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Les réseaux Riemanniens

Par CHARLES Branc (Lausanne)

On a montré') comment on pouvait retrouver, pour des fonctions
définies sur un ensemble discontinu de points, des propriétés absolument
analogues & celles des fonctions analytiques d’une variable complexe;
il s’agissait en particulier des propriétés du module d’une fonction analy-
tique dans une région du plan, propriétés qui correspondent exactement
a des propriétés des fonctions harmoniques.

Nous nous proposons ici d’élargir ces résultats, en introduisant des
réseaux Riemanniens, analogues discontinus des surfaces de Riemann;
ces réseaux se répartissent en deux types, que I'on peut encore appeler
parabolique et hyperbolique; on peut également, en introduisant une
certaine notion de courbure, retrouver une formule analogue & celle de
Gauss-Bonnet sur les surfaces, et qui conduit & un critére de type assez
précis.

§ 1. Les réseaux Riemanniens

Soit dans un plan un ensemble discontinu de points, sans point d’accu-
mulation & distance finie: relions des points de cet ensemble par des arcs
sans points communs autres que les points de ’ensemble considéré, et
tels que deux arcs au moins aboutissent en chaque point donné. Nous
appellerons cette figure un réseau Riemannien, ou plus simplement un
réseau ; dans la suite, nous serons amenés & faire deux restrictions & cette
définition:

A. Le réseau décompose le plan en un ensemble de triangles (alors
qu’en général il s’agit de polygones quelconques).

B. Le réseau peut étre décomposé en une suite de polygones C,, C,,...,
C,,..., la couronne comprise entre C; et C,, ; étant traversée par les
arcs du réseau.

- On remarque sans peine que les réseaux déja envisagés?) vérifient la
condition B. Le réseau formé en décomposant un plan en hexagones
réguliers, puis en divisant chacun de ces hexagones en 6 triangles remplit
les conditions A et B.

D’autre part, la condition A n’est pas essentielle: on pourrait remplacer

1) Ch. Blanc: Une interprétation élémentaire des théorédmes fondamen-
taux de M. Nevanlinna. Comm. Math. Helv. 12 (1939), 153—163. Ce travail sera

désigné dans la suite par I.
) I, p. 153.
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triangle par hexagone ou quadrilatére : il n’y aurait alors & apporter dans
la suite que quelques modifications sans importance.

Réseau conjugué. A tout réseau E (ne satisfaisant pas nécessairement
aux conditions A et B) correspond un réseau E*, que nous appellerons
réseau conjugué. On le construit de la facon suivante: & tout polygone
élémentaire de £ on fait correspondre un sommet de E*, et & toute aréte
de K on fait correspondre une aréte de £*, reliant les deux sommets de £*
qui correspondent aux polygones de E séparés par l'aréte envisagée.
On pourra méme définir un sens sur toute aréte de £* & partir d’un sens
sur 'aréte de K, en fixant une fois pour toutes un sens positif de rotation
sur ¥.

§ 2. Fonections pré-harmoniques sur un réseau

Considérons une région £ d'un réseau Riemannien quelconque. En
associant a chaque sommet P de £ un nombre réel u (P), on définit une
fonction sur E. Nous dirons que cette fonction est pré-harmonique®) en

P silon a
A(P)u (P) = Xu(P’), (2.1)

A(P) étant le nombre d’arétes issues de P, et la somme étany étendue
aux sommets P’ de E voisins de P. Si u(P) n’est pas p. h. en P, on posera

Bu(P) = A(P)u (P) — Zu(P').

Si u(P) est p. h. en tous les sommets P de E, on dit qu’elle est p. h.
dans £. On a sans autre le théoreme:

Une fonction p. h. dans K atteint son maximum et son mintmum sur
le contour.
Cela permet de démontrer le
Théoréme d’existence : St U'on se donne une fonction «(P) sur le contour
I' de E, et une fonction f(P) en tout point intérieur de E , il existe une fonc-
tion et une seule w(P) telle que :
1° w(P) = «(P) sur I';
20 B,(P) = f(P) dans E.

