mit j(A) e A fur aile A eZ gibt, so ist jede Abbildung
F € Zx eine Spur, nâmlich Spur von / jF; denn es ist

f(x) j(F(x))eF(x).

Wenn 3 eme Zerlegung ist, und die Identitât J von Z eine Spur ist,
d. h. wenn es eine Abbildung j e Rz gibt mit J Pj, so nennen wir /
eine Schnittflache der Zerlegung; j ist dann eine topologische Abbildung
von Z in. R, die jedem Punkt A e Z einen Punkt a € A zuordnet.

Wir werden die Schnittflâchen spàter § 4) nâher untersuchen.

h) Es sei noch bemerkt, daB man jeder Ûberdeckung 3 von ^ eme
Zerlegung 3* eines Kompaktums i2* zuordnen kann: R* sei die Menge
derjenigen Punkte (A, a) des topologischen Produktes Z x R, fur welche
a € A ist ; dann bilden die Punkte (A, a) mit festem A eine der Menge
A Œ R homôomorphe Teilmenge A a R*, und dièse Mengen A bilden
eine stetige Zerlegung 3* Yon R*, deren Zerlegungsraum JZ* dem Ûber-
deckungsraum Z homôomorph ist6). 3* ^ ubrigens von selbst retrahier-
bar, wenn 3 ®s ist. Die Beziehung zum Raum R kommt darin zum Aus-
druck, daB auch R ein Zerlegungsraum von R* ist (Elemente dieser

6) In der Théorie der ,,sphere-spaees" von H. Whitney (Bull, of the Am. Math. Soc,
1937, 785—800) entspricht dem Raum R der Basisraum K des Sphàrenraumes S{K), dem
Raum R* der ,,totale Raum" <&{K) (wenn der Sphârenraum S(K) durch eine Ûberdeckung
von K mit Sphàren gegeben ist).
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Zerlegung sind die Teilmengen von R*, die aus den Punkten {A, a) mit
festem a bestehen).

In einem gewissen Sinne laBt sich also jede Ûberdeckung als
Zerlegung auffassen, was fur die weiteren Untersuchungen bequemer ist.
Unsere Anwendungen handeln dementsprechend auch fast ausschlieBlich
von Zerlegungen.

2. Beispiele

Die folgenden Beispiele retrahierbarer Zerlegungen und Ûberdeckungen
sollen nicht nur die eingefuhrten Begriffe illustneren, sondern auch spater
zu Anwendungen herangezogen werden.

a) Das topologische Produkt X x Y zweier Kompakten X und Y ist
in naturlicher Weise zerlegt in die Mengen der Punkte (x, y) mit festem

y e F. Wir nennen dièse Zerlegung die ,,Links-Zerlegung" von X X Y;
der zugehorige Zerlegungsraum ist dem Raum Y homoomorph, und die
Zerlegung ist offenbar retrahierbar. Sie besitzt eine Schnittflache :

j(y) (x0, y) e X x Y

mit beliebigem festem xoeX. — (Analoges gilt fur die ,,Rechts-Zer-
legung".)

b) Die (unverzweigte) Uberlagerungsmannigfaltigkeit mit endlicher
Blatterzahl h einer geschlossenen Manmgfaltigkeit Z laBt sich zerlegen in
die Mengen A der Punkte aly ak, die ,,uber" einem Punkt A eZ
liegen. Da6 dièse Zerlegung retrahierbar ist, zeigt folgende Abbildung
Q(A, 6) : r > 0 sei so gewahlt, daB fur jedes A e Z die Umgebung U(A, r)
aus den h homoomorphen Umgebungen U(at, r) (i 1, Je) besteht;
dann setzen wir

Q{A, b) a% fur b e U{at, r) (i 1, h).

Hingegen ist dièse ?Jnaturliche" Zerlegung einer Uberlagerungsmannigfaltigkeit

nicht mehr retrahierbar, wenn Verzweigungspunkte auftreten
(wie bei Riemann'schen Flachen als XJberlagerungen der Kugel).

c) 0 sei eine kompakte topologische Gruppe, U eine abgeschlossene
Untergruppe von G. Die Restklassen von G nach U bilden eine Zerlegung
3 von G ; ihr Zerlegungsraum Z ist ein Wirkungsraum von G. (Ein Kom-
paktum W heiBt Wirkungsraum von G, wenn es eine transitive Gruppe
topologischer Transformationen von W auf sich gibt, die stetig homo-
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morphes Bild von G ist7)). Umgekehrt gehôrt zu jedem Wirkungsraum
W von G eine Zerlegung von G in Restklassen nach der sog. Isotropie-
gruppe, d. h. der (abgeschlossenen) Untergruppe derjenigen Transforma-
tionen von W, die einen bestimmten Punkt von W festlassen, und W ist
dem Zerlegungsraum homôomorph (das gilt im allgemeinen nur fur kom-
pakte Gruppen).

In seinen Untersuchungen uber solche Gruppenzerlegungen setzt
Hurewicz8) eine der Retrahierbarkeit verwandte Eigenschaft voraus, die
insbesondere fur Lie'sche Gruppen immer erfullt ist; man kann daraus
entnehmen (und ubrigens auch leicht direkt einsehen), daB die Rest-
klassenzerlegung einer geschlossenen Lie'schen Gruppe nach einer
abgeschlossenen Untergruppe immer retrahierbar ist.

d) Dièse Zerlegungen Lie'scher Gruppen sind vom geometrischen
Standpunkt aus Beispiele fur die sogenannten Faserungen9): Eine Zer-
legung 3 des Kompaktums R heiBt Faserung, wenn ihre Elemente,
,,Fasem" genannt, aile einem Kompaktum F homôomorph sind, und
wenn fur jede hinreichend kleine Umgebung U c: Z die Menge P~XU c R
(also die Vereinigungsmenge £ A dem topologischen Produkt F X U,

AeU
und die durch 3 induzierte Zerlegung von P^U der Links-Zerlegung
von F X U homôomorph ist ; die Projektion P heiBt in diesem Fall auch
Faserabbildung, der Zerlegungsraum Z Faserraum.

Wenn R und F geschlossene Riemann'sche Mannigfaltigiceiten sind, und
die Fasern hinreichend oft differenzierbar in R liegen, so ist die Zerlegung
retrahierbar; man kann leicht eine allen Bedingungen der Définition
genûgende Retraktionsabbildung angeben, bei welcher die Umgebung
jeder Faser F làngs den zu F orthogonalen geodâtischen Linien auf die
Faser ,,zusammengezogen" wird. Zu diesen ,,regulâren Faserungen"
gehôren auch aile im folgenden untersuchten Zerlegungen; wir werden
indessen hievon keinen Gebrauch machen, sondern den Beweis der
Retrahierbarkeit durch direkte Angabe besonders einfacher Abbildungen
Q(A, b) erbringen.

7) Man vgl. E. Cartan, Groupes finis et continus et l'Analyse Situs (Mémorial
des se. math. 42, Paris 1930), S. 13 (Wirkungsraum heifit dort ,,espace homogène").

8) Beitrâge zur Topologie der Deformationen I (Proc. Amsterdam 38 [1935],
112—119), S. 116 unten.

*) Vgl. J.Feldbau C. R. 208 (1939), S. 1621. Ferner: H.Seifert, Topologie drei-
dimensionaler gefaserter Râume (Acta math. 60 [1932]); es sei bemerkt, daB die
Forderung der Retrahierbarkeit das Auftreten von ,,Ausnahmefasern" im Sinne von
Seifert ausschlieBt. — W. Oysin hat kurzlich Faserungen geschlossener Mannigfaltigkeiten
in Sphâren mit Methoden der Homologietheorie untersucht. (Comm. math, helv., Vol. 14.)
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Bei Faserungen der oben beschriebenen Art werden wir sowohl fur die
Zerlegung 3 selbst als auch fur den Zerlegungsraum Z oft die (der Grup-
pentheorie entnommene) Bezeichnung

R/F
verwenden und durch eine Gleichung der Form

R/F M

die Homoomorphie des Zerlegungsraumes zu einem Raum M zum Aus-
druck bringen.

e) Ûberdeckung der Spharen mit Grofî-Spharen. Wir betrachten im
w-dimensionalen euklidischen Raum Rn das Buschel aller ^-dimensionalen
Ebenen EQ (0 < q < n) durch einen festen Punkt 0 e Rn; dièse Ebenen
schneiden die um 0 gelegte Einheitssphare Sn~1 des Rn in (q — l)-dimen-
sionalen GroB-Spharen 8*-1, die eine Ûberdeckung 3 der Sn~1 bilden;
den zugehorigen Ûberdeckungsraum Z nennen wir den Oro/Skreiseraum
Gn-i> q-\ Dièse Ûberdeckung ist retrahierbar ; wir konstruieren zum
Beweis folgende Abbildung Q(A, b) fur A eZ, b e S"-1:

N(A, b) sei die Normalprojektion des Punktes b e S"-1 auf die Ebene Eq,
in welcher A (das ist eine S*2*1) liegt ; bedeutet | y \ den Abstand des

Punktes y e Rn von 0, so ist | N(A, b) \ eine gleichmaBig stetige Funktion
von A e Z, b e S"-1 ; da ferner | N(A, b) \ 1 ist fur b € Z, so gibt es eine
Zahl r > 0, so dafi | N(A,b) \ > 0 ist, wenn b e U(A, r). Setzen wir nun10)

so ist dies eine stetige Abbildung von U(A, r) auf A, die auch von A € Z
stetig abhangt und auf A die Identitat ist.

/) SpharenfaseruTigen. Die eben beschriebene Ûberdeckung 3 der aS^"1

mit GroB-Spharen enthalt eine Zerlegung 3'> wenn es môglich ist, im
Buschel der Ebenen Eq ein schlichtes Buschel auszuzeichnen, d. h. eine
Schar von Ebenen Eq durch 0, derart, daB durch jeden von 0 ver-
sehiedenen Punkt y des Rn genau eine Ebene der Schar geht, die stetig
mit y variiert. Solche schlichte Buschel existieren nur fur gewisse Dimen-
sionszahlen n und q11), jedenfalls fur n kq mit q 1, 2, 4 und k

l0) O sei Ursprung emes Koordmatensystems im Bn, und Xy der Punkt, dessen Koordi-
naten das 1-iache der Koordinaten von y e En sind

11 Die genauen Bedmgungen fur n und q sind uns unbekannt; es sei aber bemerkt,
dafi Oyatn a a. O 9) notwendige Bedmgungen angegeben hat: q muB Teiler von n, und q
mufi gerade sein (oder 1).
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2,3, auBerdem mit q 8 und k 2 ; in diesen Fallen kann man sie
nàmlich nach Hopf12) unter Heranziehung hyperkomplexer Zahlsysteme
GQ festlegen (Si réelle Zahlen, S2 komplexe Zahlen, (S4 Quater-
nionen, ®8 Cayley'sche Zahlen12)). Die gemaB e) retrahierbaren 13)

Zerlegungen 3' der S*1*1 in (q — l)-dimensionale GroB-Spharen, die man
so erhalt, sind die von Hopf12) angegebenen Spharenfaserungen ; der
zugehorige Zerlegungsraum Z ist homoomorph dem ,,(&—1) - dimensio-
nalen projektiven Qq-JRaumli P&_i(Sa) (den man geradezu so definieren
kann), also insbesondere fur k 2 der Sphare SQ. In abgekurzter
Bezeichnungsweise (vgl. Nr. 2d) konnen wir dièse Zerlegung durch
S**-1/»*-1 Pfc_!(Sa) beschreiben.

g) Die Stiefel'schen Mannigfaltigkeiten14) Yn m lassen sich in nahe-

liegender Weise zerlegen.

Vn m ist definiert als Menge aller in einem festen Punkt 0 des En

angreifenden geordneten und normierten Orthogonalsysteme anm von
m <n Vektoren (al9 am) des En, kurz m-Systeme genannt (die, in
naturlicher Weise topologisiert, zu einer geschlossenen Mannigfaltigkeit
wird). Fassen wir nun immer diejenigen Système anm die in den ersten
k <m Vektoren ubereinstimmen, zu einer Teilmenge A der Vn m zu-
sammen, so erhalten wir eine stetige Zerlegung 3! der Vn m in
Mannigfaltigkeiten Vn_km_k ; der Zerlegungsraum Z ist eme Fn fc :

31 • F IV F' n,m/ r n—k,m—k y n,k '

Nachweis der Retrahierbarkeit: Fur zwei Punkte A, B € Vnk d. h.
A (ûx, ak) und B (bi, hk) bilden wir die Déterminante

sie hangt gleichmaBig stetig von A und B e Vnk ab; G(A, A) 1, also

gibt es eine Zahl r > 0, so daB

G(A, B) =£ 0 ist fur g(A,B)<r
12) H Hop/, Ûber die Abbildungen von Spharen auf Spharen niedngerer

Dimension (Fund. math. XXV [1935], 427—440), bes. S. 438ff.
13 Einen andern Beweis der Retrahierbarkeit fur den Fall q 2, der sich ahnhch

auch bei q 4 (mit Hilfe der Quatermonen) durchfuhren lafit, haben Hopf und Rueff
(Comm math helv. 11 [1938], S. 58) angegeben.

