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Fondements d'une théorie
générale de la courbure linéaire

Par EvckENE EGERVARY et GEORGES ALEXITS, Budapest

L’évolution de I’analyse mathématique a suggéré de bonne heure 1’idée
de traduire les propriétés locales d’une figure géométrique en termes du
calcul infinitésimal. Bien que cette méthode d’arithmétisation ait établi
de nouveaux aspects & ’époque ol il ne s’agissait que de définir plus ou
moins exactement les notions intuitives de géométrie, on ne peut pas
contester que l'arithmétisation illimitée a conduit, en quelque sorte, &
une certaine décadence de 'idée géométrique. En effet, I'identification de
la figure intuitive avec l’ensemble des valeurs de certaines fonctions
dérivables est un procédé arbitraire et, en tout cas, contraire & ’esprit
géométrique. Mais, abstraction faite de la tendance analyste qui veut
transformer une partie considérable de la géométrie en une simple appli-
cation du calcul infinitésimal, les conditions de dérivabilité créent, méme
du point de vue analyste, une atmosphére vague; car on ne connait guére
le sens géométrique exact de I’hypothése que les fonctions par lesquelles
on a réalisé la représentation paramétrique d’une figure arbitraire possé-
dent, dans un certain intervalle, une n-iéme dérivée. La géométrie infinité-
simale a donc un caractére heuristique; ses méthodes ont été imposées
pour remédier a l'incapacité des méthodes de la géométrie classique;
mais elles ne portent point les traits d’une nécessité mathématique.

Dans I’état actuel du développement de la science, il faut absolument
reprendre le probléme des fondements de la géométrie infinitésimale, en
étudiant systématiquement les propriétés locales intrinséques des con-
tinus sans faire appel & I'introduction de coordonnées. Alors, les propriétés
locales des continus seront caractérisées par l'intermédiaire de la notion
de distance, celle-ci étant 1’élément déterminant de 1’espace. Il 8’agit donc
d’'une recherche systématique de certains invariants des isomorphies;
invariants caractérisant les propriétés métriques des continus de méme
que certains invariants des homéomorphies caractérisent leurs propriétés
topologiques.

L’idée de fonder I’étude des propriétés locales des continus uniquement
sur la recherche des relations entre les distances mutuelles de leurs
points est due 4 M. Menger!). Il a commencé ses recherches par une étude

1) Menger, 10. (Le nombre aprés le nom de I'auteur indique le numéro sous lequel le
titre de I’ouvrage respectif figure dans la bibliographie que nous avons réunie & la fin de
ce mémoire.
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approfondie de la notion de premiére courbure d’un arc. La notion de
deuxiéme courbure (torsion) d’un arc a été recherchée de ce point de
vue par 'un des auteurs?), tandis que ’autre®) a réussi a introduire une
définition générale des courbures supérieures d’un arc euclidien ; définition
qui se préte a une généralisation immédiate aux espaces distanciés.

Le plan du présent travail est le suivant: Nous définirons d’abord, au
§ 1, la notion de courbure linéaire d’ordre n. (Nous parlons d'une courbure
linéaire pour mettre en évidence le caractére linéaire de notre notion de
courbure, en opposition aux notions de courbure superficielle, courbure
de Riemann, etc.) Nous passerons, au § 2, & la recherche des propriétés
de continuité de la n-iéme courbure linéaire. Il suit, au § 3, une recherche
de la structure des continus euclidiens ayant une courbure linéaire d’ordre
n; puls nous allons étudier, au § 4, I’existence des courbures linéaires d’un
arc situé dans un espace euclidien et assujetti aux conditions de dériva-
bilité, habituelles dans la géométrie infinitésimale. Nous nous occuperons
enfin, au § 5, des arcs dont la n-iéme courbure linéaire s’évanouit partout.

§ 1. La définition de la n-iéme courbure linéaire

1.1. Nous appellerons espace semi-distancié un ensemble E tel que &
tout couple p,q de ses éléments soit attaché un nombre pgq assujetti
aux conditions suivantes:

1. pg=qp =0
2. pq = 0 et p = q S’entrainent réciproquement.
Les éléments de E s’appellent points de I'espace E et le nombre pq I’écart

des points p et ¢g. L’espace semi-distancié E est un espace distancié, si
Pécart pq satisfait, outre les conditions 1 et 2, & I'inégalité triangulaire

3. pq+qr =pr.
Dans ce cas, on appelle I’écart pq la distance des points p et ¢. Considérons
n points p,, p;, ..., P, d’un espace semi-distancié quelconque et posons

0 1

D(plsp2""’pn)= 1 (pp)z
¥ ]

(G,j=1,2,...,m).

Ce déterminant jouera un role éminent dans nos recherches suivantes.

2) Alexits, 1,2.
3) Egervdry, 6.
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1.2. Etant donné dans l’espace semi-distancié E un systéme de
(n 4+ 2) points différents p,, p,, ..., Pny; tels que?) D(p,, p1, ..., Ps) 70,
D(p,, P2, ---» Ppyy) 70, nous appellerons courbure linéaire des points
Dos P1s -+ -5 Pny1 COTrespondant au sens de parcours py—>p;— -+ —>p,., le
nombre positif

n—+1 |D(p0rp1s---’pn+1)‘D(pl’pz’“-spn)l_
PoPrtr T 1 D(DosPrse - sP0) * D(P1, P25« o5 Prta) |

(1)
La valeur de «(py, y, ..., Ppy1) dépend évidemment du sens de parcours
du systéme de n 4 2 points considéré, excepté au cas ol n = 1; puis-
que, en prenant n = 1, on obtient:

K(Pm Pis - "’pn-!—l) =

— D(po; 1> P2) =
=(PoP1+ DoDe+ P1P2) (PoP1+ PoPe—DP1P2) (PoPr+P1P2—PoPs) (PoPet P1P2—DoP1) 5
D(pop1) = 2(pop1)®, D(p1, p2) = 2(p1pa)®, —D(p) =1;
par conséquent:
K (Pos P1>P2) =

_ V| (Do P1+PoPat+P1P2) (PoP1+PoPa=P1P2) (PoP1+P1Pa—PoPs2) (PoPat+PiPe—PoP1) |
PoP1°PoP2* P1P:

Cette expression est symétrique et elle coincide avec la formule élémen-
taire dont M. Menger?®) s’est servi pour définir la courbure de trois points
d’un espace distancié.

