Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 13 (1940-1941)

Artikel: Über die topologische Struktur der Lieschen Gruppen.

Autor: Pontrjagin, L.

DOI: https://doi.org/10.5169/seals-13564

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Über die

topologische Struktur der Lieschen Gruppen

Von L. Pontrjagin, Moskau

Die Poincaréschen Polynome der kompakten Lieschen Gruppen haben die Gestalt

$$(1+t^{\alpha_1})\cdot(1+t^{\alpha_2})\cdot\ldots\cdot(1+t^{\alpha_n}),$$

also dieselbe Gestalt wie die Poincaréschen Polynome der topologischen Produkte der Sphären der Dimensionen $\alpha_1, \alpha_2, \ldots, \alpha_n^{-1}$); unter den einfachen Gruppen aus den vier großen Klassen in der Killing-Cartanschen Aufzählung haben die Gruppen A_n und C_n überdies, wie ich gezeigt habe, keine Torsion²), und ihre Fundamentalgruppen sind, wie man leicht sieht, trivial (d. h. von der Ordnung 1); für diese Gruppen erhebt sich daher die Frage, ob sie mit den entsprechenden Sphärenprodukten homöomorph seien³).

Im folgenden wird gezeigt, daß diese Frage im allgemeinen zu verneinen ist; es wird nämlich bewiesen:

Die Gruppe A_n , $n \geqslant 2$, deren Poincarésches Polynom

$$(1+t^3)\cdot(1+t^5)\cdot\ldots\cdot(1+t^{2n+1})$$

lautet¹), ist nicht mit einem Produkt $S^3 \times M$ homöomorph, worin S^3 die 3-dimensionale Sphäre, M irgend ein topologischer Raum ist.

Der Beweis beruht darauf, daß die 4-dimensionale Homotopiegruppe⁴) der Mannigfaltigkeit A_n , $n \ge 2$, trivial (d. h. von der Ordnung 1), die 4-dimensionale Homotopiegruppe eines Produktes $S^3 \times M$ aber nicht

¹⁾ Für die Gruppen A_n , B_n , C_n , D_n der vier großen Klassen einfacher Gruppen mit Bestimmung der Exponenten a_i zuerst von mir, C. R. Acad. Sc. U.R. S. S. 1 (1935), 433—437, und C. R. Paris 200 (1935), 1277—1280, bewiesen; eine ausführliche Darstellung mit Bestimmung der Torsionsgruppen habe ich im Recueil math. de Moscou 6 (1939), 389—422, gegeben. Weitere Beweise: R. Brauer, C. R. Paris 201 (1935), 419—421; C. Ehresmann, C. R. Paris 208 (1939), 321—323 und 1263—1265; ferner — als Spezialfall eines allgemeineren Satzes, aber ohne Bestimmung der a_i —: H. Hopf, Annals of Math. 42 (1941), 22—52.

²⁾ Recueil math., wie 1); sowie Ehresmann, l. c.

³⁾ Auf diese Frage hat *E. Cartan* am Schluß seines Genfer Vortrages "*La Topologie des Groupes de Lie*" hingewiesen (L'Enseignement math. 35 [1936], 177—200; sowie: Actualités Scient. et Industr. 358 [Paris 1936]; sowie: Selecta, Jubilé Scientifique [Paris 1939], 253—258).

⁴⁾ W. Hurewicz, Proc. Akad. Amsterdam 38 (1935), 112-119, 521-528.

trivial ist. Übrigens spielt der Begriff der Homotopiegruppe selbst in dem Beweis eigentlich keine Rolle; es wird einfach gezeigt, daß jede Abbildung der 4-dimensionalen Sphäre Σ^4 in die Mannigfaltigkeit A_n , $n \geqslant 2$, homotop 0 in A_n ist, während es eine Abbildung von Σ^4 in $S^3 \times M$ gibt, die nicht homotop 0 in $S^3 \times M$ ist.

§ 1. Die Gruppe A_n ist definiert als die Gruppe aller unitären unimodularen Matrizen der Ordnung n+1,

$$a = (a_{jk})$$
, $j, k = 0, 1, ..., n$.

