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Ein topologischer Beitrag zur reellen Algebra
Von Heinz Hopf, Zurich

E. Stiefel hat seine allgemeine Théorie der Système von Richtungs-
feldern in geschlossenen Mannigfaltigkeiten1) speziell auf die projektiven
Râume angewandt und ist dadurch zu Ergebnissen gelangt, die nicht nur
vom geometrischen Gesichtspunkt aus intéressant sind, sondern die
auch neue und merkwurdige Satze der reellen Algebra enthalten2). Im
folgenden leite ich dieselben algebraischen Satze, sowie etwas allge-
meinere, mit einer ebenfalls topologischen, jedoch von der Stiefelschen
verschiedenen Méthode her, indem ich den Hauptsatz, der die ubrigen
Satze umfaBt, durch Anwendung der Théorie des Umkehrungs-Homo-
morphismus der Abbildungen von Mannigfaltigkeiten3) beweise.

Dieser Beweis bildet den Inhalt des § 2. Im § 1 wird der Hauptsatz
(Satz I) formuliert, und es werden Folgerungen aus ihm gezogen; topo-
logische Betrachtungen kommen im § 1 nicht vor.

Der Satz I handelt von stetigen Funktionen; er wird aber zu einem
algebraischen Satz, sobald man dièse Funktionen zu Polynomen (in
mehreren Veranderlichen) spezialisiert ; und dann wieder werden die
Ergebnisse besonders einfach und besonders intéressant, wenn die
Polynôme Bilinearformen sind. Nachdem dièse Satze, die algebraischen
Charakter haben — sie handeln von der Existenz von Nullstellen ge-
wisser Gleichungssysteme —, auf topologischem Wege entdeckt worden

waren, entstand die Aufgabe, auch Beweise zu finden, die man mit Recht
als ,,algebraisch" bezeichnen durfte. Dièse Aufgabe — die nicht nur mir,
sondern auch anderen Mathematikern als schwierig erschien — ist von
F. Behrend gelost worden4).

Herr Behrend hat mich auf die Frage aufmerksam gemacht, welche

x) E. Stiefel, Richtungsfelder und Fernparallelismus in w-dimensionalen
Mannigfaltigkeiten, Comment. Math Helvet. 8 (1936), 305—353.

2) A. a. O., 349, sowie besonders. E. Stiefel, Ûber Richtungsfelder in den
projektiven Raumen und einen Satz aus der reellen Algebra, Comment. Math.
Helvet 13 (1941), 201—218.

8) H. Hopf, Zur Algebra der Abbildungen von Mannigfaltigkeiten, Crelles
Journ. 163 (1930), 71—88. — Neue Begrundung und Verallgememerung : H. Freudenthal,
Zum Hopfschen Umkehrhomomorphismus, Ann. of Math. 38(1937), 847—853;
ferner: A.Komatu, Ûber die Ringduahtat eines Kompaktums, Tôhoku Math
Journ. 43 (1937), 414—420, H. Whitney, On Products in a complex, Ann. of
Math. 39 (1938), 397—432 (Theorem 6).

4) F. Behrend, Ûber Système reeller algebraischer Gleichungen, Compos.
Math. 7 (1939), 1—19.
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Verschàrfung unser Hauptsatz gestatte, wenn man die in ihm auftreten-
den Funktionen zu symmetrischen Bilinearformen spezialisiert. Dièses
Problem scheint sich sowohl der Stiefelschen Méthode der Richtungs-
felder als auch meiner Méthode des Umkehrungs-Homomorphismus zu
entziehen. Aber mit einer dritten topologischen Méthode habe ich einen —

allerdings nur schwachen — Fortschritt in der gewiinschten Richtung
erzielt. Hierûber berichte ich kurz im ,,Anhang II"; die ausfiïhrliehe
Darstellung ist an anderer Stelle erschienen.

Im ,,Anhang I" wird gezeigt, daB nicht nur die algebraischen, sondern
auch gewisse der geometrischen Sàtze von Stiefel — nâmlich notwendige
Bedingungen fur die Existenz von linear unabhângigen Systemen stetiger
Richtungsfelder in den projektiven Ràumen — aus dem Satz I abgeleitet
werden kônnen.

