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Ein Satz uber die Wirkungsrâume
geschlossener Liescher Gruppen
Von H. Hopf und H. Samelson, Zurich

1. Ein ,,Wirkungsraum" W ist eine Mannigfaltigkeit, welche durch
eine Liesche Gruppe G transitiv in sich transformiert wird1). Genauer:
die Mannigfaltigkeit W, deren Punkte mit £, rj, bezeichnet werden,
steht zu einer abstrakten Lieschen Gruppe G, deren Elemente wir
a, b, nennen, in folgender Beziehung: jedem a ist eine topologische
analytische2) Abbildung fa von W auf sich zugeordnet ; es ist /a(/&(£))
fab(Ç); der Punkt fa(£) hangt stetig von dem Paar (a, £) ab ; zu jedem
Paar (£, r\) gibt es wenigstens ein a mit /a(f) r\. 3)

Wir werden Mer nur geschlossene Gruppen G betrachten; dann sind auch
die Raume W geschlossen.

Man weiB zwar, daB nur Mannigfaltigkeiten von spezieller topologischer
Struktur als Wirkungsrâume auftreten konnen — z. B. gibt es unter den
geschlossenen Flachen keine anderen Wirkungsrâume als Kugel, projek-
tive Ebene und Torus4) ; jedoch existiert noch keine allgemeine Théorie
der topologischen Eigenschaften der Wirkungsrâume; soviel wir fest-
stellen konnten, sind bisher nur die folgenden Satze bekannt :

a) Die Fundamentalgruppe enthalt eine Abelsche Untergruppe von
endlichem Index6).

b) Die Bettischen Zahlen pr, r 1,2, erfullen die Ungleichungen

Pr > (^) -6a) BOWie V

x) ,,Wïrkungsraum" ,,espace homogène" bei Cartan — Literatur. E.Cartan, La
théorie des groupes finis et continus et l'analysis situs (Paris 1930, Mémorial
Se. Math. XLII); ferner. C. Ehreamann, Sur la topologie de certains espaces
homogènes, Ann. of Math. 35 (1934), 396—443.

2) Man kommt auch mit schwacheren Regulantatsbedmgungen aus.
3) Fur unsere Zwecke ist es nicht notig, noch zu fordern: aus a^z£b folgt fa^6fb
4) Cartan, 1. c, p. 29.
5) Dieser Satz scheint zwar nirgends formuliert worden zu sein, er ist aber eine direkte

Folge aus der bekannten Tatsache, dafî die Fundamentalgruppe von G Abelsch ist, einer-
seits und den bekannten Beziehungen zwischen den Fundamentalgruppen von G und von
W andererseits ; dièse Beziehungen sind z. B. dargestellt bei Ehresmann, 1 c p. 399, sowie
enthalten in dem Satz XII von W. Hurewicz, Beitrage zur Topologie der Defor-
mationen I, Proc. Akad. Amsterdam 38 (1935), 112—119.

6a) W. Mureuncz, Beitrage zur Topologie der Deformationen IV, Proc.
Akad. Amsterdam 39 (1936), 215—224; insbesondere p. 224.

6b) G. de Rham, Ûber mehrfache Intégrale, Abh. Math. Seminar Hamburg 12
(1938), 313—339; insbesondere p. 335. — Herr de Rham hat uns darauf hingewiesen, dafî
an dieser Stelle die a. a. O. gemachte Voraussetzung der ,,Symmetrie" des Wirkungs-
raumes unnotig ist.
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Es ist aber nicht daran zu zweifeln, daB die Homologie-Eigenschaften
der Wirkungsrâume viel schàrferen Bedingungen unterliegen, als nur den
Bedingungen b), àhnlich wie es bei den Gruppenrâumen — also den-
jenigen Wirkungsràumen, in denen eine Grappe G einfach transitiv wirkt
— der Fall ist. Im folgenden wird ein einzelner hierhergehôriger Satz
bewiesen, der von der einfachsten Homologie-Invariante, nâmlich der
Enler-Poincaréschen Charakteristik, handelt. Er lautet:

Die Charakteristik eines Wirkungsraumes einer geschlossenen Lieschen
Gruppe ist positiv oder Null.

Mannigfaltigkeiten mit negativer Charakteristik sind also niemals
Wirkungsrâume. Es wird sich ferner zeigen, daB zwischen den Wirkungsràumen

mit positiver und denen mit verschwindender Charakteristik ein
Unterschied besteht, der sich in Eigenschaften der betreffenden Trans-
formationsgruppen àuBert.

