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Ein Satz (iber die Wirkungsrdume
geschlossener Liescher Gruppen

Von H. Hopr und H. SAMELSON, Ziirich

1. Ein ,,Wirkungsraum*® W ist eine Mannigfaltigkeit, welche durch
eine Liesche Gruppe G transitiv in sich transformiert wird!). Genauer:
die Mannigfaltigkeit W, deren Punkte mit &, #, ... bezeichnet werden,
steht zu einer abstrakten Lieschen Gruppe G, deren Elemente wir
a, b, ... nennen, in folgender Beziehung: jedem a ist eine topologische
analytische?) Abbildung f, von W auf sich zugeordnet; es ist f,(f,(£)) =
fan (&) ; der Punkt f, (&) hangt stetig von dem Paar (a, &) ab; zu jedem
Paar (&, ) gibt es wenigstens ein a mit f,(&) = . 3)

Wir werden hier nur geschlossene Gruppen G betrachten ; dann sind auch
die Raume W geschlossen.

Man weiB zwar, dafl nur Mannigfaltigkeiten von spezieller topologischer
Struktur als Wirkungsraume auftreten konnen — z. B. gibt es unter den
geschlossenen Flachen keine anderen Wirkungsraume als Kugel, projek-
tive Ebene und Torus?); jedoch existiert noch keine allgemeine Theorie
der topologischen Eigenschaften der Wirkungsriaume; soviel wir fest-
stellen konnten, sind bisher nur die folgenden Satze bekannt:

a) Die Fundamentalgruppe enthélt eine Abelsche Untergruppe von

endlichem Index$).
b) Die Bettischen Zahlen p,, r =1, 2, ..., erfiillen die Ungleichungen

. n
ps () e a<() o
1) ,,Wirkungsraum‘ = ,,espace homogéne‘‘ bei Cartan. — Literatur: E. Cartan, La

théorie des groupes finis et continus et 1’analysis situs (Paris 1930, Mémorial
Sc. Math. XLII); ferner: C. Ehresmann, Sur la topologie de certains espaces
homogénes, Ann. of Math. 35 (1934), 396—443.

2) Man kommt auch mit schwéicheren Regularitdtsbedingungen aus.

3) Fiir unsere Zwecke ist es nicht nétig, noch zu fordern: aus a £ b folgt f, 2 fp .

4) Cartan, 1. c., p. 29.

5) Dieser Satz scheint zwar nirgends formuliert worden zu sein, er ist aber eine direkte
Folge aus der bekannten Tatsache, da die Fundamentalgruppe von G Abelsch ist, einer-
seits und den bekannten Beziehungen zwischen den Fundamentalgruppen von @ und von
W andererseits ; diese Beziehungen sind z. B. dargestellt bei Ehresmann, 1. c., p. 399, sowie
enthalten in dem Satz XII von W. Hurewicz, Beitrage zur Topologie der Defor-
mationen I, Proc. Akad. Amsterdam 38 (1935), 112—119.

6a) W. Hurewicz, Beitriage zur Topologie der Deformationen IV, Proc.
Akad. Amsterdam 89 (1936), 2156—224; insbesondere p. 224.

6b) G. de Rham, Uber mehrfache Integrale, Abh. Math. Seminar Hamburg 12
(1938), 313—339; insbesondere p. 335. — Herr de Rham hat uns darauf hingewiesen, dal3
an dieser Stelle die a.a. O. gemachte Voraussetzung der ,,Symmetrie’‘ des Wirkungs-
raumes unnétig ist.
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Es ist aber nicht daran zu zweifeln, daBl die Homologie-Eigenschaften
der Wirkungsraume viel schirferen Bedingungen unterliegen, als nur den
Bedingungen b), dhnlich wie es bei den Gruppenriumen — also den-
jenigen Wirkungsraumen, in denen eine Gruppe @ einfach transitiv wirkt
— der Fall ist. Im folgenden wird ein einzelner hierhergehoriger Satz
bewiesen, der von der einfachsten Homologie-Invariante, namlich der
Euler-Poincaréschen Charakteristik, handelt. Er lautet:

Die Charakteristik eines Wirkungsraumes einer geschlossenen Lieschen
Gruppe st positiv oder Null.

Mannigfaltigkeiten mit negativer Charakteristik sind also niemals
Wirkungsraume. Es wird sich ferner zeigen, da8 zwischen den Wirkungs-
raumen mit positiver und denen mit verschwindender Charakteristik ein
Unterschied besteht, der sich in Eigenschaften der betreffenden Trans-
formationsgruppen dufert.