Durch die Bedingung $a_{00} = 1$ greifen wir aus A_n eine Untergruppe A'_{n-1} heraus, und durch die Bedingung $a_{00} = -1$ eine Restklasse (Nebengruppe) A''_{n-1} der Gruppe A_n nach der Untergruppe A'_{n-1} . Die Dimension einer Gruppe A_r ist $(r+1)^2-1$, und daher gilt für die Dimensionsdifferenzen:

Dim.
$$A_n$$
 — Dim. A'_{n-1} = Dim. A'_n — Dim. A''_{n-1} = $2n + 1$. (1)

Wie ich gezeigt habe¹), kann jede Menge $F \subset A_n - A'_{n-1}$ durch eine stetige Deformation innerhalb von $A_n - A'_{n-1}$ in eine Teilmenge von A''_{n-1} übergeführt werden; und das Analoge gilt für die Mengen $F \subset A_n - A''_{n-1}$.

f sei eine stetige Abbildung der 4-dimensionalen Sphäre Σ^4 in die Mannigfaltigkeit A_n . Wenn $n \geqslant 2$ ist, so kann man, infolge von (1), durch eine kleine Deformation von f zu einer solchen Abbildung f' übergehen, daß $f'(\Sigma^4) \subset A_n \longrightarrow A''_{n-1}$ ist; nach dem zitierten Deformationssatz kann man f' weiter stetig in eine Abbildung f'' überführen, welche die Bedingung erfüllt: $f''(\Sigma^4) \subset A'_{n-1}$.

Durch wiederholte Anwendung dieser Operation erhalten wir eine Abbildung g von Σ^4 mit $g(\Sigma^4) \subset A_2$, und indem wir dieselbe Operation noch einmal wiederholen, eine Abbildung g', die homotop zu f und so beschaffen ist, daß $g'(\Sigma^4) \subset A_1''$ ist. Unser Ziel — zu zeigen, daß f homotop 0 in A_n ist — ist daher erreicht, sobald bewiesen ist: jede Abbildung von Σ^4 in A_1'' ist homotop 0 in A_2 .

Bekanntlich ist A_1'' mit der 3-dimensionalen Sphäre S^3 homöomorph; nun weiß man aber, daß es nur zwei Abbildungsklassen von Σ^4 in S^3 gibt⁵); folglich genügt es, folgendes zu beweisen: Es gibt eine wesentliche Abbildung von Σ^4 auf A_1'' , die homotop 0 in A_2 ist. Dieser Beweis wird im § 2 mit Hilfe algebraischer Rechnungen geführt werden.

Betrachten wir jetzt andererseits ein topologisches Produkt $S^3 \times M$; seine Punkte $z = x \times y$ entsprechen den Punktepaaren $x \in S^3$, $y \in M$;

wir setzen $\psi(z) = x$. Wir behaupten: ist f eine wesentliche Abbildung von Σ^4 auf S^3 , so ist die Abbildung g von Σ^4 in $S^3 \times M$, welche durch $g(u) = f(u) \times b$ erklärt ist, wobei b ein fester Punkt von M ist, nicht homotop 0 in $S^3 \times M$; in der Tat: wenn eine stetige Deformation g_t der Abbildung $g_0 = g$ existiert, die $g(\Sigma^4)$ in einen Punkt von $S^3 \times M$ zusammenzieht, so ist $\psi g_t = f_t$ eine Deformation der Abbildung f, welche $f(\Sigma^4)$ in einen Punkt von S^3 zusammenzieht.

Nun ist bekannt⁵), daß es eine wesentliche Abbildung f von Σ^4 auf S^3 gibt; nach dem eben Gesagten gibt es daher auch eine Abbildung g von Σ^4 in $S^3 \times M$, welche nicht homotop 0 in $S^3 \times M$ ist.

§ 2. Die Eigenschaften von A_2 , die ich brauche, führe ich für A_n an, da diese allgemeineren Eigenschaften nicht komplizierter sind und für weitere Zwecke Verwendung finden können.