En effet, il ne peut exister, en vertu du théoréme du maximum, qu’une
solution. Or la recherche de cette solution conduit & la résolution d’un

3) Cette dénomination est due & M. G. Bouligand : Sur le probléme de Dirichlet.
Ann. Soc. Pol. Math. 1925, p. 59—112. Nous l'ignorions lors de la rédaction de I, ou
nous avons employé l'expression fonction harmonique. Nous écrirons désormais
P. h. pour pré-harmonique.
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systéme de n équations linéaires & autant d’inconnues; il suffit de montrer
que le déterminant n’en est pas nul; on le vérifie en remarquant que ce
déterminant ne dépend que de I', mais est indépendant du choix de
x(P) et de f(P). Prenons «(P)=a #0,f(P)=0. La fonction
u (P) = a est alors solution, et elle est unique, donc le déterminant n’est
pas nul.

Il résulte en particulier de ce théoréme 1’existence d’une fonction p. h.
dans F, prenant des valeurs données sur le contour I'. Cette fonction
réalise le minimum de la somme 2 [« (P) — % (Q)]? étendue & toutes les
paires de points voisins sur £. Pour la démonstration, voir I, p. 154.

Dérivée d’une fonction. On peut considérer, & cdté des fonctions des
sommets d’un réseau, des fonctions des arétes. On dira qu’une fonection
d’aréte f(q) est la dérivée d’une fonction u (P) des sommets si

@) = w(Py) — u(P,) = u'(q),

P, et P, étant l'origine et 'extrémité de ’aréte orientée q.

La somme X'u'(q) étendue aux arétes d’un polygone fermé de E est nulle,
si on prend pour origine d’une aréte l’extrémité de I'aréte précédente.
Cela résulte sans autre du fait que la fonction u (P) est uniforme. De plus,
la somme 2'u’(q) étendue aux arétes issues d’un sommet P ouw u(P) est
p. h., est nulle, pour autant que l'on ait choisi pour toutes ces arétes un
sens convenable (par exemple en prenant P pour origine de toutes ces
arétes). La réciproque est vraie, elle est la définition méme de la notion
de fonction p. h.

On peut aussi parler d’une intégration: étant donnée une fonction f(q)
des arétes d'un réseau telle que 2'f(q) = 0 st la somme est étendue aux
arétes d’un polygone fermé quelconque de E (en choisissant convenablement
le sens de chaque aréte), ¢l existe une fonction u(P) avec

u'(q) = f(q) -

Il en existe méme une infinité, la différence de deux d’entre elles étant
une constante. ‘
Prenons en effet en un point P, de K, u(P,) = 0, et posons

la somme étant étendue & un polygone reliant P, & P, les arétes étant
prises toutes dans le méme sens. Le résultat ne dépend pas du polygone
choisi, u(P) est donc bien définie, et sa dérivée est f(q).
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Si, en plus de 'hypothése sur 2 f(g) étendue & tout polygone fermsé,
on suppose que cette somme étendue aux arétes issues d’un sommet quel-
conque est nulle, les fonctions primitives w(P) sont p. h.

Revenons sur I’hypothése relative & la somme 2'f (q) étendue aux arétes
d’un polygone fermé: pour que cette somme soit toujours nulle, il suffit
qu’elle le soit pour tous les polygones élémentaires. Or, si 'on passe d’un
réseau K au réseau conjugué E*, on fait correspondre aux arétes d'un
polygone élémentaire de K les arétes issues d’un sommet @ de £*, et aux
arétes issues d’'un sommet P de £ les arétes d’un polygone élémentaire
de E*. Considérons donc une fonction f(q) sur les arétes de E, dérivée
d’une fonction w(P) p. h. sur E; & f(q) sur E correspond une fonction
g(g*) sur les arétes de E*, si I'on convient de poser f(q) = g(g*), ol ¢
et ¢* sont deux arétes correspondantes: il en résulte que g(q*) a son tour
est la dérivée d’une fonction p. h. sur E*. On appellera fonction conjuguée
de u (P) toute fonction v (@) ayant g(¢*) pour dérivée.