1.3. Soit maintenant p, un point d’accumulation de l’espace E.

Envisageons I'expression «(py, P1,...,Pny1) pour tout systéme de n -4 2
points pg, Py, ..., Pnr1 de B et pour tout sens de parcours de ces points

pour lesquels «(py, 4, ..., P,y,) existe. Admettons encore I'existence de
la limite®)
Kn (Do) =lm k(Pgs P1s-+ -5 Prt1) (t=1,2,...,n+1) . (2)
Pi>Do

4) Cette condition équivaut, dans un espace euclidien, & la condition que, ni les points
DPos> Pis > Pps Ni Py, Pgy ++-» Ppt1» DO soient pas situés dans un hyperplan (n — 1)-
dimensionnel.

5) Menger, 10.

%) La restriction engendrée par la condition que la limite de k(pg, Py, ..., Pp4y) eXiste
pour tout sens de parcours du systéme de 7 -2 points pgy, Py, ..., Ppt+, disparait, s’il
s’agit d’une courbe de la géométrie infinitésimale classique; car, dans ce cas, tout sens de
parcours équivaut, comme nous le verrons, au sens de parcours naturel de la courbe
considérée.
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Nous appellerons «,(p,) la n-iéme courbure linéaire de Uespace E au
point po. Le point p, joue dans cette définition de la n-iéme courbure
linéaire un role particulier. Pour le faire disparaitre, on peut introduire
une n-iéme courbure linéaire de seconde espéce, en posant

k(Do) = M k(py, Py, s Ppye)  (E=1,2,...,0 4 2) (2%)

Pi>Po
ou1 l'expression «(p;, Pa, ..., Ppye) €8t & former pour tout systéme de
n -+ 2 points de £ et pour tout sens de parcours de ces points pour les-

quels «(p;, Ps, ..., Puys) existe.

1.4. La premiére courbure linéaire «,(p,) est identique avec la cour-
bure d’arc de M. Alt”), tandis que la premiére courbure linéaire de
seconde espéce «;*(p,) se réduit & la définition de la courbure d’arc de
M. Menger?). Pour = == 2, on a D(p,, ps) = 2(p,p.)? par suite

P2 P3 18 | D(py, P1sPa» Ps) |
P1Da | D(po> P15 P2) - D(P1sPa s Ps) |

K (o> P15 Pas>Ps) =

Les secondes courbures linéaires iy (p,) €t «;, (p,) se réduisent donc aux
expressions par lesquelles I'un des auteurs?) a réussi & définir la torsion
des espaces distanciés.

1.6. Dans l'espace euclidien %-dimensionnel £, le sens géométrique
des courbures linéaires est bien plausible. En effet, n étant =1, tout
systéme de # -+ 1 points ¢,,4q,, ..., ¢, de l'espace E, détermine un
simplexe n-dimensionnel ayant pour sommets les points ¢;, qs, ..., ¢uys-
Désignons par V(qy,qs,..-; ¢nr1) le volume de ce simplexe et posons,
pour n = 0, ¥V (g,) = 1. Alors, les déterminants figurant dans la définition
de la n-iéme courbure linéaire se laissent représenter par I'intermédiaire
des nombres V (q;, g3, ..., ¢,,1), Puisqu’il est connu que

( 1)’n+1

D(q1:925- > 9n+1) =W [(V(g1,95) > qnt1) ]?

Dans l'espace E,, 'expression «(pg, Py, ---, Pay1) peut donc s’écrire sous
la forme suivante:

(m+ 1) V(Po,Prs- s Pat1) - V(P1sPay .- s Pa)

N PoPrtr V(Po>Prs--sDPn) * V(P1sPasre - vs Put1)
(3)

K(pmpU“" pn+1) -

7 Als, 4. 8) Menger, 10. %) Alexits, 1,2.
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Par conséquent, les courbures linéaires «,, (p,) et x, (p,) se réduisent, dans
les espaces euclidiens, aux expressions par l'intermédiaire desquelles
I'un des auteurs!?) a défini la n-iéme courbure d’un arc euclidien.

1.6. Soit P;, ,,; 'hyperplan n-dimensionnel passant par les points

Dis> Pir1s -+ > Piyn b désignons par P;,,. . P;, .., I'angle!!) des hyperplans
P .0t Py, .. Il est connu'?) que

sin P/\P = n+ 1 . V(p03p1"-'apn+1)'V(p1’p2’--"pn)
0°nt 150+l n V(pOspl,""pn) .V(pl’pz’...’pn+l):

pourvu que V(pg, Py, ..., Pp) 7= 0 £ V(py, Pas -+ vs Puyy). On obtient par
suite, en vertu de la relation (3): aN

s PO,'n Pl,n+1
popn+1

K (PosPrse s Put1) = (n + 1) (4)

1.7. Le sens géométrique de la n-iéme courbure linéaire s’approche
encore des notions habituelles de la géométrie infinitésimale, si ’on sup-
pose que E est un arc situé dans 1’espace B, et représenté par k fonctions
de la longueur s de I’arc E. Désignons, en effet, par 5 l’angle de deux
hyperplans osculateurs n-dimensionnels de E, I'un appartenant au point
Po, ’autre & un point voisin de p,. Il est aisé de démontrer!3) que, £ étant
un arc (n -+ 1)-fois dérivable, on a

AN

sin PO,nP1,n+1 . d?’]

n -+ 1) lim = 1=1,2,...,n+1) ,
( )m-»po Po Pr+1 ds ( )
quel que soit ’ordre des points pg, p,, ..., P,.1; Par conséquent,
dny
Kn (Do) = rry

10) Hgervdry, 6.