 R^n sei ein komplexer unitärer Raum der komplexen Dimension n. Ein Vektor $\gamma \in R^n$ sei durch seine Komponenten als einzeilige Matrix $\gamma = (\gamma_1, \gamma_2, \ldots, \gamma_n)$ gegeben. Ist d eine beliebige Matrix, so bezeichnen wir durch d^* die dazu konjugiert-komplexe und transponierte Matrix. Es ist also γ^* eine Matrix aus einer Kolonne; weiter ist $\gamma\gamma^*$ eine Matrix der Ordnung 1, deren Zahlwert gleich dem Quadrat der Länge von γ ist; $\gamma^*\gamma$ ist eine quadratische Matrix der Ordnung n:

$$\gamma^*\gamma = (\bar{\gamma}_j \cdot \gamma_k)$$
.

Wir fügen zu R^n noch eine reelle Achse mit der Koordinate α hinzu und bezeichnen den so entstandenen Raum mit R_n ; ein Punkt von R_n ist durch eine Matrix $x=(\alpha,\gamma)$ gegeben. Durch

$$\alpha^2 + \gamma \gamma^* = 1 \tag{2}$$

wird im R_n eine 2n-dimensionale Sphäre Σ^{2n} bestimmt. Wenn $x=(\alpha, \gamma)$ auf Σ^{2n} liegt, so ist $\gamma\gamma^*=1-\alpha^2$; für $\gamma\neq 0$, also $\alpha\neq\pm 1$, bezeichnen wir durch δ den Einheitsvektor in der Richtung von γ , also $\delta=\frac{1}{\sqrt{1-\alpha^2}}\cdot\gamma$; er wird ebenso wie γ durch eine einzeilige Matrix der Länge n beschrieben.

Mit ε werde die Einheitsmatrix der Ordnung n+1 bezeichnet: $\varepsilon = (\delta_{jk}), j, k = 0, 1, ..., n$; mit ε' die Einheitsmatrix der Ordnung n: $\varepsilon' = (\delta_{jk}), j, k = 1, ..., n$.

Es sei nun $x = (\alpha, \gamma) \in \Sigma^{2n}$; wir betrachten die Matrix der Ordnung n+1

⁵) L. Pontrjagin, C. R. Congrès intern. des math., Oslo 1936, t. II, 140; sowie: C. R. Acad. Sc. U.R. S. S. 19 (1938), 147—149. — H. Freudenthal, Compositio Math. 5 (1937), 299—314.

$$u = \begin{pmatrix} \alpha i & \gamma \\ -\gamma^* & -\alpha i \varepsilon' \end{pmatrix} ;$$

in ihr ist γ ein Block aus einer Zeile, — γ^* ein Block aus einer Kolonne, — $\alpha i \varepsilon'$ ein quadratischer Block der Ordnung n, αi eine Zahl; u ist also quadratisch von der Ordnung n+1; es gilt

$$u + u^* = 0. (3)$$

Ist t eine reelle Zahl, so ist

$$b(x,t) = e^{tu} (4)$$

eine quadratische Matrix der Ordnung n+1, für die aus (3) folgt, daß sie unitär ist; durch Rechnung findet man:

$$b(x,t) = \begin{pmatrix} \cos t + \alpha i \cdot \sin t & \sin t \cdot \gamma \\ -\sin t \cdot \gamma^* & e^{-i\alpha t} \cdot \varepsilon' + (\cos t - \alpha i \cdot \sin t - e^{-i\alpha t}) \cdot \delta^* \delta \end{pmatrix}; (5)$$

hierbei ist $\gamma \neq 0$, $\alpha \neq \pm 1$ vorausgesetzt, da sonst δ nicht erklärt ist; die Formel (5) bleibt aber auch für $\gamma = 0$, $\alpha = \pm 1$ gültig, wenn man unter δ einen beliebigen Vektor versteht. Daß $b(x, t) = e^{tu}$ ist, ist nicht wichtig; es kommt nur auf einige Eigenschaften dieser Matrix an, die sich aus (4) oder aus (5) durch direkte Rechnung ergeben: nämlich, daß sie unitär und daß ihre Determinante

Det.
$$b(x,t) = e^{-(n-1)i\alpha t}$$
 (6)

ist.