L’uniformité de la fonction conjuguée v(Q) résulte donc du fait que
u (P) est p. h. Il est intéressant de voir ce qui se passe lorsque u (P) cesse
d’étre p. h. Toutes les propriétés envisagées étant additives, on peut
supposer que u (P) est partout p. h. excepté en un sommet P, ou u (P,) = a.
La dérivée f(q) de u (P) est bien définie, sa somme étendue & un polygone
fermé est nulle, et celle étendue aux arétes issues d’'un sommet P est
nulle excepté en P, ou elle est égale & a. Il en résulte pour la fonction
g(q*) sur E* que sa somme étendue & un polygone fermé simple entourant
une fois P, dans le sens positif est égale & a et qu’elle est nulle si ce poly-
gone n’entoure pas P,; elle est nulle si elle est étendue aux arétes issues
d’un sommet @ ; g(g*) est par conséquent la dérivée d’une fonction v(Q)
p. h. et multiforme; cette fonction prend en chaque sommet une infinité
de valeurs, dont la différence est toujours un multiple entier de a. On
peut la rendre uniforme en sectionnant convenablement le réseau E*
ou en substituant & E* un réseau de recouvrement.

§ 3. Type d’un réseau

On considérera dans ce paragraphe des réseaux au sens large, illimités
en tout sens, sur lesquels il existe par conséquent une suite illimitée de
contours C,, C,,. .., C,. .. fermés simples, tout sommet du réseau étant
intérieur & un tel contour, pour »n assez grand.

Une fonction u(P) est normée en P, si

uU(Pg) =0, B(Pg)=—1.
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Type d’un réseau : soit une suite de contours polygonaux fermés simples
Cy,...,C,,... dun réseau, entourant un sommet P,; soit u,(P) la fonc-
tion p. h. dans C,, excepté en P, ou elle est normée, et constante sur C, (cette
fonction existe et est unique); soit r, = u,(P) sur C, . St

lim7r, = oo,
n->o0

on dit que le réseau est du type parabolique ; si

limr, < oo,
n->oo

le réseau est du type hyperbolique.

I1 faut montrer que cette définition ne dépend ni de P,, ni, P, étant
choisi, de la suite C,,. Montrons tout d’abord le second point. Supposons
lim r, = oo et considérons une autre suite de contours fermés I,.. .,
I,,... et les valeurs correspondantes o,,..., 0,,... . A tout contour
O, correspond un contour I, extérieur & C,; on a par conséquent
0y, > Tn, d’0U lim g, = oo.

Il reste & montrer que la définition est indépendante de P,. Supposons
qu’il existe deux sommets, P, et P, donnant des types différents. Soit
donc une suite de contours C, entourant P, et P,, et u,(P) normée en
Pyet égale a r, sur C,,, v, (P) normée en P, et égale & g, sur C,. Supposons
que 7, est borné.

La fonction

zn(P) = [un(P) - rﬂ] - [vn(P) - Qn]

est nulle sur C,; B,(P,) = —1; B,(P,) = + 1; ailleurs z,(P) est p. h.
11 en résulte que z,(P,) < 0, 2,(P,) > 0. Or

zn(PO) =—1, + Qn—vn(P0)< 0,
d’ou
Qn_’vﬂ(PO)<rn <A
et
0n < Vu(Py) + 4.

I1 s’ensuit que p, est borné. Considérons en effet un contour I', entou-
rant P,, passant par P, et intérieur & C, pour n > n,; v,(P) est toujours
positive sur ce contour. Soit alors x(P) la fonction p. h. dans I', nulle
sur I" excepté en P, ou z(P,) = 1; soit ensuite y(P) la fonction p. h.
dans I' excepté en P, ou 8, = 1, et nulle sur I'. On a, puisque v, (P) > 0
sur I,
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Ua(P1) > 2(Py) v, (Po) — y(Py)
et, puisque v,(P,) = 0 et 2(P,) >0,

d’ou
Y (Py)
- e il
2 T z (Py)

le second membre ne dépend pas de n, on a done
lim g, < oo.