11) Désignons dans Iespace E; par Ty (u=0,1,...,n;v=1,2,..., k) les coordon-
nées de n+ 1 points déterminant un hyperplan n-dimensionnel P et par Yuv les coordon-
nées d’un autre systéme de n -1 points déterminant un hyperplan n-dimensionnel Q.
Nous définissons I’angle 7, des hyperplans P et ) par la relation

”xy.v—'-xov ” : “y.u,y"—yov ”

cos 7 =

Ve, —2,, B |4 — Yy I
“ [

Dans I’espace (n - 1)-dimensionnel, I’angle 7 se réduit & P’angle élémentaire des normales
de P et @. Cette définition de I’angle 7 remonte & Kronecker. Voir & ce sujet H. Kihne, 7.
12) Meyer, 12. 18) Hgervdry, 6.
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La notion de m-iéme courbure linéaire généralise donc les notions infini-
tésimales de courbure et de torsion d’un arc euclidien.

§ 2. Propriétés générales des courbures linéaires

2.1. Un espace semi-distancié est compact, si toute suite infinie de ses
points posséde un point d’accumulation. Un espace distancié, connexe et
compact, comprenant plus d’un point, s’appelle un continu. Si tout
voisinage d’un point arbitraire du continu £ contient un voisinage con-
nexe, on dit que F est localement connexe. Introduisons pour un moment
Pexpression de continu n fois courbé pour un continu ayant la propriété
que tout systéme de n - 2 de ses points, p,, P, ..., Pps1, situés dans un
voisinage suffisamment petit, ait une courbure linéaire x (py, Py, ..., Ppt1)
pour au moins un sens de parcours!4). Apreés ces définitions, nous pouvons
énoncer le théoréme suivant!5):

St E est un continu localement connexe, n fois courbé et ayant a tout point
p une n-réme courbure linéaire x,(p), alors «,(p) est une fonction de Baire
de premiére classe au plus.

E étant un continu localement connexe, il existe, grace a un théoréme
de Hahn et M. Mazurkiewicz!®), une correspondance univoque et continue
f(x) transformant le segment 0 < x < 1 dans le continu £. A un point
arbitraire p, de E, il correspond donc au moins une valeur 0 < z, < 1
telle que py, = f(x,). Choisissons les points p,, p,, ..., P, de sorte que

P;= f(xo +~::—) ,t=1,2,...,24+1, o » désigne un entier positif arbi-

traire. Le diamétre du systéme de n+ 2 points p,, py, ..., Doy, devient
trés petit, si » devient assez grand. En prenant donc v suffisamment
grand, la courbure linéaire «(pg, Py, ..., Pny1) €Xiste pour un sens de
parcours au moins, puisque E est, d’aprés ’hypothése, un continu n»

fois courbé. Posons
@y (Po) = &(Pos Prs-++ > Prt1) (5)

Comme p, = f|=z, —|——z— , la fonction ¢,(p,) ne dépend que du point
i ” 2

Po = f(x,). On voit tout de suite que ¢,(p) est une fonction continue en
tout point p de E. En effet, il résulte de la relation (1) que, py, Py, - - -, Prtt
et py, Py, ..., P, étant deux systémes de n» -+ 2 points de E, la diffé-

14) Cette condition équivaut dans I’espace euclidien & la condition que n -1 points
ayant un diamsétre suffisamment petit ne soient pas situés dans un hyperplan (n — 1)-
dimensionnel.

18) Pour n = 2 voir Alexits, 2. 18) Voir p. ex. Menger, 11.
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rence |ik(Py, Py -» Pry1) — < (0, D5, «--, Pyy)| devient arbitrairement
petite, pourvu que les points p; et p; soient assez voisins. Mais, il 8’en-
suit, en vertu des relations (2) et (5), que

Ky (p) = lim @y (p) ;

V>0

par suite, «,(p) étant dans 'espace distancié £ la limite d’une suite de
fonctions continues, elle est une fonction de Baire au plus de premiére
classe; c. q. f. d.

2.2. 8i K est un espace distancié ayant partout une n-iéme courbure
linéaire de seconde espéce «*(p), alors «¥(p) est une fonction continue dans
Vespace E17).

Toute fonction étant continue en un point isolé de l’espace, nous
n’avons qu’a envisager les points d’accumulation de E. Soit done p» un
point-limite d’une suite de points p®), p@, ... p'?, ... de E. Il existe, en
vertu de la relation (2*), pour tout nombre ¢ > 0 un é > 0 tel que

. . . ) , e
l K, (p(z) . "(p(lt)’ p(zi)a ) gzz-)f- 2) | il

pourvu que les distances des points p{” au point p® restent inférieures
au nombre 4/2. Mais, pour un ¢ suffisamment grand, on a pp'¥ < §/2.
Il s’ensuit donc, d’aprés l'inégalité triangulaire, pp® < é. Par con-
séquent, si 6 > 0 est un nombre suffisamment petit, on obtient

. . . &
| e (@) — k@, P s P | < 5
par suite:
| iy (P) — (D) | <&,
c.q.f. d.

2.3. Quant aux deux définitions différentes (2) et (2*) de la n-iéme
courbure linéaire, nous allons voir que leur différence n’est pas essentielle;
car «)(p) est, pour ainsi dire, la forme continue de «, (p). Nous démon-
trerons & cet égard le théoréme suivant:

La condition nécessaire et suffisante pour que I'espace distancié et com-
pact E ait partout une n-iéme courbure linéaire de seconde espéce «¥(p)
est que k., (p) existe et soit continue en tout point de L.

La nécessité de notre condition est évidente, puisque ’existence de

*

<¥(p) entraine celle de «,(p) et, «)(p) étant continue d’aprés 2.2,

17) Ce théoréme a été démontré, pour n = 1, par Alt, 8, et, pour n = 2, par Alexits, 2.
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x,(p) = x¥(p) Pest aussi. Pour démontrer la suffisance, nous avons besoin
du lemme suivant:

Si k,(p) est une fonction continue dans E, il existe pour tout nombre
e>0un 6 > 0 tel que

l"n(Po) - "(po, P1s---> p‘n+l)|<8

indépendamment du choix du point p, de E, pourvu que «(pq, D1, -« Pny1)
existe et que les distances pop;, (j = 1,2, ..., n+ 1), restent inférieures & 6.

