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Les réseaux Riemanniens

Par Chakles Blanc (Lausanne)

On a montré1) comment on pouvait retrouver, pour des fonctions
définies sur un ensemble discontinu de points, des propriétés absolument
analogues à celles des fonctions analytiques d'une variable complexe;
il s'agissait en particulier des propriétés du module d'une fonction analytique

dans une région du plan, propriétés qui correspondent exactement
à des propriétés des fonctions harmoniques.

Nous nous proposons ici d'élargir ces résultats, en introduisant des
réseaux Riemanniens, analogues discontinus des surfaces de Riemann;
ces réseaux se répartissent en deux types, que l'on peut encore appeler
parabolique et hyperbolique; on peut également, en introduisant une
certaine notion de courbure, retrouver une formule analogue à celle de
Gauss-Bonnet sur les surfaces, et qui conduit à un critère de type assez

précis.

§ 1. Les réseaux Riemanniens

Soit dans un plan un ensemble discontinu de points, sans point
d'accumulation à distance finie : relions des points de cet ensemble par des arcs
sans points communs autres que les points de l'ensemble considéré, et
tels que deux arcs au moins aboutissent en chaque point donné. Nous
appellerons cette figure un réseau Riemannien, ou plus simplement un
réseau ; dans la suite, nous serons amenés à faire deux restrictions à cette
définition :

A. Le réseau décompose le plan en un ensemble de triangles (alors
qu'en général il s'agit de polygones quelconques).

B. Le réseau peut être décomposé en une suite de polygones C1, C2,...,
Cn,..., la couronne comprise entre C{ et Ci+1 étant traversée par les

arcs du réseau.
On remarque sans peine que les réseaux déjà envisagés2) vérifient la

condition B. Le réseau formé en décomposant un plan en hexagones
réguliers, puis en divisant chacun de ces hexagones en 6 triangles remplit
les conditions A et B.

D'autre part, la condition A n'est pas essentielle : on pourrait remplacer

*) Ch, Blanc: Une interprétation élémentaire des théorèmes fondamentaux
de M. Nevanlinna. Comm. Math. Helv. 12 (1939), 153—163. Ce travail sera

désigné dans la suite par I.
¦) I, p. 153.
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triangle par hexagone ou quadrilatère : il n'y aurait alors à apporter dans
la suite que quelques modifications sans importance.

Réseau conjugué. A tout réseau E (ne satisfaisant pas nécessairement

aux conditions A et B) correspond un réseau 2?*, que nous appellerons
réseau conjugué. On le construit de la façon suivante: à tout polygone
élémentaire de E on fait correspondre un sommet de J?*, et à toute arête
de E on fait correspondre une arête de E*, reliant les deux sommets de E*
qui correspondent aux polygones de E séparés par l'arête envisagée.
On pourra même définir un sens sur toute arête de E* à partir d'un sens

sur l'arête de E, en fixant une fois pour toutes un sens positif de rotation
sur E.

§ 2. Fonctions pré-harmoniques sur un réseau

Considérons une région E d'un réseau Riemannien quelconque. En
associant à chaque sommet P de E un nombre réel u(P), on définit une
fonction sur E. Nous dirons que cette fonction est pré-harmonique2) en
P si l'on a

X{P){P)Zu{P')t (2.1)

X(P) étant le nombre d'arêtes issues de P, et la somme étant étendue
aux sommets Pf deE voisins de P. Si u (P) n'est pas p. h. en P, on posera

Si u(P) est p. h. en tous les sommets P de E, on dit qu'elle est p. h.
dans E. On a sans autre le théorème :

Une fonction p. h. dans E atteint son maximum et son minimum sur
le contour.

Cela permet de démontrer le
Théorème diexistence : Si Von se donne une fonction oc (P) sur le contour

F de E, et une fonction f(P) en tout point intérieur de E, il existe une fonction

et une seule u(P) telle que:
1° u(P) oc(P) sur r;
2° pu(P) f(P)dans E.

En effet, il ne peut exister, en vertu du théorème du maximum, qu'une
solution. Or la recherche de cette solution conduit à la résolution d'un

8) Cette dénomination est due à M. G. Bouligand : Sur le problème de Dirichlet.
Ann. Soc. Pol. Math. 1925, p. 59—112. Nous l'ignorions lors de la rédaction de I, où
nous avons employé l'expression fonction harmonique. Nous écrirons désormais
p. h. pour pré-harmonique.
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système de n équations linéaires à autant d'inconnues ; il suffit de montrer
que le déterminant n'en est pas nul; on le vérifie en remarquant que ce
déterminant ne dépend que de jT, mais est indépendant du choix de

a(P) et de f(P) Prenons <%(P) a ^ 0, /(P) 0 La fonction
u (P) a est alors solution, et elle est unique, donc le déterminant n'est
pas nul.