§ 1. Formulierung des Hauptsatzes ; algebraische Folgerungen %

1. Definite Système ungerader Funktionen in zwei Variablenreihen. Es
sei / eine réelle Funktion der r -f- s reellen Verânderlichen

xl9...,xr; yl9..., ys; r^l,«^l ; (1)

und zwar sei sie erklârt und stetig fur

f<=i is£=i ; (2)

sie erfûlle die Funktionalgleichungen

/(—a?!, - xr\ t/1}...} ys) /(»i,..., xr; - yx, - ys) (3)

- f(xl9 ...,xr; yly...,îj8)

Dann sagen wir kurz: ,,/ ist eine ungerade Funktion der Variablenreihen

(1)."
Beispiele sind diejenigen reellen algebraischen Formen in den Variablen

(1), welche homogen in den xQ von einer ungeraden Dimension sowie

homogen in den ya von einer ungeraden Dimension sind; die einfachsten
Fâlle sind die Bilinearformen in den beiden Variablenreihen.

Ein System
/i. •••>/» (4)

ungerader Funktionen der Variablen (1) soll ,,definitu heiBen, wenn das

Gleichungssystem
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in dem durch (2) gegebenen Bereich der Variablen (1) keine Lôsung
besitzt.

Besteht das System (4) aus Formen der oben besprochenen Art, so

sind die Gleichungen (40) immer erfullt, wenn

entweder xx • • • xr — 0 oder y± • • • y8 0 (5)

ist; infolge der Homogenitàt der fv ist die Definitheit des Systems (4)
gleichbedeutend damit, daB dièse trivialen Lôsungen (5) von (40) die ein-
zigen sind (die Beschrânkung auf den Bereich (2) ist also nicht not-
wendig).

Ein Beispiel eines definiten Systems bei beliebigen r und s wird durch
die Produkte

xqVo > Q=l,...9r, or 1, ...,«

geliefert; hier ist n rs. Ein weiteres Beispiel, und zwar mit

n — r + « — 1

(also mit n <rs fur r > 1, s > 1), ist das folgende:

(6)
lfggïgr, I ^ a tStS y v 1, ...,r + 5~l.

Die Definitheit dièses Systems, also die Tatsache, daB die zugehôrigen
Gleichungen (40) nur die trivialen Lôsungen (5) besitzen, bestâtigt man
leicht durch vollstândige Induktion in bezug auf die Anzahl r -\- s aller
Variablen.

Fur gewisse r und s gibt es aber auch definite Système, die aus weniger
als r + s — 1 ungeraden Funktionen in den Variablen (1) bestehen;
z. B. bilden fur r s 2 bereits die beiden Funktionen

(7)

ein definites System.
Daher entsteht die Frage: ,,Welches ist, bei gegebenen r und s, die

kleinste Zahl n, fur welche es ein definites System von n ungeraden
Funktionen in den Variablenreihen (1) gibt?" Dièse Minimalzahl heiBe
n* (r, s). 5)

•) Ohne die Forderung, daÛ die Funktionen fv ungerade seien, ist die Frage un-
interessant; denn die eine Funktion / Sa?^.2y^ bildet immer ein definites System.
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Hat man fur ein Paar r, s die Zahl n* (r, s), oder auch nur eine untere
Schranke fur n*(r, s), bestimmt, so hat man damit einen Existenzsatz
fur Lôsungen von Gleichungen gewonnen : denn aus n < w* (r, s) folgt,
daB das Gleichungssystem (40) eine Losung in dem Bereich (2) besitzt;
sind die fv Formen, so ist dies, wie schon betont, gleichbedeutend mit der
Existenz einer nicht-trivialen, d. h. von (5) verschiedenen, Losung.

2. Der Hauptsatz. Die Zahl n* (r, s) kann ich zwar im allgemeinen
nicht bestimmen; jedoch liefert der nachstehende Satz Beschrankungen
nach unten fur n*. 5a)

Satz /. Es gebe ein définîtes System von n ungeraden Funktionen in den
Variablenreihen x1} xr und yl9 y8. Dann ist die folgende Bedingung
erfûllt :

Aile Binomialkoeffizienten I ^ J mit

n — r<Jc<s (8)
sind gerade. 6b)

Dièse Bedingung soll kurz mit S (r, s ; n) bezeichnet werden. Aus der
Symmetrie-Eigenschaft

der Binomialkoeffizienten folgt, daB, wie zu erwarten, © (r, s; n) sym-
metrisch in r und s ist, daB also unter der Voraussetzung des Satzes I
auch aile ^ 1 mit\k) n-s<]c<r (87)

gerade sind.
Der Beweis des Satzes I wird im § 2 gefuhrt werden.