Ainsi, le type d’un réseau est parfaitement déterminé.

Remarquons que nous avons démontré en passant le lemme suivant:
étant donnés un domaine E d’un réseau, et deux sommets P, et P, dans E
(P, éventuellement sur la frontiere), il existe un nombre K = K (E, P,,
P,) tel que toute fonction u(P) p. h. dans E excepté en P, ou elle est normée,
vérifie Uinégalité uw(P,) < K si u(P) > 0 sur la frontiére.

On connait des réseaux de U'un et Uautre types. Les réseaux introduits
dans l'article I sont du type parabolique. On peut construire de la fagon
suivante un réseau du type hyperbolique. Prenons une suite illimitée
de cercles C,,...,C,,... de centre P, et de rayon croissant. Prenons sur
C, 3 sommets que nous relions & P,, puis sur C, 6 sommets reliés chacun
a un sommet de C,, de facon que de chaque sommet de C; partent 2
arétes vers C,; puis sur C; 3.22 sommets reliés de la méme fagon aux
6 sommets de C,, etc. La fonction

n—l 1

u(P)z—;—(l—l-Zl'—é,r) si Psur C, , u(P,) =0

est p. h. sur tout le réseau excepté en P, ou elle est normée. Elle est
constante sur tout C, et elle est bornée. Le réseau est donc hyperbolique.

Etant donné un réseaw illimité K et un sommet P, de E , il existe toujours
une fonction p. h. sur B et normée en P,; cette fonction est bornée st K est
hyperbolique.

Considérons en effet une suite de polygones C, du réseau, et la suite
correspondante des fonctions u, (P) normées en P, et constantes sur C,,.
L’ensemble des sommets du réseau étant dénombrable, nous pouvons les
appeler P,, P,,..., Py,... On a vu qu’une fonction de la suite «, (P),
normée en P, vérifie en tout sommet de Z une inégalité u,(P) < K(P),
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K (P) ne dépendant que de P, quel que soit n (mais & condition bien
entendu que P soit intérieur & C,). Il en résulte qu’on peut extraire de la
suite Sy : u;, %,,. .. une suite 8, qui converge en P, vers une valeur finie
u (P,); puis de §; une suite S, qui converge en P, vers u(P,), etc. Le pro-
cédé diagonal*) nous permet donc d’extraire de la suite S, une suite S
qui converge dans tout le réseau vers une fonction u (P), qui posséde les
propriétés requises; cette fonction est bornée si £ est hyperbolique, puis-
qu’alors les fonctions u, (P) sont bornées dans leur ensemble.

Formule de Green. On peut établir pour toute région finie £ d'un
réseau une formule analogue & celle de Green. Soit I' ’ensemble des
sommets limitant E; si «(P) et v(P) sont deux fonctions dans E, on a
en tout point de £* = K — I"

w(P) B,(P) —v(P) B,(P) = — u(P) Zv(P') + v(P) Zu(P'),

les sommes étant étendues aux sommets voisins de P. Si on fait la somme
des deux membres de cette relation pour tous les sommets de E*, on
obtient

2[’“ ) Bo(P) —v(P) B, (P)] = — 2u(@) v(P) + 2v(Q) u(P),

les sommes du second membre étant étendues & tous les couples de
sommets P, P sur I' et ¢ voisin dans E*. On peut écrire

—u(Q) v(P) + v(Q) w(P) = — [w(P) v'(q) — v(P) »'(q)],
q étant I’aréte QP. On a donc

Ez."uﬂv—”ﬂu = — 2'[u(P)v'(qg) —v(P) v'(g)], (3.1)

ot la somme du second membre est étendue & toutes les arétes QP reliant
E*aT.

