
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 13 (1940-1941)

Artikel: Fondements d'une théorie générale de la courbure linéaire.

Autor: Egerváry, Eugène / Alexits, Georges

DOI: https://doi.org/10.5169/seals-13563

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-13563
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Fondements d'une théorie
générale de la courbure linéaire

Par Eugène Egervâry et Georges Alexits, Budapest

L'évolution de l'analyse mathématique a suggéré de bonne heure l'idée
de traduire les propriétés locales d'une figure géométrique en termes du
calcul infinitésimal. Bien que cette méthode d'arithmétisation ait établi
de nouveaux aspects à l'époque où il ne s'agissait que de définir plus ou
moins exactement les notions intuitives de géométrie, on ne peut pas
contester que l'arithmétisation illimitée a conduit, en quelque sorte, à

une certaine décadence de l'idée géométrique. En effet, l'identification de
la figure intuitive avec l'ensemble des valeurs de certaines fonctions
dérivables est un procédé arbitraire et, en tout cas, contraire à l'esprit
géométrique. Mais, abstraction faite de la tendance analyste qui veut
transformer une partie considérable de la géométrie en une simple
application du calcul infinitésimal, les conditions de dérivabilité créent, même
du point de vue analyste, une atmosphère vague ; car on ne connaît guère
le sens géométrique exact de l'hypothèse que les fonctions par lesquelles
on a réalisé la représentation paramétrique d'une figure arbitraire possèdent,

dans un certain intervalle, une w-ième dérivée. La géométrie infinitésimale

a donc un caractère heuristique ; ses méthodes ont été imposées

pour remédier à l'incapacité des méthodes de la géométrie classique;
mais elles ne portent point les traits d'une nécessité mathématique.

Dans l'état actuel du développement de la science, il faut absolument
reprendre le problème des fondements de la géométrie infinitésimale, en
étudiant systématiquement les propriétés locales intrinsèques des
continus sans faire appel à l'introduction de coordonnées. Alors, les propriétés
locales des continus seront caractérisées par l'intermédiaire de la notion
de distance, celle-ci étant l'élément déterminant de l'espace. Il s'agit donc
d'une recherche systématique de certains invariants des isomorphies;
invariants caractérisant les propriétés métriques des continus de même

que certains invariants des homéomorphies caractérisent leurs propriétés
topologiques.

L'idée de fonder l'étude des propriétés locales des continus uniquement
sur la recherche des relations entre les distances mutuelles de leurs
points est due à M. Menger1). Il a commencé ses recherches par une étude

x) Menger, 10. (Le nombre après le nom de Pauteur indique le numéro sous lequel le
titre de l'ouvrage respectif figure dans la bibliographie que nous avons réunie à la fin de
ee mémoire.
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approfondie de la notion de première courbure d'un arc. La notion de
deuxième courbure (torsion) d'un arc a été recherchée de ce point de

vue par l'un des auteurs2), tandis que l'autre3) a réussi à introduire une
définition générale des courbures supérieures d'un arc euclidien; définition
qui se prête a une généralisation immédiate aux espaces distanciés.

Le plan du présent travail est le suivant : Nous définirons d'abord, au
§ 1, la notion de courbure linéaire d'ordre n. (Nous parlons d'une courbure
linéaire pour mettre en évidence le caractère linéaire de notre notion de
courbure, en opposition aux notions de courbure superficielle, courbure
de Riemann, etc.) Nous passerons, au § 2, à la recherche des propriétés
de continuité de la w-ième courbure linéaire. Il suit, au § 3, une recherche
de la structure des continus euclidiens ayant une courbure linéaire d'ordre
n\ puis nous allons étudier, au § 4, l'existence des courbures linéaires d'un
arc situé dans un espace euclidien et assujetti aux conditions de dériva-
bilité, habituelles dans la géométrie infinitésimale. Nous nous occuperons
enfin, au § 5, des arcs dont la w-ième courbure linéaire s'évanouit partout.

§ 1. La définition de la n-ièine courbure linéaire

1.1. Nous appellerons espace semi-distancié un ensemble E tel que à

tout couple p, q de ses éléments soit attaché un nombre pq assujetti
aux conditions suivantes:

1. pq qp ^ 0 ;

2. pq 0 et p q s'entraînent réciproquement.

Les éléments de E s'appellent points de l'espace E et le nombre pq Vécart
des points p et q. L'espace semi-distancié E est un espace distancié, si
l'écart pq satisfait, outre les conditions 1 et 2, à l'inégalité triangulaire

3. pq + qr ^ pr
Dans ce cas, on appelle l'écart pq la distance des points p et q. Considérons

n points pl9 p2,..., pn d'un espace semi-distancié quelconque et posons

0 1

Ce déterminant jouera un rôle éminent dans nos recherches suivantes.

*) Alexite, 1,2.
8) Egervâry, 6.
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1.2, Etant donné dans l'espace semi-distancié E un système de
(n + 2) points différents p09p1, prH.1 tels que4) D(p0, pXi pn) ^0,
D(Pi> Vu •••> Pn+i) ¥"0, nous appellerons courbure linéaire des points
Po> Pi, • • • > P»+i correspondant au sens de parcours pQ->p1 -> >Pn+i *e

nombre positif

(1)
La valeur de k(p0 px, 2>n+1) dépend évidemment du sens de parcours
du système de n + 2 points considéré, excepté au cas où n 1 ; puisque,

en prenant n 1, on obtient :

ï-PiPÙ (P0P1+P1P2-P0P2) (P0P2+P1P2-P0P1)

D(PoPi)

par conséquent:

(P0P1+P1P2-P0P2)

PoPl'PoP2'PlP2

Cette expression est symétrique et elle coïncide avec la formule élémentaire

dont M. Menger5) s'est servi pour définir la courbure de trois points
d'un espace distancié.