2. Die Charakteristik #(P) eines Polyeders P ist durch die Euler-
Poincarésche Formel

gegeben, wobei ar die Anzahl der r-dimensionalen Zellen einer beliebigen
Zellenzerlegung von P und pr die r-te Bettische Zahl von P bezeichnet.
Die Beziehung der Charakteristik zu stetigen Transformationen wird
durch den folgenden Fixpunktsatz vermittelt7) : „/ sei eine stetige Ab-
bildung des w-dimensionalen Polyeders P in sich, welche 1. durch eine

stetige Déformation von P in sich aus der Identitàt entstanden ist, und
welche 2. hôchstens endlich viele Fixpunkte besitzt; dann ist die Summe
der Indizes der Fixpunkte gleich (— l)n • %(P)" (Wenn P eine ge-
schlossene Mannigfaltigkeit ist — nur dieser Fall interessiert uns hier —,
so ist bei ungeradem n bekanntlich % (P) 0, und daher kann der Faktor
(— l)w in der Behauptung des Satzes weggelassen werden.) Wir wollen
unseren Satz aus Nr. 1 auf den Fixpunktsatz zuruckfûhren; hierfur
brauchen wir den folgenden Hilfssatz :

Hilfssatz 1. Der Wirkungsraum W sei w-dimensional; dann hat jeder
isolierte Fixpunkt einer Abbildung fa,aeG, den Index (— l)w. 8)

Beweis. Die Transformationen fa,aeG, kônnen als Isometrien einer
Riemannschen Metrik in W aufgefaBt werden9). Wir betrachten die
Funktionalmatrix F von fa in einem Fixpunkt £ von fa. Wenn F einen

7) Alexandroff-Hopf, Topologie I (Berlin 1935), p. 542 sowie p. 534 ff.
8) Am Schlufi von Nr. 6 wird dieser Hilfssatz noch pràzisiert werden.
*) Carton, 1. c, p. 43.
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reellen positiven Eigenwert besitzt, so bleibt bei der Abbildung fa eine
Richtung durch den Punkt f fest, und folglich bleibt, da fa eine Iso-
metrie ist, auch die in dieser Richtung von £ ausgehende geodàtische
Linie Punkt fur Punkt fest (woraus man iibrigens sieht, da6 der Eigenwert

gleich 1 ist) ; dann ist f also nicht isolierter Fixpunkt. Nun sei aber f
isolierter Fixpunkt; dann besitzt nach dem Vorstehenden F keinen
positiven Eigenwert, d. h., fur aile positiven Zahlen A sind die Deter-
minanten \F — XE\ ^ 0; fur die spezielle Déterminante \F — E\ be-
deutet dies erstens, da8 sie nicht verschwindet, und zweitens, da6 siedas

gleiche Vorzeichen hat wie \F — XE\ fur groBe X, also das Vorzeichen
(— 1)M. Daher ist bekanntlich10) auch der Index des Fixpunktes | gleich
(— l)n, w. z. b. w.

Es sei jetzt fa,asG, eine Transformation von W mit hôchstens endlich
vielen Fixpunkten, und zwar sei deren Anzahl gleich A, A > 0. Nach
dem soeben bewiesenen Hilfssatz ist die Indexsumme der Fixpunkte
gleich (— l)n • A ; andererseits erfullt fa die Voraussetzungen des oben
zitierten Fixpunktsatzes, denn indem man das Eins-Element der
Gruppe G stetig in das Elément a uberfuhrt, erzeugt man fa durch eine

stetige Déformation aus der Identitât; daher ist die Indexsumme auch
gleich (— l)n • %(W)\ es ist also A %(TF); damit ist folgender Satz
bewiesen :

Satz I. Besitzt eine Transformation fa,aeG, des Wirkungsraumes W
einer geschlossenen Gruppe G hôchstens endlich vide Fixpunkte, so ist deren

Anzahl gleich der Charakteristik von W.

Falls die Existenz einer Transformation fa feststeht, welche die Voraus-
setzung des Satzes I erfullt, so folgt aus diesem Satz die in Nr. 1 behaup-
tete Tatsache %{W) ^ 0 ; dièses Ziel ist also erreicht, sobald noch folgender

Satz bewiesen ist :

Satz II. Ist W ein beliebiger Wirkungsraum einer geschlossenen Gruppe G,

so gibt es ein solches Elément a in G, dafi die Transformation fa von W
hôchstens endlich viele Fixpunkte hat.11)

3. Bei dem Beweis des Satzes II werden wir nicht in dem Wirkungsraum

W, sondern in dem Gruppenraum G — also in der Mannigfaltigkeit,
deren Punkte die Elemente von G sind — arbeiten ; dies ist môglich auf
Grand der bekannten Deutung der Punkte von W als Nebengruppen
in G ; wir erinnern hier kurz an dièse Deutung12) :