Il résulte en particulier de ce théorème l'existence d'une fonction p. h.
dans E, prenant des valeurs données sur le contour F. Cette fonction
réalise le minimum de la somme U[u(P) — u(Q)~]2 étendue à toutes les

paires de points voisins sur E. Pour la démonstration, voir I, p. 154.

Dérivée d'une fonction. On peut considérer, à côté des fonctions des

sommets d'un réseau, des fonctions des arêtes. On dira qu'une fonction
d'arête f(q) est la dérivée d'une fonction u(P) des sommets si

Px et P2 étant l'origine et l'extrémité de l'arête orientée q.
La somme Zu!(q) étendue aux arêtes d'un polygone fermé de E est nulle,

si on prend pour origine d'une arête l'extrémité de l'arête précédente.
Cela résulte sans autre du fait que la fonction u(P) est uniforme. De plus,
la somme Euf(q) étendue aux arêtes issues d'un sommet P où u(P) est

p. h., est nulle, pour autant que l'on ait choisi pour toutes ces arêtes un
sens convenable (par exemple en prenant P pour origine de toutes ces

arêtes). La réciproque est vraie, elle est la définition même de la notion
de fonction p. h.

On peut aussi parler d'une intégration: étant donnée une fonction f(q)
des arêtes d'un réseau telle que Ef{q) 0 si la somme est étendue aux
arêtes d'un polygone fermé quelconque de E (en choisissant convenablement
le sens de chaque arête), il existe une fonction u(P) avec

Il en existe même une infinité, la différence de deux d'entre elles étant
une constante.

Prenons en effet en un point Po de E, u(P0) 0, et posons

la somme étant étendue à un polygone reliant Po à P, les arêtes étant
prises toutes dans le même sens. Le résultat ne dépend pas du polygone
choisi, u(P) est donc bien définie, et sa dérivée est f(q).
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JSi, en plus de l'hypothèse sur £ f(q) étendue à tout polygone fermé,
on suppose que cette somme étendue aux arêtes issues d'un sommet

quelconque est nulle, les fonctions primitives u(P) sont p. h.

Revenons sur l'hypothèse relative à la somme Ef (q) étendue aux arêtes
d'un polygone fermé: pour que cette somme soit toujours nulle, il suffit
qu'elle le soit pour tous les polygones élémentaires. Or, si l'on passe d'un
réseau E au réseau conjugué i£*, on fait correspondre aux arêtes d'un
polygone élémentaire de E les arêtes issues d'un sommet Q de j?*, et aux
arêtes issues d'un sommet P de E les arêtes d'un polygone élémentaire
de E*. Considérons donc une fonction f(q) sur les arêtes de E, dérivée
d'une fonction u(P) p. h. sur E ; à f(q) sur E correspond une fonction
(7(g*) sur les arêtes de E*, si l'on convient de poser f(q) g(q*), où q
et q* sont deux arêtes correspondantes: il en résulte que g(q*) à son tour
est la dérivée d'une fonction p. h. sur E*. On appellera fonction conjuguée
de u(P) toute fonction v(Q) ayant g(q*) pour dérivée.

L'uniformité de la fonction conjuguée v(Q) résulte donc du fait que
u(P) est p. h. Il est intéressant de voir ce qui se passe lorsque u(P) cesse

d'être p. h. Toutes les propriétés envisagées étant additives, on peut
supposer que u (P) est partout p. h. excepté en un sommet Po où u (Po) a.
La dérivée f(q) de u(P) est bien définie, sa somme étendue à un polygone
fermé est nulle, et celle étendue aux arêtes issues d'un sommet P est
nulle excepté en Po où elle est égale à a. Il en résulte pour la fonction
g(q*) sur E* que sa somme étendue à un polygone fermé simple entourant
une fois Po dans le sens positif est égale à a et qu'elle est nulle si ce polygone

n'entoure pas Po ; elle est nulle si elle est étendue aux arêtes issues

d'un somihet Q ; g(q*) est par conséquent la dérivée d'une fonction v(Q)
p. h. et multiforme; cette fonction prend en chaque sommet une infinité
de valeurs, dont la différence est toujours un multiple entier de a. On

peut la rendre uniforme en sectionnant convenablement le réseau E*
ou en substituant à E* un réseau de recouvrement.