1.3. Soit maintenant p0 un point d'accumulation de l'espace E.
Envisageons l'expression k(p0, pl9...,pn+1) pour tout système de n + 2

points p0, p1} pn+1 de E et pour tout sens de parcours de ces points
pour lesquels K(pQ,p1, p^j) existe. Admettons encore l'existence de
la limite6)

Kn{Po) ïïm "(Po>Pi> •••>2Vfi) (i=l,2,...,w+1) (2)

*) Cette condition équivaut, dans un espace euclidien, à la condition que, ni les points
Pq> Pif •••> Pn> n* Pi* Pi» •••» Pn+if ne soient pas situés dans un hyperplan (n — 1)-
dimensionnel.

6) Menger, 10.
6) La restriction engendrée par la condition que la limite de k{pq, plf..., pn+i) existe

pour tout sens de parcours du système de n -\- 2 points p0, px,..., pn+i disparaît, s'il
s'agit d'une courbe de la géométrie infinitésimale classique; car, dans ce cas, tout sens de
parcours équivaut, comme nous le verrons, au sens de parcours naturel de la courbe
considérée.
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Nous appellerons Kn(p0) la n-ième courbure linéaire de Vespace E au
point p0. Le point p0 joue dans cette définition de la n-ième courbure
linéaire un rôle particulier. Pour le faire disparaître, on peut introduire
une n-ième courbure linéaire de seconde espèce, en posant

*n(Po) lim *(Pi,P*>-.->P,H.2) (*= l,2,...,n+2) (2*)
Pi + Pù

où l'expression k(ply p2i pn+2) es^ & former pour tout système de

n + 2 points de 1£ et pour tout sens de parcours de ces points pour
lesquels K(pl9p%,..., pn+2) existe.

1.4. La première courbure linéaire Kx(p^ est identique avec la courbure

d'arc de M. Alt7), tandis que la première courbure linéaire de
seconde espèce K*(p0) se réduit à la définition de la courbure d'arc de
M. Menger8). Pour n 2, on a D(plf p2) 2(P!P2)2, par suite

(ft,ft,ft,A>

Les secondes courbures linéaires k2(2>o) e^ ^2(^0) se réduisent donc aux
expressions par lesquelles l'un des auteurs9) a réussi à définir la torsion
des espaces distanciés.

1.6. Dans l'espace euclidien i-dimensionnel Ek, le sens géométrique
des courbures linéaires est bien plausible. En effet, n étant ^1, tout
système de n+l points q^q*, qn+1 de l'espace Ek détermine un
simplexe w-dimensionnel ayant pour sommets les points ql9 q2, qti^.1.

Désignons par V(qx,q2, -..,qn+1) le volume de ce simplexe et posons,
pour n 0, V(qx) 1. Alors, les déterminants figurant dans la définition
de la 7i-ième courbure linéaire se laissent représenter par l'intermédiaire
des nombres V(ql9 q2, ?n+i)> puisqu'il est connu que

gg)=
Dans l'espace Ek9 l'expression K(pOi pl9 pn+i) peut donc s'écrire sous
la forme suivante:

^J2!L F( ^( Pi » - - » pj
^p,,. .,,pn) ^ V(pltp2f.. ,t pn+1)'

(8)

') AU, 4. 8) Menger, 10. 9) Alexits, 1,2.
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Par conséquent, les courbures linéaires Kn(p0) et ** (p0) se réduisent, dans
les espaces euclidiens, aux expressions par l'intermédiaire desquelles
l'un des auteurs10) a défini la n-ième courbure d'un arc euclidien.

1.6. Soit Pt, n+i l'hyperplan w-dimensionnel passant par les points

Vu Pt+i, •••» Pi+n et désignons par Pi,n^.iPj,n¥i l'angle") des hyperplans
Pi>n+i e* Pi>n+j- D est connu12) que

sir, P P — n+ * V(po,p1,...,pn+1)-V{p1,p2,...,pn)
V(Po>Pl>>->Pn)

pourvu que V(p0, pl9 pn) ^ 0 ^ V(p1, p2i pn+1). On obtient par
suite, en vertu de la relation (3) :

,v sin
k (pQ, p1,..., Pn+i) (n -f- 1)

1.7. Le sens géométrique de la w-ième courbure linéaire s'approche
encore des notions habituelles de la géométrie infinitésimale, si l'on
suppose que E est un arc situé dans l'espace Ek et représenté par k fonctions
de la longueur s de l'arc E. Désignons, en effet, pai* rj l'angle de deux
hyperplans osculateurs w-dimensionnels de E, l'un appartenant au point
p0, l'autre à un point voisin de p0. Il est aisé de démontrer13) que, E étant
un arc (n + l)-fois dérivable, on a

=%- 0=1,2....,»+!)
PoPn+1

quel que soit l'ordre des points p0, px, pn+1\ par conséquent,

kM w-
10) Egervâry, 6.
u) Désignons dans l'espace Ek par x (ta 0, 1, n ; v 1, 2, ...,&) les coordonnées

de n -f-1 points déterminant un hyperplan n-dimensionnel P et par y les coordonnées

d'un autre système de w-f-1 points déterminant un hyperplan w-dimensionnel Q.