2. Die Charakteristik y(P) eines Polyeders P ist durch die Euler-
Poincarésche Formel

2(P)=2(—1)ya =2 (= 1y p,

gegeben, wobei a, die Anzahl der r-dimensionalen Zellen einer beliebigen
Zellenzerlegung von P und p, die r-te Bettische Zahl von P bezeichnet.
Die Beziehung der Charakteristik zu stetigen Transformationen wird
durch den folgenden Fixpunktsatz vermittelt?): ,,f sei eine stetige Ab-
bildung des n-dimensionalen Polyeders P in sich, welche 1. durch eine
stetige Deformation von P in sich aus der Identitat entstanden ist, und
welche 2. hochstens endlich viele Fixpunkte besitzt ; dann ist die Summe
der Indizes der Fixpunkte gleich (— 1)*- ¥(P).” (Wenn P eine ge-
schlossene Mannigfaltigkeit ist — nur dieser Fall interessiert uns hier —,
80 ist bei ungeradem n bekanntlich y (P) = 0, und daher kann der Faktor
(— 1)* in der Behauptung des Satzes weggelassen werden.) Wir wollen
unseren Satz aus Nr.1 auf den Fixpunktsatz zuriickfiihren; hierfiir
brauchen wir den folgenden Hilfssatz:

Hilfssatz 1. Der Wirkungsraum W sei n-dimensional; dann hat jeder
isolierte Fixpunkt einer Abbildung f,, ae@, den Index (— 1)". 8)

Beweis. Die Transformationen f,, ae G, kénnen als Isometrien einer
Riemannschen Metrik in W aufgefaBit werden®). Wir betrachten die
Funktionalmatrix F von f, in einem Fixpunkt & von f,. Wenn F einen

) Alexandroff-Hopf, Topologie I (Berlin 1935), p. 542 sowie p. 534 ff.

8) Am SchluB von Nr. 6 wird dieser Hilfssatz noch prazisiert werden.
%) Cartan, 1. c., p. 43.
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reellen positiven Eigenwert besitzt, so bleibt bei der Abbildung f, eine
Richtung durch den Punkt & fest, und folglich bleibt, da f, eine Iso-
metrie ist, auch die in dieser Richtung von & ausgehende geoditische
Linie Punkt fiir Punkt fest (woraus man tiibrigens sieht, daf3 der Eigen-
wert gleich 1 ist); dann ist & also nicht isolierter Fixpunkt. Nun sei aber ¢
isolierter Fixpunkt; dann besitzt nach dem Vorstehenden F keinen
positiven Eigenwert, d. h., fiir alle positiven Zahlen A sind die Deter-
minanten |F — AE| # 0; fiir die spezielle Determinante |F — E| be-
deutet dies erstens, daf} sie nicht verschwindet, und zweitens, daf3 siedas
gleiche Vorzeichen hat wie |F — AE| fiir groBe A, also das Vorzeichen
(— 1)*. Daher ist bekanntlichl?) auch der Index des Fixpunktes & gleich
(— 1)*, w.z.b. w.

Es sei jetzt f,, ae @, eine Transformation von W mit héchstens endlich
vielen Fixpunkten, und zwar sei deren Anzahl gleich 4, 4 > 0. Nach
dem soeben bewiesenen Hilfssatz ist die Indexsumme der Fixpunkte
gleich (— 1)* - A ; andererseits erfiillt f, die Voraussetzungen des oben
zitierten Fixpunktsatzes, denn indem man das Eins-Element der
Gruppe G stetig in das Element a tberfiihrt, erzeugt man f, durch eine
stetige Deformation aus der Identitat; daher ist die Indexsumme auch
gleich (— 1)* - x(W); es ist also A = x(W); damit ist folgender Satz
bewiesen :

Satz I. Besitzt eine Transformation f,, ae@, des Wirkungsraumes W
etner geschlossenen Gruppe G hochstens endlich viele Fixpunkte, so ist deren
Anzahl gleich der Charakteristtk von W.

Falls die Existenz einer Transformation f, feststeht, welche die Voraus-
setzung des Satzes I erfiillt, so folgt aus diesem Satz die in Nr. 1 behaup-
tete Tatsache x (W) > 0 ; dieses Ziel ist also erreicht, sobald noch folgen-
der Satz bewiesen ist:

Satz I1. Ist W ein beliebiger Wirkungsraum einer geschlossenen Gruppe G,
80 gibt es ein solches Element a in G, daf die Transformation f, von W
kéchstens endlich viele Fixzpunkte hat.1t)

3. Bei dem Beweis des Satzes 11 werden wir nicht in dem Wirkungs-
raum W, sondern in dem Gruppenraum @ — also in der Mannigfaltigkeit,
deren Punkte die Elemente von @ sind — arbeiten; dies ist moglich auf
Grund der bekannten Deutung der Punkte von W als Nebengruppen
in G ; wir erinnern hier kurz an diese Deutung!?):