10) Alexandroff-Hopf, 1. c, p. 537.
11 Man beachte die Versehârfung dièses Satzes in FuBnote 20.
12) Man vergleiche: Cartan, 1. c, p. 25 fi\; Ehresmann, 1. c, p. 397 ff.
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In W zeichne man einen Punkt oc aus ; dann bilden diejenigen Elemente
a von G, fur welche fa(oc) oc ist, eine abgeschlossene Untergruppe U
von G, die 5JIsotropiegruppe" von W; fur einen beliebigen Punkt f von
W bilden die Elemente a, fur welche fa(oc) £ ist, eine Nebengruppe
xU von Î7; hierdurch ist eine eineindeutige Beziehung zwischen den
Nebengruppen xU einerseits und den Punkten von W andererseits her-
gestellt. Geometrisch bilden die Nebengruppen xU eine stetige Zerlegung
oder ,,Faserung" von G; jeder Punkt von G liegt auf einer und nur einer
,,Faser" xU; die einzelnen Fasern sind miteinander, also insbesondere
mit der Gruppe U, homôomorph; W ist der Raum, der entsteht, wenn
man die einzelne Nebengruppe als Punkt auffafit; daher nennt man W
auch einen ,,Nebengruppenraum". Die Transformation fa von W ist
gleichbedeutend mit der durch die Abbildung x -> ax des Gruppen-
raumes G auf sich bewirkten Zuordnung

(1)
im Nebengruppenraum.

Ailes dies ist im wesentliehen — d. h. bis auf einen inneren Auto-
morphismus von G — unabhàngig von dem Punkt oc ; denn zeichnet man
statt oc einen Punkt (i aus, so hat man nur U durch die Gruppe V sUs~x
zu ersetzen, wobei s ein Elément von G mit f8(oc) /? ist.

Die hiermit beschriebene Beziehung zwischen einem Wirkungsraum
und einer Nebengruppen-Zerlegung von G kann man auch umgekehrt zur
Définition von Wirkungsrâumen benutzen. Man nehme eine beliebige
abgeschlossene Untergruppe U von G und deute ihre Nebengruppen xU
als Punkte eines Raumes W, in welchem in naheliegender Weise eine
Topologie auf Grund der Topologie von G erklârt ist ; W ist eine Mannig-
faltigkeit, deren Dimension gleich der Differenz der Dimensionen von G

und von U ist ; fur jedes Elément a von G verstehe man unter fa die durch
die Zuordnung (1) erklàrte Transformation von W; dann ist W ein
Wirkungsraum; seine Isotropiegruppe ist U; man schreibt mitunter
W 0/17.13)

Aus dem Vorstehenden geht hervor, daB jede Eigenschaft von
Wirkungsrâumen als Eigenschaft von Gruppenrâumen gedeutet werden
kann. Uns interessiert im Hinblick auf den Satz II die Frage, wie die
Fixpunkte einer Transformation fa von W im Gruppenraum G in Er-
scheinung treten. Aus der Deutung (1) von fa sieht man, daB der Nebengruppe

xU dann und nur dann ein Fixpunkt in W entspricht, wenn
axU xU, also ax xu mit ueU ist; man hat somit folgendes Krite-

18 Entsprechend der Bemerkung in Fufinote 3 haben wir hier nicht gefordert, dafi
V keine invariante Untergruppe von G (aufîer der Einheitsgruppe) enthalte.
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rium: Die Nebengruppe xU stellt dann und nur dann einen Fixpunkt der
Transformation fa von W dar, wenn

xr^-axe U (2)
ist.

Der Beweis des Satzes II muB demnach darin bestehen, da8 man zu
jeder Untergruppe14) U von G die Existenz eines solchen Elementes a von
G nachweist, daB hôchstens fur endlieh viele Nebengruppen xU die
Relation (2) gilt.

4. Fur den Beweis des Satzes II sind Eigenschaften Abelscher Unter-
gruppen von G wichtig15). Bekanntlich gibt es in G einparametrige Unter-
gruppen ; die abgeschlossene Huile einer solchen ist eine Gruppe T, welche
abgeschlossen, zusammenhàngend und Abelseh ist; ala abgeschlossene
Untergruppe von G ist T eine Liesche Gruppe16) ; die einzigen kompakten,
zusammenhângenden, Abelschen, Lieschen Gruppen sind die ,,Toroide",
d. h. die direkten Produkte von endlieh vielen geschlossenen einpara-
metrigen Gruppen17) ; es gibt also in G gewiB ein Toroid T.

Die Multiplikation in einem r-dimensionalen Toroid ist isomorph der
Vektor-Addition im r-dimensionalen Raum, wenn man aile Vektor-
Komponenten modulo 1 reduziert. Hieraus ergeben sich auf Grund
bekannter Tatsachen die folgenden beiden Eigenschaften der Toroide :

(I) Die Gruppe der (stetigen) Automorphismen eines Toroids ist eine
diskrete Gruppe; denn die Automorphismen werden durch ganzzahlige
Matrizen beschrieben.

(II) In jedem Toroid T gibt es ,,erzeugende" Elemente, d. h. solche,
deren Potenzen auf T ûberall dicht liegen ; dies ist der Hauptinhalt des
klassischen Approximationssatzes von Kronecker18).