14) E.Stiefel, Richtungsfelder und Fernparallehsmus îm w-dim.
Mannigfaltigkeiten (Comm. math. helv. 8 [1935], 3—51), bes. S. 8ff.
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Ist imn b ein Punkt von B c Vnm, d. h. b (b^ bki bfc+1 bj,
so sind fur ^(^4, B) <r die m Vektoren ûx, ak) bk+1, bm linear
unabhangig; denn aus

Z K^ + Z ii%\ o

folgt

2 K(*t'b,) ° > j 1,... ,i,
i=i

also sind wegen G(A ,5)^0 aile At 0 also auch aile fit 0.
Mari kann also durch Orthogonalisieren den m Vektoren al9 ...,ak,
hk+1, bm auf eindeutige und stetigeWeise einen Punkt a (al5..., d^.,

afc+1,...,am) eA von Fwm zuordnen; dadurch ist eine Abbildung
Q(A, b) fur q(A, B)<r und 6 € B definiert, die aile in der Définition
erwahnten Bedingungen erfullt.

h) Eine andere Zerlegung 3" der Mannigfaltigkeit Vn m erhalt man,
wenn man immer diejenigen Système on m zu einer Teilmenge zusammen-
faBt, die in derselben m-dimensionalen Ebene Em liegen und darin die-
selbe Orientierung bestimmen; der Zerlegungsraum Z ist homoomorph
dem Buschel aller orientierten m-dimensionalen Ebenen Em des Rn
durch 0, EU)m\ die Elemente dieser Zerlegung sind Mannigfaltigkeiten
Fm m_! (denn ein System anm das in einer festen Ebene Em liegt und
darin eine vorgegebene Orientierung bestimmt, ist schon durch die
(m—1) ersten Vektoren eindeutig festgelegt):

y - V IY E•O n m/ r m,m—l J-Jn,m '

Fur zwei Punkte a,be Vnm a (al9 am) und b (b1? hm)
ist die Déterminante

O(a,b)=\(al-hJ)\m

wie leicht zu sehen, nur abhangig von den orientierten Ebenen A Pa
und B Pb. Insbesondere ist G(a, a) 1, also gibt es eine Zahl r > 0,
so da6 G(a, b) ^ 0 ist, wenn ^(^4, B) < r. bfl9 •.., b'm seien die Vektoren,
die durch Normalprojektion von bi, bm auf die Ebene A entstehen;

m m

dann ist a^b^^û, • b[ und aus E ^M 0 folgt wegen £ Ai(at-b^) O

7=1 7=1
(£ 1, m), daB aile A, 0 sind. Die b7 sind also linear unabhangig
und ergeben, in bestimmter Reihenfolge orthogonalisiert, ein System



an, m in der Ebene A, d. h. einen Punkt a' e A ;

a' Q(A,b)

ist die Retraktionsabbildung der Zerlegung.

g) Man kann dièse Zerlegungen 3' und 3" der Vnm kombinieren:
Man faBt aile diejenigen Système an m zu einer Teilmenge zusammen,
die in den ersten Je < m Vektoren ubereinstimmen und bei denen die
letzten m — k Vektoren dieselbe (m—&)-dimensionale orientierte Ebene
bestimmen. Auch dièse Zerlegung ist, wie man leicht feststellt, retrahier-
bar; ihr Zerlegungsraum15) gestattet seinerseits eine Zerlegung, bei wel-
cher der Zerlegungsraum eine Vnh und die Elemente Ebenenbtischel

§ 2. Abbildungssatze

3. Vorbereitendes. Ein Lemma

a) 3 sei eine retrahierbare tîberdeckung eines Kompaktums R, Z der
zugehôrige Ûberdeckungsraum und Q(A, b) die in der Définition (Nr. le)
genannte Abbildung; X sei ein Kompaktum. Q(A, b) induziert in folgen-
der Weise eine Abbildung zwischen den Abbildungsrâumen Rx und Zx : F
und_6r seien zwei Abbildungen aus Zx mit g(F, G) <r, und F sei Spur
von / c Rx (Nr. ld), also f(x) eF(x) fur aile x e X; dann verstehen wir
unter g Q(O, f) das durch

g(x) Q(G(x),f(x)) xeX

erklàrte Elément von Rx. Fur dièses gilt G Spg. In Zx besteht also
die ganze r-Umgebung einer Spur F aus Spuren, und durch. Q(G, /) wird
bei festem / eine Abbildung von U(F, r) aZx in Rx mit der >fAnfangs-
bedingung" Q(F, /) / definiert, derart, dafi immer

G 8PQ(G,f)
ist.

Dièse Abbildung ist stetig. Beweis: Es sei g Q(G, f) und g1 Q(Gf, /).
Dann ist

e(g(x) g'(x)) q[Q(G(x) f(x)) Q(G'{z) ,/(*))]

wegen der gleichmàBigen Stetigkeit der Abbildung Q(A,b) (s. Nr. le)

15) Ein Beispiel eines solchen Raumes ist (k — 1, m 3) die Mannigfaltigkeit der an
die &n-l tangentialen orientierten Flâchenelemente (vgl. Nr. 17).
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kleiner als eine beliebige Zahl e > 0, wenn q(G(x) Gr(x)) < ô(e), wobei ô

von x nicht abhàngt; also ist g(g, g') < e, wenn q(G, Gr) < ô

b) Aus den Eigenschaften von Q(A, b) folgt ferner fur das eben er-
klârte Elément g Q(G, f) e Rx:

Wenn, fur einen bestimmten Punkt x0 von X, G(x0) F(x0) ist, dann
ist auch g(x0) f(x0)

Beweis : g(x0) Q(G(xQ) f(x0)) Q(F(x0), f(x0)) f(x0). —
Wenn fur die Teilmengen Iocl und Zo c Z gilt G(X0) c Zo,

dann ist g(X0) c Ro, wo Bo £ A

Beweis: Fur aile #eX0 ist g(x) ©(©(a:), /(a;)) e 0(a?) c i?0.

c) Deformationen : Eine Déformation einer Abbildung / c Yx (Y sei

ein beliebiger metrischer Raum) ist gleichbedeutend mit einem Weg oc

in Yx, der im Punkte / beginnt, d. h. einer stetigen Abbildung oc(t) der
Einheitsstrecke 0 < t < 1 in Yx mit oc(O) /. Zwei Abbildungen / und g
heifien homotop, wenn es in Yx einen Weg oc gibt mit a(0) f und
oc(l) g. Man kann diesen Homotopiebegriff verschàrfen, indem man
verlangt, daB bei der ganzen Déformation oc jede der Abbildungen
oc(t) (0 < t < 1) einen Punkt x0 e X auf einen vorgegebenen Punkt
y0 e Y, oder eine Teilmenge Xoa X in eine Teilmenge YoczY abbildet,
d. h. indem man nur Wege oc auf einen Teilraum (Yx)0 von Yx zulâBt;
man muB dann genauer sagen, / und g seien ,,homotop in (Yx)oiC.

Eine Abbildung / c Yx, die (in Yx) einer Abbildung auf einen einzigen
Punkt von Y homotop ist, heiBt zusammenziehbar (in Yx) ; eine Abbildung
/ € Yx heiBt wesentlich, wenn fur jede zu ihr homotope Abbildung g die
Bildmenge g(X) Y ist.

Eine (kompakte) Teilmenge M a Y heiBt zusammenziehbar in Y, wenn
die identische Abbildung von M auf sich in YM zusammenziehbar ist.
Ein Kompaktum Y heiBt wesentlich auf sich, wenn die identische Abbildung

von Y auf sich in YY wesentlich ist.

Ist y in der Ûberdeckung 3 ein Weg in Rx, F ein Weg in Zx und fur
0 < t < 1 F(t) Sp y(t), so nennen wir F eine Spur von y (und sagen
auch, die Déformation F sei eine Spur).

d) Lemma: Wenn der Anfangspunkt eines Weges F in Zx eine Spur
ist, so ist der ganze Weg F eine Spur. Genauer: Wenn JH(O) =F Sp /,
so gibt es einen Weg y in Rx mit y(0) /, derart, daB F Spy

Anders formuliert: Jede zu einer Spur F eZx homotope Abbildung
G € Zx ist eine Spur. Genauer: Wenn F Sp f, und G zu F homotop ist,
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dann ist G Spur einer zu / homotopen Abbildung g e Rx, und die ganze
Déformation von F ist Spur der Déformation von /.

Beweis: Der Weg F ist gegeben durch F(t) eZx, 0 <£ < 1, mit
F(0) F Spf. Mankann eine Zahl ô > 0 sowàhlen, dafi fur | t — t' \<ô
gilt

e(/XQ,/K«/))<r.
Dann seien

O to<t1<..-<tn=l
n + 1 Zahlen mit

^ — ^_i <<$, i=l,...,w.
Wir setzen nun

r(0) - /
und

y(t) Q(r(Q, y(^)) fur ^ < « < ti9 i 1, n

Dadurch ist ein Weg y in Rx defîniert, der in / beginnt, und fur welchen

gilt

die Existenz eines solchen Weges war aber gerade nachzuweisen.

e) Aus dem in Abschnitt b) dieser Nummer Gesagten ersieht man,
daB das Lemma und seine Konsequenzen (Nr. 4) auch gultig bleiben,
wenn man allen betrachteten Abbildungen von X in R und Z eine oder
mehrere Bedingungen der folgenden Typen 1 und 2 auferlegt (d. h. sich
auf einen gewissen Teilraum von Zx und einen zugehôrigen Teilraum
von Rx beschrànkt) :

1. x0, a0, Ao seien vorgeschriebene Punkte bzw. von X, R, Z, mit
a0 e AQ. Es werden nur solche Abbildungen / e Rx und F eZx zugelassen,
bei welchen f(x0) a0 bzw. F(xQ) Ao ist.

2. Xo und Zo seien Teilmengen von X bzw. Z, und Ro 2J A c R.

Es werden nur Abbildungen / und F zugelassen, bei welchen f(XQ) c Ro

bzw. F(X0) c Zo ist.

f) Wir nehmen nun speziell an, 3 sei eine Zerlegung. Dann bewirkt die

Projektion P (s. Nr. If) von R auf den Zerlegungsraum Z eine Abbildung
von Rx in Zx, die dem Punkt f e Rx den Punkt

F PfeZx

zuordnet und die wir ebenfalls mit P bezeichnen ; wegen der gleichmâôigen
Stetigkeit der Projektion ist sie selbst stetig.
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Wenn R (und infolgedessen auch Z, wie man mit Hilfe der Abbildungen
P und Q leicht zeigen kann) ztisammenhàngend tind lokal zusammenziehbar16)

ist, und wenn das Kompaktum X endlich-dimensional ist,
dann sind nach Hurewicz17) die Komponenten von Rx (bzw. Zx) offene,
durch stetige Wege zusammenhàngende Mengen, also identisch mit den
Klassen homotoper Abbildungen von X in E (bzw. Z). Wir bezeichnen
die Abbildungsklasse, zu welcher / gehôrt, mit {/} (oder wenn kein MiB-
verstàndnis môglich ist, ebenfalls mit /).

Da die Abbildung P von Rx in Zx stetig ist, bildet sie jede Kpmponente
{/} c Rx in die Komponente {Pf} c Zx ab; nach dem Lemma ist aber
jede Abbildung G aus der Klasse {Pf} Spur einer zu / homotopen Abbildung

g, d. h. G Pg; P bildet also {/} auf {Pf} ab, und man kann fur
eine Zerlegung 3 dem Lemma die kurze Form geben18) :

p{f} {pn

g) Wir fiïhren zur bequemern Formulierung der folgenden Sâtze noch
eine Bezeichnung ein: Wenn 3 euie Ûberdeckung von R ist, so soll eine

Abbildung / e Rx relativ-zusarnmenziehbar (beziiglich 3) heiBen, wenn
sie einer Abbildung g homotop ist, bei welcher die Bildmenge g(X) ganz
in einem Elément A der Ûberdeckung 3 enthalten ist. Eine Teilmenge
M c: R heiBt relativ-zusammenziehbar, wenn die identische Abbildung
von M auf sich (als Abbildung aus RM) relativ-zusammenziehbar ist.

4. Hauptsatze

3 sei eine retrahierbare Ûberdeckung des Kompaktums R, Z der
zugehôrige Ûberdeckungsraum, X ein beliebiges Kompaktum.

Satz A : Jede zusammenziehbare Abbildung F e Zx ist eine Spur.
Satz B : Wenn eine Abbildung f e Rx eine zusammenziehbare Spur be-

sitzt, dann ist f relativ-zusammenziehbar beziiglich 3 •

Der Beweis von Satz A und Satz B ergibt sich direkt aus dem Lemma
(Nr. 3d) und der Bemerkung, daB eine Abbildung G von X auf einen
Punkt A eZ Spur einer Abbildung / e Ax ist.

Korollar zu Satz A : Wenn X in sich zusammenziehbar ist, so ist jede
Abbildung F e Zx eine Spur.

Korollar zu Satz B : Wenn 3 eine Zerlegung von R ist, und P die Pro-
jektion von R auf Z, so ist eine Abbildung / e Rx dann und nur dann
relativ-zusammenziehbar, wenn PfcZx zusammenziehbar ist (,,dannu

16) das bedeutet: jede Umgebung U enthàlt eine in U zusammenziehbare Umgebung.
17) s. 8), S. 113.
l8) Vgl. fur Gruppenzerlegungen: Hurewicz8), S. 117, Satz VIII.
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folgt aus Satz B, ,,nur dann" aus der Stetigkeit der Abbildung P von
Rx in Zx).

Satz C : Wenn 3 e^£ Zerlegung von R ist, so ist die Spur einer wesent-
lichen Abbildung f e Rx wesentlich.