10) Alexandroff-Hopf, 1. ¢., p. 5317.
11) Man beachte die Verscharfung dieses Satzes in FuBlnote 20.
12) Man vergleiche: Cartan, 1. ¢., p. 25 ff.; Ehresmann, 1. c., p. 397 fi.
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In W zeichne man einen Punkt « aus; dann bilden diejenigen Elemente
a von @, fiir welche f,(x) = « ist, eine abgeschlossene Untergruppe U
von @, die ,,Isotropiegruppe‘ von W; fiir einen beliebigen Punkt £ von
W bilden die Elemente a, fiir welche f,(x) == £ ist, eine Nebengruppe
2U von U; hierdurch ist eine eineindeutige Beziehung zwischen den
Nebengruppen zU einerseits und den Punkten von W andererseits her-
gestellt. Geometrisch bilden die Nebengruppen zU eine stetige Zerlegung
oder ,,Faserung‘‘ von G; jeder Punkt von G liegt auf einer und nur einer
,,Faser xU; die einzelnen Fasern sind miteinander, also insbesondere
mit der Gruppe U, homdomorph; W ist der Raum, der entsteht, wenn
man die einzelne Nebengruppe als Punkt auffalit; daher nennt man W
auch einen ,,Nebengruppenraum®. Die Transformation f, von W ist
gleichbedeutend mit der durch die Abbildung x — ax des Gruppen-
raumes G' auf sich bewirkten Zuordnung

2U - axU (1)
im Nebengruppenraum.

Alles dies ist im wesentlichen — d.h. bis auf einen inneren Auto-
morphismus von G — unabhéngig von dem Punkt «; denn zeichnet man
statt « einen Punkt # aus, so hat man nur U durch die Gruppe U’ =sU s~
zu ersetzen, wobei s ein Element von G mit f,(x) = B ist.

Die hiermit beschriebene Beziehung zwischen einem Wirkungsraum
und einer Nebengruppen-Zerlegung von ¢ kann man auch umgekehrt zur
Definition von Wirkungsrdumen benutzen. Man nehme eine beliebige
abgeschlossene Untergruppe U von G und deute ihre Nebengruppen xzU
als Punkte eines Raumes W, in welchem in naheliegender Weise eine
Topologie auf Grund der Topologie von G erklart ist; W ist eine Mannig-
faltigkeit, deren Dimension gleich der Differenz der Dimensionen von ¢
und von U ist; fiir jedes Element a von @ verstehe man unter f, die durch
die Zuordnung (1) erklirte Transformation von W; dann ist W ein
Wirkungsraum; seine Isotropiegruppe ist U; man schreibt mitunter
W = G/U.3)

Aus dem Vorstehenden geht hervor, dal jede Eigenschaft von Wir-
kungsrdumen als Eigenschaft von Gruppenrdumen gedeutet werden
kann. Uns interessiert im Hinblick auf den Satz II die Frage, wie die
Fixpunkte einer Transformation f, von W im Gruppenraum @ in Er-
scheinung treten. Aus der Deutung (1) von f, sieht man, dal der Neben-
gruppe zU dann und nur dann ein Fixpunkt in W entspricht, wenn
axU = zU, also ax = xu mit uelU ist; man hat somit folgendes Krite-

13) Entsprechend der Bemerkung in FuBnote 3 haben wir hier nicht gefordert, da8
U keine invariante Untergruppe von G (auBer der Einheitsgruppe) enthalte.
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rium: Die Nebengruppe 2U stellt dann und nur dann einen Fixpunkt der
Transformation f, von W dar, wenn

, rlaxe U (2)
ist.

Der Beweis des Satzes IT mull demnach darin bestehen, daB man zu
jeder Untergruppe!4) U von G die Existenz eines solchen Elementes a von
G nachweist, dafl hochstens fiir endlich viele Nebengruppen zU die
Relation (2) gilt.

4. Fiir den Beweis des Satzes II sind Eigenschaften Abelscher Unter-
gruppen von G wichtig?%). Bekanntlich gibt es in @ einparametrige Unter-
gruppen ; die abgeschlossene Hiille einer solchen ist eine Gruppe 7', welche
abgeschlossen, zusammenhéngend und Abelsch ist; als abgeschlossene
Untergruppe von G ist T' eine Liesche Gruppe!¢); die einzigen kompakten,
zusammenhéngenden, Abelschen, Lieschen Gruppen sind die ,,Toroide*,
d. h. die direkten Produkte von endlich vielen geschlossenen einpara-
metrigen Gruppen!?); es gibt also in G gewil ein Toroid 7.

Die Multiplikation in einem r-dimensionalen Toroid ist isomorph der
Vektor-Addition im r-dimensionalen Raum, wenn man alle Vektor-
Komponenten modulo 1 reduziert. Hieraus ergeben sich auf Grund
bekannter Tatsachen die folgenden beiden Eigenschaften der Toroide:

(I) Die Gruppe der (stetigen) Automorphismen eines Toroids ist eine
diskrete Gruppe; denn die Automorphismen werden durch ganzzahlige
Matrizen beschrieben.

(II) In jedem Toroid T gibt es ,,erzeugende’ Elemente, d. h. solche,
deren Potenzen auf 7' iiberall dicht liegen; dies ist der Hauptinhalt des
klassischen Approximationssatzes von Kronecker!s).