§ 3. Type d'un réseau

On considérera dans ce paragraphe des réseaux au sens large, illimités
en tout sens, sur lesquels il existe par conséquent une suite illimitée de

contours Cl9 O2,..., Cn... fermés simples, tout sommet du réseau étant
intérieur à un tel contour, pour n assez grand.

Une fonction u(P) est normée en Po si

u(P0) 0, /?tt(P0) -l.
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Type d9un réseau : soit une suite de contours polygonaux fermés simples
Cl9.. .9Cn9... d9un réseau, entourant un sommet Po; soit un(P) la fonction

p. h. dans Cn excepté en Po où elle est normée, et constante sur Cn (cette
fonction existe et est unique) ; soit rn un(P) sur Cn Si

lim rn oo
n->oo

on dit que le réseau est du type parabolique ; si

lim rn < oo
n->oo

le réseau est du type hyperbolique.

Il faut montrer que cette définition ne dépend ni de Po, ni, Po étant
choisi, de la suite Cn. Montrons tout d'abord le second point. Supposons
lim rn oo et considérons une autre suite de contours fermés Fx,...,
/*„,... et les valeurs correspondantes q19. gn,... A tout contour
Cn correspond un contour FVn extérieur à Cn ; on a par conséquent

QVn>r*> d'où lim £w oo.
Il reste à montrer que la définition est indépendante de Po. Supposons

qu'il existe deux sommets, Po et Px donnant des types différents. Soit
donc une suite de contours Cn entourant Po et Pl9 et un(P) normée en
Po et égale à rn sur Cn, vn (P) normée en Px et égale à qn sur Cn. Supposons

que rn est borné.
La fonction

zn(P) K(P)- rn] - [vn(P) - Qn]

est nulle sur Cn; pz(P0) — 1; fiz(Pi) + l'> ailleurs zn(P) est p. h.
H en résulte que zn(P0) < 0, zn(Pi) > 0. Or

*n(Po) =-rn + Qn — Vn(Po) < 0,
d'où

Qn — vn(Po)<rn^A
et

Qn<vn(P0) + A.

Il s'ensuit que gn est borné. Considérons en effet un contour F, entourant

Pl9 passant par Po et intérieur à Cn pour n > n0; vn(P) est toujours
positive sur ce contour. Soit alors x(P) la fonction p. h. dans F, nulle
sur F excepté en Po où x(P0) 1; soit ensuite y(P) la fonction p. h.
dans F excepté en Px où py 1, et nulle sur F. On a, puisque vn(P) > 0

sur F,
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vn(P1)>x(P1)vn(P0)

et, puisque vn(Py) 0 et x(P1) > 0,

d'où

le second membre ne dépend pas dew,ona donc

lim Qn < oo

Ainsi, le type d'un réseau est parfaitement déterminé.
Remarquons que nous avons démontré en passant le lemme suivant:

étant donnés un domaine E d'un réseau, et deux sommets Po et P1 dans E
(Px éventuellement sur la frontière), il existe un nombre K K {E, Po,
Pj) tel que toute fonction u(P) p. h. dans E excepté en Po où elle est normée,

vérifie Vinégalité u(P^) < K si u(P) > 0 sur la frontière.

On connaît des réseaux de Vun et Vautre types. Les réseaux introduits
dans l'article I sont du type parabolique. On peut construire de la façon
suivante un réseau du type hyperbolique. Prenons une suite illimitée
de cercles Cx,..., Cn,... de centre Po et de rayon croissant. Prenons sur
Cx 3 sommets que nous relions à Po, puis sur C2 6 sommets reliés chacun
à un sommet de Cl9 de façon que de chaque sommet de Cx partent 2

arêtes vers C2; puis sur C3 3.22 sommets reliés de la même façon aux
6 sommets de C2, etc. La fonction

u(P)=-\l + Z-w) si P sur Cn u(P0) 0

est p. h. sur tout le réseau excepté en Po où elle est normée. Elle est
constante sur tout Cn et elle est bornée. Le réseau est donc hyperbolique.