Admettons que notre lemme soit faux et nous en déduirons une contra-
diction. Envisageons, & cet effet, deux systémes de n -2 points:
Pos P1s +++s Pnr1 ©6 o, 91, + - -5 @pyq. On peut indiquer pour tout ¢ > 0 un
0(Pos P15 -+-» Pnyr)s dont la valeur dépend éventuellement du choix des
points Py, Py, ..., Pny1, de sorte que

IK(pO:pla"'9pn+1)_K(QI3QZ,"':QM1)I<£’ (6)
pourvu que p;q; < 6(Pg, P1, -5 Ppy1)- Si, comme nous ’avons supposé,
notre lemme était faux, il existerait une suite {68, p, ..., o} de
systémes de points tels que p{” p{) < 1/ et

| e (P9) — (0, 7, o L)) | = Be (7)

quelque petit que soit le nombre ¢ > 0 donné a ’avance. L’espace F étant
compact, on peut supposer sans restreindre la généralité que!'®) la suite
des points p", p{?, ..., p{?, ... converge vers un point-limite p,. On
peut donc prendre p, p{’ < 4, ; il en résulte, si §; > 0 est un nombre
assez petit:

l K, (po) — K, (pg&))l <E& . (8)

La définition (2) de «,(p,) entraine I'existence d’un nombre §, > 0 tel
que, pour pyp; < 05, on ait

l"n(po)"’K(po:p1s---,pn+1)|<8 . (9)

Choisissons maintenant I’entier ¢ de sorte que 1|¢ reste inférieur au plus
petit des trois nombres positifs d,, d;, (Pg, Py, --+5 Puy1), €6 que
pop; < 1Ji, ;0P < 1/i, piPp{" < 1/i. 11 en résulte

D; P < 0(Pg, D1se v s Pryr) -

18) Si la suite pgl), pgz), cees pgi) , ... n’est pas convergente, on en peut extraire une
suite partielle convergente.
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On voit donc que, méme en choisissant les points figurant aux inégalités
(7), (8) et (9) de sorte que leurs distances satisfassent aux susdites con-
ditions, les relations (7), (8) et (9) entrainent nécessairement I’inégalité

| £(DosDP1s ey Prpa) — k(B pP, oo, )| > € ;

ce qui est en contradiction avec la relation (6), et la démonstration de
notre lemme est achevée.

Passons maintenant & la démonstration de la suffisance de notre
condition. Envisageons, & ce but, un systéme de » - 2 points p,, p,, ...,
Py dont chacun a une distance inférieure a 6 > 0 du point p, arbitraire-
ment choisi. Si 6 > 0 est suffisamment petit, il résulte de notre lemme que

&
I K’n(pl)_K(plﬁpZ:"':pn+2)| <”2— 5

quelque petit que soit ¢ > 0 et indépendamment du choix des points
D15 D3y -+« s Pnys- Comme «, (p) est une fonction continue de p, on obtient

€
l Kn(po) - Kn(pl) I < "2— ’
pourvu que 6 > 0 soit suffisamment petit; par conséquent

lkn(po) - K(pl; Das .- pn+2)|<8 .

Nous avons donc démontré que, les points p,, p,, ..., P, s étant situés
dans un voisinage suffisamment petit du point p,, leur courbure linéaire
différe trés peu de «,(p,). Cette proposition équivaut, d’aprés (2*), &
Pexistence de «*(p,) = «,(p,); ¢ q. f. d.

§ 3. Propriétés des continus euclidiens doués d’'une n-idme courbure linéaire

3.1. Soit dans ce paragraphe £ un sous-ensemble de I’espace euclidien
k-dimensionnel £, . On appelle généralement voisinage du point p, de £
un sous-ensemble ouvert U de E, auquel p, est intérieur. Mais, pour
simplifier les notations, nous appellerons voisinage de p, et nous désigne-
rons par U (p,), 'ensemble des points communs de E et U.

Si Uensemble E de E,, posséde au point p, une n-iéme courbure linéaire,
aucun vorsinage de p, n’est contenu dans un hyperplan (n — 1)-dimension-
nel de E,.

En effet, si U(p,) était un voisinage de p, situé dans un hyperplan
(n — 1)-dimensionnel, le volume V (p,, p,, .., P,) du simplexe n-dimen-
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sionnel déterminé par les points p,, p,, ..., p, 8’évanouirait. On ne
pourrait donc attribuer une courbure linéaire «(py, P, ..., Ppy1) & aucun
systéme de n 42 points p,, p,, ..., P, situés dans U (p,), parce que
le dénominateur de la fraction figurant dans la définition (3) de cette
expression s’évanouirait. Par suite, la n-iéme courbure linéaire «,(p,)
n’existerait pas non plus, contrairement & notre hypothése.

3.2. Un sous-ensemble £ de £, posséde en son point d’accumulation p,
un hyperplan osculateur n-dimensionnel, si tout hyperplan n-dimension-
nel passant par n 41 points p,, p,, ..., p,,, arbitraires de E tend vers
un seul hyperplan n-dimensionnel, lorsque p,, p;, ..., p,,, tendent sur E
indépendamment vers p,.

St le continu B de E,, posséde en son point p, une n-iéme courbure linéaire
finte k, (o), 1l y posséde aussi un hyperplan osculateur n-dimensionnel.

11 existe, d’aprés 3.1, dans tout voisinage U (p,) de p, n+ 1 points
P1s Pas -5 Ppy1 de B qui déterminent exactement un hyperplan n-dimen-
sionnel P,,,. ;. Nous avons & démontrer que P,,,. , tend vers une
position-limite. Aucun voisinage de p, n’étant situé dans un hyperplan
(n — 1)-dimensionnel, on peut parvenir — g’il le faut par un petit déplace-
ment des points p,, Py, ..., p, — & ce que les n -+ 1 points py, Py, ..., Pn
déterminent aussi exactement un hyperplan n-dimensionnel P,,, .