14) Unter Untergruppen von G sollen, wenn nichts anderes gesagt wird, immer
abgeschlossene Untergruppen verstanden werden.

15) Nachdem der eine von uns (H. Hopf ûber den Inhalt der vorliegenden Arbeit in der
Sitzung der Schweizerischen Math. Gesellschaft, September 1940 in Locarno, berichtet
hatte, machte uns Herr G. de Rham auf die Note von A. Weil, Démonstration
topologique d'un théorème fondamental de Cartan, C. R. 200 (1935), 518—520,
aufmerksam; der im Titel dieser Note erwâhnte Satz von Cartan ist unser Hilfssatz 4.
TJnser Beweis dièses Cartanschen Satzes ist mit dem Beweis von Weil identisch, und ûber-
haupt enthâlt die obige Nr. 4 nichts, was ûber den Inhalt der Note von Weil hinausginge ;
trotzdem wiederholen wir dièse Dinge ausfûhrlich, da wir den Gedankengang des Beweises
fur unseren Satz in Nr. 1 lûckenlos darstellen wollen.

16) Cartan, 1. c, p. 22; sowie: L. Pontrjagin, Topological groups (Princeton 1939),
p. 196 f¥.

17) Cartan, Le, p. 36; sowie, ohne Differenzierbarkeits-Voraussetzungen: Pontrjagin,
1. c, p. 169.

18) Man vergleiche z. B. J. F. Koksma, Diophantische Approximationen
(Berlin 1936), p. 83.
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Eine besondere Rolle spielen fur unseren Beweis — und bekanntlich
nicht nur fur diesen — die ,,maximalen" Toroide in d. h. diejenigen
Toroide, welche nicht in hôherdimensionalen Toroiden enthalten sind;
die fur uns wichtigsten Eigenschaften sind in den nachstehenden drei
Hilfssâtzen 2, 3 und 4 enthalten. Fur den Hilfssatz 2 erinnern wir an den
Begriff des ,,Normalisators" Nv einer Untergruppe F von G: der Norma-
lisator Nv ist die Menge derjenigen Elemente x von G, fur welche
3TxVx F ist; er ist eine Grappe, und er enthâlt F.

Hilfssatz 2. Ein maximales Toroid T hat in seinem Normalisator
NT endlichen Index, d. h. es gibt eine endliche Nebengruppen-Zerlegung

NT c1T + c2T+--- + caT (cxsT). (3)

Beweis. Da NT eine abgeschlossene Untergruppe von G ist, gibt es

jedenfalls eine endliche Nebengruppen-Zerlegung

NT ctA + c%A+ +caA, (cl£A) (3')

wobei die Untergruppe A diejenige Komponente von NT ist, welche das
Eins-Element e enthâlt. Da T zusammenhàngend und T<zNT ist, ist
jTc^4;wir behaupten: T=A; dièse Behauptung ist gleichbedeutend
mit der folgenden: T hat dieselbe Dimension wie A; und dies ist be-
wiesen, sobald gezeigt ist: jede Richtung x, die im Einheitspunkt e der.
Gruppe G angebracht ist und in A liegt, liegt auch in T. Es sei also x eine

derartige Richtung; in dieser Richtung geht von e eine einparametrige
UntergruppeL der GruppeA aus; da LcNT ist, bewirkt jedes Elément x
von L durch die Zuordnung t -> x~xtx, teT, einen Automorphismus von
T; da sich x auf L in den Punkt e ûberfûhren lâBt, bilden dièse Auto-
morphismen eine stetige Schar, welche die Identitât enthâlt; infolge
der — oben als Eigenschaft (I) formulierten — Diskretheit der Auto-
morphismengruppe ist daher jeder der betrachteten Automorphismen die
Identitât; es ist also xr1tx t fur beliebige xeL> teT; da L und T selbst
Abelsch sind, ist mithin auch die von T und L erzeugte Gruppe Abelsch ;

sie ist uberdies zusammenhàngend, und ihre abgeschlossene Huile ist
daher ein Toroid T'\ da TdT1 und T maximal ist, ist T' T; also
ist L und daher auch die Richtung x in T enthalten ; somit ist in der Tat
T A. Hieraus und aus (3;) folgt (3).

Hilfssatz 3. T sei ein maximales Toroid und b ein beliebiges Elément
von 6?; dann ist 6 in einem mit T konjugierten Toroid xTxr1 enthalten.

