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Uber die
topologische Struktur der Lieschen Gruppen

Von L. PoNTRJAGIN, Moskau

Die Poincaréschen Polynome der kompakten Lieschen Gruppen haben
die Gestalt
(L4 t*) - (14 t*2)- ... - (1 + t*),

also dieselbe Gestalt wie die Poincaréschen Polynome der topologischen
Produkte der Sphédren der Dimensionen «,, «,, ..., «,!); unter den ein-
fachen Gruppen aus den vier groBen Klassen in der Killing-Cartanschen
Aufzéhlung haben die Gruppen 4, und C, iiberdies, wie ich gezeigt habe,
keine Torsion?), und ihre Fundamentalgruppen sind, wie man leicht
sieht, trivial (d. h. von der Ordnung 1); fiir diese Gruppen erhebt sich
daher die Frage, ob sie mit den entsprechenden Spharenprodukten homéo-
morph seien3).

Im folgenden wird gezeigt, dafl diese Frage im allgemeinen zu verneinen
ist; es wird ndmlich bewiesen:

Die Gruppe A,, n > 2, deren Poincarésches Polynom
(X483 (14 8)-...- (14 )

lautet'), ist nicht mit einem Produkt S3 =< M homéomorph, worin 82 die
3-dimensionale Sphire, M irgend ein topologischer Raum ist.

Der Beweis beruht darauf, dal die 4-dimensionale Homotopiegruppe?)
der Mannigfaltigkeit 4,, n > 2, trivial (d. h. von der Ordnung 1), die
4-dimensionale Homotopiegruppe eines Produktes 82> M aber nicht

1) Fiir die Gruppen 4,, B, C,, D, der vier groBen Klassen einfacher Gruppen mit
Bestimmung der Exponenten «; zuerst von mir, C. R. Acad. Sc. U.R.8.8. 1 (1935),
433—437, und C. R. Paris 200 (1935), 1277—1280, bewiesen ; eine ausfiihrliche Darstellung
mit Bestimmung der Torsionsgruppen habe ich im Recueil math. de Moscou 6 (1939),
389—422, gegeben. Weitere Beweise: R. Brauer, C. R. Paris 201 (1935), 419—421; C. Ehres-
mann, C. R. Paris 208 (1939), 321—323 und 1263-—1265; ferner — als Spezialfall eines
allgemeineren Satzes, aber ohne Bestimmung der «;— : H. Hopf, Annals of Math. 42
(1941), 22—52.

?2) Recueil math., wie 1); sowie Ehresmann, 1. c.

3) Auf diese Frage hat E. Cartan am Schlu8 seines Genfer Vortrages ,,La Topologie
des GQroupes de Lie* hingewiesen (L’Enseignement math. 86 [1936], 177—200; sowie:
Actualités Scient. et Industr. 868 [Paris 1936]; sowie: Selecta, Jubilé Scientifique [Paris
1939], 253—258).

4) W. Hurewicz, Proc. Akad. Amsterdam 38 (1935), 112—119, 521-—528.
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trivial ist. Ubrigens spielt der Begriff der Homotopiegruppe selbst in dem
Beweis eigentlich keine Rolle; es wird einfach gezeigt, daBl jede Abbil-
dung der 4-dimensionalen Sphire 2'¢ in die Mannigfaltigkeit 4,, n > 2,
homotop 0 in 4, ist, wihrend es eine Abbildung von 2'* in 8% < M gibt,
die nicht homotop 0 in S2 > M ist.

§ 1. Die Gruppe A4, ist definiert als die Gruppe aller unitdren uni-
modularen Matrizen der Ordnung » + 1,

a=(a,) , J,k=01,..,n.

Durch die Bedingung a,, = 1 greifen wir aus 4, eine Untergruppe 4. _,
heraus, und durch die Bedingung a,, = —1 eine Restklasse (Nebengruppe)

7 , der Gruppe A, nach der Untergruppe A4, _,. Die Dimension einer
Gruppe 4, ist (r 4+ 1)2 — 1, und dabher gilt fiir die Dimensionsdifferenzen :

Dim. A, — Dim. 4, , = Dim. 4, —Dim. A%_, = 2n + 1. (1)

Wie ich gezeigt habe!), kann jede Menge F — A, — A]_, durch eine
stetige Deformation innerhalb von 4, — A , in eine Teilmenge von
Al ibergefiihrt werden; und das Analoge gilt fiir die Mengen
FcAd,—4),.

f sei eine stetige Abbildung der 4-dimensionalen Sphire 24 in die
Mannigfaltigkeit 4,,. Wenn n > 2 ist, so kann man, infolge von (1), durch
eine kleine Deformation von f zu einer solchen Abbildung f’ iibergehen,
daB f'(2'%) c 4, — Al _, ist; nach dem zitierten Deformationssatz kann
man f’ weiter stetig in eine Abbildung f” iiberfiihren, welche die Bedingung
erfiillt: f"(2Y) < 4, _, .