Etant donné un réseau illimité E et un sommet Pode E, il existe toujours
une fonction p. h. sur E et normée en Po ; cette fonction est bornée si E est

hyperbolique.
Considérons en effet une suite de polygones Cn du réseau, et la suite

correspondante des fonctions un(P) normées en Po et constantes sur Cn.
L'ensemble des sommets du réseau étant dénombrable, nous pouvons les

appeler Po, Pl5..., Pfc,... On a vu qu'une fonction de la suite un(P),
normée en Po vérifie en tout sommet de E une inégalité un(P) < K(P),
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K(P) ne dépendant que de P, quel que soit n (mais à condition bien
entendu que P soit intérieur à Cn). Il en résulte qu'on peut extraire de la
suite 80 : ux, u2,... une suite 8X qui converge en Px vers une valeur finie
u(Px)\ puis de 8X une suite 82 qui converge en P2 vers u(P2), etc. Le
procédé diagonal4) nous permet donc d'extraire de la suite 80 une suite 8
qui converge dans tout le réseau vers une fonction u(P), qui possède les

propriétés requises ; cette fonction est bornée si E est hyperbolique, puis-
qu'alors les fonctions un(P) sont bornées dans leur ensemble.

Formule de Green. On peut établir pour toute région finie E d'un
réseau une formule analogue à celle de Green. Soit F l'ensemble des

sommets limitant E; si u(P) et v(P) sont deux fonctions dans E> on a

en tout point de E* E — F

u(P) fiv{P) — v(P) p%(P) - u(P) Zv(Pf) + v(P) Eu{Pr),
les sommes étant étendues aux sommets voisins de P. Si on fait la somme
des deux membres de cette relation pour tous les sommets de 2?*, on
obtient

les sommes du second membre étant étendues à tous les couples de
sommets PQ, P sur F et Q voisin dans E*. On peut écrire

-u(Q)v(P) + v(Q)u(P) -[u(P)v'(q)-v(P)uf(q)],
q étant l'arête QP. On a donc

(3.1)
S*

où la somme du second membre est étendue à toutes les arêtes QP reliant
E*hF.

Il en résulte une formule permettant la résolution du problème de

Dirichlet dans E. Soit en effet O(P9Q) la fonction de P telle que G (P, Q) *=
0 si P est sur JT, PQ{P) 0 excepté en Q où (i0 — 1. En posant alors

v(P) G(P, Q) dans la relation (3.1) il vient, si u(P) est p. h. dans E9

u(Q) Zu(P)G'(q,Q), (3.2)
r

formule qui permet de résoudre le problème de Dirichlet dans E dès

que Ton connaît les fonctions G(P,Q).
4) Voir P. Monte! : Familles normales de fonctions analytiques, p. 15—18.
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Posons encore dans (3.1) v(P) 1, d'où pv{P) 0 et soit fiu(P) 0
excepté en Po où pu(P0) — 1. Alors

1 Zur{q) (3.3)
r

Cette relation s'établirait plus simplement en partant du fait que la
fonction conjuguée de u(P) est multiforme.

On en déduit un théorème précis sur le type d'une catégorie assez

restreinte de réseaux. Soit un réseau E formé d'un sommet Po et d'une
suite illimitée de cercles O1,..., Cn,... de rayons croissants reliés entre
eux par des arêtes, les nombres d'arêtes issues d'un sommet de Cn vers
Cn+1 et vers Cn__x étant les mêmes pour tous les sommets de Cn. Par
symétrie il existe une fonction u(P) normée en Po, p. h. sur tout le reste
de E et constante sur chaque Cn. Soient un la valeur de u(P) sur Gn,

v(n) le nombre de sommets de Cni enfin a(n) le nombre d'arêtes issues

d'un sommet de Cn vers Cn_x. On a

1 Iuf{q) v(n) a(n) (un — un^)
et ^n

__
1

u» — un-i- v{n)a{n) '

d'où, en sommant

Si la série E—j-t—7—r- diverge, le type est parabolique; si elle converge, il
est hyperbolique.

Les exemples de réseaux qui ont été donnés correspondent le premier
(voir I) h v(n) p constante), a(n) 1; le second à v(n) 3.271-1,

o(n) 1.
On remarquera que la précision du résultat a été obtenue grâce à une

hypothèse très forte de symétrie pour E. Il s'agit là d'un fait général
qui a déjà été signalé : il est impossible de donner un critère de type reposant

uniquement sur le degré de ramification.