Il en résulte une formule permettant la résolution du probléme de
Dirichlet dans E . Soit en effet G (P, @) la fonction de P telle que G (P, Q) =
0 si P est sur I', B4(P) = 0 excepté en @ ou g = — 1. En posant alors
v(P) = G(P, Q) dans la relation (3.1) il vient, si u(P) est p. h. dans ¥,

u(@) = Zu(P)G"(q,Q) ; (3.2)

formule qui permet de résoudre le probléeme de Dirichlet dans E deés
que 'on connait les fonctions G(P, Q).

4) Voir P. Montel: Familles normales de fonctions analytiques, p. 15—18.
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Posons encore dans (3.1) v(P) = 1, d’ou B,(P) = 0 et soit §,(P) = 0
excepté en P, ou f,(P,) = — 1. Alors

1=2%(q). (3.3)
r

Cette relation s’établirait plus simplement en partant du fait que la
fonction conjuguée de u(P) est multiforme.

On en déduit un théoréme précis sur le type d’'une catégorie assez
restreinte de réseaux. Soit un réseau £ formé d’un sommet P, et d’une
suite illimitée de cercles C,,...,C,,... de rayons croissants reliés entre
eux par des arétes, les nombres d’arétes issues d’'un sommet de C, vers
C,,, et vers C,_; étant les mémes pour tous les sommets de C,. Par
symétrie il existe une fonction u (P) normée en P,, p. h. sur tout le reste
de E et constante sur chaque C,. Soient u, la valeur de w(P) sur C,,
v(n) le nombre de sommets de C,, enfin o(n) le nombre d’arétes issues
d’un sommet de C, vers C,_;. On a

1= Zu/(q) = v(n) o (n) (Uy — %y_,)

et Cn
S S
n n—1 — v(n) G‘(n) ’
d’olt, en sommant
n 1
= XS o)

St la série 5 " diverge, le type est parabolique; st elle converge, il

_ 1
(n) o (n)
est hyperbolique.

Les exemples de réseaux qui ont été donnés correspondent le premier
(voir I) & »(n) = p (= constante), o(n) = 1; le second & »(n) = 3.271,
o(n) =1.

On remarquera que la précision du résultat a été obtenue grace & une
hypothése trés forte de symétrie pour E. Il s’agit 14 d’un fait général
qui a déja été signalé: il est impossible de donner un critére de type repo-
sant uniquement sur le degré de ramification.

§ 4. Un lemme sur le type d’un réseau

Considérons maintenant des réseaux dans un sens plus étroit: nous
supposons qu’ils remplissent la condition B. Appelons alors £, la partie
du réseau E formée de P, et de C,,.. ., C,; soit sur £, une fonction u (P)
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normée en P,, et p. h. ailleurs: nous nous proposons d’évaluer 3 u’*(q),
Ep1

cette somme étant étendue a toutes les arétes reliant deux sommets de
On a, si ¢ = P, P,,

u'(q) = u(Py) — u(Py) = v(Qs) — v(@s) ,

n-—l

ou @, et @, sont les deux sommets du réseau conjugué qui correspondent
a P, et P,, et v(Q) une fonction conjuguée de u(P) (cette fonction est:
multiforme: elle interviendra toujours par des différences au sujet des-
quelles il n’y a aucune ambiguité). On a alors

u'2(q) = [#(Py) — u(P,)] [v(@:) —v(@))]

et en faisant la somme pour toutes les arétes PP’ issues d’un sommet P
de E,_,
fu’z(Q) = Zu(P’) [v(@2) — v(@)]

puisque, si P % Py, 2[v(Q:) —v(@,)] =0 et u(Py) =0 .
Donc, si P = P,
5“'2({1) == %’u(P) w'(g) (4.1)

ou il faut entendre par q ’aréte P P,. Ensuite, si : <n —1,

220" g) = X [u(P Zu (Q]+CZ [u(P)Zu @]+

Cc; P Ci+1

+).7[u 2’ v ()] (4.2)

ol X u’(q) est étendue aux arétes PP’ de P vers l'intérieur, 3" u’(¢q) aux
P P

arétes PP’ de P vers I'extérieur et X' 'u’(gq) aux arétes P'P et PP’ sur
P

le contour C; passant par P.