Durch wiederholte Anwendung dieser Operation erhalten wir eine
Abbildung g von X't mit ¢(2'%) — 4,, und indem wir dieselbe Operation
noch einmal wiederholen, eine Abbildung ¢/, die homotop zu f und so
beschaffen ist, daBl g/(2'4) c A7 ist. Unser Ziel — zu zeigen, daB f homo-
top 0 in A, ist — ist daher erreicht, sobald bewiesen ist: jede Abbildung
von 2t in A ist homotop 0 in 4,.

Bekanntlich ist 4] mit der 3-dimensionalen Sphiire 82 homéomorph;
nun weiB man aber, daB es nur zwei Abbildungsklassen von 2’4 in §3
gibt®) ; folglich geniigt es, folgendes zu beweisen: Es gibt etne wesentliche
Abbildung von X4 auf A}, die homotop 0 in A, ist. Dieser Beweis wird
im § 2 mit Hilfe algebraischer Rechnungen gefiihrt werden.

Betrachten wir jetzt andererseits ein topologisches Produkt S =< M ;
seine Punkte z = x =< y entsprechen den Punktepaaren z € 83, y € M;
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wir setzen y(z) = x. Wir behaupten: ist f eine wesentliche Abbildung
von X4 auf 83, so ist die Abbildung ¢ von 2'* in S3 =< M, welche durch
g(u) = f(u) = b erkliart ist, wobei b ein fester Punkt von M ist, nicht
homotop 0 in 82 >< M ; in der Tat: wenn eine stetige Deformation ¢, der
Abbildung g, = g existiert, die ¢g(X'*) in einen Punkt von S%x= M zu-
sammenzieht, so ist yg, = f, eine Deformation der Abbildung f, welche
f(2'%) in einen Punkt von S® zusammenzieht.

Nun ist bekannt®), daB es eine wesentliche Abbildung f von 2'¢ auf
§3 gibt; nach dem eben Gesagten gibt es daher auch eine Abbildung g
von 24 in 83 < M, welche nicht homotop 0 in 83 < M ist.

§ 2. Die Eigenschaften von 4,, die ich brauche, fiihre ich fiir 4, an,
da diese allgemeineren Eigenschaften nicht komplizierter sind und fiir
weitere Zwecke Verwendung finden konnen.

R" sei ein komplexer unitdrer Raum der komplexen Dimension n.
Ein Vektor y € R" sei durch seine Komponenten als einzeilige Matrix
Y = (Y15 Y2, --+» Vn) gegeben. Ist d eine beliebige Matrix, so bezeichnen
wir durch d* die dazu konjugiert-komplexe und transponierte Matrix.
Es ist also y* eine Matrix aus einer Kolonne; weiter ist yy* eine Matrix
der Ordnung 1, deren Zahlwert gleich dem Quadrat der Lidnge von y
ist; y*y ist eine quadratische Matrix der Ordnung = :

YRy = (57 -
Wir fiigen zu R" noch eine reelle Achse mit der Koordinate « hinzu

und bezeichnen den so entstandenen Raum mit R, ; ein Punkt von R,
ist durch eine Matrix x = (x, y) gegeben. Durch

o 4 yy* =1 (2)

wird im R, eine 2n-dimensionale Sphire 2'*" bestimmt. Wenn z = («, y)
auf 2% liegt, so ist yy* = 1 — a2; fiir y % 0, also « # 4+ 1, bezeichnen
1
Vi—a?
er wird ebenso wie y durch eine einzeilige Matrix der Linge n beschrieben.

Mit ¢ werde die Einheitsmatrix der Ordnung » 4 1 bezeichnet: ¢ =
(6;x), 4,k=0,1,...,n; mit ¢’ die Einheitsmatrix der Ordnung =:
' = (6u), 5 k=1,...,m.