Beweis: / besitzt genau eine Spur, nàmlich F Pf; wenn F einer
Abbildung G homotop ist, bei welcher A e Z nicht zur Bildmenge G(X)
gehôrt, so ist nach dem Lemma / einer Abbildung g (mit G Pg) homo-
top, bei welcher A c R nicht zur Bildmenge g(X) gehôrt. Bei einer
wesentlichen Abbildung / ist das nicht môglich.

Korollar zu Satz C : Wenn 3 em^ Zerlegung von R ist, und wenn R auf
sich wesentlich ist, dann ist die Projektion P von R aufZ eine wesentliche
Abbildung (also mu8 auch Z auf sich wesentlich sein).

Satz D : Die Ûberdeckung 3 v°n R enthalte eine Zerlegung 3f (Définition

s. Nr. 2f) mit dem Zerlegungsraum Z1 cZ. Wenn R auf sich wesentlich

ist, so ist die Projektion P von R auf Zf in ZR nicht zusammenziehbar,
also Zr in Z nicht zusammenziehbar.

Beweis: Es geniigt vorauszusetzen, daB R bezuglich 3' nicht relativ-
zusammenziehbar ist; dann folgt die Behauptung direkt aus Satz B,
weil P eine Spur der Identitât von R ist. — Wenn man voraussetzt, daB R
auf sich wesentlich ist, so kann man die Behauptung verschârfen : P làfit
sich in ZR nicht in eine Abbildung F eZ'R deformieren, bei welcher die

Bildmenge F(R) eine echte Teilmenge von Z1 ist; also auch: Z' lâBt sich

in Z nicht in eine echte Teilmenge von sich deformieren.

5. Anwendungen

a) Satz 1 : Bei einer regularen Faserung (Nr, 2d) der geschlossenen

Mannigfaltigheit R ist die Faserabbildung eine wesentliche Abbildung von R
auf den Faserraum.

Beweis : Eine geschlossene Mannigfaltigkeit ist auf sich wesentlich19) ;

die Behauptung folgt also direkt aus dem Korollar zu Satz C.

Ein Korollar zu Satz 1 ist der von Hurewicz20) bewiesene Satz, daB

eine geschlossene Lie'sche Grappe sich wesentlich auf ihre Wirkungs-
ràume abbilden lâBt.

b) Wir kônnen den Satz D auf die in Nr. 2e, f beschriebenen tïber-
deckungen der Sphàre S*1"1 mit GroB-Sphâren Sq~x janwenden: Fur
n Jcq (q 1, 2, 4; Je 2, 3, und q 8; le 2) enthâlt dièse
Ûberdeckung eine Zerlegung mit dem Zerlegungsraum Pfc_i(Sg) und es gilt

19) s. S. 519, Satz II.
20) s. 8), S. 118, oben.
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Satz 2 : Der projektive ®a-Raum P^SJ (q 1, 2,4 ; k 2, 3, und
q 8 ; fc 2) ist im GroBkreisraum 0kq_lq_1 nicht zusammenziehbar.

Insbesondere gibt es in Cr2<z-i,<z-i ein topologisches, nicht zusammen-
ziehbares Bild der Sq.

c) Die Anwendung von Satz C auf die Hopf 'schen Sphàrenfaserungen
(s. Nr. 2f)

5^-i/fite-i p^(Sff), g 1, 2, 4; £ 2, 3, und 8; k 2

ergibt :

$a£z 3 : Ein Kompaktum X, das sich wesentlich auf S**-1 abbilden lâflt,
làjit sich auch wesentlich auf Pk-i{QQ) abbilden.

Korollar: Es gibt eine wesentliche Abbildung der Skq-X auf Pfc-i(©Q)-
Beschrânken wir uns auf k 2, so kônnen wir P^SJ durch die damit

homôomorphe Sq ersetzen und erhalten (wenn wir den uninteressanten
Fall q 1 weglassen):

Satz 3f : Fur q 2, 4, 8 laflt sich ein Kompaktum X, das man wesentlich

auf 82q~1 abbilden kann, auch auf Sq wesentlich abbilden.
Korollar: Fur q 2, 4, 8 gibt es eine wesentliche Abbildung der

S*-1 auf die S«.

Dièse letzte Aussage ist in einem allgemeinern Satze von Hopf21)
enthalten (der besagt, da6 sie fur aile geraden q gilt) ; es ist aber bemer-
kenswert, da6 nach unserer Méthode22) der Beweis der Wesentlichkeit
ohne Heranziehung von HomologiebegrifEen gefûhrt wird.

Wir machen noch Gebrauch von folgendem Resultate aus der Freuden-
thal'schen Théorie der Sphârenabbildungen23) : Die SN làBt sich wesentlich

auf die 8n abbilden, (u. a.) wenn N — n 1, 3, 7 und n > ^—^+2
ist. Es gibt also wesentliche Abbildungen der SN auf die Skq~1 fur N kq,
kq + 2, kq + 6, falls dièse Zahlen kleiner sind als 2 kq — 3, und nach
Satz 3 infolgedessen auch wesentliche Abbildungen der SN auf Pfc-i(Sa).
Setzen wir wieder speziell k 2 (wobei wir g 1 und q 2 weglassen),
so erhalten wir

Satz 4 : Fur q 4 w/wZ N 8, 10, /emer fûrq S und N 16, 18, 22

<7*6£ es wesentliche Abbildungen der SN auf die Sq.

d) Mit Hilfe der in Nr. 2 e beschriebenen Zerlegung der StiefeFschen

Mannigfaltigkeit Vn}Tn

Vn,m/ Vn-lçm-Jc Vn,K 0<k<m<n
21) s. 12), S. 431, Satz II.
22 nach welcher Hurewiez (vgl. 8)) den Fall q 2 (unter Benûtzung der Tatsache,

dafi S3 Gruppenmannigfaltigkeit ist!) behandelt hat.
23) H. Freudenthal, Ûber die Klassender Sphârenabbildungen I (Comp. math. V,

1937, 299—314), bes. S. 301.
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worin wir speziell m n — 1 setzen, kônnen wir in einfacher Weise
folgenden Satz von Wazewski24) beweisen:

Satz 5 (Satz von Wazewski): X sei eine Vollkugel (beliebiger Dimension),

B eine Matrix von n Spalten und le < n Zeilen, deren Elemente
réelle stetige Funktionen von x e X sind, und die in jedem Punkte
x e X den Rang k hat. Dann kann man B zu einer n-reihigen quadra-
tisohen Matrix ergânzen, deren Elemente stetige Funktionen von x e X
sind, und die in jedem Punkt x e X nicht-singulâr ist.

Beweis : Es geniigt offenbar, den Fall zu behandeln, wo B orthogonal
ist, d. h. ihre k Zeilenvektoren ein System an k bilden und zu zeigen,
dafi man dièses System zu einem System an^^ ergânzen kann, das

stetig von x e X abhàngt (denn man kann die Vektoren dièses Systems

°n,n-i alg Zeilenvektoren einer orthogonalen Matrix auffassen und dièse

Matrix in eindeutiger Weise zu einer quadratischen orthogonalen mit
der Déterminante + 1 ergânzen). Mit andern Worten : es geniigt zu zeigen,
daB die durch B gegebene Abbildung von X in Vn1e bezuglich der oben

genannten Zerlegung von Vnn_1 eine Spur ist. Das ist aber nach dem
Korollar zu Satz A (s. Nr. 4) der Fall, weil X in sich zusammenziehbar ist.

§ 3. Homotopiegruppen bei retrahierbaren Zerlegungen

6. Die Hurewicz'schen Formeln

a) Voraussetzungen : 3 sei eine retrahierbare Zerlegung des Kompak-
tums E, Z der zugehôrige Zerlegungsraum. E sei zusammenhàngend und
lokal zusammenziehbar; dann gilt dasselbe auch fur Z. (Vgl. Nr. 3f.)
Â c B sei ein Elément der Zerlegung, das (in sich) lokal zusammenziehbar

ist. Wir zeichnen in Z den Punkt A, in R einen Punkt a e A fur
die Bildung der Homotopiegruppen25) aus; das besagt: von jeder im
folgenden betrachteten Abbildung einer Sphâre in E, A oder Z wird
verlangt, daB dabei ein fester Punkt x0 dieser Sphàre in den Punkt a
bzw. A iibergeht.

b) Unter diesen Voraussetzungen sind die Homotopiegruppen der
Râume E, Z und Z von hôchstens abzâhlbarer Ordnung und handeln
von Eigenschaften der Râume im GroBen; die Elemente der n-ten Homo-
topiegruppe von E sind (vgl. Nr. 3f) die Komponenten von Esn, d. h.
die Klassen homotoper Abbildungen der Sn in E ,,unter Festhaltung

24) T. Wazewski, Sur les matrices dont les éléments sont des fonctions
continues (Comp. math. II [1935], 63—68), bes. S. 63).

2S) Wegen der Définition der Homotopiegruppen vgl. man: Hurewicz8), S. 114; Freuden-
thaï2*), S. 302.
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von a" (das Entsprechende gilt fur nn(A) und nn(Z))\ die Klasse der
zusammenziehbaren Abbildungen ist das Neutralelement der Gruppe,
das wir mit 0 bezeichnen26).

Die Klassen der bezilglich 3 relativ-zusammenziehbaren (s. Nr. 3g)
Abbildungen, d. h. die Komponenten von RSn, die Abbildungen aus ÂSn ent-
halten, bilden eine Untergruppe von nn{R), die wir mit <pn(3) bezeichnen.
Ferner bilden die Klassen derjenigen Abbildungen aus ASn, die in R8n

zusammenziehbar sind, eine Untergruppe y>n(Z) von nn(Â). Wir werden
bei Faserungen R/F Z statt ç>n(3) und ^n(3) »uch (fn(R/F) und
ipn(R/F) schreiben. — Offenbar ist ç?n(3) isomorph der Faktorgruppe
von nn(Â) nach yn(3)27)

?«(3)W^(2)/fc(3). (1)

c) Aus der Définition der Summe25) / + 9 zweier Abbildungen / und
g € Rsn ersieht man direkt, daB fur die Projektion P von R auf Z gilt :

P{f + g) Pf + Pg.

Die Projektion P, die jede Komponente von Rsn auf eine solche von
abbildet, bewirkt also einen Homomorphismus von nn(R) in nn(Z)

dessen Kern (darunter verstehen wir wie ublich die Untergruppe, die bei
dem Homomorphismus auf die 0 der Bildgruppe abgebildet wird) gemàB
dem Korollar zu Satz B (Nr. 4) genau aus den Klassen der relativ-
zusammenziehbaren Abbildungen besteht:

Pnn(R)ttnn(R)/<pn(3). (2)

d) Fn sei eine n-dimensionale Vollkugel, 27n~1 ihre Randsphare (n > 0).
Wir bezeichnen mit Rvn den Raum derjenigen Abbildungen / von Vn

in JK, bei denen Zn"x in A abgebildet wird (unter Beachtung der in
Nr. 6 a genannten Bedingungen) ; die zu / gehôrige Abbildung der Zn~x
in 3 bezeichnen wir mit rf (als Abbildung /' € R2n~x aufgefaBt, ist sie
in Rz"'1 zusammenziehbar Fur n ^ 2 definieren wir die Summe / + g
zweier Abbildungen /, g e J?^n, indem wir die auf En~x fur /' rf und

*•) Vgl. as). Fur n >2 sjnd die Homotopiegruppen abelsch; wir bezeichnen aber auch
fur n — 1 (Fundamentalgruppe) die Gruppenoperation als Addition.

*7) f*& isomorph, - homomorph.
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g' rg nach der Hurewicz'schen Vorschrift erklârte Addition ins Innere
der F" fortsetzen; dabei ist also

r(f + g)^rf + rg. (3)

Vennôge dieser Addition werden die Komponenten von jRp* zu Ele-
menten einer Grappe vn(3) •

F sei eine stetige Abbildung der Fn auf die #n, welche £n~x auf den
Punkt x0 c Sn und das Innere der Fn topologisch auf Sn — xQ abbildet*
Durch Vermittlung von F kônnen wir die Abbildungen der 8n in Z ein-
eindeutig denjenigen Abbildungen von Vn in Z zuordnen, bei welchen
2Jn~1 auf den Punkt A e Z abgebildet wird, d. h. nn{Z) aueh als Grappe
der Klassen solcher Abbildungen F der Fn in Z auffassen; mit Z?n werde
immer nur der Raum dieser Abbildungen bezeichnet. Nach dem Korollar
zu Satz A (Nr. 4) ist jede Abbildung F e Zvn eine Spur (man beachte das
in Nr. 3e Gesagte), und zwar einer Abbildung / e Rvn. Umgekehrt ist
die Spur Pf jeder Abbildung aus Rv" eine Abbildung aus Z^n. P bildet
also vn(3) auf 7tn(Z) ab, und zwar homomorph wegen

P(f + g) Pf + Pg.