Beweis. Zu T gehôrt, wie in Nr. 3 festgestellt wurde, ein Wirkungs-
raum W G/T. Es sei a ein erzeugendes Elément von î7, wie es auf

245



Grand der oben formulierten Eigenschaft (II) existiert. Wir betrachten
die Transformation fa von W und fragen nach ihren Fixpunkten, also

— entsprechend dem Kriterium in Nr. 3 — nach denjenigen Neben-

gruppen xT, fur welche ^^ g T

ist. Die Relation (2f) ist, da aeT ist, gewifi fur aile Elemente x des

Normalisators NT erfûllt; daher stellt jede der a Nebengruppen ctT aus
(3) einen Fixpunkt dar. Wir behaupten, dafi dies die einzigen Fixpunkte
von fa sind; in der Tat: wenn xT einen Fixpunkt repràsentiert, wenn
also (2f) gilt, so ist, da das Elément a das Toroid T erzeugt, auch

xr^xClT, also x~1Tx T, also xeNT, also xT^ctT, wobei ctT eine
der Nebengruppen aus (3) ist. Somit hat fa genau a Fixpunkte; nach
Satz I (Nr. 2) ist daher x(w) =: a> also jedenfalls x(W) ^ 0. Jetzt sei b

ein beliebiges Elément von G; hàtte die Transformation fb keinen
Fixpunkt, so wàre nach Satz I #(TF) 0, entgegen dem soeben Bewiesenen;
fb besitzt also wenigstens einen Fixpunkt, d. h. es gibt ein solches
Elément x, daB xr^bx s T, also b e xTx~x ist.

Hilfssatz 4. Je zwei maximale Toroide T und T' sind miteinander
konjugiert, d. h. es gibt ein Elément x, so daB T1 xTxr1 ist.

Beweis. Es sei b ein erzeugendes Elément von Tf; nach Hilfssatz 3 gibt
es ein x, so daB b e xTxr1 ist; dann ist auch Tr C xTx~x, also, da Tr
maximal ist, Tr xTx~x

Aus dem hiermit bewiesenen Hilfssatz 4 folgt insbesondere, daB aile
maximalen Toroide die gleiche Dimension haben; dièse Dimensions-
zahl l nennen wir den ,,Rang" der Gruppe G. 19)

5. Wir kommen jetzt zum Beweise des Satzes II ; und zwar werden wir
sogleich noch folgenden Zttsatz beweisen :

Es sei a ein Elément, das ein maximales Toroid T erzeugt; dann erfûllt a
die Behauptung des Satzes II.

Wir knûpfen an Nr. 3 an; U sei also eine beliebige Untergruppe14)
von G; zu zeigen ist, daB hôchstens fur endlich viele Nebengruppen xll
die Relation (2) gilt; dièse Relation ist, da a erzeugendes Elément von T
ist, gleichbedeutend mit ^_iy^ ^ TJ (4)

Der Rang von U ist gewiB nicht grôBer als der Rang l von G ; wir uûter-
scheiden zwei Fàlle, je nachdem er kleiner als l oder gleich l ist.

lf) Dièse Définition weicht zwar von der sonst ùblichen, ,,infinitesimalen" Définition des
,,Ranges" einer Lieschen Gruppe etwas ab, sie ist aber fur manche Zwecke praktisch.
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Wenn der Rang von U kleiner als l ist, so enthàlt U kein ï-dimen-
sionales Toroid; (4) ist also fur kein x erfullt. Die Abbildung fa hat daher
keinen Fixpunkt.

Der Rang von U sei l\ dann enthâlt U ein Z-dimensionales Toroid Tf.
Nach Hilfssatz 4 sind T und Tr konjugiert, es gibt also ein Elément x0,
so daB T! x^Txq ist; dann ist ar ^a^ erzeugendes Elément von
T'\ da die àhnlichen Abbildungen fa und /a, f~\fafXQ oiïenbar die
gleiche Anzahl von Fixpunkten haben, dùrfen wir Tf und a' durch T
und a ersetzen, und also annehmen, daB T c U ist.

Es seinun x ein Elément, das (4) erfullt. Da T und xrxTx Z-dimen-
sionale, also maximale Toroide in U sind, gibt es nach dem Hilfssatz 4,

angewandt auf die Grappe U statt auf 0, ein Elément ue U, so daB
uTur1 x~xTx ist; dann ist xuTvrxx~x T, also ist xu Elément des
Normalisators NT von T; die Nebengruppe xU enthàlt somit ein Elément
von NT. Es sei umgekehrt xU eine Nebengruppe, die ein Elément y von
NT enthàlt; dann ist x yu, uell, also xrlT]x w~xy~xT]yu
u~xTu <zU ; es gilt also (4). Damit ist gezeigt: die Nebengruppe xU
repràsentiert dann und nur dann einen Fixpunkt von fa, wenn sie ein
Elément von NT enthàlt.

Wenn aber in x U ein Elément y enthalten ist, so ist, da T c U ist,
auch die ganze Nebengruppe yTczxU. Nach Hilfssatz 2 gibt es nur
endlich viele Nebengruppen yT mit yeNT ; folglich gibt es auch nur
endlich viele Nebengruppen xU, welche Fixpunkte von fa repràsen-
tieren. Mithin ist die Anzahl dieser Fixpunkte endlich; sie ist ubrigens
positiv, da jedenfalls U selbst einen Fixpunkt repràsentiert.