Nous définissons l'angle rj des hyperplans P et Q par la relation

Dans l'espace (n + l)-dimensionnel, l'angle rj se réduit à l'angle élémentaire des normales
de P et Q. Cette définition de l'angle rj remonte à Kronecker. Voir à ce sujet H. Kûhne, 7.

12) Meyer, 12. 1S) Egervâry, 6.
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La notion de n-ième courbure linéaire généralise donc les notions
infinitésimales de courbure et de torsion d'un arc euclidien.

§ 2. Propriétés générales des courbures linéaires

2.1. Un espace semi-distaneié est compact, si toute suite infinie de ses

points possède un point d'accumulation. Un espace distancié, connexe et
compact, comprenant plus d'un point, s'appelle un continu. Si tout
voisinage d'un point arbitraire du continu E contient un voisinage
connexe, on dit que E est localement connexe. Introduisons pour un moment
l'expression de continu n fois courbé pour un continu ayant la propriété
que tout système de n + 2 de ses points, p0, px,..., pn+l, situés dans un
voisinage suffisamment petit, ait une courbure linéaire k (p0, pt, Pn+i)

pour au moins un sens de parcours14). Après ces définitions, nous pouvons
énoncer le théorème suivant15) :

Si E est un continu localement connexe, n fois courbé et ayant à tout point
p une n-ième courbure linéaire Kn(p), alors Kn(p) est une fonction de Baire
de première classe au plus.

E étant un continu localement connexe, il existe, grâce à un théorème
de Hahn et M. Mazurkiewicz16), une correspondance univoque et continue
f(x) transformant le segment 0 ^ x ^ 1 dans le continu E. A un point
arbitraire pQ de E, il correspond donc au moins une valeur 0 f£ x0 ^ 1

telle que p0 f(x0). Choisissons les points px, p2, pn+1 de sorte que

pt flx0 -) 1, i 1, 2,..., n + 1, où v désigne un entier positif
arbitraire. Le diamètre du système de n -f- 2 points pQ, px, ^Vn devient
très petit, si v devient assez grand. En prenant donc v suffisamment
grand, la courbure linéaire K(po,pl9 ..-,pn+1) existe pour un sens de

parcours au moins, puisque E est, d'après l'hypothèse, un continu n
fois courbé. Posons

x

Comme ^ /(^0~l )> ^a fonction yv(p0) ne dépend que du point

pQ =f(x0). On voit tout de suite que cpv{p) est une fonction continue en
tout point p de E. En effet, il résulte de la relation (1) que, pf0, p[,..., p^+l
e* vl »

Pi[¦> - - ' > Pn +1 étant deux systèmes de n + 2 points de E, la diffé-

14) Cette condition équivaut dans l'espace euclidien à la condition que n +1 points
ayant un diamètre suffisamment petit ne soient pas situés dans un hyperplan (n — 1)-
dimensionnel.

16) Pour n 2 voir Alexits, 2. 16) Voir p. ex. Menger, 11.
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rence |* (p'o, p[, p'n+1) — k {pi, pi, p£+1) | devient arbitrairement
petite, pourvu que les points p\ et p![ soient assez voisins. Mais, il a'en-
suit, en vertu des relations (2) et (5), que

Kn(p) =lim cpv(p) ;
V->OO

par suite, Kn(p) étant dans l'espace distancié E la limite d'une suite de
fonctions continues, elle est une fonction de Baire au plus de première
classe; c. q. f. d.

2.2. Si E est un espace distancié ayant partout une n-ième courbure
linéaire de seconde espèce K*(p), alors **(p) est une fonction continue dans
Vespace E11).

Toute fonction étant continue en un point isolé de l'espace, nous
n'avons qu'à envisager les points d'accumulation de E. Soit donc p un
point-limite d'une suite de points p{1), p{2), p{i), de E. Il existe, en
vertu de la relation (2*), pour tout nombre e > 0 un ô > 0 tel que

pourvu que les distances des points p^ au point p{i) restent inférieures
au nombre <5/2. Mais, pour un i suffisamment grand, on a pp{i) < 5/2.
Il s'ensuit donc, d'après l'inégalité triangulaire, pp{i)<ô. Par
conséquent, si ô > 0 est un nombre suffisamment petit, on obtient

par suite:

c. q. f. d.

2.3. Quant aux deux définitions différentes (2) et (2*) de la n-ième
courbure linéaire, nous allons voir que leur différence n'est pas essentielle;
car K%(p) est, pour ainsi dire, la forme continue de *n(p). Nous démontrerons

à cet égard le théorème suivant :

La condition nécessaire et suffisante pour que l'espace distancié et compact

E ait partout une n-ième courbure linéaire de seconde espèce K*(p)
est que Kn(p) existe et soit continue en tout point de E.

La nécessité de notre condition est évidente, puisque l'existence de

K*(p) entraîne celle de Kn(p) et, K*(p) étant continue d'après 2.2,

17) Ce théorème a été démontré, pour n 1, par Ait, 3, et, pour n — 2, par Alexits, 2.
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Kn(p) **(P) l>es* aussi- Pour démontrer la suffisance, nous avons besoin
du lemme suivant:

Si Kn(P) ^t une fonction continue dans E, il existe pour tout nombre
e > 0 un ô > 0 tel que

I *«(Po) - K (Po, Pl> • • •, Pn+l) I < «

indépendamment du choix du point p0 deE, pourvu que k(p0, pl9 Pn+J
existe et que les distances p0Pj, (j 1, 2, n+1), restent inférieures à ô.