14) Unter Untergruppen von G sollen, wenn nichts anderes gesagt wird, immer ab-
geschlossene Untergruppen verstanden werden.

15) Nachdem der eine von uns (H. Hopf) tiber den Inhalt der vorliegenden Arbeit in der
Sitzung der Schweizerischen Math. Gesellschaft, September 1940 in Locarno, berichtet
hatte, machte uns Herr G. de Rham auf die Note von A. Weil, Démonstration topo-
logique d’un théoréme fondamental de Cartan, C.R. 200 (1935), 518—520,
aufmerksam; der im Titel dieser Note erwiahnte Satz von Cartan ist unser Hilfssatz 4.
Unser Beweis dieses Cartanschen Satzes ist mit dem Beweis von Weil identisch, und tiber-
haupt enthélt die obige Nr. 4 nichts, was tiber den Inhalt der Note von Weil hinausginge;
trotzdem wiederholen wir diese Dinge ausfiihrlich, da wir den Gedankengang des Beweises
fur unseren Satz in Nr. 1 liickenlos darstellen wollen.

18) Cartan, 1. c., p. 22; sowie: L. Pontrjagin, Topological groups (Princeton 1939),
p. 196 ff.

17) Cartan, 1. c., p. 36; sowie, ohne Differenzierbarkeits-Voraussetzungen: Pontrjagin,
1. c., p. 169.

18) Man vergleiche z.B. J. F. Koksma, Diophantische Approximationen
(Berlin 1936), p. 83.
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Eine besondere Rolle spielen fiir unseren Beweis — und bekanntlich
nicht nur fiir diesen — die ,,maximalen‘‘ Toroide in @, d. h. diejenigen
Toroide, welche nicht in hoherdimensionalen Toroiden enthalten sind;
die fiir uns wichtigsten Eigenschaften sind in den nachstehenden drei
Hilfssdtzen 2, 3 und 4 enthalten. Fiir den Hilfssatz 2 erinnern wir an den
Begriff des ,,Normalisators‘‘ N, einer Untergruppe V von G': der Norma-
lisator N, ist die Menge derjenigen Elemente z von G, fiir welche
2 1Vx = V ist; er ist eine Gruppe, und er enthalt V.

Hilfssatz 2. Ein maximales Toroid 7' hat in seinem Normalisator
N, endlichen Index, d. h. es gibt eine endliche Nebengruppen-Zerlegung

Np=cl +¢c;T+ -+ ¢,T, (c,eT). (3)

Beweis. Da N, eine abgeschlossene Untergruppe von G ist, gibt es
jedenfalls eine endliche Nebengruppen-Zerlegung

Np=cA+cA+ - - +c,d, (ced), (3"

wobei die Untergruppe A diejenige Komponente von N, ist, welche das
Eins-Element e enthalt. Da 7' zusammenhéngend und 7’C N, ist, ist
Tc A; wir behaupten: T'=4; diese Behauptung ist gleichbedeutend
mit der folgenden: 7' hat dieselbe Dimension wie 4; und dies ist be-
wiesen, sobald gezeigt ist: jede Richtung x, die im Einheitspunkt e der.
Gruppe G angebracht ist und in 4 liegt, liegt auch in 7'. Es sei also x eine
derartige Richtung; in dieser Richtung geht von e eine einparametrige
Untergruppe L der Gruppe 4 aus; da L N, ist, bewirkt jedes Element x
von L durch die Zuordnung ¢ — ¢z, teT, einen Automorphismus von
T: da sich x auf L in den Punkt e iiberfiihren 148t, bilden diese Auto-
morphismen eine stetige Schar, welche die Identitat enthilt; infolge
der — oben als Eigenschaft (I) formulierten — Diskretheit der Auto-
morphismengruppe ist daher jeder der betrachteten Automorphismen die
Identitat; es ist also x—1¢x = ¢ fiir beliebige x &L, te7; da L und T selbst
Abelsch sind, ist mithin auch die von 7' und L erzeugte Gruppe Abelsch;
sie ist iiberdies zusammenhéingend, und ihre abgeschlossene Hiille ist
daher ein Toroid 7'/; da Tc 7T’ und T maximal ist, ist T/ = T'; also
ist L und daher auch die Richtung  in 7' enthalten; somit ist in der Tat
T = A. Hieraus und aus (3') folgt (3).

Hilfssatz 3. T sei ein maximales Toroid und & ein beliebiges Element
von @G; dann ist b in einem mit 7" konjugierten Toroid x7' 2~ enthalten.