Damit ist der Satz II samt dem oben formulierten Zusatz bewiesen.20)

6. Durch den Beweis des Satzes II ist auch der Beweis der Behauptung
X(W) ^ 0, der unser Hauptziel war, beendet. Wir kônnen jetzt zu dieser

Behauptung noch ein gruppentheoretisches Kriterium fur die Unter-
scheidung zwischen %> 0 und % 0 hinzufûgen. Nach Satz I ist % Ja
gleich der Anzahl der Fixpunkte einer Abbildung fa, von welcher nur
vorausgesetzt werden muB, daB sie hôchstens endlich viele Fixpunkte
hat ; die in Nr. 5 betrachteten Abbildungen fa haben, falls der Rang von
U kleiner als l ist, keine Fixpunkte, und falls der Rang von U gleich l ist,
eine positive Anzahl von Fixpunkten, wie am SchluB des Beweises be-

20) Aus dem Zusatz zu Satz II folgt, daB die Menge M der Elemente a, fur welche die fa
hôchstens endlich viele Fixpunkte haben, in G ûberall dicht ist; denn die maximalen
Toroide ûberdecken G vollstândig (Hilfssatz 3), und auf jedem Toroid liegen die erzeugen-
den Elemente ûberall dicht (Kroneckerscher Approximationssatz18)). Daifcf ûberdies, wie
man leicht zeigt, eine in G offene Menge ist, ist man berechtigt zu sagen, daû ,,fast aile"
Elemente von G die im Satz II ausgesprochene Eigenschaft haben.
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merkt wurde. Man kann daher die Aussage #(TF) ^ 0 folgendermaBen
prâzisieren :

Die Charakteristik %{W) des Wirkungsraumes W ist positiv oder Null,
jenachdem die Isotropiegruppe U den gleichen Rang hat wie die ganze
Gruppe G oder Meineren Rang als dièse.

Wir wollen den Unterschied zwisehen den Wirkungsràumen mit
positiver und denen mit verschwindender Charakteristik noch etwas
weiter verfolgen; er âuBert sich besonders in Fixpunkt-Eigenschaften.

Ein Punkt | von W soll ,,permanenter" Fixpunkt einer Untergruppe A
von G heiBen, wenn er Fixpunkt jeder Transformation fa mit aeA ist.
Wir behaupten zunàchst:

Es sei %{W) > 0; dann gehort zu jeder zusammenhângenden Abelschen

Untergruppe A von G ein permanenter Fixpunkt; dabei braucht A ûbrigens
nicht abgeschlossen zu sein.

Denn die abgeschlossene Huile von A ist ein Toroid T; dièses wird
von einem Elément b erzeugt; die Abbildung fb besitzt, da %{W) > 0 ist,
einen Fixpunkt £, und dieser ist dann auch Fixpunkt aller Transforma-
tionen ft mit tsT, also insbesondere mit teA.

Unter den hier betrachteten Gruppen A sind die einparametrigen,
geschlossenen oder offenen, Untergruppen von G enthalten; dièse

einparametrigen Gruppen A1 untersuchen wir noch nàher, ohne vorlâufig
etwas uber %{W) vorauszusetzen. Die Transformationen fa von W,
welche zu den Elementen a einer Untergruppe A1 von G gehôren, bilden
eine stationàre Strômung von W, von der wir sagen, daB sie durch A1

bewirkt wird. Wir nennen A1 von der 1. Art oder von der 2. Art, jenachdem

A1 Untergruppe einer mit der Isotropiegruppe U konjugierten
Gruppe xTJx~x ist oder nicht ist. Ist A1 von der 1. Art, also A1 ŒxUxr1,
so ist x~xax e U fur aile aeA1; dann ist der Punkt f, der durch die Neben-

gruppe xll repràsentiert wird, permanenter Fixpunkt von A1. Ist A1

von der 2. Art, so ist der Tangentialvektor von A1 im Einheitspunkt e

von G an keine Gruppe xllxr1 tangential; aus der Kompaktheit von G

und von U folgt dann leicht, daB die von e verschiedenen Elemente a
einer Umgebung von e auf A1 ebenfalls keiner Gruppe xllxr1 angehôren;
das bedeutet, daB die zugehôrigen Transformationen fa fixpunktfrei
sind; wir sagen dann: die durch A1 bewirkte Strômung ist ,,im kleinen
fixpunktfrei".