Admettons que notre lemme soit faux et nous en déduirons une
contradiction. Envisageons, à cet effet, deux systèmes de w + 2 points:
Po, Pi, •. • j Pn+i et Qo, Qi, • • •, ï»i+i« 0n Peut indiquer pour tout e > 0 un
à{Po,Pi, -",Pn+i), dont la valeur dépend éventuellement du choix des

points p0, p±, 2>w+1, de sorte que

I * (Po > Pi > • • • > Pn+i) - * (?i, 02, • • -, în+i) I < fi (6)

pourvu que p^ < <5(^0> Pu • • •, Pn+i)- Si, comme nous l'avons supposé,
notre lemme était faux, il existerait une suite {Po^pj.^, •••»Pn+i} ^e
systèmes de points tels que p^p^ < \ji et

I *«(Plt)) - x(P^,^\---,V(:lù I ^ 3e (7)

quelque petit que soit le nombre e > 0 donné à l'avance. L'espace E étant
compact, on peut supposer sans restreindre la généralité que18) la suite
des points p§\ p^\ p(ol\ converge vers un point-limite ^o- On

peut donc prendre p0 p^ < ô± ; il en résulte, si <3X > 0 est un nombre
assez petit:

La définition (2) de Kn(p0) entraîne l'existence d'un nombre ô2 > 0 tel
que, pour popj < ô2, on ait

K(Po) —*(Po>Pi> •••?Pn+i)l <e • (9)

Choisissons maintenant l'entier i de sorte que l\i reste inférieur au plus
petit des trois nombres positifs ôl9 ô2, à(p0, p1; pn+1), et que
PoP* < V*> P^P;l) < V*» Po^P;^ < V*- H en résulte

18) Sx la sinte p^\ p^\ p^, n'est pas convergente, on en peut extraire une
suite partielle convergente.
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On voit donc que, même en choisissant les points figurant aux inégalités
(7), (8) et (9) de sorte que leurs distances satisfassent aux susdites
conditions, les relations (7), (8) et (9) entraînent nécessairement l'inégalité

ce qui est en contradiction avec la relation (6), et la démonstration de
notre lemme est achevée.

Passons maintenant à la démonstration de la suffisance de notre
condition. Envisageons, à ce but, un système de n+ 2 points pl9 p2i • • • >

Pn+2 dont chacun a une distance inférieure à ô > 0 du point p0 arbitrairement

choisi. Si ô > 0 est suffisamment petit, il résulte de notre lemme que

quelque petit que soit e > 0 et indépendamment du choix des points
Pi>P2> • • • > Pn+2 • Comme Kn (p) est une fonction continue de p, on obtient

pourvu que ô > 0 soit suffisamment petit ; par conséquent

\Kn(Po) — K(Pl>P2> -->

Nous avons donc démontré que, les points px, p2,..., pn+2 étant situés
dans un voisinage suffisamment petit du point p0, leur courbure linéaire
diffère très peu de Kn(p0). Cette proposition équivaut, d'après (2*), à
l'existence de K*(p0) Kn(p0); c. q. f. d.

§ 3. Propriétés des continus euclidiens doués d'une n-ième courbure linéaire

3.1. Soit dans ce paragraphe E un sous-ensemble de l'espace euclidien
&-dimensionnel Ek. On appelle généralement voisinage du point p0 de E
un sous-ensemble ouvert U de Ek auquel p0 est intérieur. Mais, pour
simplifier les notations, nous appellerons voisinage de p, et nous désignerons

par U(p0), l'ensemble des points communs de E et U.

Si Vensemble E de Ek possède au point p0 une n-ième courbure linéaire,
aucun voisinage de p0 n'est contenu dans un hyperplan (n — îydimension-
nel de Ek.

En effet, si U(p0) était un voisinage de p0 situé dans un hyperplan
(n — l)-dimensionnel, le volume V(p0, pl9 pn) du simplexe w-dimen-
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sionnel déterminé par les points pQ,Pi, .-.,pn s'évanouirait. On ne
pourrait donc attribuer une courbure linéaire k(p0, pl9 pn+1) à aucun
système de n + 2 points pQ,px, -->Pn+i situés dans U(p0), parce que
le dénominateur de la fraction figurant dans la définition (3) de cette
expression s'évanouirait. Par suite, la n-ième courbure linéaire Kn(p0)
n'existerait pas non plus, contrairement à notre hypothèse.

3.2. Un sous-ensemble E de Eh possède en son point d'accumulation pQ

un hyperplan osculateur w-dimensionnel, si tout hyperplan w-dimension-
nel passant par n + l points Pi,p2, • • • pn+i arbitraires de E tend vers
un seul hyperplan tt-dimensionnel, lorsque pl9 p2, pn+1 tendent sur E
indépendamment vers p0.

Si le continu E de Ek possède en son point p0 une n-ième courbure linéaire
finie Kn(p0), il y possède aussi un hyperplan osculateur n-dimensionnel.