Eine erste Folgerung aus dem Satz I ergibt sich, wenn man bedenkt,

daB 11=1 ist ; unter der Voraussetzung des Satzes I kann namlich

daher (8) nicht durch Je 0 befriedigt werden, es kann also nicht
n — r < 0, sondern es muB n — r ^ 0, also n ^ r sein; und ebenso,
nach (87) : n ^s. Daher und infolge der Existenz des definiten Systems
(6) gilt

max. (r, s) ^ n*(r, s) <^ r + s — 1 (9)

5a) Intéressante Beschrankungen von w* nach oben gibt Behrend, a. a. O 4), § 4.

5*>) Fur bilineare Formen fv von Stiefél, a. a. O.a), fur behebige Formen ungerader Grade
von Behrend, a. a. O.4), bewiesen.
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3. Spezialisierungen von r, s, n.
(a) Im Falle s 1 wird, wenn n ^ r ist, (8) durch kein k befriedigt;

das heiBt :

Satz la. Fur 8=1 ist die Behauptung des Satzes I gleichbedeutend mit :
n ^ r.

Dieser Satz ist àquivalent mit dem nachstehenden Satz B, der eine
bekannte Konsequenz eines Satzes von Borsuk ist; in ihm sind die gv

Funktionen der einen Variablenreihe xx, xr, welche fur £x2Q 1

stetig und ungerade sind.

Satz B. Wenn die Funktionen gl9 gn keine gemeinsame Nullstelle
haben, so ist n ^ r. 6)

Die Àquivalenz der beiden Sâtze ist leicht zu sehen : sind Funktionen
/„ vorgelegt, welche die Voraussetzung von la erfullen, so setze man in
ihnen die Variable yl 1 und wende auf die dadurch entstehenden
Funktionen gv den Satz B an ; sind Funktionen gv gegeben, die die
Voraussetzung des Satzes B erfûllen, so wende man Satz la auf die
Funktionen /„ yx • gv an.

Somit ist unser Satz I eine Verallgemeinerung des bekannten
Satzes B. a)

(b) Wir stellen eine Bedingung auf, die hinreichend dafur ist, daB die
Zahl n* mit ihrer durch (9) gegebenen oberen Schranke zusammenfâllt ;

ob die Bedingung hierfur auch notwendig ist, weiB ich nicht.
Es sei n* (r, s) < r + s — 1 ; dann gibt es — da man zu einem definiten

System immer beliebige Funktionen hinzufugen kann, ohne die Definit-
heit zu zerstôren — gewiB ein definites System mit n r + s — 2]

also ist » (r, s ; r + s — 2) erfullt, das heiBt: (r + 8~~ 2j ist gerade

fur s — 2 < k < s, also fur k s — 1. Folglich:

Satz Ib. Ist der Binomialkoeffizient

+ ë — 2\_ (r + s~ 2\
s-i )-[ r-i ;

ungerade, so ist n* (r, s) r -\- s — 1.

•) Alexandroff-Hopf, Topologie I (Berlin 1935), 485, Satz VIII.
a) Da der Satz B bekannt ist, darf man im Beweis des Satzes I auf den Fall 8 1

(und ebenso auf den Fall r 1) verzichten. Wir werden dies nicht tun, mûssen aber
einige Maie (Fufinoten b), c), d), e) auf Modifikationen hinweisen, welche durch die beiden
genannten Fâlle bedingt sind. Ausschliefien wollen wir jedoch den ganz trivialen Fall
r 8 =» 1 ; in ihm lautet die Behauptung des Satzes I nur : n ^ 1.
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Die Voraussetzung des Satzes Ib ist z. B. erfuilt, wenn r ungerade
und s 2 ist.

(c) Wir stellen eine Bedingung auf, die notwendig dafiir ist, da6 die
Zahl n* mit ihrer durch (9) gegebenen unteren Schranke zusammenfàllt ;

ob die Bedingung hierfur auch hinreichend ist, ist fraglich.
Es gebe ein definites System mit n s ; dann sind nach (8') aile 1,1

gerade fur 0 < k < r ; das ist die Bedingung 23 (r, n ; n) ; um ihre Bedeu-

tung festzustellen, schreiben wir n in der Form

n 2* • u u ungerade (10)

und betraehten die binomische Entwicklung von 1 -f- 0n> wobei t eine
Unbestimmte ist :

(l+t)n ((\ + t)*y
also modulo 2:

(1 + t)n (1 + t*x)u 1 + t2X + + tn ;

hieraus ist ersichtlich:
mod. 2 ;

unter der Bedingung 33 (r, n\ n) ist daher nicht 0 < 2A < r, also ist

r^2*. (11)
Folglich:

Satz le. Wenn es ein definites System mit n= s gibt — mit anderen
Worten: wenn n*(r, s) sist—, so ist r durch (11) beschrânkt, wobei 2A

durch (10) bestimmt ist.