Beweis. Zu T gehort, wie in Nr. 3 festgestellt wurde, ein Wirkungs-
raum W = G/T. Es sei a ein erzeugendes Element von 7, wie es auf
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Grund der oben formulierten Eigenschaft (II) existiert. Wir betrachten
die Transformation f, von W und fragen nach ihren Fixpunkten, also
— entsprechend dem Kriterium in Nr.3 — nach denjenigen Neben-

gruppen xT, fiir welche gz e T 27)

ist. Die Relation (2') ist, da aeT ist, gewiB fiir alle Elemente z des
Normalisators N, erfullt; daher stellt jede der o Nebengruppen ¢,7" aus
(3) einen Fixpunkt dar. Wir behaupten, dafl dies die einzigen Fixpunkte
von f, sind; in der Tat: wenn 27 einen Fixpunkt représentiert, wenn
also (2/) gilt, so ist, da das Element @ das Toroid 7' erzeugt, auch
x 1Tz CT, also v 1 Tx=1T, also xeN, also 27 ==¢,; T, wobei ¢;,T eine
der Nebengruppen aus (3) ist. Somit hat f, genau o Fixpunkte; nach
Satz I (Nr. 2) ist daher y (W) =: o, also jedenfalls y (W) 5= 0. Jetzt sei b
ein beliebiges Element von @; hétte die Transformation f, keinen Fix-
punkt, so wire nach SatzI y (W)= 0, entgegen dem soeben Bewiesenen ;
f» besitzt also wenigstens einen Fixpunkt, d. h. es gibt ein solches Ele-
ment x, dall x%bx ¢ T, also b ¢ xT x™! ist.

Hilfssatz 4. Je zwei maximale Toroide 7' und 7'’ sind miteinander
konjugiert, d. h. es gibt ein Element z, so daB 7'/ = «T a1 ist.

Beweis. Es sei b ein erzeugendes Element von 7'; nach Hilfssatz 3 gibt
es ein , 8o daB b & T2 ! ist; dann ist auch 7'/ < 2T« 1, also, da 7"
maximal ist, 7/ = 2Tx .

Aus dem hiermit bewiesenen Hilfssatz 4 folgt insbesondere, dafl alle
maximalen Toroide die gleiche Dimension haben; diese Dimensions-
zahl [ nennen wir den ,,Rang‘ der Gruppe G. 1)

b. Wir kommen jetzt zum Beweise des Satzes II; und zwar werden wir
sogleich noch folgenden Zusatz beweisen:

Es sei a ein Element, das ein maximales Toroid T erzeugt; dann erfillt a
die Behauptung des Satzes 11.

Wir kniipfen an Nr. 3 an; U sei also eine beliebige Untergruppe!?)
von G; zu zeigen ist, daB hochstens fiir endlich viele Nebengruppen xU
die Relation (2) gilt; diese Relation ist, da a erzeugendes Element von 7'
ist, gleichbedeutend mit oy —— (4)

Der Rang von U ist gewil nicht groer als der Rang ! von G'; wir unter-
scheiden zwei Fille, je nachdem er kleiner als ! oder gleich [ ist.

19) Diese Definition weicht zwar von der sonst iiblichen, ,,infinitesimalen‘ Definition des
»Ranges‘ einer Lieschen Gruppe etwas ab, sie ist aber fiir manche Zwecke praktisch.
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Wenn der Rang von U kleiner als [ ist, so enthilt U kein I-dimen-
sionales Toroid ; (4) ist also fiir kein # erfiillt. Die Abbildung f, hat daher
keinen Fixpunkt.

Der Rang von U sei [; dann enthélt U ein I-dimensionales Toroid 7.
Nach Hilfssatz 4 sind 7' und 7'/ konjugiert, es gibt also ein Element z,,
so daBl T/ = «3'T z, ist; dann ist a’ = 23! ax, erzeugendes Element von
T’; da die dhnlichen Abbildungen f, und f,, = ;ﬁfa f,, offenbar die
gleiche Anzahl von Fixpunkten haben, diirfen wir 7/ und a’ durch T
und a ersetzen, und also annehmen, dafl 7' c U ist.

Es sei nun z ein Element, das (4) erfillt. Da T und Tz l-dimen-
sionale, also maximale Toroide in U sind, gibt es nach dem Hilfssatz 4,
angewandt auf die Gruppe U statt auf @, ein Element weU, so daB
uTut = xTx ist; dann ist xuTu1x! = T, also ist zu Element des
Normalisators N, von 7T'; die Nebengruppe xzU enthilt somit ein Element
von N, . Es sei umgekehrt 2U eine Nebengruppe, die ein Element y von
N, enthalt; dann ist =z = yu, uelU, also Tz =uwlyTyu=
wTuCU; es gilt also (4). Damit ist gezeigt: die Nebengruppe aU
reprasentiert dann und nur dann einen Fixpunkt von f,, wenn sie ein
Element von N, enthélt.

Wenn aber in 2 U ein Element y enthalten ist, so ist, da 7 c U ist,
auch die ganze Nebengruppe y7T C2U. Nach Hilfssatz 2 gibt es nur
endlich viele Nebengruppen y7' mit yeN, ; folglich gibt es auch nur
endlich viele Nebengruppen zU, welche Fixpunkte von f, reprisen-
tieren. Mithin ist die Anzahl dieser Fixpunkte endlich; sie ist iibrigens
positiv, da jedenfalls U selbst einen Fixpunkt reprasentiert.