Il existe, d'après 3.1, dans tout voisinage U(p0) de p0 n+ 1 points
Pi » P2 > • • • > Pn+i d© E qui déterminent exactement un hyperplan w-dimen-
sionnel Pi>n+i. Nous avons à démontrer que Pi,n+1 tend vers une
position-limite. Aucun voisinage de p0 n'étant situé dans un hyperplan
(n — l)-dimensionnel, on peut parvenir — s'il le faut par un petit déplacement

des points pl9 p2, pn — à ce que les n +1 points po,Pi, pn
déterminent aussi exactement un hyperplan w-dimensionnel P0,n-

L'angle Po n Pltn+1 est donc défini; on en obtient d'après (2), (3) et (4):

(n + 1) hm —2- Kn(p0)
Pi+ Po Po Pn+1

Or Kn(p0) étant un nombre fini, il en résulte Po n Px n+1 ->0 ; ce qui
équivaut à notre proposition.

3.3. Si le continu E de Ek possède à son point p0 une n-ième courbure

linéaire de second espèce K*(p0) ^ 0, il existe un voisinage U(p0) de p0 tel

que tout hyperplan n-dimensionnel ait au plus n + l points communs avec

Admettons, en effet, que notre proposition soit fausse et nous en
déduirons une contradiction. Soit donc U^p0) un voisinage de p0 dont le
diamètre est < 1/t. Il existe, d'après l'hypothèse, n+ 2 points Pi, pa,

pn+2 de Ut(p0) situés dans un hyperplan w-dimensionnel. Par un petit
déplacement éventuel des points pl9 p2, pn+2, on peut parvenir à ce

que les hyperplans w-dimensionnels Pi,n+1 et P2>w+2 aient un angle aussi
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peu différent de zéro que l'on veut. Plus précisément, on peut choisir
Pu P2» •••>2Vf-2> *ou* en restant dans le voisinage U(p0), de sorte que

PlPn+2
1

On en tire donc, d'après (2), (3) et (4) :

**(Po) (» + 1) lim -^- : 0
i-^oo Pi Z>w+2

contrairement à notre hypothèse. C'est la contradiction annoncée.

3.4. Si le continu E situé dans l'espace En+1 possède en tout point p une
n-ième courbure linéaire continue Kn(p) zfi 0, alors E est un continu localement

connexe décomposable en une infinité dénombrable d'arcs19) rectifiables
deux quelconques d'entre eux ayant un nombre fini de points communs.

La fonction Kn(p) étant continue, K*(p) existe, grâce au théorème 2.3,
en tout point p de E ; on a donc partout ** (p) Kn(p) ^ 0. Par
conséquent, il correspond, d'après 3.3, à chaque point p un voisinage U(p)
tel que tout hyperplan w-dimensionnel ait au plus n+l points communs
avec U(p). La somme de tous les voisinages U(p) est le continu E ; mais
d'après un théorème connu de MM. Borel et Lebesgue20), on peut extraire
de cette infinité de voisinages un nombre fini, par exemple les voisinages
U(Pi)> U(P2)> •••» U(Pk)> de sorte que E soit contenu dans la somme
U(Pi) + U(p2) + ••• + U(pk). Alors, chaque hyperplan w-dimensionnel

ayant au plus n + l points communs avec U (p^, le continu E n'a donc pas
plus de k(n + 1) points communs avec un hyperplan w-dimensionnel
quelconque. Notre théorème est par suite une conséquence immédiate d'un
théorème21) concernant les sous-continus de En+1 ayant au plus un nombre
fini de points communs avec un hyperplan n-dimensionnel arbitraire
de En+1.

3.5. Si le continu E situé dans l'espace Ez possède en tout point p une
deuxième courbure linéaire continue /c2 (p) ^ 0, alors E est un arc rectifiable
ou une image homéomorphe de la circonférence.

On voit d'abord que /c*(p) K2(p) # 0; il correspond donc, d'après
3.3, à tout point p de E un voisinage U(p) n'ayant pas plus de 3 points
communs avec un plan quelconque. Mais E est, d'après 3.4, un continu

') Nous appelons tout image homéomorphe du segment un arc.
') Voir p,ex. Menger, 11. 21) Marchand, 9.
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localement connexe; U(p) contient par suite un voisinage connexe
U*(p) dont la fermeture22) U*(p) est aussi contenue dans U(p). Un plan
quelconque a donc au plus 3 points communs avec le continu ?7* (p). Il en
résulte, en vertu d'un théorème de M. Marchaud23), que U* (p) est un arc
rectifiable. Tout point de E est donc contenu dans un voisinage qui est
un arc, E est donc lui-même un arc ou une image homéomorphe de la
circonférence24). De plus, E étant contenu, d'après le théorème de
MM. Borel et Lebesgue, dans un nombre fini de 17* (p)} E est rectifiable
et notre proposition est entièrement démontrée.

3.6, II est remarquable que, si n 1, on n'a pas besoin de se restreindre
au cas K1(p) ^ 0, puisqu'il est connu que, si E est un continu euclidien
ayant partout une première courbure linéaire Kx{p), E est un arc25). Mais,
si n ^2, la restriction Kn (p) ^ 0 est essentielle ; car un continu ayant
partout une courbure linéaire Kn (p) 0 n'est pas toujours la somme d'une
infinité dénombrable d'arcs ; au contraire, il peut arriver qu'un tel continu
contienne même un simplexe w-dimensionnel. La raison en est claire après
avoir considéré le théorème suivant :

E étant un continu euclidien quelconque et p0 un point de E tel que p0 ait
un voisinage U(p0) situé dans Vespace En, mais qu'aucun voisinage de

p0 ne soit contenu dans un hyperplan (n — l)-dimensionnel de En, la
n-ième courbure linéaire Kn(p0) existe et est égale à zéro.