AN
L’angle P, , Py ,., est donc défini; on en obtient d’apres (2), (3) et (4):
N
(n+ 1) lim 20 LenLlan )
Pi->Do Po Pr+1
N

Or «,(p,) étant un nombre fini, il en résulte P, , P; ,,,—0; ce qui
équivaut & notre proposition.

3.3. 8¢ le continu E de E, posséde a son point p, une n-iéme courbure
linéaire de second espéce k¥ (p,) # 0, il existe un voisinage U (p,) de p, tel
que tout hyperplan n-dimensionnel ait au plus n -1 points communs avec

U (po)-
Admettons, en effet, que notre proposition soit fausse et nous en dé-

duirons une contradiction. Soit donec U,(p,) un voisinage de p, dont le
diamétre est < 1/:. Il existe, d’aprés ’hypothése, n-+ 2 points p,, p,, ...,
Pnrs de U,(p,) situés dans un hyperplan n-dimensionnel. Par un petit
déplacement éventuel des points p,, Py, ..., P, 2, On peut parvenir a ce
que les hyperplans n-dimensionnels P, ,, ., et P,,,., aient un angle aussi
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peu différent de zéro que 1’on veut. Plus précisément, on peut choisir
P15 Pas ---> Pny2, tout en restant dans le voisinage U (p,), de sorte que

. P1Pn+e
sin Py pt1 Popre<< *—“’—f——— .

On en tire donc, d’aprés (2), (3) et (4):
/N

sin P1,n+1 P2,n+2

iy (Do) = (n+ 1) lim

t>00 pl pn+2

=0,

contrairement a notre hypothése. C’est la contradiction annoncée.

3.4. 8ile continu E situé dans Uespace E,_, posséde en tout point p une
n-téme courbure linéaire continue «,(p) # 0, alors K est un continu locale-
ment connexe décomposable en une infinité dénombrable d’arcs?) rectifiables
deux quelconques d’entre eux ayant un nombre fini de points communs.

La fonction «,(p) étant continue, «(p) existe, grice au théoréme 2.3,
en tout point p de £ ; on a donc partout «, (p) = «,(p) % 0. Par con-
séquent, il correspond, d’aprés 3.3, a4 chaque point p un voisinage U (p)
tel que tout hyperplan n-dimensionnel ait au plus n 4 1 points communs
avec U(p). La somme de tous les voisinages U (p) est le continu £ ; mais
d’aprés un théoréme connu de MM. Borel et Lebesgue??), on peut extraire
de cette infinité de voisinages un nombre fini, par exemple les voisinages
U(py), U(ps), ---, U(py), de sorte que E soit contenu dans la somme
U(p) + U(pg) + ... + U(py). Alors, chaque hyperplan n-dimensionnel
ayant au plus » -+ 1 points communs avec U (p,), le continu £ n’a donc pas
plus de & (n -+ 1) points communs avec un hyperplan n-dimensionnel quel-
conque. Notre théoréme est par suite une conséquence immédiate d'un
théoréme?!) concernant les sous-continus de £, ; ayant au plus un nombre
fini de points communs avec un hyperplan n-dimensionnel arbitraire
de £, ;.

3.6. 8¢ le continu E situé dans Uespace B, posséde en tout point p une
deuxiéme courbure linéaire continue ry(p) # 0, alors E est un arc rectifiable
ou une image homéomorphe de la circonférence.

On voit d’abord que «) (p) = x(p) # 0; il correspond donc, d’apreés

3.3, & tout point p de E un voisinage U (p) n’ayant pas plus de 3 points
communs avec un plan quelconque. Mais F est, d’aprés 3.4, un continu

19) Nous appelons tout image homéomorphe du segment un arc.
20) Voir p, ex. Menger, 11. 2 Marchaud, 9.
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localement connexe; U (p) contient par suite un voisinage connexe
U* (p) dont la fermeture??) U* (p) est aussi contenue dans U (p). Un plan
quelconque a donc au plus 3 points communs avec le continu I* (p). Il en
résulte, en vertu d’un théoréme de M. Marchaud??), que U* (p) est un arc
rectifiable. Tout point de E est donc contenu dans un voisinage qui est
un arc, K est donc lui-méme un arc ou une image homéomorphe de la
circonférence?*). De plus, £ étant contenu, d’aprés le théoréme de
MM. Borel et Lebesgue, dans un nombre fini de U* (p), E est rectifiable
et notre proposition est entiérement démontrée.

3.6. Ilest remarquable que, si =1, on n’a pas besoin de se restreindre
au cas «,(p) # 0, puisqu’il est connu que, si E est un continu euclidien
ayant partout une premiére courbure linéaire «, (p), & est un arc??). Mais,
sin = 2, la restriction «, (p) # 0 est essentielle; car un continu ayant par-
tout une courbure linéaire «,(p) = 0 n’est pas toujours la somme d’une
infinité dénombrable d’arcs; au contraire, il peut arriver qu’un tel continu
contienne méme un simplexe n-dimensionnel. La raison en est claire aprés
avoir considéré le théoréme suivant:

E étant un continu euclidien quelconque et p, un point de E tel que p, ait
un voistnage U (p,) situé dans Uespace E,, mais qu'aucun voisinage de
Po ne 80it contenu dans un hyperplan (n — 1)-dimensionnel de E,, la
n-téme courbure linéaire «,(p,) existe et est égale a zéro.