Damit ist der Satz II samt dem oben formulierten Zusatz bewiesen.20)

6. Durch den Beweis des Satzes II ist auch der Beweis der Behauptung
2(W) = 0, der unser Hauptziel war, beendet. Wir kénnen jetzt zu dieser
Behauptung noch ein gruppentheoretisches Kriterium fiir die Unter-
scheidung zwischen y > 0 und y = 0 hinzufiigen. Nach Satz I ist y ja
gleich der Anzahl der Fixpunkte einer Abbildung f,, von welcher nur
vorausgesetzt werden mufl, daB} sie hochstens endlich viele Fixpunkte
hat; die in Nr. 5 betrachteten Abbildungen f, haben, falls der Rang von
U kleiner als [ ist, keine Fixpunkte, und falls der Rang von U gleich [ ist,
eine positive Anzahl von Fixpunkten, wie am Schlufl des Beweises be-

%) Aus dem Zusatz zu Satz II folgt, dall die Menge M der Elemente a, fiir welche die f,
héchstens endlich viele Fixpunkte haben, in @G iiberall dicht ist; denn die maximalen
Toroide iiberdecken G vollstindig (Hilfssatz 3), und auf jedem Toroid liegen die erzeugen-
den Elemente iiberall dicht (Kroneckerscher Approximationssatzi®)). Da M tiberdies, wie
man leicht zeigt, eine in G offene Menge ist, ist man berechtigt zu sagen, da8 ,,fast alle‘
Elemente von G die im Satz II ausgesprochene Eigenschaft haben.
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merkt wurde. Man kann daher die Aussage y (W) > 0 folgendermafen
préazisieren :

Die Charakteristik y (W) des Wirkungsraumes W ist positiv oder Null,
jenachdem die Isotropiegruppe U den gleichen Rang hat wie die ganze
Gruppe G oder kleineren Rang als diese.

Wir wollen den Unterschied zwischen den Wirkungsrdumen mit
positiver und denen mit verschwindender Charakteristik noch etwas
weiter verfolgen ; er duBlert sich besonders in Fixpunkt-Eigenschaften.

Ein Punkt & von W soll ,,permanenter‘‘ Fixpunkt einer Untergruppe 4
von @ heiBlen, wenn er Fixpunkt jeder Transformation f, mit ae 4 ist.
Wir behaupten zunéchst:

Es sei x (W) > 0; dann gehort zu jeder zusammenhdingenden Abelschen
Untergruppe A von G ein permanenter Fixpunkt; dabei braucht A itbrigens
nicht abgeschlossen zu sein.

Denn die abgeschlossene Hiille von A4 ist ein Toroid 7'; dieses wird
von einem Element b erzeugt; die Abbildung f, besitzt, da (W) > 0 ist,
einen Fixpunkt &, und dieser ist dann auch Fixpunkt aller Transforma-
tionen f, mit ¢¢7T', also insbesondere mit teA.

Unter den hier betrachteten Gruppen A4 sind die einparametrigen,
geschlossenen oder offenen, Untergruppen von G enthalten; diese ein-
parametrigen Gruppen A! untersuchen wir noch naher, ohne vorlaufig
etwas iiber y(W) vorauszusetzen. Die Transformationen f, von W,
welche zu den Elementen a einer Untergruppe 4! von G gehoren, bilden
eine stationdre Stromung von W, von der wir sagen, dafl sie durch A?*
bewirkt wird. Wir nennen A! von der 1. Art oder von der 2. Art, jenach-
dem A! Untergruppe einer mit der Isotropiegruppe U konjugierten
Gruppe 2U =1 ist oder nicht ist. Ist A von der 1. Art, also A C2Ux1,
so ist ez ¢ U fiir alle ae A1; dann ist der Punkt &, der durch die Neben-
gruppe xU reprisentiert wird, permanenter Fixpunkt von A!. Ist A*
von der 2. Art, so ist der Tangentialvektor von 4! im Einheitspunkt e
von @ an keine Gruppe zU z~! tangential; aus der Kompaktheit von G
und von U folgt dann leicht, dafl die von e verschiedenen Elemente a
einer Umgebung von e auf A* ebenfalls keiner Gruppe xUx~! angehoren;
das bedeutet, daB die zugehorigen Transformationen f, fixpunktfrei
sind ; wir sagen dann: die durch A! bewirkte Stromung ist ,,im kleinen
fixpunktfrei‘.