Aucun voisinage de p0 n'étant situé dans un hyperplan (n — l)-dimen-
sionnel, il existe dans tout voisinage de p0 un système de n -\- 2 points
Pt»Pi>--->P«+i de 8Orte que, ni Po>Pi>--->Pn> ni Pi>P2, --'Pn+i* ne
soient situés dans tin hyperplan (n — l)-dimensionnel. Les simplexes
w-dimensionnels déterminés par ces deux systèmes de w + 2 points
ont donc des volumes positifs V(p0, pl9 pn) et V(pXi p29 pn+i)-
Le dénominateur de la fraction figurant dans la définition (3) de

K(Po>Pi> •••> Pn+i) est donc différent de zéro. Quant au numérateur,
il est évidemment zéro, si l'on prend pOy pl9 pn+1 dans le voisinage
U(p0) de p0, parce que U(p0) est situé dans l'espace En^.1. On a donc
K(Po> Pu • • • 9 Pn+i) 0 pour tout système de n + 2 points suffisamment
voisins de p0 pour lesquels k(p0, ply p^x) existe. Il en résulte,
d'après (2), Kn(p0) 0 ; c. q. f. d.

aa) On appelle fermeture d'un ensemble A la somme de A et de l'ensemble de ses points
d'accumulation.

**) Marchand, 9. M) Menger, 11. 25) Paue, 14.
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§ 4. Les courbures linéaires des ares euclidiens dérivables

4,1. Soit dans ce paragraphe E un arc rectifiable, situé dans l'espace
Ek et représentons les coordonnées des points de E par les fonctions
continues

Xx X^â), X2 X2(s), ...,Xk= Xk(s)

où le paramètre s désigne la longueur de l'arc E. Admettons encore que
les fonctions xv(s) sont n-fom dérivables au point s s0 et posons pour
abréger k

rii) — l a Xv \ X — V
\ US /«=so v=l

x>

Désignons par pt le point de E dont les coordonnées sont

et supposons que p0 soit un point régulier de E. Nous entendons par là
que On t^ 0 pour 5 s0. Il est connu que le carré du volume
F (p0, Pi,..., pn) du simplexe w-dimensionnel ayant p0, pt,..., pn pour
sommets est égal, dans l'espace Ek, à la somme des carrés des volumes

de ses projections orthogonales sur les I I hyperplans w-dimensionnels

déterminés par les axes des coordonnées. Par conséquent

où nous avons désigné par ptp} la distance euclidienne des sommets

Pi, pi de ce simplexe.
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4.2. Si les (n + l)-ièmes dérivées des fonctions a^(s) existent au point
s s0 et p0 est un point régulier de E, alors E possède en p0 une n-ième
courbure linéaire.

L'existence de la n-ième dérivée des fonctions xi(s) au point s s0
entraîne, grâce à un théorème de Schwarz-Stieltjes26), la relation suivante :

1 2 n lim
*o *o • • • *o L

~n qn—1 „ i

La rectifiabilité de Tare E entraîne

lim 77 1

On obtient donc, d'après (10), la relation suivante:

[1 2! (n— 2 lim
Pi Pi

2
(v)

<?„ (il)

II p%Pj\
0

Introduisons pour un moment l'abréviation j?7a^
alors on peut écrire en vertu de la relation (3) :

te) Stieltjea, 16. La démonstration de notre théorème ne fait usage du passage à la
limite que dans cette relation de Schwarz-StieUjes. Mais cette relation est indépendante
(StieUjea, 16) du sens de parcours des points (xx(8^9 x^a^, x^s^ Il n'est donc pas
nécessaire de supposer que l'ordre de ces points soit établi par le rangement croissant ou
décroissant des valeurs «0, 8l9..., sn+1; ce que justifie notre remarque antérieure, faite
dans la note *), d'après laquelle l'existence de la limite (2) pour tout sens de parcours des

points p09 pl9..., Pn+x n'est pas une condition restrictive, lorsqu'on se borne aux arcs
considérés dans la géométrie infinitésimale.
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V(p0, px

n V(Po > P

î • • •

>,w+l

i>- •

> Pn+l) F(ft

F(ft,

••»Pn)

-,P«+l)

II en résulte d'après les relations (2) et (11):

Kn (Po)

Le point p0 étant régulier, cette relation prouve l'existence de Kn(pQ); ce

qui était justement notre proposition.

4.3. Il est remarquable que M. Blaschke27), ayant défini la w-ième
courbure d'un arc d'une manière tout à fait formelle comme les coefficients

des équations généralisées de Frenet, a obtenu la valeur
V'Gn+1 • Gn^\Gn. La w-ième courbure linéaire Kn (p0) définie par une voie
purement géométrique coïncide donc dans le cas spécial des courbes
euclidiennes dérivables avec les courbures formelles de M. Blaschke. La
notion de 7i-ième courbure linéaire permet alors de généraliser les équations

de Frenet. Désignons, à cet effet, par vt le vecteur unitaire du
i-ième axe du repère mobile et posons l/^t Kt (pQ) ; alors

dv1 v2
ds

dv2
ds

dv{
ds

dvn

Qi

Qi

Qir-l

Qî

\

Qi

ds

4.4. Si les (n+l)-ièmes dérivées des fonctions x{(s) existent dans un
voisinage de s soet si elles sont continues au point s s09 alors E possède

au point régulier p0 une n-ième courbure de seconde espèce

La démonstration de ce théorème est tout à fait analogue à la
démonstration du théorème précédent ; il suffit même d'appliquer, au lieu
de la relation Schwarz-Stieltjes, la relation originelle de Schwarz29).