Aucun voisinage de p, n’étant situé dans un hyperplan (» — 1)-dimen-
sionnel, il existe dans tout voisinage de p, un systéme de n -2 points
Pos> P15« +5 Pry1 de sorte que, ni Po> P15 -++> P> ni P1s P25 -+ Ppyr, D€
soient situés dans un hyperplan (n — 1)-dimensionnel. Les simplexes
n-dimensionnels déterminés par ces deux systémes de n -2 points
ont donc des volumes positifs V(pq, Py, ..., D) o6 V(P1, Pas o+ vs Prya)-
Le dénominateur de la fraction figurant dans la définition (3) de
k(Pos> P1s--+s Ppy1) €86 donc différent de zéro. Quant au numérateur,
il est évidemment zéro, si I'on prend p,, p,, ..., P, dans le voisinage
U (p,) de p,, parce que U (p,) est situé dans l’espace E,,,. On a donc
k(Pos P1> -+ -5 Pny1) = 0 pour tout systéme de n -+ 2 points suffisamment
voisins de p, pour lesquels «(pgy,P;, ..., P,yy) existe. Il en résulte,
d’aprés (2), x,(p,) = 0; c.q.f.d.

2%3) On appelle fermeture d’un ensemble A la somme de A4 et de I’ensemble de ses points

d’accumulation.
23) Marchaud, 9. ) Menger, 11. %) Pauc, 14.
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§ 4. Les courbures linéaires des arcs euclidiens dérivables

4.1. Soit dans ce paragraphe E un arc rectifiable, situé dans 1’espace
E, et représentons les coordonnées des points de E par les fonctions
continues

Ty = %1(8), T3 = 23(8), ..., Tp = %;(9)

ol le paramétre s désigne la longueur de I’arc E. Admettons encore que
les fonctions z,(s) sont n-fois dérivables au point 8 = s, et posons pour

abréger . diz, B k 0
xv - ( d87’ )8=30 , Xij_ El xv xv ’
Xll X12 Xln
Gn X21 X22 in

Désignons par p, le point de £ dont les coordonnées sont
Ty = 21(8:), Tz = Za(8y), ---> Ty = X1 (3;)

et supposons que p, soit un point régulier de Z. Nous entendons par 13
que G, # 0 pour 8 = 8,. Il est connu que le carré du volume
V(pe, P15 ---s Pn) du simplexe n-dimensionnel ayant p,, p,, ..., p, pour
sommets est égal, dans 1’espace E,, & la somme des carrés des volumes

de ses projections orthogonales sur les (ﬁ) hyperplans n-dimensionnels

déterminés par les axes des coordonnées. Par conséquent

z, (8o) w,,z(so). .-z, (8) 1|2
z, (81) 2,,(81) -+ +,,(8) 1
E Vi 2 n
ol R R LR R R R R
VDo, Prse--:Pa) |® 1 x"l(s") xvz(‘g")"'xvn(s") ! I7 (8,—8,)*
(q)pifpi  (n)? st &t .. s 1]t G op; p?
i
7 st &t 8 1
st s, 1 (10)

oli nous avons désigné par p;p; la distance euclidienne des sommets
P;, p; de ce simplexe.
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4.2. 8i les (n+ 1)-iémes dérivées des fonctions x,(s) existent au point
8 = 8, et P, est un point régulier de K, alors E posséde en p, une n-iéme
courbure linéaire.

L’existence de la n-iéme dérivée des fonctions z,(s) au point s = s,
entraine, grace & un théoréme de Schwarz-Stieltjes2¢), la relation suivante:
xv,('go) ,,(8o) - - .93,,”(80) 1
z,(81) %,(81)-. .2, (81) 1

e 2] (30 (50 - @ (50)
1120 nt i ) Bl B T (s0) 2 (00) - 2] (o0
o | @ o e L] e

& &t .. 8 1 37 (80) 5(8o) - - - 20(80)

La rectifiabilité de 1’arc £ entraine

lim I7 |8i"_83'l

8i,8;->8o (3,7) P: Pj

=3 |

On obtient donc, d’aprés (10), la relation suivante:

[1!12!...(n—1)!(n!)?]? lim V(po, P15 -+ -5 Pa) 2____

Pi>Po II p; p;
(%,7)

xi, (89) x:, (80) - - -x;n (80) D.CTD. CTRIND. O
) “’Iv,1 (80) w’,f, (80) - - -w’y',, (So) _ D.CHD. CYRNND. € —@,. (11

ol AR R R R

x(v,;) (80) xy;) (80) ° 'xg:,)(s()) an Xn2 s er
Introduisons pour un moment l'abréviation II, g=  II  p;p;;

’ a<i<ji<PB

alors on peut écrire en vertu de la relation (3) :

36) Stieltjes, 16. La démonstration de notre théoréme ne fait usage du passage & la
limite que dans cette relation de Schwarz-Stieltjes. Mais cette relation est indépendante
(Stieltjes, 16) du sens de parcours des points ( z,(8;), 4(8;), ---, x(8;) ) - Il n’est donc pas
nécessaire de supposer que I’ordre de ces points soit établi par le rangement croissant ou
décroissant des valeurs &g, 8y, ..., 8,4+, ; ce que justifie notre remarque antérieure, faite
dans la note ®), d’aprés laquelle I’existence de la limite (2) pour tout sens de parcours des
points Py, Py, ..., Ppt+; D’68t pas une condition restrictive, lorsqu’on se borne aux arcs
considérés dans la géométrie infinitésimale.
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V(Do P1se - s Prs1) . V(p1,Pas- s Pn)

(PosDrse - - Parr) = ) Ho.n+1 I, .
K\Po:P15+++5Pn+1) = *
B V(po’pl""apn) .V(pl’pza"'ypn+1)
Iy n 11 11

I1 en résulte d’apreés les relations (2) et (11):

Gy G
Kp (Po) == ‘/ B -

Le point p, étant régulier, cette relation prouve l'existence de «,(p,); ce
qui était justement notre proposition.

4.3. 1l est remarquable que M. Blaschke?’), ayant défini la n-iéme
courbure d’un arc d’une maniére tout a fait formelle comme les coeffi-
cients des équations généralisées de Frenet, a obtenu la valeur
V@Q,.,-G,_,/G,. La n-iéme courbure linéaire «,(p,) définie par une voie
purement géométrique coincide donc dans le cas spécial des courbes
euclidiennes dérivables avec les courbures formelles de M. Blaschke. La
notion de n-iéme courbure linéaire permet alors de généraliser les équa-
tions de Frenet. Désignons, a cet effet, par v, le vecteur unitaire du

t1-iéme axe du repére mobile et posons 1/gp, = «,(p,); alors

dv, v,
ds 01
dv, v, Vs
= — +

ds 01 Q2
dv; ;- v;
S _ . 1 + +1

8 Qi—1 Qi
dv, _ Upy
d8 Qn-l

4.4. Si les (n+ 1)-iémes dérivées des fonctions x,(8) existent dans un
voisinage de 8 = 8, et 8t elles sont continues au point 8 = 8,, alors E posséde
au point régulier p, une n-iéme courbure de seconde espéce ;) (py)2).