Der Kern dièses Homomorphismus ist 0, denn jede relativ-zusammen-
ziehbare Abbildung / c Rrn ist zusammenziehbar; somit

Es sei noch bemerkt, dafi in diesem Isomorphismus der Untergruppt»
P7tn(R) von nn(Z) die Untergruppe derjenigen Komponenten von Rrn
entspricht, die Abbildungen / mit /(JL*"""1) a enthalten; wir bezeichnen
dièse Untergrappe von vn(3) mit /*n(3):

e) Zu jeder Abbildung / € R7n gehôrt eine in R2n~x zusammenziehbare

Abbildung f/==rfeA;sn""1i und umgekehrt gibt es zu jeder solchen

Abbildung gf eZ2""1 eine Abbildung g e Rvn (die ,,Zusammenziehungu
von g ') mit g1 rg Dabei wird jeder Komponente von Rvn eine Kom-
ponente von ~Azn~x zugeordnet, und man erhàlt wegen (3) einen
Homomorphismus von rn(3) in Tt^Â), genauer auf ^w_i(3) ; sein Kern bestebt

aus den Klassen derjenigen Abbildungen / € JK^n, fur welche rf in Asnrl
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zusammenziehbar ist, d. h. er ist identisch mit der eben genannten Grappe
A*.(3):

".(3)//*.(3) » v-i(3). (6)

oder vermôge des durch. P bewirkten Isomorphismus (4):

Vn.1(3). (7)

Die Formeln (2) und (7) wollen wir als Hurewicz'sche Forméln bezeich-

nen; sie sind eine Verallgemeinerung von Ergebnissen, die Hurewicz
fur Gruppenzerlegungen angegeben hat28).

ZusammengefaBt :

Satz E : Unter den Voraussetzungen 6a) und mit den Bezeichnungen
6b) gilt fur die Zerlegung 3 von R'

f) Zusatz fur den Fall n 1 (Fundamentalgruppe) :

Wenn A zztsammenhangend ist, so gilt fur n 1 an Stelle von Formel (7)

(7'j

denn jeder geschlossene Weg in Z, d. h. jede Abbildung von S1 in Z,
kann dann als Spur eines geschlossenen Weges in R aufgefaBt werden.

Fur den Fall einer Gruppenzerlegung gilt Formel (7) unveràndert auch
fur n 1, wenn man unter ipQ(3) die Komponenten-Grappe der Unter-
gruppe A von R versteht, und Pn^R) ist dann im Zentrum von nx(Z)
enthalten. (Man vgl. Hurewicz28).)

g) Nach (7) ist (n > 2) ^^(3) 0 gleichbedeutend mit

nn(Z) Pnn(R) ;

also:

Korollar zu Satz E : Dann und nur dann ist yn_!(3) 0, wenn jede
Abbildung F eZsn Spur'einer Abbildung / e RS* ist.

") s. «), S. 118, Satz XII.
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7. Eine Yerschârfung

a) Geometrische Anwendungen legen folgende algebraischen Betrach-
tungen nahe:

Wir nehmen an, man kônne die in der Nummer 6e) betrachtete homo-
morphe Abbildung (/, /' etc. bedeuten hier Abbûdungsklassen)

von vn(3) ftuf Vn-i(3) (n ^ 2) durch. einen Homomorphismus H von
W-i(3) în rn(3) umkehren in dem Sinne, da8 fiir jedes // c W-i(3)

rHf' f'
ist. Dann ist H ein Isomorphismus (von ^-1(3) *w vni3))> denn aus
Hf'=O folgt rHf'==f'=O Ferner ist der Durchschnitt Hyn_1(3) n fin{3)
leer: aus Hf e/in(3) folgt

also Hf' 0,

xmd jedes Elément / e rn(3) l»Bt sich als Summe eines Elementes von
Mn(3) und eines Elementes von -flryn_1(3) darstellen:

/ (/ - Hrf) + Hrf

mit r(/ - Hrf) rf - rf 0

also (/ - Hrf) e^(3) -

Also ist vn(3) direkte Summe von pn(3) und ^Vn-i(3)

"«(3) i«»(3) + ^Vn-xtS). n > 2 (8)

oder vermôge des durch P bewirkten Isomorphismus von vn(3) auf nn(Z):

nn{Z) Pnn(R) + PHtp^S), (9)

wobei PH die Grappe YV-i(3) isomorph in nn(Z) abbildet, also auch

TtJZ) « Pnn(R) + Vn^(3). (9')

Dies ist eine Verschârfung der Formel (7), (aber nur dann, wenn beide
Summanden rechts von 0 verschieden sind).
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b) In folgendem Spezialfall làBt sich ein Homomorphismus mit den

genannten Eigenschaften leicht angeben:
Das Elément A der Zerlegung 3 3

d. h. die Teilmenge A von R sei

in R zusammenziehbar (dann gilt ubrigens dasselbe fur aile Elemente der
Zerlegung, und wir wollen in diesem Falle 3 kurz eine zusammenziehbare

Zerlegung nennen). Dann ist ubrigens v\»(3) nJÂ), und 9?n(3) 0,
also Pnn{R) « nn{R).

__Wir legen eine bestimmte Zusammenziehung von A in R zugrunde,
d. h. eine stetige Schar von Abbildungen Ft (0 < t < 1) von A in R, bei
welcher Fo die identische Abbildung von A auf sich und Fx die Abbildung
von A auf einen Punkt von R ist. Wir kônnen dann in naheliegender
Weise fur jedes /' € Zs"""1 die Abbildungsschar Ftf (0 < t < 1) als
Elément / Hf von Ryn auffassen, derart, da8

ist. Die Zuordnung / Hfr vermittelt dann die gesuchte homomorphe
Abbildung von y>n-i(3) nn_x(A.) in vn(3)- Nach Formel (9) gilt also

nn(Z) Pnn(R) + PHnn_x{Â), (10)

wobei P und PH Isomorphismen sind.

Satz F : Unter den in Nr. 6 a) genannten Voraussetzungen gilt fur eine
zusammenziehbare Zerlegung 3 von R:

nn(Z) « itn(R) + 71^(2), n > 2

8. Ânwendungen

a) Die in Nr. 2d) behandelten Sphàrenfaserungen

sind zusammenziehbare Zerlegungen; wir kônnen also die Hurewicz-
schen Formeln in der verschârften Form (Satz F) anwenden:

Satz 6: Fur die projektiven Sa-Râume P&-i(®a) 1> 2> 4; *
2, 3, und q= 8; k 2) gilt

r; Fur q 2, 4, 8 gilt
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Korollar zu Satz 6: 1. Fur den reellen projektiven Raum Pfc_1(S1)
gilt2»)

was auch aus einem Satz von Hurewicz (s.8), Satz IV) folgt.

2. Fur den komplexen projektiven Raum iV.1(<52) Kk-i gilt30)

und

Bemerkung zu Satz 6 ': Es ist kein Fall bekannt, wo beide Summanden
von 0 verschieden sind. Fur q 2 çrhâlt man den Hurewicz'schen Satz31),
da8 fur n > 3 7tn(S2) « nn(S*) ist. Fur q 4 und 8 entsteht die Dar-
stellung von nn(8q) als direkte Summe gemâfi Formel (10) mit den dor-
tigen Bezeichnungen fôlgendermaBen :

+
wobei Pw^S*-1) « îi^/S**-1) und PHn^S*-1) ta n^S*-1) ist3»).

b) Die Anwendung der Hurewicz'schen Formeln (Satz E) auf die in
Nr. 2e) beschriebenen Zerlegungen 3 ' der Stiefel'schen Mannigfaltig-
keiten F., m

y,.»/ F_»,_* FB>fc 0 < h < m < n (also n > 3)

ergibt (unter Verwendung der in Nr. 2 d und 6 b erklârten Bezeichnungen) :

\/Pnr{ Fn>J « ^r-i( Vn, ml Vn-kt m-k) fur r > 2,

Wf "" nt (11)
^r(^«,m) « MV*,m)/Vr{Vntm/Vn_ktm_k) fUT f > 1,

1§) Es ist 7tjc(Sn) « 0 fur A? < n, tfn($n) die unendliche zyklische Gruppe, die von der
Klasse der Identitât der Sn erzeugt wird, und x^S1) 0 fur n > 2. Vgl, 8), S. 115 oben
(dièse Aussagen stûtzen sich auf bekannte Sâtze, s.1), Kp. XIII).

*°) Wir bezeichnen immer mit © die additive Gruppe der ganzen Zahlen, mit ©, die
Restklaesengruppe von (5 mod. 2.

w) s. 8), S. 119.
ta) Wie man direkt einsehen kann, ist PH hier nichts anderes als die Freudenthal*sche

Einhângung (E (vgl. *8)) ; wir werden dies spâter (Nr. lOh und 13a) im Rahmen allgemeine-
rer Ûberlegungen zeigen.
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(Die zweite dieser Formeln folgt aus (7;), weil Fw_fc m_fc zusammen-
hàngend ist.)

Wir setzen in (11) k 1, also m > 2; Fn, x ist der Sn"1 homôomorph,
also ist nr(Vnl) 0 fur r < n — 2, also folgt:

YV-i(F«,*/F»-if«-i) 0 fur r < n - 2

oder w(Fn,«/F^^) 0 fur r < n - 3

ferner P:zrr(Fw> J 0 fur r < w — 2

also *rr(Fw, J ^F^/F^,^) « *r( F-i,—i) fur r < n - 3 ;

anders formuliert :

Sate 7: Fiir aUe n > r + 2 ist ^(Fn, J w rcr(Fn+1>m+1).

c) Aus Satz 7 ergeben sich leicht einige Folgerungen.
Wenn n — m+l^r + 2 ist, so gilt

nr(V*,m) « ^(^«-1, «-l) « • ' • » ^r(Fw_w+lfl) \

aber Fn_m+1)1 ist der Sn~m homôomorph, und da wir r ^ n — m — 1

voraussetzen, ist 7rr(Fn_m+11) 0, und wir erhalten ein schon von
Stiefel33) angegebenes Résultat:

Satz 8: Wenn r < n — m — 1 ist, so ist nr(Vnm) 0

Korollar: Wenn w — m > 2 ist, soist Fn m einfach zusammenhàngend.

Setzen wir in Satz 7 m w — 1, so folgt fur n ^ r + 2 :

Fn+ln ist zur Gruppe aller (n + l)-reihigen ortbogonalen Matrizen mit
der Déterminante + 1, also zur Gruppe aller eigentlichen Drehungen
der Sn homôomorph; wir bezeichnen dièse Gruppe mit Fn. Dann kônnen
wir das letzte Résultat so formulieren:

Satz 9 : Fur die Homotopiegruppen der Oruppe Fn (aller (n + l)-reihigen
orthogonalen Matrizen mit der Déterminante + 1) gilt

nr(Fn) « 7tr(Fr+1)

fur aile n^r + 1

»») s. !«), S. 19, Satz 8.
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Die r-te Homotopiegruppe von Fn hat also fur ,,fast aile n", nàmlich
fur aile n > r + 1

> dieselbe Struktur. Dièse ist fur r 1 und r — 2

schon bekannt34): es ist ^(r2) « ©230) und 7t2(rz) 0 (daB ^(/y
zyklisch von der Ordnung 2 ist, folgt aus der Homôomorphie von F2 zum
reellen 3-dimensionalen projektiven Raum P3 ; auf den Fall r 2 kommen
wir in Nr. 13 zuruck). Es sei hier erwâhnt, da8 ich auch fur r 3, 4 und 5

die Struktur von 7tr(rr+1) habe bestimmen kônnen35); es ist30)

^s(A) « ©> ^(A) 0, wB(r6) 0

d) Einen zu Satz 9 analogen Satz erhalten wir fur die unitàr-uni-
modulare Gruppe An, d. h. die Gruppe der unitàren (n + l)-reihigen
Matrizen mit der Déterminante + 1) wenn wir von folgender Rest-
klassenzerlegung (s. Nr. 2 c) dieser Gruppe ausgehen:

U sei die Gruppe derjenigen Matrizen (uik) von An (n ^ 2), fur welche

tilk 8lk{k 1, n + 1) ist ; sie ist mit An_x isomorph. Zwei Matrizen
von An gehôren in dieselbe (Links-) Restklasse nach U, wenn sie in der
ersten Zeile iibereinstimmen. Jede Restklasse ist also durch. die (n + 1)

n+l
komplexen Zahlen %fc mit £ \ ulk I 2 1 charakterisiert, d. h. der Zer-

legungsraum dieser Restklassenzerlegung ist der S2n+1 homôomorph, und
wir kônnen sie nach Nr. 2d kurz durch

AJAn_x S*»»

beschreiben. Nach Nr. 2 c ist es eine retrahierbare Zerlegung. — S2n+1

lâBt sich also als Wirkungsraum von An auffassen; das làBt sich auch so

deuten: man kann jeder Matrix a eAn eine unitâre Transformation Ta
in {n + 1) komplexen Variabeln, oder, wenn man Ta in réelle Gleichungen
aufspaltet, eine orthogonale Transformation in (2n -f 2) reellen Variabeln

(eine Drehung der S2n+1) zuordnen.
Wir wenden den Satz E auf die Zerlegung An/An_x S2n+1(n ^ 2) an

und erhalten:

also

oder

Ferner
also

und

7tr(S*»+*)/Pnr(A

Vr-liÀJA*.
.)»
.1)

VAAJA^J
Pnr(A

7tr(A

7tr(A

n)

»)«

Vr-l
0

0

0

7CrU.

fur
fur
fur

'A

r
r
r
h

n-l)

<2n
<2rc
<2n
yr{An/

r >2

- 1

auch fur
fur
fur

r
1

1

1— •*• >

^ r ^ 2n

<r<2n-l.
»*) W^gen ^(r,,) vgl. man: Stiefel1*), S. 13, Nr. 4; wegen tff(JTn) TT^Oney (Bull. Am.