27) Blaschke, 6. a8) Egervâry, 6. M) 8chtmrzf 15.
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4.5. Le théorème 4.2 nous assure que la notion de w-ième courbure
linéaire n'est pas moins générale que les différentes notions de ?i-ième
courbure prises au sens classique de la géométrie infinitésimale30). Mais,
la 7i-ième courbure linéaire peut exister même quand aucune méthode
infinitésimale n'est applicable. Envisageons par exemple un arc plan
y f(x) tel que f(x) n'ait nulle part une dérivée. La deuxième courbure
(torsion) de cet arc ne peut être définie par voie infinitésimale, tandis que
les 2-ièmes courbures linéaires K2(p) et K*(p) sont partout définies,
puisqu'on a, d'après 3.6, K2(p) K$(p) 031). Il faut pourtant remarquer
que, si xn(p) ^ 0 en tout point d'un arc euclidien E, il semble que E
satisfait à certaines conditions de dérivabilité. Mais, jusqu'à présent,
rien n'est connu à cet égard, excepté le cas où n 1. Dans ce cas, on
connaît les théorèmes suivants: 1. Si E est un arc plan représenté sous
la forme y f(x) et s'il possède au point p0 f(x0) une première courbure

linéaire de seconde espèce, alors f(x) admet au point x x0 une
dérivée seconde32). 2. Si, au lieu de K*(po)y on n'exige que l'existence de

Ki(Po)> la seconde dérivée de f(x) n'existe pas toujours, mais la fonction
f(x) admet une dérivée seconde généralisée33); c'est à dire la limite
suivante:

lim _4r[-

§ 5. Propriétés des arcs à courbure linéaire nulle

5.1. Nous avons vu au numéro 3.6 qu'un continu E situé dans

l'espace En a partout une courbure linéaire Kn(p) 0, à moins qu'aucun
de ses sous-ensembles ouverts relativement à E ne soit situé dans l'espace
En_t. Pour une classe importante de continus euclidiens, on peut
démontrer aussi le théorème inverse:

Si E est un arc rectifiable situé dans un espace euclidien quelconque et

tel que Kn(p) 0 à tout point p de E, alors E est plongé dans un hyperplan
n-dimensionnel de Vespace considéré™).

80) En parlant de n-ième courbure au sens infinitésimal, on peut bien se borner aux
cas n 1, 2 ; car, pour n ^ 3, la théorie classique de la n-ième courbure n'a jamais été
développée d'une manière satisfaisante. Voir p. ex. Egervâry, 6.

81) Voir à ce sujet: Alextis, 2. 8a) Haupt et AU, 7.
M) AU, 4 et Pauc, 13.
**) Première démonstration de ce théorème, pour n 1, chez Menger, 10 ; pour

n 2, chez Alexits, 1, 2.
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Désignons par p, q deux points arbitraires de E et par pq leur distance
euclidienne. Intercalons entre p et q les points p p0, px, pk+n+i #
de l'arc E. Posons pour abréger

vk(p,q) Max {p0 Pi > Pi Pa > • • • >

et choisissons les points px, p2, ..•, pk+n de sorte que vk(p, q) tende avec
\fk vers zéro; c'est-à-dire que, e > 0 étant un nombre aussi petit que Ton
veut, il existe un kt > 0 tel que

On déduit de cette relation que la distance des points pi, p,
(i 0,1, Je ; ?' ï + 1> * + 2, £ + n + 1) peut s'évaluer par
l'inégalité

^ 2 - (12)

Nous avons supposé que E possède en tout point une w-ième courbure
linéaire. Il en résulte d'après 3.1 qu'aucun des sous-ensembles relativement

ouverts de E n'est plongé dans un hyperplan (n — l)-dimensionnel.
Par conséquent, on peut choisir les points px, p2, pk+n de sorte que,
pour tout i 0, 1,..., k, les n + 1 points pt, pi+l, p2+n ne soient

pas situés dans un hyperplan (n — l)-dimensionnel. Alors le dénominateur

de la fraction qui figure dans la relation (3) ne s'évanouit pas;
c'est-à-dire que l'expression *(p,, p<+1,..., pt+n+i) Pe^ être définie pour
tout i 0, 1, k. D'après l'inégalité (12), les distances entre le point
Pi et les points pi+1, pi+2, pi+n+î deviennent aussi petites que l'on
veut, pourvu que k soit suffisamment grand. Les conditions du lemme
dont nous avons fait usage en 2.3 se trouvent donc satisfaites. Il en
résulte pour un e > 0 arbitrairement petit

*(Po Pi+i> • • • » P<+*+i) < e (i 0, 1, fc)

pourvu que k soit suffisamment grand. Désignons par Pt l'hyperplan
n-dimensionnel passant par les points p{, pi+l,..., pi+n, alors cette
inégalité peut s'écrire aussi, en vertu de la relation (4), sous la forme
suivante : /\

(n + 1)
-Sln Pi Pi+1

< e (i 0,1, ...,*), (13)
PiPi+n+l

pourvu que k soit suffisamment grand.
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Grâce à une remarque orale de M. Hajôs, l'angle Po Pk+1 peut être
évalué par l'inégalité suivante:

/\ * /\P P Z Pi Pi+i • (14)
t=0

P4 Pi+1 <£ -yOr P4 Pi+1 <£ -y ; il s'ensuit donc d'après l'inégalité (13) que

71 ' ^ S 7t
P<+1 =S T sin P.P^^

(15)

Nous avons supposé que 2? est un arc rectifiable; c'est-à-dire que sa

longueur A est finie. On obtient donc d'après (14) et (15):

/\ g-- Je i+ng-- Je i+n --

Par conséquent: /\bm Po Pt+1 0 (16)

Les hyperplans PQ et PA+1, passant par les points p po>Pi> --,pn>
e^ Pk+i > Pft+a? • • • ^fc+n-fî ^ ?> tendent, en vertu de la relation (12) et du
théorème 3.2, vers les hyperplans n-dimensionnels osculateurs Pp, et
PQ, de E appartenant aux points p ou q. Mais p et q sont des points
arbitrairement choisis sur E ; il s'ensuit donc de (16) que l'angle de deux
hyperplans w-dimensionnels osculateurs arbitraires de E est égal à zéro.
Par suite, l'arc E est contenu dans chacun de ses hyperplans n-dimen-
sionnels osculateurs ; ce qui était exactement notre proposition.

6.2. Un cas spécial du théorème précédent équivaut à un résultat
classique d'après lequel un arc E représenté par les fonctions a^fa),
x2(8),xz(8) est un segment, si la première courbure classique de E est

partout 0, ou est situé dans un plan, si sa torsion s'évanouit partout.

5.3. Nous avons fait l'hypothèse que E est un arc rectifiable. Il
semble pourtant que cette hypothèse n'est pas nécessaire et qu'elle n'est
imposée que par une faiblesse de notre méthode de démonstration. En
effet, pour n 1, nous pouvons énoncer ce théorème plus général:

E étant un continu situé dans un espace euclidien quelconque, la condition
nécessaire et suffisante pour que E soit un segment est kx (p) 0.
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La nécessité de cette condition a été déjà démontrée au numéro 3.6.
Quant à sa suffisance, si Kt(p) — 0, le continu est un arc rectifiable35).
Toutes les conditions du théorème 5.1 sont donc satisfaites.

5.4. Bien qu'il semble que la propriété de E d'être un arc rectifiable
est superflue, il est essentiel que E soit un arc euclidien. Pour s'en
convaincre, il suffit de construire un arc non-euclidien jouissant des propriétés
suivantes36) :

1° E est un arc rectifiable ; 2° xn(p) 0en tout point pdeE; 3° E n'est
isométrique avec aucun sous-ensemble de Vespace En.

Envisageons, en effet, un arc rectifiable euclidien C ayant partout
une w-ième courbure linéaire *n(p) 0. Choisissons G de sorte qu'il
contienne n + 2 points qo,ql9 ...,#„+! pour lesquels qtq} ^> 1, (»,/
0,1,..., n +1). Définissons maintenant l'espace E de la manière suivante:
Les points de E sont les mêmes que les points de C, mais la distance pq
des points p et q de E est définie par la relation

pq
pq si pq s: 1

1 si ~pq > 1
(17)

E est évidemment un continu homéomorphe avec C ; par conséquent E
est un arc. De plus, tout voisinage U (p) d'un point p de E dont le diamètre
ne surpasse pas l'unité est isométrique avec un voisinage de C. Tout
voisinage U (p) contient donc un voisinage fermé U* (p) de p qui est un
arc rectifiable. Or E est contenu, grâce à un théorème de MM. Borel et
Lebesgue37), dans la somme d'un nombre fini de voisinages 17* (p). Par
conséquent, E est lui-même un arc rectifiable. La propriété 1° de E est
donc démontrée. Choisissons maintenant les points Po,p19 pn+1 dans

le voisinage V* (p0) du point arbitraire p0. Comme U* (p0) est isométrique
avec un voisinage de C, c'est-à-dire que plpi ptpi9 la courbure linéaire
K(Po> V\y •••> Pn+i) de ces points a la même valeur qu'elle aurait prise si

nous avions mesuré les I T" I distances pxpi sur l'arc C. Par conséquent,

la valeur de Kn(p0) est égale à la valeur de la n-ième courbure linéaire au

point p0 de C. Celle-ci étant partout 0, il s'ensuit que Kn(pQ) 0 en

86) Menger, 10 et Pauc, 14.
86) Chez Menger, 10, on trouve l'exemple d'un arc non-droit ayant pourtant une

première courbure linéaire évanouissante partout. La construction que nous employons dans
ce mémoire est due, pour n 2, à Alexits, 1,2.

87) Voir p. ex. Menger, 11.
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tout point p0 de E. La propriété 2° de E est aussi démontrée. Pourtant,
E n'est isométrique avec aucun sous-ensemble de En, puisque C contient,
d'après l'hypothèse, n + 2 points q0, q1, qn+1 tels que g,g, ^ 1,
(i, ; 0, 1, n+ 1). Il en résulte, grâce à notre définition (17) de la
distance en E, que g,g3 1, (i,j 0, 1, n +1). Or, dans l'espace
euclidien w-dimensionnel En, il n'y a pas n + 2 points différents dont les

T I distances mutuelles soient toutes égales. La propriété 3° de E est

donc aussi démontrée; ce qui était justement notre but.
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