§ 4. Un lemme sur le type d'un réseau

Considérons maintenant des réseaux dans un sens plus étroit: nous

supposons qu'ils remplissent la condition B. Appelons alors En la partie
du réseau E formée de Po et de Cx,..., Cn ; soit sur En une fonction u (P)
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normée en Po, et p. h. ailleurs: nous nous proposons d'évaluer 2J w/a(g),

cette somme étant étendue à toutes les arêtes reliant deux sommets de
En__x. On a, si q PXP2>

u'(q) u(P2) — u(Px) v(Q2) — viQJ

où Qx et Q2 sont les deux sommets du réseau conjugué qui correspondent
à P1 et P2, et v(Q) une fonction conjuguée de u{P) (cette fonction est
multiforme: elle interviendra toujours par des différences au sujet
desquelles il n'y a aucune ambiguïté). On a alors

et en faisant la somme pour toutes les arêtes PP' issues d'un sommet P
de E^:

2V«(g) Zu(P') [v(Q2) — »(&)]
P

puisque, si P ^ Po, ^[i;^,) — v(Qx)] 0 et u(P0) 0

Donc, si P Po

Zu'*(q) Eu(P)u'(q) (4.1)

où il faut entendre par g l'arête PP0. Ensuite, si i ^ n — 1,[] [
Ci P Ct+i P Ci_i P

+ Z[u(P)Zfu'{q)] (4.2)
cw p

où £_ur{q) est étendue aux arêtes PP1 de P vers l'intérieur, £uf(q) aux
p p

arêtes PP' de P vers l'extérieur et Zfur{q) aux arêtes PfP et PP" sur
p

le contour (7i passant par P.

Si maintenant nous faisons la somme de (4.1) et de (4.2) pour i allant
de 1 à (n—1), nous obtenons

Z Zu'2(q) Z[u(P)Zu'{q)] + 2[u(P)5Ju'(q)]
Ertr-i P Cn Cw-i P

en tenant compte du fait que
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Or
_Z Zu'*(q) 2 2V»(ï) + Z u'*{

où Zu^fà) est étendue aux arêtes de Cn_x vers Cn, donc
Cn-i

2Zu'*(q) Z[u(P)Zu'(q)] + Z [u(P)Zu'(q)]—Zu'*(q) (4.3)
¦#n-i Cn P Cnr-i P Cn_i

On peut simplifier cette relation. Supposons que u(P) rn
constante) sur Cw. Alors

puisque J£ w7(g) Zu'(q) 1 Mais sur 0^! 'w(P) rn — w'^), donc
Ct Ci

dans ce cas ^ -=Z u/2(q) rn— Z uf2(q)

ou encore, puisque ur(q) 0 sur Cn,

Zu'*(q) rn. (4.4)

Si enfin E est du type hyperbolique, rn est borné, d'où le lemme :

Soit E un réseau remplissant la condition B : s'il est du type hyperbolique,
il existe une fonction u(P) normée en P,p. h. sur le reste du réseau et telle que

Zu'*(q) A« oo).
E

Cette fonction est celle qui a été définie au cours du § 3.

La réciproque est immédiate.

§ 5. Une formule analogue à la formule de Gauss-Bonnet

II s'agira ici de réseaux au sens étroit, vérifiant les conditions A et B.
Par définition, la courbure d'un réseau en un point P sera la quantité

y(P) 6 — X(P). (5.1)

Soit v(n) le nombre de sommets sur Cn et, si P est sur Cn, Â(P) et
A(P) les nombres d'arêtes issues de P vers Cn+1 resp. vers (/„_!. On a
X(P) 2 + Â(P) + HP) et y (P) 4 — Â(P) — X(P). De plus, si n> 1,

SHP) Z HP) v(n- 1) + v(n),

et si n 1
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Faisons la somme de y(P) sur En

y [ ]()En 2 Ci
6 — v(n + 1) + v(n),

donc

[v(n + 1) — *(n)] + S y(P) 6 (5.2)
En

La somme étendue à tout En joue le rôle de l'intégrale de la courbure
totale. Le premier terme [v(n + 1) — v(n)~\ peut être interprété comme
un accroissement de longueur: on sait que, suivant des conventions
convenables, c'est ce que représente l'intégrale de la courbure géodésique.

Remarquons encore que la définition même de la courbure est la réduction

à un point de la formule (5.2). On peut établir, parallèlement, une
relation entre la courbure totale en un point P d'une surface et la longueur
l (r) du contour limitant les points de cette surface dont la distance à P
est inférieure à r : cette relation peut même être prise pour définition de
la courbure totale.