(d) Es sei r s. Die Bedingung S (r, r; w) lautet: 1,1 ist gerade

fur n — r < k < r. Um dièse Bedingung zu untersuchen, setzen wir

n 2<* + m 0^m<2^,
und behaupten:

| M-fÉO mod. 2 (12)

Fur m 0 ist dies trivial ; es sei m > 0 ; dann betraehten wir wieder

(l + t)n modulo 2:

(1 + t)n (1 + $)¦**• (1 + J)w (1 + t2*1) • (1 + • • • + tm)

1 _|- _|_ jm _|_ ^ _|_ _j_ ^n
y

es gilt also (12).
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Unter der Bedingung 3? (r,r; n) ist daher nicht n — r < m < r, also
nicht gleichzeitig r>n — m und r>m> also, da n — m 2/* > m ist,
jedenfalls nicht r > 2^; es ist also 2^ ^ r. Wenn

2<?-i<r^2<? (13)

ist, so ist also 2/* à 2<?, und folglich n ;> 2«. Somit gilt

Satz Id. Ein définîtes System stetiger ungerader Funktionen in zweimal

r Variablen xx, xr und ylf yr besteht ans wenigstens 2Q Funktionen,
wobei g durch (13) bestimmt ist.

(e) In jedem der Sâtze le und Id ist enthalten:

Satz le. Ein definites System von n stetigen ungeraden Funktionen der
zweimal n Variablen xl} xn und yx, yn ist hôchstens dann môglich,
wenn n eine Potenz von 2 ist.

Ein Beispiel hierzu mit n 2 ist das System (7); ûber weitere Bei-
spiele zum Satz le sowie zum Satz le wird in der nàchsten Nummer
etwas gesagt werden.

4. Der Satz von Hurwitz-Radon. Ein System (4) von Bilinearformen

QQ ...,n (14)

in den Variablen (1) ist gewiB dann définit, wenn die Gleichung

tf (15)

(als Identitàt in den xQ und ya) erfùllt ist. Fur diesen Spezialfall und
unter der weiteren Voraussetzung

s n

ist der maximale Wert r*(n) von r, der bei gegebenem n môglich ist,
durch Hurwitz und durch Radon bestimmt worden7):

Man stelle n in der Form

n I6a • 2$ - u 0^)8^3, u ungerade,

dar; dann ist
r*(rc) 20 +8* (16)

7) A. Hurwitz, Ûber die Komposition der quadratischen Formen, Math.
Ann. 88 (1923), 1—25 (Math. Werke, Bd. II, 641—666). — «7. Radon, Lineare Scharen
orthogonaler Matrizen, Abh. math. Sem. Hamburg 1 (1922), 1—14. — Die obige
Formulierung stammt von Radon.
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Fur diejenigen n, die nicht durch 16 teilbar sind, in denen also oc 0

ist, ist derjenige Teil dièses Satzes, welcher besagt, da6 der Wert (16)
durch kein r ubertrofïen werden kann, in unserem Satz le enthalten.
Der andere Teil des Hurwitz-Radonschen Satzes, durch welchen die
Existenz von Lôsungen (14) der Gleichung (15) mit dem durch (16)
gegebenen Wert r r* — (und mit s n) — festgestellt wird, zeigt,
daB die Schranke (11) in unserem Satz le wenigstens fur diejenigen n nicht
verbessert werden kann, die ^k 0 mod. 16 sind.

Fur r s n geht der obige Satz in den berûhmten Satz von
Hurwitz iiber8):

Identitàten (15) fur Bilinearformen (14) mit r s n existieren nur fur
n=I,2, 4, 8.

Zu unserem Satz le gibt es also fur n 2A mit X > 3 kein Beispiel vom
Typus (14), (15); es sind fur dièse n uberhaupt keine definiten Système
von n ungeraden Funktionen in zweimal n Variablen bekannt. 9)

5. Matrizen ungerader Funktionen einer Variabhnreihe. Unter einer
ungeraden Funktion der Variablen

xl9...,xr (1J

soll immer eine solche réelle Funktion g dieser Variablen verstanden
werden, welche fur r

Ex\ 1 (2.)

erklàrt und stetig ist und die Funktionalgleichung

g(~ xl9 — xr) —g(xl9 ...,xr) (3J

erfûllt. Wir betrachten eine Matrix, die aus derartigen ungeraden
Funktionen ga v besteht :

f
' 9u 9m

0= '

9b n

8) A. Hurwitz, Ûber die Komposition der quadratischen Formen von
beliebig vielen Variablen, Nachr. Ges. d. Wiss. Gottingen 1898, 309—316 (Math.
Werke, Bd. II, 566—571).