Math. Soc. 43 [1937], S. 798).
>5) Der Beweis wird demnâchst verôffentlicht werden.
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Dièse letzte Gleichung wenden wir wiederholt Solange an, als noch

n ^ — — ist und erhalten je nach der Paritât von r :2

und nx(An)

8atz 10 : Fur An, die unitar-unimodulare Gruppe in (n + 1) Variabéln,
gilt, wenn n ^ s> 0 ist:

ferner fûrn^l : n^A») « n^A^).
Ax ist der multiplikativen Gruppe der Quatemionen vom Betrage 1

isomorph, also der #3 homôomorph; also ist30)

n^AJ 0, n^AJ 0, n^AJ « jt3(/S3) « ffi

Korollar zu Satz 10 : Fur w ^ 1 ist rc^J 0, n2(An) 0,7tB(An)œ($).

Auf 7r4(^lw) und %(^4n) kommen wir in Nr. 16 zuriiek (es ist 7tA(An) 0
und nh{An) « © fur n > 2).

§ 4. Sâtze uber Schnittflâchen und Schnittelemente

9. Notwendige Bedingungen fur die Existenz einer Schnittflâche

a) 3 sei eîne retrahierbare Zerlegung des Kompaktums R; fur aile
Ausfûhrungen dièses Paragraphes sollen dabei die Voraussetzungen und
Bezeichnungen der Nummern 6 a) und 6b) gelten.

Unter einer Schnittflâche von 3 verstehen wir (vgl. Nr. 1g) eine

Abbildung ; € Bz, deren Spur Pj e Zz die Identitàt von Z ist.
Die naturliche Zerlegung des topologischen Produktes Z X A (wo Z

und A Kompakten sind), deren Zerlegungsraum mit Z homôomorph ist,
besitzt immer eine Schnittflâche (vgl. Nr. 2 a).

b) Wenn die Zerlegung 3 von R eine Schnittflâche besitzt, so ist jede
Abbildung F eZs» Spur einer Abbildung / € R&1, nâmlich von / jF:
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Nach dem Korollar zu Satz E ist also fur n ^ 2

(Als Punkt a eÂ im Sinne von Nr. 6a ist dabei j(A) zu wâhlen.)

c) Ordnen wir der Abbildungsklasse von F € Zs" die Abbildungsklasse
von jF c R8* zu, so ist dadurch eine homomorphe Abbildung von nn(Z)
in 7tn(R) gegeben. Wir schreiben der Kûrze halber auch fur dièse Abbil-
dungsklassen jF und jF (das ist zwar nicht ganz korrekt, weil nicht jede
zxir Abbildung jF homotope Abbildung in der Form jG, O cZS", dar-
stellbar zu sein braucht, und man somit zwischen j{F} und {jF} unter-
scheiden mûBte; fur das Rechnen in den Homotopiegruppen macht es

aber nichts aus). Wegen
PjF F

ist die genannte Zuordnung j sogar ein Isomorphismus :

nn{Z) « jnn{Z) c nn(R).

Der Durchschnitt der Untergruppen jnn(Z) und ç?n(3) von ^n(-B) ^t
die Null; denn aus / € <pn(3) folgt Pf 0, und hieraus, wenn / c J7tn(Z)

ist, auch / 0 (weil P die Gruppe jnn(Z) isomorph abbildet). Ferner
lâBt sich jedes Elément / von nn{R) als Summe eineS Elementes von ç?n(3)

und eines Elementes von jnn(Z) darstellen :

wobei P(f — jPf) Pf - Pf 0, also (/ - jPf) * 9>B(3) wt-

Also ist nn(R) direkte Summe von jnn(Z) und ç>B(3) (» ^ 2) :

^(J?) K(^)+^(3). (12)

Wegen yn(3) 0 ist auBerdem ç?n(3) « ^«3

Satz O : Wenn die Zerlegung 3 ^on R eine Schnittflache besitzt, so gilt
(vgl. Nr. 6a und 6b)

II) ^
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Satz 0 gilt insbesondere fur das topologische Produkt Z X A ; das kann
înan auch leicbt direkt (ohne Benutzung einer Schnittflàche) einsehen36).

Wichtig ist, daB in der Struktur der Homotopiegruppen eine Zerlegung 3
mit Schnittflàche sich nicht vom entsprechenden topologischen Produkt
unterscheidet.

Pur zusammenziehbare Zerlegungen 3 (Nr. 7 b) von R kônnen wir die
Bedingung yn(3) 0 (n > 1) weiter diskutieren. In diesem Falle ist
nàmlich

Vn(3) *n(Â) U > 1

Somit gilt folgendes

Korollar zu Satz 0,1: Wenn die zusammenziehbare Zerlegung 3 VO1* R
eine Schnittflàche besitzt, so ist nn[A) 0 fur aile n > 1

Wenn A endlichdimensional ist, so bedeutet das Verschwinden sàmt-
licher Homotopiegruppen von A, daB A (in sich) auf einen Punkt zu-
sammenziehbar ist (Hurewicz37). Wir kônnen also das Korollar auch so
formulieren :

3 sei eine zusammenziehbare Zerlegung, ihre Elemente seien
(endlichdimensional und) nicht in sich zUsammenziéhbar\ dann besitzt 3 keine

Schnittflàche.

So besitzt z. B. die Faserung einer Sphâre in geschlossene Mannigfaltig-
keiten sicher keine Schnittflàche (was auch leicht aus Homologiebetrach-
tungen folgt).

10. Sphârische Zerlegungen (Z 8m).

a) Wir nennen eine Zerlegung von R sphârisch und bezeichnen sie

mit $m, wenn ihr Zerlegungsraum Z der m-dimensionalen Sphâre Sm

homôomorph ist (m ^ 2).

Fur eine solche Zerlegung 3 m von -B kônnen wir leicht eine hinreichende

Bedingung fur die Existenz einer Schnittflàche angeben, nàmlich

daraus folgt nâmlich nach dem Korollar zu Satz E (Nr. 6), daB jede
Abbildung / c Zsm eine Spur ist. Wir kônnen als Urbildsphâre fur die
mte Homotopiegruppe auch Z selbst (und als ausgezeichneten Punkt x0

••) etwa so, wie in Seifert-Threlfall, Lehrbuch der Topologie, S. 156, in § 43 der
dort als Beispiel 1 angefûhrte Satz bewiesen wird.

»') Proc. Akad. Amst. 38 (1935), S. 522, Satz IV, in Verbindung mit Satz II.
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(vgl. Nr. 6a) den Punkt A eZ) wàhlen; ist v>m-i(3m) 0, so muB also
die Identitàt von Z eine Spur sein. Also gilt mit Rûcksicht auf Satz G, I:

Satz 11 : In einer spharischen Zerlegung $m von R gibt es dann und nur
dann eine Schnittflache, wenn y>m-i(3m) 0 ist.

b) 3m se* eine sphârische Zerlegung von R, und Z ihr Zerlegungsraum.
Wir verwenden im folgenden dieselben Bezeichnungen wie in Nr. 6d,
und fassen wie dort die Gruppe nn(Z) als Gruppe der Komponenten von
Z?n auf (wo Zvn den Raum derjenigen Abbildungen F von Vn in Z be-
deutet, fur welche F^"-1) A eZ ist).

T sei eine stetige Abbildung von Vm auf Z, bei welcher das Innere von
Vm topologisch auf Z — A und Xm~Y auf A abgebildet wird. (Die Klasse
von T in Zvm ist eines der beiden erzeugenden Elemente von nm(Z)
7tm(8m) « ©.) Es gibt immer eine Abbildung t e Rvm, derart, daB Pt T
ist; t ist im Innern von Vm topologisch. (tT*1 ist eine Abbildung von Z
in R, deren Spur die Identitàt von Z ist; sie ist aber im allgemeinen in A
nicht eindeutig

Wir nennen t ein Schnittelement der Zerlegung 3W> seîn ,3&nd" rt
t ' € A^"1 wird sich als besonders wichtig fur die Struktur der
Zerlegung erweisen (Bedeutung von r s. Nr. 6d).

Die Abbildungsklasse von t, aufgefaBt als Elément von vm(3m) ist,
ebenso wie die Klasse von T, bis auf das Vorzeichen eindeutig bestimmt.

Wir setzen noch fest, daB t (bei fester Orientierung von Vm und Z, die
auch im folgenden immer beibehalten werde) den Abbildungsgrad +1
haben soll; dann ist die Klasse von t bestimmt.

Die folgenden tîberlegungen gestatten nun, bei spharischen Zerle-

g^^g611 3m m^ Hilfe eines Schnittelementes t die Gruppen yn_i(3m)
wenigstens fur gewisse Dimensionszahlen n nàher zu beschreiben, also

diejenigen Abbildungen von 27*1"1 in A anzugeben, welche in R zusammen-
ziehbar sind; Abbildungen, die aus einer Abbildung von £n~x auf i7m""1

und der Abbildung t'von Zm~"x in 3 zusammengesetzt sind, haben sicher
dièse Eigenschaft, fur gewisse n sind es — wie wir sehen werden — die
einzigen.

c) Wir definieren nun fur jede Abbildung h von 2Jn"1 in 2Jm~1 eine

Abbildung Eh von Vn in Vm vermôge folgender Zuordnung, die »Ein-
Mngung" heiBen soll; x (bzw. g) sei ein Vektor des Rn (Rm), in welchem

ym (ynj dujch x2 ^ 1 (t)2 ^ 1) dargestellt wird; h sei gegeben durch die
fur x2 1 definierte Vektorfunktion

9 h(x) mit (h(x))2 1
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Dann wird Eh definiert durch

1) 0 fur x 0

JF T(Eh) ist eine Abbildung von Vn inZ, fur welche i^*-1) A ist,
d. h. .F eZv"; sie bestimmt also ein Elenjpnt T(Eh) der Grappe ;rn(-Z)

oder nn(8m). Verstehen wir unter © die Einhangung im Sinne von Freuden-
thal2B), und unter h jetzt das durch die Abbildung h von J^"""1 in Z™-1
bestimmte Elément von rcn_1(#m~1), so gilt fur das Elément T(Eh) von
nn(8m) entweder T(Eh) + ©A oder !F(JP*) — ©A ; bei der am
SchluB von Nr. 10b gemachten Pestsetzung ûber T ist

T(Eh) (£A

d) / £(i?A) ist eine Abbildung von Fn in J2 mit f(Zn"1) c A, also
eine Abbildung aus RVn. Setzen wir tf rt so ist

r(t(Eh)) (rt)h t'h. (13)

t{Eh) bestimmt eine Klasse t(Eh) € vn(3m) î ^r dièse gilt wegen

«ÊA (14)

Wir ordnen nun jedem Elément von ^n-i^™"1) > repràsentiert durch
eine Klasse h von Abbildungen der Sphàre En~x in Zm"19 diejenige Klasse
von Abbildungen der 27*1-1 in A zu, in welcher trh enthalten ist, und
nennen dièse Klasse, aufgefaBt als Elément von 7rn_i(3), auch t'h. Da
fur 2 Abbildungen hlf h2 von Zn~x in Zm~x

ist, bedeutet dièse durch t1 rt vermittelte Zuordnung eine homomorphe
Abbildung von nn_x{8m~x) in nnmml(2):

Zunâchst folgt nun aus (13):

••) Définition der Einhângung s. M), S. 303.
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In der Tat: wenn /' c ww->1(-4) von der Form trh ist (h € tv^S"1"1)) so

gibt es ein Elément / c vn(3m), derart, daB /' rf ist, nâmlich / t(Eh).
— Aus (14) folgt, daB fur dièses / gilt: Pf (£h. Nun entspricht aber
(Nr. 6d) jedem Elément F e nn(Z) ein wohlbestimmtes Elément / e rM(3m) >

derart, daB Pf F ist, und wenn wir rf ff setzen, so ist die Zuordnung

eine homomorphe Abbildung von nn(Z) auf y>n-i(3m). Wenn nun F (£h

ist, so muB nach (14) das zugehôrige / c vn(3J von der Form / t(Eh)
sein, dann ist also f tfh. Das gilt fur jedes Elément h von ^n-i(/Sm'"1).

Insbesondere gilt also folgender

Hilfssatz: $m sei eine sphârische Zerlegung, £ ein Schnittelement von
3™ und t' rt. Es gibt eine homomorphe Abbildung von nn(Z) auf
W-i(3m) (es ig^ die oben erklàrte Zuordnung .F->/'), bei welcher die
Untergruppe d7tn_1(8m~1) von ^w(2) auf die Untergruppe ^/^n-i(^m""1)
von ^n_i(3m) abgebildet wird.

e) GemâB der Freudenthal'schen Théorie der Abbildungen von Sphàren
auf Sphàren làBt sich 39) fur aile n < 2m — 1 (und bei ungeradem m
auch fur n — 2m— 1) jedes Elément von nn(Sm) bzw. von nn(Z) durch
Einhàngung erzeugen; es ist also fur dièse n

und aus dem Hilfssatz folgt dann:

Satz 12: 3W ^ eiwe spharische Zerlegung, t ein Schnittelement von 3m

(Définition s. Nr. llb) und t' rt. Dann ist fur n < 2m— 1 (und bei

ungeradem m auch filr n 2m — 1)

Insbesondere ist also Vm-i(3m) * ^m-i^"1"1) » d-_^- W-i(3m) M d™

von der Klasse von t! erzeugte Untergruppe von 7rm_i(^4).