Es sei nun z = (x, y) € 2'**; wir betrachten die Matrix der Ordnung
n+1

5) L. Pontrjagin, C. R. Congrés intern. des math., Oslo 1936, t. II, 140; sowie: C. R.

Acad. Sc. U.R.S.8. 19 (1938), 147—149. — H. Freudenthal, Compositio Math. 6 (1937),
299—314.

wir durch  den Einheitsvektor in der Richtung von y, also § = Vs
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_ [ ot ¥y .
w=( e i)

in ihr ist y ein Block aus einer Zeile, — y* ein Block aus einer Kolonne,
— wate’ ein quadratischer Block der Ordnung #, at eine Zahl; w ist also
quadratisch von der Ordnung n + 1; es gilt

U+ u*=0. (3)
- Ist t eine reelle Zahl, so ist
b(z,t) = et¥ (4)

eine quadratische Matrix der Ordnung n + 1, fiir die aus (3) folgt, daBl
gie unitér ist; durch Rechnung findet man:

cos {41 -sin ¢ sin ¢-y .

b, t) = ( — 8in ¢ - p* e tt.g’ + (cos t—xi-sin t—e“"“‘)-d*é)’ ®)
hierbei ist y 7% 0, o« % 4+ 1 vorausgesetzt, da sonst J nicht erklirt ist;
die Formel (5) bleibt aber auch fiir y = 0, x = 4 1 giiltig, wenn man
unter J einen beliebigen Vektor versteht. Dall b(x, t) = e?* ist, ist nicht
wichtig; es kommt nur auf einige Eigenschaften dieser Matrix an, die
sich aus (4) oder aus (5) durch direkte Rechnung ergeben: niamlich, da3
sie unitdr und dafl ihre Determinante

Det. b(x,t) = e-(n-Dial (6)
ist.
Beweis: s’ sei eine quadratische unitire Matrix der Ordnung =; wir
setzen
s — ( 1 0 ) )
0 &)’
dann ist

sl-b(x,t)-8s=0b(y,?) (7)

mit y = («, ys’), wobei ys’ das einzeilige Matrixprodukt von y und s’
ist; da s unitér ist, sind b(z, t) und b(y, t) gleichzeitig unitdr und haben
gleiche Determinanten. Wihlen wir nun, zu dem gegebenen Vektor y,
die Matrix s’ so, dafl

ys' = (8,0,...,0), Breell,

wird, dann hat b(y, t) eine besonders einfache Form, fiir welche man,
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unter Beriicksichtigung der Beziehung «? + % = 1, unsere Behauptungen
leicht bestatigt.
Wir betrachten noch die Matrix

1 0
c(o‘at)':( n1ia ) ;
0 e ¢

sie ist unitdr, ihre Determinante ist e(*-Viat = Dasg Produkt

a(x,t) =0b(x,t) c(x,?)

ist daher eine unitire unimodulare Matrix: a(z,t)€ 4, .

Bei festem ¢ entspricht jedem Punkt x von 2'*" ein Punkt a(z, t) von
4,,d. h. a(z,t) vermittelt eine Abbildung von 2" in A4,,; wird ¢ variiert,
so entsteht eine Deformation dieser Abbildung. Man sieht unmittelbar, dal

a(z,0)=¢ , a(r,n)€A"

n—1

ist. a(z, ®) = a(x) ist also eine stetige Abbildung von 2’2" in 4/_,, die
in 4, homotop 0 ist.

Es bleibt zu zeigen, daB fiir n = 2 die Abbildung a(x) von X4 in die
3-dimensionale Sphire 4] wesentlich ist.

Wir setzen
a’(x)z(ajk(x)) ’ j’kzoyl,z;
dann ist
aoo(x)':'—l: aio(x)=a0k(x)=0’ jak=1,2s

T

) x-8;0,,7,k=1,2 .

4 LAY 9
a;;(x) = €08 - o —1 8In. - &) 0; — 2 cO8
Fiihren wir in 4] Koordinaten z,, z,, z,, , ein, indem wir

Ay (%) = 2, — 1) , By (%) = — 23— 1,

setzen, so ist die mit einer 3-dimensionalen Sphire homéomorphe Mannig-
faltigkeit A/ durch «f + a2 + a2 4+ 2} = 1 gegeben, und fiir unsere
Abbildung a(z) ist

. AKX
xl —_ Sm—2‘
2, = (1—23,8,) - cos-“-zﬁ (8)

x, + tx,= 26,0, - cosz-czﬁ .
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Auf der Sphire Ay, werden durch die Bedingungen z, >0, z, <0,
z, = 0 eine nordliche Halbkugel, eine siidliche Halbkugel und eine Aqua-
torsphére S? ausgezeichnet; analog auf 2'* durch a >0, x <0, a = 0
eine nordliche und eine siidliche Halbkugel sowie eine Aquatorsphire 3.
Aus (8) sieht man: wenn 2 auf X* einen Halbmeridian vom Nordpol zum
Siidpol durchlduft, so durchliuft a(z) auf A} einen Halbmeridian vom
Nord- zum Siidpol, und wenn z auf 22 ist, so ist a (x) auf S2.