•) tJbrigens besteht ein prinzipieller Unterschied zwischen den Hurwitz-Radonschen
und unseren Sàtzen: jene gelten, wie aus den beiden Arbeiten von Hurwitz hervorgeht,
nicht nur fur réelle, sondern auch fur komplexe Bilinearformen, allgemeiner sogar fur
solche, deren Koeffizienten einem beliebigen Kôrper, dessen Charakteristik p£ 2 ist,
angehôren.
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Satz II. Dafûr, dafi die Matrix 0 durchweg den Rang s hat, ist die
Bedingung 93 (r, s; n) notwendig.

Denn wenn der Rang durchweg s ist, so bilden die linearen Ver-
bindungen

s

Jv {%i j • • • %r î Vi • • • y ys) 2* y<r9<*v > V 1 n

ein defînites System ungerader Funktionen im Sinne von Nr. 1.

Besonders naheliegend ist die Betrachtung quadratischer Matrizen 0,
also solcher, fur welche s n ist ; fur sie ergibt sich aus Satz I c, analog
wie sich Satz II aus Satz I ergab :

Satz Ile. Eine n-reihige quadratische Matrix

9u •• • 9m

9nl ••• 9nn

deren Elemente ungerade Funktionen in den r Variablen (lx) sind, kann
hôchstens dann durchweg nicht-singulâr sein, wenn die Anzahl r der Varia-
bien nicht grô/ier ist als die grôfite Potenz von 2, die in n aufgeht.

Hierin ist enthalten:
Satz Ile. Die im Satz Ile genannte Matrix G kann, faits uberdies r n

ist, hôchstens dann durchweg nicht-singulâr sein, wenn n eine Potenz

von 2 ist.

Beispiele derartiger nicht-singulàrer Matrizen mit r n erhàlt man
fur n 1, 2, 4, 8, indem man

setzt, wobei die aQQV die Koeffizienten derjenigen Bilinearformen (14)
sind, welche die Identitâten (15) — mit r s n — erfûllen10);
Beispiele mit grôBeren n sind nicht bekannt.

6. n) Lineare Scharen quadratischer Matrizen aus reellen Zahlen. Wir
machen eine Anwendung des Satzes Ile. Mit AQ sollen n-reihige quadra-

10) Auf der vorletzten Seite der Arbeit8) von Hurwitz sind dièse Matrizen angegeben.
11 Die Sâtze der Nummern 6 und 7 folgen aus dem Spezialfall des Satzes I, in dem die

fv bilineare Formen sind ; sie ergeben sich daher auch aus den in der Einleitung genannten
Arbeiten von Stiefel und von Behrend; insbesondere liefert die Arbeit von Behrend
algebraische Beweise fur dièse Sâtze.
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tische Matrizen reeller Zahlen bezeichnet werden; bei gegebenen
Ax, Ar bilden die Matrizen

X^+'-' + XrAr (17)

eine ,,lineare Schar" von Matrizen, welche von den Parametern xl9...,xr
abhângt. Die Schar soll ,,durchweg nicht-singulâr" heiBen, wenn nur
diejenige Matrix (17) singulâr ist, welche zu den Parametern (0, 0)

gehôrt.
Satz III c. Die Anzahl r der Parameter einer linearen, durchweg nicht-

singulâren Schar n-reihiger quadratischer reeller Matrizen ist hochstens

gleich der grôflten Potenz von 2, die in n aufgeht.

Denn ist AQ (aQav), so hat die Matrix (17) die Elemente

Q

sie sind ungerade Funktionen in den xQ; daher folgt Satz III c aus
Satz Ile.

Korollar : Ist n 2* • u, u ungerade, so gibt es in jeder Schar

eine Matrix mit (xl9 x2x) ^ (0, 0), die einen reellen Eigenwert
besitzt.

Dies erfolgt daraus, dafi nach Satz III c die lineare Schar, die von den
Matrizen Al9 ,..9 A2\ und der Einheitsmatrix E erzeugt wird, nicht
durchweg nicht-singulâr sein kann.