Wenn x (W) > 0 ist, so gehort, wie schon gezeigt wurde, zu jeder
Gruppe A? ein permanenter Fixpunkt; es gibt also dann nur Gruppen A*
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von der 1. Art. Wenn dagegen y(W)=0 ist, so gibt es (nach den
Satzen II und I) eine Transformation f, ohne Fixpunkt; da jedes Element
von @ auf einem Toroid liegt (Hilfssatz 3), liegt, wie aus einfachen Eigen-
schaften der Toroide ersichtlich ist, jedes Element auch auf einer ein-
parametrigen Gruppe A?; es sei A! eine solche Gruppe, die ein Elementa
enthilt, fiir welches f, fixpunktfrei ist; dann besitzt A! keinen perma-
nenten Fixpunkt; folglich ist A! von der 2. Art. Man sieht also:

Ist x(W)> 0, so besitzt jede Stromung von W, die durch eine Unter-
gruppe A von G bewirkt wird, einen permanenten Fixpunkt; ist y (W) = 0,
so gibt es solche Untergruppen A von G, daf die durch sie bewirkten Stro-
mungen von W im Kleinen fixpunkifrer sind, und daf daher die zuge-
horigen Systeme von Stromlinien keine Singularitit besitzen').

Im Falle y (W)= 0 kann man noch etwas mehr behaupten. Diejenigen
Richtungen im Punkte e von @, die tangential an Gruppen 41 der 1. Art
sind, bilden eine Menge U,, welche, wie aus der Kompaktheit von G und
von U leicht folgt, abgeschlossen im Biindel aller Richtungen ist; ihre
Komplementarmenge 9, ist daher offen; U, ist ferner, wenn y (W) = 0
ist, nicht leer, da es in diesem Falle ja Gruppen 4! von der 2. Art gibt,
wie oben gezeigt wurde. Nun bilden aber diejenigen Richtungen, zu
welchen geschlossene Gruppen A! gehoren, eine in dem Biindel aller
Richtungen iiberall dichte Menge (dies folgt leicht daraus, dafl auf jedem
Toroid die Punkte endlicher Ordnung iiberall dicht liegen); folglich
enthalt auch die offene und nicht leere Menge U, derartige Richtungen.
Daraus ist ersichtlich:

Ist y(W)=0, so gibt es sogar geschlossene Untergruppen A' von @,
welche Stromungen von W bewirken, die im Kleinen fixpunktfrei sind; bet
etner solchen Stromung sind alle Stromlinien einfach geschlossen.

Ein weiterer Unterschied zwischen den Fallen y(W)> 0 und x4 (W)=0
zeigt sich, wenn man die Frage nach dem Auftreten ¢solierter Fixpunkte
untersucht. Wenn y (W) > 0 ist, so folgt aus den Sétzen I und TI, daB es
Abbildungen f, mit einer endlichen positiven Anzahl von Fixpunkten
gibt; diese Fixpunkte sind samtlich isoliert. Wenn y (W) = 0 ist, so gibt
es gewill keine Abbildung f,, welche nur isolierte Fixpunkte besifle;

21) Auf jeder geschlossenen Mannigfaltigkeit, deren Charakteristik O ist, gibt es stetige
Vektorfelder ohne Nullstellen (Alexandroff-Hopf, l.ec., p.552), also auch stationire
Stromungen ohne Singularitidten ; in dem obigen Satz liegt der Ton auf der Tatsache, da8
die genannten Stromungen durch Untergruppen der gegebenen transitiven Gruppe G be-
wirkt werden; daraus folgt z. B., daB diese Stromungen Isometrien im Sinne der gegen-
uber @ invarianten Riemannschen Metrik von W sind (Cartan, 1. c., p. 43).
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denn deren Anzahl miite endlich und positiv sein, was sich nicht mit
dem Satz I vertriagt; eine Abbildung f, hat also entweder keinen Fix-
punkt oder unendlich viele Fixpunkte; dadurch ist aber das Auftreten
eines isolierten Fixpunktes in einer unendlichen Menge von Fixpunkten
noch nicht ausgeschlossen??). Es gilt jedoch folgender Satz:

Ist y(W) =0, so tritt bei keiner Transformation f, ein isolierter Fix-
punkt auf.

Beweis. & sei isolierter Fixpunkt von f,; wir haben zu zeigen, daQ
dann y(W)> 0 ist. Ist «U die & reprasentierende Nebengruppe, so ist
x~lax ¢ U ; nach Hilfssatz 3 liegt a auf einem I-dimensionalen Toroid 7',
wobei ! wieder den Rang von G bezeichnet; dann ist (tz)'e(fx) =
xlaze U fiir alle teT'; dies bedeutet: ist z’¢Tx, so reprisentiert z'U
einen Fixpunkt von f,. Da ¢ isolierter Fixpunkt und 7'z zusammen-
héangend ist, muB3 daher 7'x C zU, also «'Tx < U sein; dann hat U
den Rang I. Nach dem ersten Satz dieser Nummer ist daher y (W) > 0.

Bemerkung. Eine naheliegende Verfeinerung dieses Beweises liefert
den folgenden Satz: Wenn U den Rang I’ hat, so liegt jeder Fixpunkt
einer Transformation f, auf einer (I — l’)-dimensionalen Mannigfaltig-
keit, die ganz aus Fixpunkten von f, besteht.