Beweis der letzten Behauptung : Bezeichnen wir mit e die Klasse der
Identitàt der S171-1, so ist t'e die Klasse von tr in nm^1(A), ferner fur das

Elément h e 7im_1(Sm-1) mit dem Abbildungsgrad g

h g-e

also t'h t\g-e) g-t'e.

*») s. *8), S. 300, Satz I.
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t/nfn_1(Sm"-1) ist also genau die Untergruppe aller Vielfachen der Klasse
von tf in nm^1(3.).

Korollar zu Satz 12 : In der zusammenziehbaren (s. Nr. 7 b) sphârischeil
Zerlegung 3 m m^ dem Schnittelement t und tf rt gilt fur n < 2m — 1

(und n 2m — 1 bei ungeradem m)

f) Sate Jf3 ; 3m seî eîne sphârische Zerlegung von R, t ein Schnittelement
von 3m• Wenn der durch t'(= rt) bewirkte Homomorphismus von
^n-iC^"1"1) în ^n-i(^) ein Isomorphismus auf ^n-1(3J ist, dann zerfallt
nn(Z) in die direkte Summe

nn{Z) Pnn(R) + (£nn^(8^)

und die Einhàngung (g bildet ^n-iC/S"1-1) isomorph ab ; also

nn(Z) « Pnn(R) + n^S^)
Beweis: Wenn die Voraussetzung erfullt ist, so entspricht jedem

Elément /' t'h € W-i(3m) ©in bestimmtes Elément h € nn^.1(Sm^1). Die
Zuordnungf -> Hfr t{Eh) ist dann ein Homomorphismus von yn_i(3m)
in vw(3m) m^ den ^n Nr. 7 a geforderten Eigenschaften; nach Formel (9)

gilt also

nn{Z) Pnn(R)

Da PH dabei die Gruppe ^n-i(3m) isomorph in nn(Z) abbildet, ist

ferner nach Voraussetzung

also ®^_1(«w-1) « ^^(/S^-1),

und dieser Isomorphismus wird offenbar gerade durch die Einhàngung (£

vermittelt.
Korollar zu Satz 13 : Fur n < 2m — 1 (und bei ungeradem m auch fur

n 2m — 1) gilt: Wenn die durch £' bewirkte Abbildung von 7tn^1(8m"1)

isomorph ist, so ist Pnn(R) 0.
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Beweis: Fur dièse n ist nach Satz 12 fpn^(3m) t'n^S1»-1), und
auBerdem (&V-i(#m"~x) 7tn(8m) (was im Beweis von Satz 12 benûtzt
wird).

g) Wir betrachten nun noch den speziellen Fall einer sphârischen Zer-
legung 3™ von B, bei welcher A der Sphare S171'1 homoomorph ist. t sei
ein Schnittelement von $m; d^e Klasse der Abbildung t' rt von Zm~x
in A lâBt sich durch den Abbildungsgrad k charakterisieren, der bei
geeigneter Orientierung von 3 nicht-negativ ist. Wir bezeichnen eine

Abbildung einer (m — l)-dimensionalen Sphare in eine andere vom
Grade k (in unserem Fall der Zm~1 in A) immer mit Tk oder ausfuhrlicher
mit TJ""1.

Die Klasse von t € RV" (also auch die von t1 rt e Âsm~~1) ist nach
Nr. 10 c durch die Zerlegung $m eindeutig bestimmt. Zu 3«> gehôrt also
eine nicht-negative ganze Zahl k, die die Eigenschaft hat: fur jedes
Schnittelement t von !^m ist rt T™-1. Wir nennen k die charakteri-
stische Zahl der Zerlegung 3 m •

Aus den Sâtzen dieser Nummer folgt fur den betrachteten Spezialfall:

Satz 14: 3TO sei eine sphâriscfie Zerlegung von R, bei welcher A der S™""1

homôomorph ist, und k sei ihre charakteristische Zahl. Dann gilt

a) Fur n < 2m — 1 {und bei ungeradem m auch n 2m — 1) ist

b) Wenn k^O ist, dann ist Pnm{R) 0

Beweis: a) folgt direkt aus Satz 12, b) aus dem Korollar zu Satz 13,

wenn man bemerkt, daB fur k ^ 0 die durch tf Tk bewirkte Abbildung
von 7tm^1(Sm-1) in nm_mlÇÂ) isomorph ist: Tl sei eine Abbildung vom
Grade l von Zm~x in sich; wegen TkT% Tkl eÂz**-1 folgt aus TkT% 0

auch k-l 0, also 1 0.

Fur n m folgt aus Satz 14 a) leicht (mit denselben Voraussetzungen
und Bezeichnungen) :

Korollar : Eine Abbildung von A in sich ist in RA dann und nur dann
zusammenziehbar, wenn ihr Grad ein Vielfaches von k ist.

h) Insbesondere ist dann und nur dann die Zerlegung, von der in Satz 14

die Rede ist, zusammenziehbar (d. h. A in R zusammenziehbar), wenn
k 1 ist. In diesem Falle sind fur aile n ^ 2 die Voraussetzungen von
Satz 13 erfûllt; daraus folgt:

176



Satz 15: In einer zusammenziéhbaren spharischen Zerlegung 3
wélcher A der /S™"1 homôomorph ist, gilt fur aile n ^ 2

nn(Z) Pj

(£ Isomorphismen von nn(R) bzw. 7cn^i(

Dieser Satz geht nur insofern ûber die Formel (10) und den Satz F
(Nr. 7 b) hinaus, als er zeigt, daB unter der Voraussetzung Z Sm und
A 5m~1 die a. a. 0. PH genannte Abbildung von 7in_t(Â) in nn{Z) mit
der FreudenthaPschen J5EinhângungCi identisch ist (vgl. auch Nr. 8 a);
fur den Beweis dieser Tatsache allein wàren naturlich die meisten Sâtze
dieser Nummer in ihrer Allgemeinheit entbehrlich gewesen.

11. Gruppenzerlegungen

a) 3 seî die Zerlegung einer kompakten topologischen Grappe G in
Restklassen nach einer abgeschlossenen Untergruppe U ; der Zerlegungs-
raum Z ist ein Wirkungsraum von G (vgl. Nr. 2 c). 3 sei retrahierbar; das

ist sicher der Fall, wenn G eine Lie'sche Grappe ist (Nr. 2 c). Als aus-
gezeichneten Punkt im Sinne von Nr. 6a wâhlen wir die Gruppeneins e

von G (also A Pe, und A U). Ist j eine Schnittflàche von 3> so
kônnen wir immer annehmen, daB j(A) e ist.

b) Wenn dièse Zerlegung 3 von G gù& Schnittflàche j besitzt, so ist
durch

f{u,B)=:u-j(B) ueU.BeZ

(wo • die Multiplikation in der Grappe G bedeutet) eine topologische
Abbildung des topologischen Produkts U X Z auf G gegeben, bei welcher

f(Uf B) 5 ist; dann ist also G dem topologischen Produkt U X Z
homôomorph, und 3 ist der Links-Zerlegung von U X Z homôomorph
(Nr. lb) (d. h. der natûrlichen Zerlegung von U X Z deren Zerlegungs-
raum Z ist). Also

c) Satz 16 : Ist W ein Wirkungsraum der geschhssenen Ide'schen Grappe
G mit der Isotropiegruppe U, und besitzt die Zerlegung 3 von G in Best-
klassen nach U eine Schnittflaehe, so ist G dem topologischen Produkt
U x W homôomorph, und 3 ta der Links-Zerlegung von U x W homôomorph.
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Hieraus und aus Satz 11 folgt das

Korollar : Die Sphàre 8m sei ein Wirkungsraum der geschlossenen Lie-
schen Gruppe 0, und 3™ die zugehôrige (sphârische) Zerlegung von 0
in Restklassen nach der Isotropiegruppe U. Dann gilt :

Wenn ym«i(3) 0 ^> so ist G dem topologischen Produkt U X 8m

homôomorph.

§ 5. Ânwendungen, insbesondere auf Sphâren

12. Yorbereitendes ûber Sphârenabbildungen

a) Wir bentitzen in diesem Paragraphen folgende bekannten Resultate
aus der Théorie dei Abbildungen von Sphâren auf Sphâren, die wir als

Aussagen ûber die nie Homotopiegruppe nn(Sm) der m-dimensionalen
Sphâre 8m formulieren (vgl. auch Anm.29)30) :

™m

»+2

(S

(S

(S

(S

«)

0

0

©

©2

0

fur
fur
fur
fur
fur

n
n
m

m

m

<m
> 1

^3
>3

- 1

40)

41).

b) Mit T™ (oder Tk) bezeichnen wir eine Abbildung der Sphâre Sm in
sich vom Grade Je. Ist / eine Abbildung der 8n in die Sm, so ist auch T™f
eine solche, und wir bezeichnen auch ihre Abbildungsklassen mit / und
Tkf (statt j/j und \T%f\). Ordnet man dem Elément f€7tn(8m) das

Elément T™f zu, so entsteht eine homomorphe Abbildung von 7in(8m)

in sich. — (g bedeute die FreudenthaFsche Einhàngung38).
Hilfssatz*2): Fur m ^ 3 ist Tf7tm+1(8m) 0 — Oder: Fur jede

Abbildung / der /S™4"1 in die 8m(m > 3) ist T2f zusammenziehbar.
Beweis : Es sei m ^ 3 und / e 7tm+1(8m) ; nach einem Satze von Freuden-

thaï39) gibt es in der Klasse / eine ,,eingehângte" Abbildung:

40) s. Freudenthal**), S. 301. Ferner: &. Pontrjagin (C. R. Acad. Se. de TU.R.S.S.
[1938] XIX, 147—-149).

41) L. Pontrjagin (C. R. Acad. Se. de l'U.'R.S.S. [1938] XIX, 361—363).

**) Dieser Satï und ebenso das Korollai zu Satz 17 ergeben sich leicht aus allge-
meinern Betrachtungen ûber den Homomorphismus T*£ von nn(Sm>) in sich, auf welche

wir an anderer Stelle eingehen werden. Wir tdehen es vor, hier einen kurzen direkten
Beweis fur den Hilfssatz anzugeben.
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Nun kann man aber leicht verifizieren, da8 fur beliebiges n, m und h

ist. Die Abbildungsklasse T%f geht also dureh (evtl. wiederholte) Ein-
hângung aus T2h hervor, wo h ein Elément von n3(82) ist. Fur die Hopf-
sche Invariante43) y von T%h gilt :

y(T*h) 4y(fc) y(4*).

Die Elemente von ns(S2) sind aber durch die Invariante y charakterisiert;
denn y ist ein ganzzahliger, nichttrivialer Charakter von tzz(S2) und nach
Satz 6 ' ist nz(S2) « nz(S3) eine unendliche zyklische Gruppe. Also folgt

also (gT|* (g(4fc) 4-(E& 0,

weil ^4(^S3) « ©2 i8^- Also ist auch

Tff m • • (£T^ 0 q. e. d.

13. Spharenfaserungen

a) Die in Nr 2d besckriebenen Spharenfaserungen

S*-1/S*-1 £«, g 2, 4, 8

sind zusammenziehbare sphàrische Zerlegungen 3a' daren Elemente
(q — l)-dimensionale Sphàren sind. Nach Satz 15 (Nr lOh) gDt also
fur n > 2

wobei P die Gruppe ^(/S23"1) und (g die Gruppe fl^OS^"1) isomorph in
7tn(SQ) abbildet Das ist genau der Satz 6; (Nr 8a), nur dahin pràzisiert,
dafi die dort PH genannte Abbildung von ^M-i(^~1) in nn(8q) mit der
Einhângung identisch ist. Wesentliche Abbildungen (fur Abbildungen in
Sphâren ist ,,wesentlichu und ,,nicht-zusammenzieh,bar" gleichbedeu-
tend) der Sn auf 8q entstehen also auf 2 Arten: einerseits durch Projektion
(bezuglich der Zerlegung 3fl) wesentlicher Abbildungen der 8n auf S2*"1,
andererseits durch Einhângung wesentlicher Abbildungen der S"-1 au:É

48) jH.Hopf, Ûber die Abbildungen der 3-dimensionalen Sphàre auf die
Kugelflâche (Math. Ann. 104 [1931], 637—655), vgl. auch12). Beweis, dafi y ein
Charakter von ^aOS2) ist: Freudenthal28), S. 305.
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b) Wir heben noch den Teil dièses Résultâtes, der die Einhàngung
betrifft und der ein intéressantes Gegenstuck zu Sâtzen von Freuden-
thal44) ist, besonders hervor (fur q 2 trivial) :

Satz 17 : FUr q 4 und 8, und fur beliebiges n ^ 2 bildet die Einhàngung
(£ die Gruppe ^^(S^1) isomorph in die Gruppe 7in(Sq) ab (d. h. aus

/^n-i^-1), <E/= 0 folgt / 0).

Nach Freudenthal46) gilt immer

(g(/ + T_1/) 0;
also folgt aus Satz 17 das

Korollar*2): Fur m 3 und 7, und beliebiges n, und / €7tn{Sm) gilt

(Dagegen ist z. B. fur n 3 und m 2 immer î7^/ /.)