Wenn %(W)>§ ist, so gehôrt, wie schon gezeigt wurde, zu jeder
Gruppe A1 ein permanenter Fixpunkt; es gibt also dann nur Gruppen A1
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von der 1. Art. Wenn dagegen #(TF) O ist, so gibt es (nach den
Satzen II und I) eine Transformation fa ohne Fixpunkt ; da jedes Elément
von G auf einem Toroid liegt (Hilfssatz 3), liegt, wie aus einfachen Eigen-
schaften der Toroide ersichtlich ist, jedes Elément auch auf einer ein-
parametrigen Gruppe A1; es sei A1 eine solche Gruppe, die ein Elément a
enthâlt, fur welches fa fixpunktfrei ist; dann besitzt A1 keinen perma-
nenten Fixpunkt; folglich ist A1 von der 2. Art. Man sieht also:

Ist #(TF)>0, so besitzt jede Strômung von W, die durai eine Unter-
gruppe A1 von G bewirkt wird, einen permanenten Fixpunkt; ist %(W) — 0,
so gibt es solche Untergruppen A1 von G, dafi die durch sie bewirkten Strô-

mungen von W im Kleinen fixpunktfrei sind, und dafi daher die zuge-
ho'rigen Système von Stromlinien keine Singularitdt besitzen21).

Im Falle x (W) 0 kann man noch etwas mehr behaupten. Diejenigen
Richtungen im Punkte e von G, die tangential an Gruppen A1 der 1. Art
sind, bilden eine Menge $ll9 welche, wie aus der Kompaktheit von G und
von U leicht folgt, abgeschlossen im Bundel aller Richtungen ist; ihre
Komplementârmenge 3I2 ist daher offen; 9I2 ist ferner, wenn %(W) 0

ist, nicht leer, da es in diesem Falle ja Gruppen A1 von der 2. Art gibt,
wie oben gezeigt wurde. Nun bilden aber diejenigen Richtungen, zu
welchen geschlossene Gruppen A1 gehôren, eine in dem Bundel aller
Richtungen uberall dichte Menge (dies folgt leicht daraus, da8 auf jedem
Toroid die Punkte endlicher Ordnung uberall dicht liegen); folglich
enthâlt auch die offene und nicht leere Menge 2I2 derartige Richtungen.
Daraus ist ersichtlich :

Ist #(TF) O, so gibt es sogar geschlossene Untergruppen A1 von G,
welche Strômungen von W bewirken, die im Kleinen fixpunktfrei sind; bei

einer solchen Strômung sind aile Stromlinien einfach geschlossen.

Ein weiterer Unterschied zwischen den Fâllen x(W) > 0 und x (W) =0
zeigt sich, wenn man die Frage nach dem Auftreten isolierter Fixpunkte
untersucht. Wenn x {W) > 0 ist, so folgt aus den Satzen I und II, daB es

Abbildungen fa mit einer endlichen positiven Anzahl von Fixpunkten
gibt; dièse Fixpunkte sind sâmtlich isoliert. Wenn x(W) 0 ist, so gibt
es gewiB keine Abbildung fa, welche nur isolierte Fixpunkte besâBe;

21) Auf jeder geschlossenen Mannigfaltigkeit, deren Charakteristik 0 ist, gibt es stetige
Vektorfelder ohne Nullstellen (Alexandroff-Hopf, 1. c, p. 552), also auch stationare
Stromungen ohne Singulantâten; in dem obigen Satz liegt der Ton auf der Tatsache, da($

die genannten Stromungen durch Untergruppen der gegebenen transitiven Gruppe G
bewirkt werden; daraus folgt z. B., dafi dièse Stromungen Isometnen im Sinne der gegen-
uber G invarianten Biemannschen Metrik von W sind (Carton, 1. c, p. 43).
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denn deren Anzahl mûBte endlich und positiv sein, Was sich nicht mit
dem Satz I vertrâgt; eine Abbildung fa hat also entweder keinen
Fixpunkt oder unendlich viele Fixpunkte; dadurch ist aber das Auftreten
eines isolierten Fixpunktes in einer unendlichen Menge von Fixpunkten
noch nicht ausgeschlossen22). Es gilt jedoch folgender Satz:

Ist %{W) 0, 80 tritt bei Jceiner Transformation fa ein isolierter Fix-
punkt auf.

Beweis. f sei isolierter Fixpunkt von fa ; wir haben zu zeigen, da8
daim #(TF)>0 ist. Ist xll die £ reprâsentierende Nebengruppe, so ist
xrxax s U ; nach Hilfssatz 3 liegt a auf einem Z-dimensionalen Toroid T,
wobei l wieder den Rang von G bezeichnet; dann ist (tx^atyx)
x~1axe U fur aile teT ; dies bedeutet: ist xreTx, so repràsentiert xfU
einen Fixpunkt von fa. Da £ isolierter Fixpunkt und Tx zusammen-
hàngend ist, muB daher Tx ŒxU, also x~xTx C U sein; dann hat U
den Rang L Nach dem ersten Satz dieser Nummer ist daher %{W) > 0.

BernerJcung. Eine naheliegende Verfeinerung dièses Beweises liefert
den folgenden Satz: Wenn U den Rang V hat, so liegt jeder Fixpunkt
einer Transformation fa auf einer (Z — Z'J-dimensionalen Mannigfaltig-
keit, die ganz aus Fixpunkten von fa besteht.