Wenn die Dimension von W ungerade ist, so ist y (W)= 0, also tritt
dann niemals ein isolierter Fixpunkt auf; der Hilfssatz 1 (Nr. 2) ist daher
folgendermafen zu prizisieren:

Ein isolierter Fixpunkt einer Transformation f, eines Wirkungsraumes
W hat immer den Index -+ 1 ; ist die Dimension von W ungerade, so gibt es
keinen isolierten Fixpunkt.

7. Zum SchluB soll noch die Frage behandelt werden, welche positiven
Zahlen als Charakteristiken von Wirkungsrdumen einer gegebenen
Gruppe G auftreten. Hierfiir kniipfen wir an den Hilfssatz 2, also an die
endliche Nebengruppen-Zerlegung

NT=T1+T2"'+T0 (3)

des Normalisators N, eines maximalen Toroids 7' nach 7' an, worin
T,=c¢T,T,= Tist; da T Normalteiler von N, ist, gibt es eine Faktor-
gruppe N /T = &; nach (3) ist sie endlich, und zwar von der Ordnung .
Aus dem Hilfssatz 4 folgt, daB die Struktur der Gruppe S nicht von dem

33) Zum Beispiel gibt es in der Gruppe G der elliptischen Bewegungen der reellen pro-
jektiven Ebene W Transformationen, bei denen die Menge der Fixpunkte aus den Punkten
einer Geraden und einem isolierten Punkt besteht; hierbei ist aber (W) = 1.
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speziell gewahlten maximalen Toroid 7', sondern nur von der Gruppe G
abhéngt (bekanntlich spielt diese endliche Gruppe & eine wichtige Rolle
bei der Untersuchung der Struktur von G). 23)

Es sei nun W=@/U und (W) > 0; dann hat U den Rang [ (Nr. 6),
und U enthalt daher ein maximales Toroid 7' von G. Aus dem Beweis
des Satzes II (Nr. 5) ist zu ersehen, wie man die Charakteristik y(W), die
dort als Anzahl von Fixpunkten einer Transformation f, auftritt, be-
stimmt: eine Nebengruppe zU reprasentiert dann und nur dann einen
Fixpunkt, wenn sie ein Element von N, enthilt, oder was dasselbe ist,
wenn sie eine Nebengruppe c¢7', ce N, enthélt; andererseits ist jede
Nebengruppe c¢7' in einer Nebengruppe zU enthalten; jedem der o
Elemente 7', von & ist also ein Fixpunkt durch die Vorschrift zugeordnet,
dafl 7, = ¢, T in der Nebengruppe xU, welche den Fixpunkt darstellt,
enthalten sei, und durch diese Zuordnung werden alle Fixpunkte erfaf3t.
Zwei Elementen 7', = ¢,T und T; = ¢,T ist dann und nur dann derselbe
Fixpunkt zugeordnet, wenn c; ¢ c,U ist; diese Bedingung 1aBt sich auch
anders ausdriicken: die Durchschnittsgruppe U ~ N, = U’ enthilt T
und besteht daher aus Nebengruppen ¢,7'; die Faktorgruppe U’'|T = &'
ist eine Untergruppe von &; die soeben formulierte Bedingung dafiir,
dafl den Elementen 7', und 7'; von & derselbe Fixpunkt zugeordnet sei,
ist dann offenbar gleichbedeutend mit der folgenden: es ist 7'; ¢ T',&’,
d.h., 7, und 7', gehoren derselben Nebengruppe in der Nebengruppen-
Zerlegung von G nach &’ an. Hieraus ist ersichtlich: die Anzahl (W)
der Fixpunkte ist gleich dem Index der Untergruppe &’ in der Gruppe &.

Umgekehrt kann man zu jeder Zahl y, welche als Index einer Unter-
gruppe G’ von & auftritt, einen Wirkungsraum W mit der Charak-
teristik y finden: man hat nur unter U = U’ diejenige Untergruppe von
N, zu verstehen, deren Elemente in den zu G’ gehorigen Nebengruppen
¢, T enthalten sind; dann hat, wie aus der soeben durchgefiihrten Uber-
legung hervorgeht, der Wirkungsraum W = G/U die Charakteristik y.

Damit ist gezeigt:

Als positive Charakteristiken von Wirkungsriumen der Gruppe Q treten
die und nur die Zahlen auf, welche Indizes von Untergruppen der Gruppe G
sind ; alle diese Zahlen sind Teiler von o ; die Zahl o selbst ist die Charak-
teristik des Wirkungsraumes G/T.

(Eingegangen den 7. Dezember 1940.)

13) Cartan, l. c., pp. 40—41.— Die Gruppe & ist isomorph der Gruppe derjenigen Auto-
morphismen von 7', welche durch innere Automorphismen von G bewirkt werden.
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