Si maintenant nous faisons la somme de (4.1) et de (4.2) pour ¢ allant
de 1 & (r—1), nous obtenons

b Eu"(q) Z[u (P) 2w (9)] +CZ [u(P) ;‘:' w'(g)]

Epg

en tenant compte du fait que
w'(g) + PE'M’(.(I) +2'u'(g)=0.
P
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Or
2 Zu'2(q) =22u"%(q) + X u"%(q)

Ep, P Epna Cn—1

ol X u'%(q) est étendue aux arétes de C,_, vers C,, donc
Cn—

2Xu'(q)=2u(P) Zu'(Q]+ 2 [u(P)Tu'()] —2u'(q). (4.3)
Ep— Cn P Cn— P Cn—

1

On peut simplifier cette relation. Supposons que u(P) = r, (= cons-
tante) sur C,. Alors

2 Zug)=r,+ X [w(P)Tu'(@)]— T uq)
Enp- Cn—1 P Cn-1

puisque Y u'(q) = X u'(¢) = 1. Mais sur C,_, u(P)=r,—u’(q), done
Ci Ci

dans ce cas 2 u'?(q) =r,— b u'2(q)

En,..l Cﬂz—l

ou encore, puisque u’(g) = 0 sur C,,,
2u'(g) =r,. (4.4)
En
Si enfin E est du type hyperbolique, r, est borné, d’ou1 le lemme:

Soit B un réseau remplissant la condition B : s’il est du type hyperbolique,
ol existe une fonction u(P)normée en P, p. h. sur le reste du réseaw et telle que

2u'2(q) = A (< o).
E

Cette fonction est celle qui a été définie au cours du § 3.
La réciproque est immédiate.

§ 6. Une formule analogue i la formule de Gauss-Bonnet

Il s’agira ici de réseaux au sens étroit, vérifiant les conditions 4 et B.
Par définition, la courbure d’un réseau en un point P sera la quantité

y(P) = 6 — A(P). (5.1)

Soit »(n) le nombre de sommets sur C, et, si P est sur C,, 2(P) et
A(P) les nombres d’arétes issues de P vers C,,, resp. vers C,_,. On a
A(P) =2 + 2(P) + A(P)et y(P) = 4 — 2(P) — A(P). Deplus,sin>1,

ZUP) = ZAUP) = v(n—1) + 1),

. Crn—
et si n=1

Z 1P =»(1).
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Faisons la somme de y(P) sur &,

§yum=m—un+4wn—{wn+w@n—wurﬂfgﬁuﬂ+yPn
" =8—w(+ 1)+ v(n), '

donc

[+ 1) — )]+ Zy(P) = 6. (5.2)

La somme étendue & tout E, joue le réle de I'intégrale de la courbure
totale. Le premier terme [»(n 4 1) — »(n)] peut étre interprété comme
un accroissement de longueur: on sait que, suivant des conventions
convenables, c’est ce que représente I'intégrale de la courbure géodésique.

Remarquons encore que la définition méme de la courbure est la réduc-
tion & un point de la formule (5.2). On peut établir, parallélement, une
relation entre la courbure totale en un point P d’une surface et la longueur
l(r) du contour limitant les points de cette surface dont la distance & P
est inférieure & 7 : cette relation peut méme étre prise pour définition de
la courbure totale.

§ 6. Un critére de type en relation avee la courbure

11 s’agit encore de réseaux au sens restreint.

St la somme X'y (P) étendue aux sommets d’un réseau est bornée inférieure-
ment, le réseau est du type parabolique.