La démonstration de ce théoréme est tout a fait analogue & la dé-
monstration du théoréme précédent; il suffit méme d’appliquer, au lieu
de la relation Schwarz-Stieltjes, la relation originelle de Schwarz?).

37) Blaschke, 6. 28) Egervdry, 6. 29) Schwarz, 15.
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4.5. Le théoréme 4.2 nous assure que la notion de n-iéme courbure
linéaire n’est pas moins générale que les différentes notions de n-iéme
courbure prises au sens classique de la géométrie infinitésimale3°), Mais,
la n-iéme courbure linéaire peut exister méme quand aucune méthode
infinitésimale n’est applicable. Envisageons par exemple un arc plan
y = f(x) tel que f(x) n’ait nulle part une dérivée. La deuxiéme courbure
(torsion) de cet arc ne peut étre définie par voie infinitésimale, tandis que
les 2-iémes courbures linéaires i,(p) et «J (p) sont partout définies, puis-
qu’on a, d’aprés 3.6, x,(p) = «¥ (p) = 031). Il faut pourtant remarquer
que, si z,(p) # 0 en tout point d’un arc euclidien Z, il semble que &
satisfait & certaines conditions de dérivabilité. Mais, jusqu’a présent,
rien n’est connu & cet égard, excepté le cas o n = 1. Dans ce cas, on
connait les théorémes suivants: 1. Si £ est un arc plan représenté sous
la forme y = f(x) et 8’il posséde au point p, = f(2,) une premiére cour-
bure linéaire de seconde espéce, alors f(z) admet au point x = %, une
dérivée seconde®?). 2. Si, au lieu de «;"(p,), on n’exige que l'existence de
k1 (Po), 1a seconde dérivée de f(x) n’existe pas toujours, mais la fonction
f(z) admet une dérivée seconde généralisée®®); c’est a dire la limite
suivante:

lim
hy hy>0 hl - hz

2 [f(%'{’h];)_f(xo) . f(xo‘f"h”zl)"“f(xo)]

§ 5. Propriétés des ares a eourbure linéaire nulle

5.1. Nous avons vu au numéro 3.6 qu’'un continu ¥ situé dans
I’espace E, a partout une courbure linéaire «,(p) = 0, & moins qu’aucun
de ses sous-ensembles ouverts relativement & £ ne soit situé dans 1’espace
E,_,. Pour une classe importante de continus euclidiens, on peut dé-
montrer aussi le théoréme inverse:

St E est un arc rectifiable situé dans un espace euclidien quelconque et
tel que k, (p) = 0 a& tout point p de E, alors E est plongé dans un hyperplan
n-dimensionnel de Uespace considérés?).

30) En parlant de n-idme courbure au sens infinitésimal, on peut bien se borner aux
cas n = 1, 2; car, pour n == 3, la théorie classique de la n-idéme courbure n’a jamais ét6
développée d’une maniére satisfaisante. Voir p. ex. Egervdry, 6.

31) Voir & ce sujet: Alexits, 2. 32) Haupt et Alt, 7.

33) Alt, 4 ot Pauc, 18.

) Premiére démonstration de ce théoréme, pour n = 1, chez Menger, 10; pour
n = 2, chez Alexits, 1, 2.
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Désignons par p, ¢ deux points arbitraires de E et par pq leur distance
euclidienne. Intercalons entre p et ¢ les points p = pg, Py, ..+, Pryn1 = ¢
de I’arc E. Posons pour abréger

e (P,9) = Max{pyP1, P1Pas- - +» Pitn Prtnt1}

et choisissons les points p,, p,, ..., Pi., de sorte que »,(p, q) tende avec
1/k vers zéro; c’est-a-dire que, ¢ > 0 étant un nombre aussi petit que ’on
veut, il existe un &k, > 0 tel que

(@) <—  (kzhk).

On déduit de cette relation que la distance des points p;, p;
(t=0,1,...k ; =1+ 1,7+ 2,...,7+n+ 1) peut s’évaluer par
Pinégalité -

PiP; = 2 PaPats =N-v,(p,q) <€ (k=k,) . (12)

x=t

Nous avons supposé que K posséde en tout point une n-iéme courbure
linéaire. Il en résulte d’aprés 3.1 qu’aucun des sous-ensembles relative-
ment ouverts de £ n’est plongé dans un hyperplan (n — 1)-dimensionnel.
Par conséquent, on peut choisir les points p,, p,, ..., pi,, de sorte que,
pour tout ¢ =0,1,...,k, les n+1 points p,, p;, ..., Poy, DO soient
pas situés dans un hyperplan (» — 1)-dimensionnel. Alors le dénomina-
teur de la fraction qui figure dans la relation (3) ne s’évanouit pas;
c’est-a-dire que l'expression «(p;, Pir1,.--» Pirnyr) POUb étre définie pour
tout ¢+ = 0, 1, ..., k. D’aprés 'inégalité (12), les distances entre le point
p; et les points P, i, Piys, ---» Pirnya deviennent aussi petites que l'on
veut, pourvu que k soit suffisamment grand. Les conditions du lemme
dont nous avons fait usage en 2.3 se trouvent donc satisfaites. Il en
résulte pour un ¢ > 0 arbitrairement petit

K(pi’pz’+17'°-’pi+n+1)<8 (T:—‘——"O,l,...,k),

pourvu que k soit suffisamment grand. Désignons par P; I’hyperplan
n-dimensionnel passant par les points p,, i1, ..., Pipn, alors cette
inégalité peut s’écrire aussi, en vertu de la relation (4), sous la forme
suivante: . P/ \P
(n + 1) SIn L7y L7544

