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Une propriété
caractéristique des polyndmes de Laguerre

Par E. FELDHEIM, Budapest

On sait que les polynémes de Laguerre!)

n 2k
LP@) =2 (=G 77 (Ra>—1) (1)
k=0 -
satisfont a la relation de multiplication
7@ 2N v gk P XN r@ 9
rI(3) =2 a—v= (1T e, @

A étant un facteur arbitraire.

Cette relation forme un cas particulier de la relation de multipli-
cation établie, pour les fonctions de Whittaker, dans un travail de
M.A.Erdélyi?); explicitement, elle figure dans une Note récente du
méme auteur?), et dans un de nos travaux actuellement sous presse 4).

Nous nous proposons de chercher, dans la présente Note, tous les
polynoémes possédant une relation de multiplication de forme semblable,
et de déterminer, parmi ces polynémes ceux qui forment un systéme
orthogonal.

Considérons donc le systéeme de polynémes

D, (x) =2 azx n=0,1,2,...), (3)
k=0

et cherchons & déterminer les coefficients a,,, de maniére que ces poly-
némes admettent la relation de multiplication

n x y n—k (4)
w0, () =2 4, (A— 10, (3) ,
k=0
1) 8i a n’est pas entier, on remplace, comme il est d’usage, le coefficient (:j'_(;)
'n+a-+41)

par

n—k! T'k4a+1)
2?) A.Erdélyi, Funktionalrelationen mit konfluenten hypergeometrischen
Funktionen. Math. Zeitschrift. t. 42. 1936, p. 125—143.

8) A. Erdélyi, On certain Hankel Transforms, Quarterly Journal of. Math.
t. 9. 1938, p. 196—198, paru au mois de Septembre 1938.

4) E. Feldheim, Formules d’inversion et autres relations pour les poly-
nOmes orthogonaux classiques. Bull. Soc. Math. de France, sous presse.
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A étant quelconque, et les coefficients A, , étant encore inconnus. Or,
de (3),
z

o, (-

n
— —k gk
)__ @y AV F2E
k=0

d’ol;, moyennant la relation

=g (Y oo
on tire
no, (%) — é:o ';eroa,,k (”’ 7k) (A—1)rak (5)

En confrontant cette relation & (4), on aura
n—r n — k
An,n——r ¢n—r(x) = 2 Ay ( ) ak ’
k=0 r
et, faisant usage de (3),

(::f) a,,—4,,a, (k=0,1,2,...,8;8=0,1,2,...,n;0=1,2,3,...).

(6)
Cette relation peut s’écrire sous la forme suivante :
(n—Fk)!a,,
—38)! — —
(n—8)! A, = (7)

Nous voyons que le second membre de (7) doit étre indépendant de
k,ce qui n’est possible que si I’on a

(n—k)!a,,=b,c,,

c’est-a-dire
A = (n’i'_'_‘;:)! (k=0,1,2,...,n)
Alors, de (7),
A, = b,-(?l:LS)! =0,1,2,...,n).
En résumé, les polynémes
0,(0) = & Pt o ®

possédent la relation de multvplication



/

n b
70, (1) = 2 5t G— 0,0, (1=0,1,2,..) ()

et ce sont les seuls polyndmes admettant cette propriété.

Si I’on fait tendre, dans (9), le paramétre 4 vers 0, on trouve la
formule d’vnversion des polynémes (8) :

n ”n (____ l)n—-k
e - 3 R 0
Si nous posons ici
D, (x)=b,0,(x) , (8")
la relation (9) prend la forme
x n A — 1)k
wo(-5) =2 L= w@ (@)

et nous voyons que les coefficients de ce développement sont parfaite-
ment définis en tant qu’ils ne dépendent d’aucun facteur arbitraire.
On peut en déduire, par des passages a la limite 4 - oo et 1 =0, les
expressions inverses de w,(z) et z".5%)

Passons maintenant & la recherche des polynémes @,(x) ou w,(x)
satisfaisant & (8), (9), et (8’), (9’), qui forment un systéme orthogonal.