Soit % (P) une fonction normée en P,, p. h. sur le reste de E. On a

v ane Zu'(g)=1.
Cn
En appliquant I'inégalité de Schwarz, on en tire
1<[ 2w @) P<[r@) + v(n + 1)] ;u’z(Q) -

Cn n
D’autre part, en vertu du théoréme du § 5 et de I’hypothése sur X'y (P)

2y(P)=6+4v(n)—v(n +1)>—K,

En

d'oh vin +1)<v(n)+ 6+ K,<nK,
pour n > n,. Donc

Tu't(g) > 3 K,
Cn

ym) Ly F1) ~ 7w’
d’ot1 il résulte que X' u'2(g) diverge. D’aprés le lemme du § 4; la surface
E

est alors parabolique.
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§ 7. Une inégalité isopérimétrique sur les réseaux

On sait qu’il existe, pour toute courbe fermée plane une inégalité liant
la longueur de cette courbe et ’aire comprise & 'intérieur. M. F. Fiala®)
a énoncé une inégalité plus générale, relative aux courbes fermées tracées
sur une surface dont la courbure totale n’est jamais négative.

On peut établir une inégalité analogue pour les réseaux, en faisant
comme plus haut les hypothéses restrictives A et B sur ces réseaux.

St la courbure est toujours non négative, on a
vin+1)—2v(n) +r(n—1) <O0. (7.1)
En effet, en tout point P de C,, A(P) + 2(P) < 4d
vin 4+ 1) + 2v(n) + v(n — 1) < 4v(n).

Appelons maintenant F(n) le nombre de triangles du réseau intérieurs
a C,. Alors, si la courbure est toujours non négative,

v2(n) > F(n) [v(n) — v(n — 1)]. (7.2)

Soit, en effet AF(n) = F(n) —F(n—1). On a, si n>1, AF(n) =
v(n) + »(n — 1), d’ou :

AF(n) [v(n) — v(n — 1)] = »%(n) — »*(n — 1),
et si n=1AF(1)=v»(1) , dou AF(1)»(1l) = »%(1).
En faisant la somme de 1 & n
(1) = AF() »(1) + 3 AFG) [6)— v — 1]

On peut transformer la somme du second membre au moyen d’'un
artifice inspiré de l'intégration par parties. Un calcul simple montre que
Pon a

2@, —a;,_y)b,=a,b,—aby—2 (b;—b;,_))a,_,,
1 1

donc ici, en posant F(0) = 0, »(0) = 0,
v2(n) = Z’AF ) [v(@) —v(z —1)]

— F(n) [»(n)—v(n— 1)]__%[,;('5)_21,(@'— 1) 45 (i — 2)] Fli—1).

) F. Fiala: Une inégalité isopérimétrique sur les surfaces ouvertes &
courbure positive. C. R. Acad. Sc. Paris 209 (1939), 821—823.

5 Commentarli Mathematici Helveticl 65



La somme du second membre est, on vient de le voir, toujours infé-
rieure ou égale & zéro, donc

v2(n) = F(n) [v(n) — v(n — 1)].

On peut remplacer v(n) — »(n — 1) au moyen de la formule (5.2), et
on obtient

vi(n) > F(n) [6 — X y(P)]. (7.3)

Ep .y

Cette relation peut étre généralisée. Si 'on ne fait plus aucune hypo-
thése sur y (P), on a en tout point

A(P) + X(P) = 4 — p(P)
d’ou
v(n + 1) —2v(n) + v(n — 1) = —CZ'V(P) ,

et, en introduisant ce terme dans I’expression de »2%(n)

n—1

v (n) =F(n) [v(n) — »(n —1)] + 217 [F() § y(P)],

ou encore, d’aprés la formule (5.2)

n—1

v3(n) = 61”(%)*-’;?'{[1”'(%)—*1—"(@')] %'y(P)%
i

Revenons aux réseaux pour lesquels la courbure est toujours non-

négative. La somme 'y (P) est une fonction non décroissante de =; il
E

n
résulte alors de la formule (5.2) que si pour une valeur de » 3 y(P) > 6,
Enp
la suite v(n) est décroissante (au sens strict), et le réseau est limité. Donc

sur un réseau illimité a courbure non négative, on a toujours y(P) < 6.

Soit alors € = lim 'y (P) et n, la plus petite valeur de = pour laquelle
2y(P)=C. On a, pour n > n,
Ey

v(n) = (n—mn,) (6 —C) + K,
d’out
lim v(n)

fn->00 n

=6—0C .

66



	Les réseaux Riemanniens.