E— <e (¢=0,1,...,k), (13)
PiPi+n+1

pourvu que k soit suffisamment grand.
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/N
Gréce & une remarque orale de M. Hajés, I’angle P, P, , peut étre

évalué par I'inégalité suivante:

N\ /\
PyPry < 5 P Piyy . (14)
5 . : g 1s
Or P, P,,, < 5 il s’ensuit donc d’aprés I'inégalité (13) que
£ P 2t P g S e 5305 B
i L ‘-2' sin P; Py, < Sm+1) *PiPit+n+1 =3mF1) j{i P;Pjsr -

(15)

Nous avons supposé que E est un arc rectifiable; c’est-a-dire que sa
longueur 2 est finie. On obtient donc d’aprés (14) et (15):

/ "\ e k 10 ) J A
Fo Prna< 2(n +1)a§o,'£ PsPraa <€ é iPin=€ "g'
Par conséquent: PaN
]jm Po Pk+1=0 . (16)

k> oo

Les hyperplans P, et P,.,, passant par les points p = p,, py, ..., Pn,
et Dir1s> Prras - s Piynt1 = ¢, tendent, en vertu de la relation (12) et du
théoréme 3.2, vers les hyperplans n-dimensionnels osculateurs P,, et
P,, de E appartenant aux points p ou q. Mais p et g sont des points
arbitrairement choisis sur £ ; il s’ensuit donc de (16) que ’angle de deux
hyperplans n-dimensionnels osculateurs arbitraires de E est égal & zéro.
Par suite, ’arc £ est contenu dans chacun de ses hyperplans n-dimen-
sionnels osculateurs; ce qui était exactement notre proposition.

5.2. Un cas spécial du théoréme précédent équivaut & un résultat
classique d’aprés lequel un arc E représenté par les fonctions z,(s),
Z4(8), z3(8) est un segment, si la premiére courbure classique de E est
partout = 0, ou est situé dans un plan, si sa torsion s’évanouit partout.

b.3. Nous avons fait ’hypothése que £ est un arc rectifiable. Il
semble pourtant que cette hypothése n’est pas nécessaire et qu’elle n’est
imposée que par une faiblesse de notre méthode de démonstration. En
effet, pour n = 1, nous pouvons énoncer ce théoréme plus général:

E étant un continu situé dans un espace euclidien quelconque, la condition
nécessaire et suffisante pour que E soit un segment est x,(p) = 0.
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La nécessité de cette condition a été déja démontrée au numéro 3.6.
Quant & sa suffisance, si «,(p) = 0, le continu est un arc rectifiable3s),
Toutes les conditions du théoréme 5.1 sont donc satisfaites.

5.4. Bien qu’il semble que la propriété de E d’étre un arc rectifiable
est superflue, il est essentiel que £ soit un arc euclidien. Pour s’en con-
vaincre, il suffit de construire un arc non-euclidien jouissant des propriétés
suivantes?®):

1° E est un arc rectifiable ; 2° k,(p) = 0 en tout point p de E ; 3° E n’est
18ométrique avec aucun sous-ensemble de Uespace E, .

Envisageons, en effet, un arc rectifiable euclidien C' ayant partout
une 7n-iéme courbure linéaire «,(p) = 0. Choisissons C' de sorte qu’il
contienne n 2 points ¢, q;, ..., g, pour lesquels ¢,¢q, =1, (1,7 =
0,1,...,n-+1). Définissons maintenant I’espace £ de la maniére suivante:
Les points de £ sont les mémes que les points de C, mais la distance pgq
des points p et ¢ de E est définie par la relation

q, 8ipg=1,

_ 17
1, stpg>1. (17)

pe=

E est évidemment un continu homéomorphe avec C ; par conséquent £
est un arc. De plus, tout, voisinage U (p) d’un point p de £ dont le diamétre
ne surpasse pas l'unité est isométrique avec un voisinage de C. Tout
voisinage U (p) contient donc un voisinage fermé U* (p) de p qui est un
arc rectifiable. Or £ est contenu, grice & un théoréme de MM. Borel et
Lebesgue®’), dans la somme d’un nombre fini de voisinages U* (p). Par
conséquent, K est lui-méme un arc rectifiable. La propriété 1° de E est
done démontrée. Choisissons maintenant les points p,, p,, ..., Pn41 dans
le voisinage U* (p,) du point arbitraire p,. Comme U* (p,) est isométrique
avec un voisinage de C, c’est-a-dire que p,p; = p;p,, la courbure linéaire
k(Po, P1s ++-» Puy1) de ces points a la méme valeur qu’elle aurait prise si
n-+42
2
la valeur de «, (p,) est égale & la valeur de la n-iéme courbure linéaire au
point p, de C. Celle-ci étant partout = 0, il s’ensuit que «,(p,) = 0 en

nous avions mesuré les ( ) distances p,p, sur I’arc C. Par conséquent,

35) Menger, 10 et Pauc, 14.

36) Chez Menger, 10, on trouve ’exemple d’un arc non-droit ayant pourtant une pre-
miére courbure linéaire évanouissante partout. La construction que nous employons dans
ce mémoire est due, pour n = 2, & Alexits, 1,2.

37) Voir p. ex. Menger, 11.
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tout point p, de E. La propriété 2° de £ est aussi démontrée. Pourtant,
E n’est isométrique avec aucun sous-ensemble de E,, puisque C contient,
d’aprés P'hypothése, 42 points ¢,, ¢y, ..., ¢, tels que g¢;q, =1,
(¢,9=0,1,...,n41). Il en résulte, grice & notre définition (17) de la
distance en E, que ¢,9;, =1, (¢, = 0,1, ..., 2+ 1). Or, dans l'espace
euclidien n-dimensionnel E,, il n’y a pas n + 2 points différents dont les
n+2
("3
donc aussi démontrée; ce qui était justement notre but.

) distances mutuelles soient toutes égales. La propriété 3° de E est
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