14. k-Felder au! Sphâren

a) Wir bezeichnen mit Lmk die (in natûrlicher Weise topologisierte)
Mannigfaltigkeit aller an die m-dimensionale Sphâre 8m tangentialen
fe-Systeme des Em+1 (s. Nr. 2e), 0 < k < m. Fassen wir in jedem Punkt
der Sm die dort angreifenden tangentialen k-Système zu einer Teilmenge
von Lm k zusammen, so ist dièse Teilmenge eine Mannigfaltigkeit Vmk
(Nr. 2 g), und aile solchen Teilmengen bilden eine Zerlegung (sogar eine

,,regulâre Faserung") von Lmk; ihx Zerlegungsraum ist der 8m homôo-

morph. Wir nennen sie die natûrliche Zerlegung von Lm fc und beschreiben
sie kurz durch

Eine Schnittflâche der natûrlichen Zerlegung von Lmk heiBt auch46)
ein k-Feld auf Sm; man kann ein fc-Feld auf Sm auffassen als System von
k tangentialen Vektorfeldern auf 8m, die in jedem Punkt der 8m paar-
weise orthogonal sind. Ein 1-Feld ist dasselbe wie ein tangentiales Vektor-
feld; Lm t ist der Raum der gerichteten Linienelemente der 8m.

b) Lm k ist der Mannigfaltigkeit Vm+lfk+1 homôomorph, und die
natûrliche Zerlegung von LwJfe ist der Zerlegung Vm+hk+1/Vmik Vm+ltl
(Nr. 2 g) homôomorph, also retrahierbar. Lmm^1 ist der orthogonalen
Gruppe Fm (Nr. 8 c) homôomorph.

**) s.M), Satz II.
") s. M), S. 304 (Nr. 3.8).
") vgl. Stiefel1*), § 4.1.
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c) Aus Satz 11 (Nr. 10a) folgt:
Satz 18: Es gibt dann und nur dann ein k-Feld auf Sm, wenn

V>m-i(Lmik/Vmtk) 0 ist (0<k<m).
Bei geradem m gibt es kein i-Feld auf Sm (denn es gibt nicht einmal ein

tangentiales Vektorfeld); also ist ipm^1(Lm k/Vm k) ^0, a fortiori also

^^i(FWffc)^0. Oder

Korollar zu Satz 18 : Fur ungerades m und 0 < k < m ist

nm{Lm%k) # 0

Darin ist der Satz von Feldbau47) enthalten, der aussagt, daB fur ungerades

m immer nm(rm) ^ 0 ist.

Satz 19 : Wenn die Sphâre Sm parallelisierbar ist, so ist die Gruppe Fm
dem topologischen Produkt Pm^1 X Sm homôomorph.

Beweis : Parallelisierbarkeit ist gleichbedeutend mit der Existenz eines
(m — 1)-Feldes auf Sm, also einer Schnittflâche der Zerlegung
^m/^m-i 8m • ^e Behauptung folgt also aus Satz 16.

Da die Sphàren Sz und S1 parallelisierbar sind48), ist jT3 dem
topologischen Produkt F2 X Sz und F1 dem topologischen Produkt Ft X S7

homôomorph.

d) Nach Satz G, II gilt fur die n-te Homotopiegruppe von F3 und F7:

7tn(FJ « 7in(S™) + 7tn(Fm^) m 3,7

Insbesondere ist 7Z2(FS) ttn2(S3) + ^(A); da F2 zum 3-dimensionalen
projektiven Raum P3 homôomorph ist, folgt nach Nr. 8a 7t2(r2) «
^2(^3) _. q5 aiso ^2(7^) 0. In Verbindung mit Satz 9 folgt hieraus fur
aile n ^ 3

Ferner ist auch 7r2(A) « n2{V2, t) « n^S1) 0. Also
Satz 20 : Fur aile orthogonalen Gruppen Fn(n 1,2, •••
(Das ist ûbrigeng in einem allgemeinen Satze von Cartan49) enthalten.)

e) ,,Ein i-Feld zu einem (fc+l)-Feld ergànzen", heiBt: ein Vektorfeld
angeben, welches mit den k Vektorfeldern des fc-Feldes zusammen ein
(&+l)-Feld bildet.

*7) J. Feldbau9), S. 1623.

«) s. u), S. 45.

*•) E. Cartan, La topologie des groupes de Lie (act. scient, et industr. 358), S. 14.
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Satz 21 : Man kann a) fur m ^ 3 jedes (m — 2)-Féld auf Sm zu einem

(m — l)-Feld, und b) fur m > 6 jedes H-Féld auf 8m zu einem 3-Feld
ergânzen.

Bemerkungen: zu a) Ein (m — 1)-Peld auf 8m kann man immer zu
einem wi-Feld ergânzen; zu b) Die Bedingung m ^ 6 erweist sich. spâter
(wegen Satz 27) als ûberflûssig.

Beweis von Satz 21 : a) Wir betrachten die 3 Zerlegungen

\J • ' m+lfm/ 'm, m—1 * w+1,1

3^. V IV Vr m+l,m—l/ r m, m—2 r m+1,1

und bezeichnen die zugehôrigen Projektionen bzw. mit P, Pr und Pff.
Wenn man den Zerlegungsraum von 3' mi* Vm+i,m-i un(i die Zerle-
gungsràume von 3 mwi 3;/ m^ ^w+1,1 identifiziert, so gilt ofîenbar

P P"P'.

Wir nehmen an, es gebe auf der 8m ein (m — 2)-Feld; das bedeutet,
daB es in 3" eîne Schnittflàche gibt, d. h. eine Abbildung jx von Vm+lx
in Fm+1)TO^, deren Spur Pnjx die Identitât J von Fw+1 x ist.

Fur 3 ' folgt aus der Homôomorphie von V21 zu S1, daB fur m ^ 3

ist, also nach. Satz E (Korollar), daB jede Abbildung einer Sm in Vm+1 mmJl

bezûglich 3 ' ©ine Spur ist. Es gibt also eine Abbildung ; von Fw+M
in Fw+lwt, fur welches Pfj jx ist, also ist

Pj P"P!] P7^ J,

d. h. j ist eine Schnittflàche von 3 deren Projektion bezûglich 3 ' die
Schnittflàche jx von 3" ergibt. Das ist aber gerade die Behauptung a),
wenn man nur 3* und 3" durch die dazu homôomorphen Zerlegungen
Lm.m-JVm,m-i 8m ^d L^m_JVm%w_2 8" ersetzt.

Der Beweis von b) verlâuft ganz analog, wenn man von den
Zerlegungen

3: Fm+1)4/FW)3 l^w+i^

3 : Fw+1)4/ FTO_2>i ^w+1,3

3 : ^w+l,3/^w,2 Fm+1>1

atisgeht und beriicksichtigt, daB fur m ^ 6
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ist, und somit auch

15. Linienelementrâume (1er Sphâren

a) Wir untersuchen jetzt speziell den Raum Lml aller gerichteten
Linienelemente der 8m.

Bei ungeradem m gibt es auf der Sm ein stetiges Vektorfeld (man kann
leicht eines explizit angeben) ; d. h. die naturliche Zerlegung von Lml
besitzt eine Schnittflache, und ans Satz G (Nr. 9) folgt50) :

Satz 22 : Fur aile Homotopiegruppen des Linienelementraumes Lm x

einer Sphare ungerader Dimension m gilt

b) Die naturliche Zerlegung von Lml ist eine spharische Zerlegung 3m >

deren Elemente der S™*1 homoomorph sind. Zu 3w gehort also nach
Nr. 10e eine charakteristische Zahl Je. Man konnte leicht direkt einsehen,
daB Je gleich der Euler'schen Charakteristik der Sm sein muB. Wir ziehen
es aber vor, ein besonders einfaches Schnittelement der Zerlegung 3m
anzugeben, aus welchem man entnimmt, da8 bei geradem m die Zahl
Je 2 ist (und bei ungeradem m naturheh Je 0).

c) Als Vorbereitung betrachten wir eine spezielle Abbildung s einer
Sphare Zm auf eine gleichdimensionale Sphare Sm. Zm sei im (m + 1)-
dimensionalen euklidischen Raum jRÎ*+1 mit den Koordmaten ux,

m-f-1
um+1 durch S u* 1 und 8m in Rm+1 mit denKoordinaten xlf xm+1

» î
m+ 1

durch U x*=l gegeben. Die Abbildung s

X s(u) X € #m, U € 27m

sei durch

xt 2ulu1 — ètl i 1, 2, m + 1

definiert51).

50) Ein analoger Satz gilt ofïenbar fur den Lmienelementraum jeder Mannigfaltigkeit
Mn mit der Charakteristik 0. Es ist bemerkenswert, dafi m diesem Falle sowohl Homo-
topie- als auch Homologiegruppen des Linienelementraumes mit denen des topologischen
Produktes MnxSn-—l ubereinstnnmen (wegen der Homologiegruppen vgl. Gysin9)).

51) Identifiziert man Rm+l mit R™+1, so ist s(w) derjenige Punkt von S»», den man
dureh Spiegelung von S«* an dem durch u gehenden Durchmesser aus dem Punkt (l,0,...,0)
€ R™ erhalt. (Dièse bzw. eine ahnhche Abbildung wird von Hopf an verschiedenen Stellen,
z. B.12), benutzt
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Wir bezeichnen mit £m~1 den Âquator v^ 0 von £m und mit Hm
die Halbsphàre ux > 0 von 27m, ferner mit p den Punkt xi — <5tl von
#m. Danngilt:

und man sieht leicht, daB Hm topologisch auf Sm — p abgebildet wird
(mit dem Grad + 1 ; die Orientierung der Sphàren sowie der Halbsphâren
8ei durch die naturliche Orientierung des einbettenden euklidischen
Raumes bestimmt).

Antipodische Punkte von £m haben bei der Abbildung s denselben

Bildpunkt auf Sm. Da die Spiegelung von £m an ihrem Zentrum den
Grad + 1 oder — 1 hat, je nachdem m ungerade oder gerade ist, folgt
hieraus, daB der Abbildungsgrad von s bei ungeradem m den Wert 2

und bei geradem m den Wert 0 hat.

d) Wir stellen Lml dar als Mannigfaltigkeit Vm+lj2 im euklidischen
Raum Bm+1, d. h. als Menge aller Paare (x, y) von orthogonalen nor-
mierten Vektoren x und y des j?m+1 (mit den Komponenten x{ bzw.

yi9 i l, m + 1). Der naturlichen Zerlegung von Lml{m > 2) ent-
spricht dann die Zerlegung 3

deren Zerlegungsraum wir als Sphâre Sm und deren Projektion wir durch

P(xy) x €8m
geben kônnen.

Vm sei die ,,Vollkuger' Hm + Zm~1 c £m (Bezeichnungen wie in c).
Wir definieren eine Abbildung t von Vm in Fm+12 durch

xi — 2Ui % — ôa
i 1, m + 1

yi 2u4 u2 — ôi2

m+l m+1 to+1
Man verifiziert, daB £ xiyi=0 und £ x\ £ y\=l ist. Die Spur Pt

dieser Abbildung ist nichts anderes als die oben $ genannte Abbildung;
sie bildet also Hm topologisch auf Sm — p und £m~1 auf p (das ist der
Punkt mit den Koordinaten x{ — ôa) ab. t ist also ein Schnittelement

von 3.
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Die Abbildung V rt von Um~~1 (n^ 0) auf das zu x p gehôrige
Elément der Zerlegung 3 kann man als Abbildung

y{ 2u{u2 — dit i 2, m + 1

von J?™-1 auf die zu FTOl homôomorphe Sphâre /S7"-1 (£y? l) auf-

fassen; sie hat nach den Ûberlegungen von c) bei geradem m den Grad 2
und bei ungeradem m den Grad 0

Satz 23: Die charakteristische Zahl h der natûrlichen Zerlegung des

Linienelementraumes Lml einer Sphâre gerader Dimension hat den Wert 2

(und einer Sphàre ungerader Dimension den Wert 0).

Es sei noch bemerkt, daB man die Abbildung t auch als tangentiales
Vektorfeld auf Sm — p deuten kann; man erhàlt dasselbe Peld, wenn
man das Vektorfeld (0, — 1, 0, 0) in der Âquatorebene xt 0

stereographisch vom Punkt p aus auf die 8m projiziert. Der Index der
Sûigularitât in p ist dabei dasselbe wie die charakteristische Zahl k.

e) Folgerungen aus Satz 23. Aus Satz 14 (Nr. 10) und unter Anwen-
dung des Hilfssatzes aus Nr. 12 folgt nun bei geradem m fur Lmi x und
seine natûrliche Zerlegung Lml/Vml 8m (oder Lml/Sm'-1 Sm)
fur m > 2:

liS—1) « 2© « © 30)

JL8'»-*) - 0

P7iJLmtl) 0

Pur die Homotopiegruppen der Dimension m — 1, m und m + 1

erhâlt man hieraus:

Wegen n^S1") 0 ist Pn^L^) 0, also nach Satz E :

i&mt/B"-1) « ®2 30) •

Ebenso folgt aus Pnm(Lml) 0 fur m > 4 :

V/^1) « *m(Sm-1) « ©2

Wegen yJL^/S™-1) 0 ist ferner Pnm+1{LmA) ^W+1(SW), also

aber wegen nm+^S™-1) 0 ist auch 9?m+i(iTO,i/^w"~1) 0, somit

%i(iw,i) « ^ro+i(^m) « ©2, fur m > 4

185



Satz 24: Fût den Linienelementraum LmX einer Sphare gerader Dimension

m ^ 4 gilt

Die Tatsache, daB y>m(Lml/Sm-1) 0 ist, kônnen wir nach Satz E
(Korollar) auch so formulieren (gilt auch fur m 2) :

Satz 24r: Fur den Linienelementraum Lml einer Sphare gerader Dimension

gilt: Jede Abbildung einer #m+1 in Sm ist bezûglich der natilrlichen
Zerlegung von Lml eine Spur.