Beweis: s' sei eine quadratische unitäre Matrix der Ordnung n; wir setzen

$$s = \left(egin{array}{cc} 1 & 0 \ 0 & s' \end{array}
ight) \; ;$$

dann ist

$$s^{-1} \cdot b(x,t) \cdot s = b(y,t) \tag{7}$$

mit $y = (\alpha, \gamma s')$, wobei $\gamma s'$ das einzeilige Matrixprodukt von γ und s' ist; da s unitär ist, sind b(x, t) und b(y, t) gleichzeitig unitär und haben gleiche Determinanten. Wählen wir nun, zu dem gegebenen Vektor γ , die Matrix s' so, daß

$$\gamma s' = (\beta, 0, ..., 0), \beta \text{ reell},$$

wird, dann hat b(y, t) eine besonders einfache Form, für welche man,

unter Berücksichtigung der Beziehung $\alpha^2 + \beta^2 = 1$, unsere Behauptungen leicht bestätigt.

Wir betrachten noch die Matrix

$$c(\alpha,t) = \begin{pmatrix} 1 & 0 \\ 0 & \frac{n-1}{n} i \alpha t \\ 0 & e^{\frac{n-1}{n} i \alpha t} \epsilon' \end{pmatrix} ;$$

sie ist unitär, ihre Determinante ist $e^{(n-1)i\alpha t}$. Das Produkt

$$a(x,t) = b(x,t) \cdot c(\alpha,t)$$

ist daher eine unitäre unimodulare Matrix: $a(x, t) \in A_n$.

Bei festem t entspricht jedem Punkt x von Σ^{2n} ein Punkt a(x, t) von A_n , d. h. a(x, t) vermittelt eine Abbildung von Σ^{2n} in A_n ; wird t variiert, so entsteht eine Deformation dieser Abbildung. Man sieht unmittelbar, daß

$$a(x, 0) = \varepsilon$$
 , $a(x, \pi) \in A_{n-1}''$

ist. $a(x, \pi) = a(x)$ ist also eine stetige Abbildung von $\sum_{n=1}^{2n} a_{n-1}$, die in A_n homotop 0 ist.

Es bleibt zu zeigen, daß für n=2 die Abbildung a(x) von Σ^4 in die 3-dimensionale Sphäre A_1'' wesentlich ist.

Wir setzen

$$a(x) = (a_{jk}(x)), j, k = 0, 1, 2;$$

dann ist

$$a_{00}(x) = -1$$
, $a_{j0}(x) = a_{0k}(x) = 0$, $j, k = 1, 2$,

$$a_{jk}(x) = \left(\cos\frac{\pi}{2}\alpha - i \sin\frac{\pi}{2}\alpha\right)\delta_{jk} - 2\cos\frac{\pi}{2}\alpha\cdot\bar{\delta}_{j}\delta_{k}, j, k = 1, 2.$$

Führen wir in A_1'' Koordinaten x_1, x_2, x_3, x_4 ein, indem wir

$$a_{11}(x) = x_2 - ix_1$$
, $a_{12}(x) = -x_3 - ix_4$

setzen, so ist die mit einer 3-dimensionalen Sphäre homöomorphe Mannigfaltigkeit A_1'' durch $x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1$ gegeben, und für unsere Abbildung a(x) ist

$$x_1 = \sin \frac{\pi \alpha}{2}$$

$$x_2 = (1 - 2 \overline{\delta}_1 \delta_1) \cdot \cos \frac{\pi \alpha}{2}$$
(8)

$$x_3 + ix_4 = 2\,\overline{\delta}_1\,\delta_2 \cdot \cos\frac{\pi\,\alpha}{2} .$$

Auf der Sphäre $A_{1|1}''$ werden durch die Bedingungen $x_1 > 0$, $x_1 < 0$, $x_1 = 0$ eine nördliche Halbkugel, eine südliche Halbkugel und eine Äquatorsphäre S^2 ausgezeichnet; analog auf Σ^4 durch $\alpha > 0$, $\alpha < 0$, $\alpha = 0$ eine nördliche und eine südliche Halbkugel sowie eine Äquatorsphäre Σ^3 . Aus (8) sieht man: wenn x auf Σ^4 einen Halbmeridian vom Nordpol zum Südpol durchläuft, so durchläuft a(x) auf A_1'' einen Halbmeridian vom Nord- zum Südpol, und wenn x auf Σ^3 ist, so ist a(x) auf S^2 .