§ 6. Un critère de type en relation avec la courbure

II s'agit encore de réseaux au sens restreint.
Si la somme Uy (P) étendue aux sommets d'un réseau est bornée inférieure-

ment, le réseau est du type parabolique.
Soit u(P) une fonction normée en Po, p. h. sur le reste de E. On a

vu que -?=; // x *

Cn

En appliquant l'inégalité de Schwarz, on en tire

(ï) I < [v(n) + v(n + l)]Iu'*(q).
Cn Cn

D'autre part, en vertu du théorème du § 5 et de l'hypothèse sur Uy(P)

E y(P) 6 + v(n) — v(n+l)> — Kx
En

d°Ù
v(n +l)< v(n) + 6 + Kt < nK2

pour n > n0 Donc

d'où il résulte que £u'2(q) diverge. D'après le lemme du § 4, la surface
E

est alors parabolique.

64



§ 7. Une inégalité isopérimétrique sur les réseaux

On sait qu'il existe, pour toute courbe fermée plane une inégalité liant
la longueur de cette courbe et l'aire comprise à l'intérieur. M. F. Fiala5)
a énoncé une inégalité plus générale, relative aux courbes fermées tracées
sur une surface dont la courbure totale n'est jamais négative.

On peut établir une inégalité analogue pour les réseaux, en faisant
comme plus haut les hypothèses restrictives A et B sur ces réseaux.

Si la courbure est toujours non négative, on a

v(n+ l) — 2v(n) + v(n— 1) <0. (7.1)

En effet, en tout point P de Cn, X(P) + l(P) < 4 d'où

v(n+ 1) + 2v(n) + v(n—l) < 4v(n).

Appelons maintenant F(n) le nombre de triangles du réseau intérieurs
à Gn. Alors, si la courbure est toujours non négative,

v2(n) > F(n) [v(n) — v(n — 1)] (7.2)

Soit, en effet AF(n) F(n) — F(n— 1). On a, si n>\, AF(n)
v(n) + v(n—1), d'où

AF(n) [v(n) — v(n — 1)] v*(n) — v*(n — 1),

et si n 1 AF(l) v(l) d'où AF(l) v{l) v2(l).

En faisant la somme de 1 à n

v*(n) AF(l) v(l) + i AF(i) [v(i) — v(i — 1)]
2

On peut transformer la somme du second membre au moyen d'un
artifice inspiré de l'intégration par parties. Un calcul simple montre que
l'on a

I {ai — a^J bi anbn — aobo — E (6t- — 6,_i) aimml,
i i

donc ici, en posant F(0) 0, v(0) 0,

6) F.Fiàla: Une inégalité isopérimétrique sur les surfaces ouvertes à
courbure positive. C. R. Acad. Se. Paris 209 (1939), 821—823.
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La somme du second membre est, on vient de le voir, toujours
inférieure ou égale à zéro, donc

v2(n) > F(n) [v(n) — v(n — 1)]

On peut remplacer v(n) — v(n — 1) au moyen de la formule (5.2), et
on obtient

»-•(») >¦»•(») [«—i: y(P)]- (7.3)

Cette relation peut être généralisée. Si Ton ne fait plus aucune hypothèse

sur y (P), on a en tout point

4 —y(P)
d'où

v(n + 1) — 2v(n) + v(n — 1) — E y (P)

et, en introduisant ce terme dans l'expression de v2(n)

n—1

*«(n) F(n) [v(n) — v(n - 1)] + E [F(i) Zy(P)]
i d

ou encore, d'après la formule (5.2)

n—1

v*(n) 6F(n) — E { [F(n) —F(i)] E y(P)}
1 Ci

Revenons aux réseaux pour lesquels la courbure est toujours non-

négative. La somme Ey(P) est une fonction non décroissante de n; il
résulte alors de la formule (5.2) que si pour une valeur de n Ey(P) > 6,

En
la suite v(n) est décroissante (au sens strict), et le réseau est limité. Donc

sur un réseau illimité à courbure non négative, on a toujours Ey(P) ^ 6

Soit alors G lim Ey(P) et nQ la plus petite valeur de n pour laquelle

Ey(P) C On a, pour n > n0
En

v(n) (n — n0) (6 — C) + K
d'où

* Vvf g Q
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