(Fur Sphâren ungerader Dimension ist dieser Satz trivialerweise gultig,
weil die Zerlegung von Lml eine Schnittflâche besitzt.)

16. Ein Satz iiber 2-Felder auf Sphâren. Mcht-Parallelisierbarkeit der
Sphare S5

a) Satz 25 : Wenn es auf der Sphare 8m ein 2-Feld gibt, so kann man
jedes l-Feld auf Sm zu einem 2-Feld ergânzen.

Beweis: m sei ungerade ^ 5; denn nur dann sagt der Satz etwas aus.
Wir beweisen ihn in folgender Form : Es seien 2 tangentiale Vektorfelder
auf Sm gegeben; wenn man das eine der beiden zu einem 2-Feld ergânzen
kann, dann auch das andere. 3 se* die Zerlegung

des Raumes Lm2; ihre Elemente sind die Teilmengen derjenigen an
die Sm tangentialen 2-Systeme, die im selben Punkt der Sm angreifen
und im ersten Vektor ubereinstimmen; ihr Zerlegungsraum sei mit Lml
identifiziert. 3 ^ zv& Zerlegung

homôomorph.
Die beiden gegebenen Vektorfelder kônnen wir als Abbildungen von

Sm in Lml auffassen. Dann lautet die Behauptung: Wenn eine dieser

Abbildungen bezûglich 3 e^rie Spur ist, dann auch die andere. fl9 f2 e

nm{Lml) seien die Klassen dieser Abbildungen. Wenn wir zeigen kônnen,
daB g fx — /2 beziiglich 3 eine Spur ist, so ist der Satz bewiesen.

In der naturlichen Zerlegung 3 ' von ^ml :

ist P/x P/2 die Klasse der Identitât von Sm, also
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somit g e <pm(Lm)1 / Fm>1). (s. Nr. 6)

Fm x c Lml sei ein bestimmtes Elément der Zerlegung 3'î
Punkten von Vml gehôrigen Elemente Fm_1}1 der Zerlegung 3 bilden
zusammen eine Mannigfaltigkeit FWj2c LmZ, in weleher die
Zerlegung 3 eme Zerlegung 3"

induziert; 3" îst zur natùrlichen Zerlegung von £w_ifi homôomorph.
Fur die Klasse g /x - /2 € jrw(LmjL) gilt y € yJIr^/F^) ; wir

kônnen sie also durch eine Abbildung von Sm in FTOl repràsentieren,
und dièse ist nach Satz 24 ' bei ungeradem m ^ 5 in 3/7 (alS(> auch in 3)
eine Spur. Nach dem grundlegenden Lemma (Nr. 3) ist also g in 3 eine
Spur, q.e.d.

b) Es sei m ungerade, m 2k — 1. In einem mit festem Koordinaten-
system versehenen euklidischen Raum B2k sei

X \XX #2fc)

der Ortsvektor der Sphàre 8m :x2 1. Mit x bezeichnen wir den Vektor

Durch x ist wegen
XX 0

ein tangentiales Vektorfeld auf /Sm gegeben. Die Frage, ob es auf 8m ein
2-Feld gibt, ist nach Satz 25 âquivalent mit der Frage, ob sich dièses

spezielle Vektorfeld x zu einem 2-Feld ergànzen lâBt, oder: ob man eine

stetige Vektorfunktion t) von x angeben kann, derart, dafi fur jeden
Punkt 3e der Sm gilt

g2 i xr) — jg o

(Wenn dies môglich ist, so hat man ubrigens gerade ein 3-Feld auf Sm)

der Vektor t) liefert nàmlich das dritte Vektorfeld, weil offenbar

xx) — x\) 0 und si) acg 0

ist).
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Wir fassen nun den JR2& auf als unitâren Raum in k komplexen Dimen-
sionen, Uki ordnen also dem Ortsvektor x des R2k den Vektor u mit
den k komplexen Komponenten

ué x2i_x + ix2i j 1, k

zu und dem Vektor t) (yl9..., y2k) den Vektor t) mit den Komponenten

Die Bedingungen x2 r)2 1 bedeuten dann

uû vi 1

und die Bedingungen ït) XX) 0 gehen wegen

uber in
Ut> 0.

Damit ist gezeigt:
Satz 26: Es gibt dann und nur dann ein 2-Feld auf der Sphâre

wenn man im k-dimensionalen unitâren Raum JJh eine filr uïï 1 de/i-
nierte stetige Vektorfunktion p des Ortsvektors u finden kann, fur welche

x>u 1 und ut) 0 ist.

c) Im Falle m 5 (k 3) kônnen wir die Frage nach einem 2-Feld
auf Sm nochmals anders formulieren :

Ganz analog zur Darstellung der orthogonalen Gruppe F2 als Vektor-
mannigfaltigkeit F3>2 kann man nâmlich die Gruppe A2 aller 3-reihigen
unitâr-unimodularen Matrizen darstellen als Mannigfaltigkeit aller im
Ursprung von Uz angreifenden unitâr-orthogonalen Vektorpaare. Die
zum Wirkungsraum 85 von A2 (vgl. Nr. 8d) gehôrige Zerlegung von A2i

A2/At 8*

entsteht in dieser Mannigfaltigkeit, wenn man jeweils aile diejenigen
Vektorpaare zu einem Elément der Zerlegung zusammenfaBt, die den-
selben ersten Vektor haben (man vgl. die Zerlegung V3f2/V2tl V31,
die zu r2/rx S2 homôomorph. ist) ; bezeichnen wir diesen Vektor mit
U, so bedeutet die in Satz 26 genannte Vektorfunktion t) von u nichts
anderes als eine Schnittflàche der Zerlegung A2/Aï S5. Wir sehen
somit :
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Satz 26': Fails es auf der Sphàre S6 ein 2-Feld gibt, so besitzt die Best-
klassenzerlegung A2/Al S6 der unitar-unimodularen Oruppe A2 eine

Schnittflâche (und umgekehrt).

d) Auf Grand einer Untersuchung von Pontrjagin kônnen wir die
Frage der Existenz einer solchen Schnittflâche weiter verfolgen. Pontrjagin

hat nàmlich gezeigt52): A[ sei eine bestimmte Restklasse der Zer-
legung A2/A1 S5; es gibt eine wesentliche Abbildung von 8* auf A\, die
in A 2 zusammenziehbar ist. (Dièse Abbildung sowie ihre Zusammenzie-
hung werden dabei explizit angegeben, und man stellt iibrigens leicht
fest, da6 es sich bei dieser Konstruktion, wenn wir unsere Terminologie
verwenden, um ein Schnittelement der Zerlegung handelt, dessen Rand
die wesentliche Abbildung von S4 auf A[ ist.) Das bedeutet

die Zerlegung A2/A1 S5 besitzt also Jceine Schnittflache, und daraus

folgt wegen Satz 26':

Satz 27 : Es gibt auf der 5'dimensionalen Sphàre S& hein 2-Feld.

Korollare: a) Die Sphàre S5 ist nicht parallelisierbar.™) —

b) urjr,) # o

e) Aus der Tatsaohe, daB ^(^Z^) ^ 0, genauer

ist, folgt fur die unitâr-unimodularen Gruppen:

Wegen Pné(A2) 0 ist

7tA(A2) « n^AJ/y^/AJ 0

also nach Satz 10:
7tt(A8) 0 fiir aUe s

M) L. Pontrjagin, tJber die topologische Struktur der Lie'schen Gruppen
(comm. math. helv. 13, S. 277—283). Das wichtige Ergebnis, daô At nicht dem topo-
logischen Produkt S* X S* homôomorph ist, hat Pontrjagin ohne Beweis schon frûher
ausgesprochen: Homologies in compact Lie groups (Recueil math, de Moscou,
Bd. 6 [48], 389—422), S. 417.

M) Wir weisen darauf hin, dafi es nicht bekannt ist, ob auûer S1, S9 und 87 (vgl. u),
S. 45) noch andere Sphâren parallelisierbar sind; hingegen hat E. Stiefel (Comm. math.
helv. 13 [1941], 201—218) bewiesen, dafi unter den reellen projektiven Bâumen hôchstens
die der Dimension n 2* — 1 parallelisierbar sein kônnen.
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daraus folgt, daB keine Gruppe Aa(s ^ 2) einem topologischen Produkt
homôomorph sein kann, in welchem ein Faktor eine Sz ist. (Dièse Konse^

quenzen, die wir hier nur in unserer Terminologie formuliert haben,
bilden zusammen mit der oben genannten Konstruktion den Inhalt der
zitierten Arbeit 52) von Pontrjagin.)

f) Ans %p^(A2/A^) œ ©2 folgt ferner

also

Pnb{A2) 2ttb(S*) « ©
Wegen

ist
<pb(A2/Ax) 0,

also
Pnb{A2) « nb{A2) « ©

Die Klassen der Abbildungen / von S5 in A2 sind also charakterisiert
durch eine gerade Zahl, nàmlich durch den Grad der Abbildung Pf von
S5 auf S5.

DaB nb(A2) « © ist, folgt ubrigens auch ohne Kenntnis von ip^A^A^
d. h. ohne Beniitzung des Satzes von Pontrjagin daraus, daB tpA(A2/At)
hôchstens eine zyklische Gruppe der Ordnung 2 sein kann.

Satz 28 (vgl. Satz 10): Fiir die unitâr-unimoduiaren Gruppen As(s ^ 2)

gilt
a) Tt^Ag) 0 (Pontrjagin).

b) ti5(A8) « ©

17. Felder von Flâchenelementen auf Sphâren

a) Wir bezeichnen mit Em2 das Buschel aller 2-dimensionalen, orien-
tierten Ebenen des Rm durch einen festen Punkt 0 des Rm (auch ,,Flàchen-
elemente" genannt, genauer: orientierte Flachenelemente); als Mannig-
faltigkeit aufgefaBt, ist Em2 dem Zerlegungsraum einer retrahierbaren
Zerlegung von Vm 2 homôomorph (Nr. 2h):

(Da V21 zur S1 homôomorph ist, folgt hieraus leicht, daB fur n
nJLEm%i) « nn{Vm>2)
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b) Fm sei die Mannigfaltigkeit aller an die Sm tangentialen Flàchen-
elemente ; sie tritt auf als Zerlegungsraum folgender Zerlegung 3 ' von
Lm2k : Man fasse jeweils aile die an die 8m tangentialen 2-Systeme zu*
sammen, die im selben Punkt der 8m angreifen und dort dasselbe Flâchen-
element aufspannen (vgl. Nr. 2i) :

Wenn eine Abbildung F eines Raumes X in Fm beziiglich 3 ' Spur von
/ ist, so bedeutet das: fur jedes x c X liegt das 2-System f(x) im Flâchen-
element F(x). Wir sagen dann, F sei ,,durch / aufgespannt".

c) Fm besitzt eine naturliche Zerlegung 37/> deren Elemente die Bûschel
Em2 aller im gleidien Punkt der Sm angebrachten tangentialen Flàchen-
elemente, und deren Zerlegungsraum die Sphâre 8m ist (vgl. Nr. 2i)

Ein Feld von Flâchenelementen auf Sm bedeutet eine Schnittflâche
von 3».

Ist P' bzw. P" die zu 3 ' bzw. 3;/ gehôrige Projektion, und P die Pro-
jektion in der naturlichen Zerlegung 3 von Lm 2

so gilt
P= P"Pf.

d) Wegen

ist jede Abbildung der 8m in Fm eine Spur beziiglich 3 '• Wir nehmen nun
an, 3" besitze eine Schnittflâche ;1? d. h. es gebe eine Abbildung jt der
8m in Fm, derart, da8 Pnjx die Identitât der 8m sei. Dann ist j± Spur
in 3', d. h. es gibt eine Abbildung j der Sm in Lm2 derart, daB

j
also

Pj P"P!) P'%

die Identitât der Sm ist: j ist Schnittflâche von 3 •
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Damit ist gezeigt:
Satz 29: Jedes Féld von Flachenelementen^) auf 8m kann von einem

2-FéId auf 8m aufgespannt werden (m ^ 3).

Korollare : a) Auf einer Sphare gerader Dimension ^ 4 gibt es hein
Féld von Flachenelementen.

Aus Satz 27 folgt ferner: b) Auf der Sphare S5 gibt es hein Feld von
Flachenelementen.

Aus der letzten Aussage kann man wegen des in Nr. 2f beschriebenen
Zusammenhanges zwischen der Sphâre S5 und der komplexen projek-
tiven Ebene iL2 P2(S2) leicht folgern, dap es auch in der komplexen
projektiven Ebene K2 kein Feld von Flachenelementen gibt.

In diesen Ergebnissen hat man unter Flachenelementen immer orien-
tierte Flâchenelemente zu verstehen ; man kann aber, wie leicht zu sehen,
jedes Feld von nichtorientierten Flachenelementen auf einer Sphàre
,,orientieren" (d. h. jedem Flâchenelement des Feldes eine seiner beiden
Orientierungen zuordnen, so daB ein Feld von orientierten
Flachenelementen entsteht). Satz 29 und seine Folgerungen gelten also unver-
ândert auch fur Felder voê nichtorientierten Flachenelementen.

M) gemeint sind immer tangentiale Flâchenelemente der Sm

(Eingegangen den 17. Juni 1941.)
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