In Anbetracht dieser Eigenschaften der Abbildung @ und in Anbetracht
bekannter allgemeiner Sitze iiber Sphirenabbildungen®) geniigt es fiir
den Beweis der Wesentlichkeit der Abbildung @ von X't auf A/, zu zeigen,
daB fiir die durch a gelieferte Abbildung von 2'3 auf S2 die Hopfsche
Zahl?) C ungerade ist.

Nun ist aber diese Abbildung des durch & = 0, 8,8, + 8,8, = 1, be-
stimmten Aquators 2'3 von X' auf den durch z, =0, 224 2 + 22 =1,
bestimmten Aquator 82 von A/ nach (8) durch die Formeln

@y =1—28,0,, 2, + 12z, = 28,0, (9)

gegeben; von der durch (9) gegebenen Abbildung aber ist es bekannt
und leicht zu sehen?), daBl C = 41 ist.

Damit ist bewiesen: Die Abbildung a der Sphire 2’4 auf die Mannig-
faltigkeit 4] ist wesentlich auf 4], aber homotop 0 in A4, .

§ 3. Im Vorstehenden ist bewiesen worden, da die Mannigfaltigkeit
A, nicht mit dem topologischen Produkt §2% < 85 homéomorph ist, ob-
wohl die beiden Mannigfaltigkeiten triviale Fundamentalgruppen und
isomorphe Homologiegruppen, und sogar isomorphe Schnittringe haben.
Der Beweis beruhte darauf, dal die vierte Homotopiegruppe von 4,
trivial ist, wihrend die vierte Homotopiegruppe von S3 =< §°% nicht trivial
(sondern von der Ordnung 2) ist. Es war also nicht notig, fiir den Beweis
neue topologische Invarianten einzufiihren; jedoch wird durch die geome-
trischen Uberlegungen, die zu dem Beweis gefiihrt haben, die Einfiihrung
einer neuen topologischen Invariante nahegelegt.

Die Elemente der r-ten Homotopiegruppe H7(Q) eines zusammen-
hingenden Polyeders @ sind die Klassen der Abbildungen der Sphire Sr
in das Polyeder @, wobei nur solche Abbildungen betrachtet werden,
welche einen auf Sr fest ausgezeichneten ,,Pol” p in einen in @ ausge-

8) Freudenthal, 1. c., Satz III.
7) H. Hopf, Math. Annalen 104 (1931), 637—665.
8) Hopf, 1. c., §5.
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zeichneten ,,Nullpunkt‘ o iiberfiihren; die Definition der Addition in
H"(Q) darf wohl als bekannt gelten?®).

Neben der Gruppe H"(Q) betrachten wir die Gruppe HT+*(S7); wir
nehmen an, dal der fiir die Definition von H7(Q)) auf 87 ausgezeichnete
Pol mit dem fiir die Definition von Hr+¥(87) auf 8" ausgezeichneten Null-
punkt zusammenfillt. Ist nun x ein Element von H"(Q), y ein Element
von H™k(8"), so gehoéren diejenigen Abbildungen fg von S™* in @, fir
welche f € z, g € y ist, einer Klasse von Abbildungen von Sr+* in @ an;
diese Klasse reprisentiert ein Element xy der Gruppe H™*(Q).

Die Struktur der hiermit erklirten Multiplikation der Gruppen Hr+¥*(S")
und H7(Q), die iibrigens das Gesetz z(y + y') = xy + xy’ erfiillt, ist
eine Invariante des Polyeders @, und es liegt kein Grund dafiir vor,
anzunehmen, daB sie sich auf bekannte Invarianten zuriickfiihren 1dBt.

(Eingegangen den 4. April 1941.)

%) Hurewicz, 1. c. *); sowie Freudenthal, 1. c. ), §§ 1, 2.
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