Wenn die Dimension von W ungerade ist, so ist %{W) 0, also tritt
dann niemals ein isolierter Fixpunkt auf; der Hilfssatz 1 (Nr. 2) ist daher
folgendermafien zu pràzisieren:

Ein isolierter Fixpunkt einer Transformation fa eines Wirkungsrawmes
W hat immer den Index +1; ist die Dimension von W ungerade, so gibt es

keinen isolierten Fixpunkt.

7. Zum SchluB soll noch die Frage behandelt werden, welche positiven
Zahlen als Charakteristiken von Wirkungsrâumen einer gegebenen
Gruppe G auftreten. Hierfûr kniipfen wir an den Hilfssatz 2, also an die
endJiche Nebengruppen-Zerlegung

NT T, + T2 • • • + Ta (3)

des Normalisators NT eines maximalen Toroids T nach T an, worin
Ti c{T, Tx T ist; da T Normalteiler von NT ist, gibt es eine Faktor-
gruppe NTjT S; nach (3) ist sie endlich, und zwar von der Ordnung a.
Aus dem Hilfssatz 4 folgt, daB die Struktur der Gruppe S nicht von dem

sa) Zum Beispiel gibt es in der Gruppe G der elliptischen Bewegungen der reellen pro-
jektiven Ebene W Transformationen, bei denen die Menge der Fixpunkte aus den Punkten
einer Geraden und einem isolierten Punkt besteht; hierbei ist aber %(W) — 1.
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speziell gewâhlten maximalen Toroid T, sondera, nur von der Gruppe 0
abhàngt (bekanntlich spielt dièse endliche Gruppe S eine wichtige Rolle
bei der Untersuchung der Struktur von G). 2Z)

Es sei nun W=GjU und %(W) > 0 ; dann hat U den Rang 1 (Nr. 6),
und U enthâlt daher ein maximales Toroid T von G. Aus dem Beweis
des Satzes II (Nr. 5) ist zu ersehen, wie man die Charakteristik %(W), die
dort als Anzahl von Fixpunkten einer Transformation fa auftritt, be-
stimmt: eine Nebengruppe xU repràsentiert dann und nur dann einen
Fixpunkt, wenn sie ein Elément von NT enthâlt, oder was dasselbe ist,
wenn sie eine Nebengruppe cT, csNT, enthâlt; andererseits ist jede
Nebengruppe cT in einer Nebengruppe xU enthalten; jedem der a
Elemente Tt von S ist also ein Fixpunkt durch die Vorschrift zugeordnet,
daB T4 ctT in der Nebengruppe xZJ, welche den Fixpunkt darstellt,
enthalten sei, und durch dièse Zuordnung werden aile Fixpunkte erfaBt.
Zwei Elementen Ti ctT und Tj côT ist dann und nur dann derselbe

Fixpunkt zugeordnet, wenn cj e ctU ist ; dièse IJedingung lâBt sich auch
anders ausdrùcken : die Durchschnittsgruppe U ^ NT Ur enthâlt T
und besteht daher aus Nebengruppen c^î7; die Faktorgruppe V\T <5r

ist eine Untergruppe von ®; die soeben formulierte Bedingung dafur,
daB den Elementen Tt und Tô von S derselbe Fixpunkt zugeordnet sei,
ist dann offenbar gleichbedeutend mit der folgenden: es ist Ti s Ï^S',
d. h., T{ und Ti gehôren derselben Nebengruppe in der Nebengruppen-
Zerlegung von S nach S' an. Hieraus ist ersichtlich: die Anzahl %(W)
der Fixpunkte ist gleich dem Index der Untergruppe & in der Gruppe S.

Umgekehrt kann man zu jeder Zahl #, welche als Index einer
Untergruppe <Zf von S auftritt, einen Wirkungsraum W mit der Charakteristik

x finden: man hat nur unter U TJr diejenige Untergruppe von
NT zu verstehen, deren Elemente in den zu & gehôrigen Nebengruppen
Ci T enthalten sind ; dann hat, wie aus der soeben durchgefûhrten Ûber-
legung hervorgeht, der Wirkungsraum W GjU die Charakteristik %.

Damit ist gezeigt :

AU positive Charakteristiken von Wirkungsràumen der Gruppe G treten
die und nur die Zahlen auf, welche Indizes von Untergruppen der Gruppe S
sind; aile dièse Zahlen sind Teiler von a; die Zahl a selbst ist die Charakteristik

des Wirkungsraumes G/T.

(Eingegangen den 7. Dezember 1940.)

•3) Carton, 1. c, pp. 40—41.— Die Gruppe S ist isomorph der Gruppe derjenigen Auto-
morphismen von T, welche durch innere Automorphismen von G bewirkt werden.
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