In Anbetracht dieser Eigenschaften der Abbildung a und in Anbetracht bekannter allgemeiner Sätze über Sphärenabbildungen⁶) genügt es für den Beweis der Wesentlichkeit der Abbildung a von Σ^4 auf A_1'' , zu zeigen, daß für die durch a gelieferte Abbildung von Σ^3 auf S^2 die Hopfsche Zahl⁷) C ungerade ist.

Nun ist aber diese Abbildung des durch $\alpha=0$, $\delta_1\bar{\delta}_1+\delta_2\bar{\delta}_2=1$, bestimmten Äquators Σ^3 von Σ^4 auf den durch $x_1=0$, $x_2^2+x_3^2+x_4^2=1$, bestimmten Äquator S^2 von A_1'' nach (8) durch die Formeln

$$x_2 = 1 - 2\bar{\delta}_1 \delta_1, \ x_3 + ix_4 = 2\bar{\delta}_1 \delta_2 \tag{9}$$

gegeben; von der durch (9) gegebenen Abbildung aber ist es bekannt und leicht zu sehen⁸), daß $C=\pm 1$ ist.

Damit ist bewiesen: Die Abbildung a der Sphäre Σ^4 auf die Mannigfaltigkeit A_1'' ist wesentlich auf A_1'' , aber homotop 0 in A_2 .

§ 3. Im Vorstehenden ist bewiesen worden, daß die Mannigfaltigkeit A_2 nicht mit dem topologischen Produkt $S^3 \times S^5$ homöomorph ist, obwohl die beiden Mannigfaltigkeiten triviale Fundamentalgruppen und isomorphe Homologiegruppen, und sogar isomorphe Schnittringe haben. Der Beweis beruhte darauf, daß die vierte Homotopiegruppe von A_2 trivial ist, während die vierte Homotopiegruppe von $S^3 \times S^5$ nicht trivial (sondern von der Ordnung 2) ist. Es war also nicht nötig, für den Beweis neue topologische Invarianten einzuführen; jedoch wird durch die geometrischen Überlegungen, die zu dem Beweis geführt haben, die Einführung einer neuen topologischen Invariante nahegelegt.

Die Elemente der r-ten Homotopiegruppe $H^r(Q)$ eines zusammenhängenden Polyeders Q sind die Klassen der Abbildungen der Sphäre S^r in das Polyeder Q, wobei nur solche Abbildungen betrachtet werden, welche einen auf S^r fest ausgezeichneten "Pol" p in einen in Q ausge-

⁶⁾ Freudenthal, l. c., Satz III.

⁷⁾ H. Hopf, Math. Annalen 104 (1931), 637-665.

⁸⁾ Hopf, l. c., § 5.

zeichneten "Nullpunkt" o überführen; die Definition der Addition in $H^r(Q)$ darf wohl als bekannt gelten⁹).

Neben der Gruppe $H^r(Q)$ betrachten wir die Gruppe $H^{r+k}(S^r)$; wir nehmen an, daß der für die Definition von $H^r(Q)$ auf S^r ausgezeichnete Pol mit dem für die Definition von $H^{r+k}(S^r)$ auf S^r ausgezeichneten Nullpunkt zusammenfällt. Ist nun x ein Element von $H^r(Q)$, y ein Element von $H^{r+k}(S^r)$, so gehören diejenigen Abbildungen fg von S^{r+k} in Q, für welche $f \in x$, $g \in y$ ist, einer Klasse von Abbildungen von S^{r+k} in Q an; diese Klasse repräsentiert ein Element xy der Gruppe $H^{r+k}(Q)$.

Die Struktur der hiermit erklärten Multiplikation der Gruppen $H^{r+k}(S^r)$ und $H^r(Q)$, die übrigens das Gesetz $x(y \pm y') = xy \pm xy'$ erfüllt, ist eine Invariante des Polyeders Q, und es liegt kein Grund dafür vor, anzunehmen, daß sie sich auf bekannte Invarianten zurückführen läßt.

(Eingegangen den 4. April 1941.)

⁹⁾ Hurewicz, 1. c. 4); sowie Freudenthal, 1. c. 6), §§ 1, 2.