Rappelons que si les polynémes w,(z) forment un systéme ortho-
gonal, ils doivent vérifier une relation de récurrence de la forme

rTw, (x) = Anw'n+1(w) + ann(x) + Onwn—l (27) ’ (11)

ol, moyennant (8) et (8’), les coefficients 4,,, B, et C,, ont la valeur

A4,= G , B,=4,,—4,, Cn=—1' (Bp-1— B) - (12)
Cn+1 2

La formule (11) entraine, entre les coefficients du développement (8'),
la relation

2L A=A+ (1—k+1) B+ (e —k+ 1) (n—E) O,
* (k=0,1,2,...,n41). (13)

On en tire

8) 8i l'on fait, dans (4),-3;— =y, et L—>oco, on trouve, eu égard & (3), la relation:
Appary = Apxp (k=0,1,2,...,n). Les A,; secront liés par la relation (::’;) App=
AmA‘k(k=0 ’ 1’2,0'-,8;8 = O, 1,2, co ’”), idﬂntiqUO b (6)-
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Ay —24,+ 444y = B,— B}, =20,=B,_ , —B,
(k=0,1,2,...,n; n=0,1,2,...). (14)
Cette relation n’est possible que si les deux membres sont des cons-
tantes indépendantes des indices % et n, que nous appelons 2p. Alors
C.=e¢, B,=By—2ng=—(4,+ 2np) ,
A,=(n+1) (44 + no) .

La relation (11) prend ainsi la forme
T Wy, (x) = (n+ 1) (Ao+n9) WDpt+1 (x) — (A0+2n9) WDy (x)+9wn—l(x) ¢ (ll,)
D’autre part, comme
A, =

d’ou encore

Cr

=e(n+1) (n+ -‘—:—"—) :

cn-H.

on en tire ’expression suivante des coefficients c,, :

A
ol (%)
k1 (52 + 1)

Ensuite, si 1’on écrit
b
| Di(@)p(x)de =8, (n=0,1,2,...)

a

(k=0,1,2,...,n) . (15)

Ck—_—

(a@,b) étant l'intervalle d’orthogonalité, et p(x) la fonction-poids, on
déduit de (11’) I’expression

Sop(_é_o)
8, = "¢, = y ¢ n=0,1,2,...) .
(4]
Si nous posons finalement
—4@1:“-{- 1 (Rax>—1)

nous trouvons que le polynéme satisfaisant & notre probléme est :

w, (@) =co'(x + I)Z“' : (i)k (16)
n(®) = ¢o iz Ka—B)ITEk+a+1) \g) °

¢ étant un paramétre arbitraire. En comparant a I’expression (1) des
polynémes de Laguerre, nous voyons que



B 4 e R )

Le seul polynome orthogonal vérifiant la relation de multiplication (4)
est donc, & un facteur constant, et un changement d’unité prés, le polynome
de Laguerre L (x), donné par le développement (1) .

D, () __col(x+1) L(a)("_x_) :

On reconnait aussi, dans (11’), la relation de récurrence bien connue
liant trois polynémes de Laguerre consécutifs.

Remarquons que les polynémes d’Hermite classiques, étant des cas
particuliers (pour « = + 1) des polynémes de Laguerre, vérifient une
relation de multiplication de forme analogue & (4). En effet, tenant
compte des relations connues:

e 1\t p ! 921 (_%) 2 1\ 1920n+1 (%) 2
H2n (x)_"( 1) n: 2 L'n (.’L‘) ’ H2n+1(x)‘—"( 1) ’I’b-2 an (x) ’
on déduit de (2), que®)

x n!

wi, ()= 20— e Hen(@) )

6) Voir, pour cette formule, les travaux cités sous 2), 3) et %),
7) En général, on aura la relation de multiplication

x n
an ¢n (T) =k§09n_k (}- - 1) !pk (2}) ’

n—=k

ol g, i (A—1) est un polynéme de degré n—k en A—1: g, = X 4,(A—1)", et les
n—r r=0

coefficients A, ont pour valeur: 4, = X a,; bsk<n—8) Ici a,; et b,, désignent
8=k

respectivement les coefficients du développement (3), et de son inversion:

n
ah = Z bys Py ().
§=0

(Regu le 7 mai 1940.)
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