7. u) Nicht-assoziative Divisions-Algebren liber dem Kôrper der reellen
Zahlen. Von den ,,Algebren" oder ,,hyperkomplexen Systemen", die wir
hier betrachten, soll nicht verlangt werden, daB in ihnen das assoziative
Gesetz der Multiphkation gelte. Dagegen beschrânken wir uns auf
,,Divisions-Algebrenu, d. h. Système ohne Nullteiler. Es handle sich
immer um Système uber dem Kôrper der reellen Zahlen. Die Anzahl der
Einheiten sei n. Man weiB, daB es nur drei Divisions-Algebren gibt, in
denen das assoziative Gesetz gilt: die reellen Zahlen, die komplexen
Zahlen, die Quaternionen ; fur sie ist n 1, 2 bzw. 4. Ferner hat man
eine nicht-assoziative Divisions-Algebra mit n 8 studiert : die Cay-
leyschen Zahlen12). Es ist aber nicht bekannt, ob es auch fur andere
Werte von n als 1, 2, 4, 8 Divisions-Algebren gibt.

12) Man vergleiche z. B. : L.E.Dickson, Algebren und ihre Zahlentheorie
(Zurich 1927), § 133.

228



Satz IV. Die Anzahl n der Einheiten einer Divisions-Algebra liber dem

Kôrper der reellen Zahlen ist notwendigerweise eine Potenz von 2.

Beweis. tl9 en seien die Einheiten einer Divisions-Algebra; ihre
Multiplikation sei durch

eeea= ZaQavtv
V

erklârt. Fur zwei GrôBen

Q a

ist dann das Produkt durch

*î) 27(27 aQovXQyo)*v

gegeben. Da8 es keine Nullteiler gibt, ist gleichbedeutend damit, daB die
Bilinearformen

ein definites System bilden. Daher folgt der Satz IV aus dem Satz le. 12 a\

§ 2. Beweis des Hauptsatzes

8. Oeometrische Deutung der definiten Système ungerader FunJctionen.

Es sei ein definites System (4) vorgelegt, wie es in Nr. 1 erklârt worden
ist. Da auch die Funktionen

/'- fv

i=l

stetig und ungerade sind und ein definites System bilden, dûrfen wir,
indem wir statt frv wieder /„ schreiben, annehmen, daB

n

Z il i (i)
ist. v=1

Durch
S x\ 1 Z y% 1 S 4 1

sind Sphâren S,^, Ss_lt 8n-1 erklârt, deren Dimensionszahlen durch die
Indizes angegeben sind. Infolge (1) wird durch

!2 a) Im Anhang II kommen wir noch einmal auf Algebren zurûck.
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jedem Punktepaar (x, y) mit x e Sr_x, y e S^ ein Punkt z e Sn_t zu-
geordnet, es wird also eine Abbildung / des topologischen Produktes
8r^! x Sg^ in die Sphâre #„_! erklârt; dièse Abbildung ist stetig; sie ist
ferner ,,ungerade", d. h. es ist

/(— x, y) f(x, — y) — f(x, y),

wenn wir durch — x, die Antipoden der Punkte x, bezeichnen.

Durch Identifizierung je zweier antipodischer Punkte einer Sphàre Sk

entsteht ein &-dimensionaler projektiver Raum Pk. Daher folgt aus der
Ungeradheit von / erstens, da6 durch / eine stetige Abbildung F des

topologischen Produktes Pr-1 X P8^ in den Raum Pn^ bewirkt wird.
Zweitens: hait man einen Punkt x° von #,._! fest und lâBt y einen halben
GroBkreis auf S^ von einem Punkt y0 in den Antipoden — y0 durch-
laufen, so durchlâuft der Bildpunkt f(x°, y) auf /g^^ einen Weg, der
ebenfalls einen Punkt z° mit dem Antipoden — z° verbindet ; da einem

Weg auf der Sphâre 8k, der zwei Antipoden verbindet, in Pk ein geschlos-
sener Weg vom Homologietypus der projektiVfen Geraden entspricht, so
bedeutet die eben festgestellte Eigenschaft der ungeraden Abbildung /
fur die Abbildung F :

F (Punkt X Gerade) ~ Gerade; (2a)

analog ergibt sich:

F (Gerade X Punkt) ~ Gerade; (2b)

dies sind Homologien, in denen ,,Punkt" und ,5Gerade" als Zyklen der
Dimensionen 0 bzw. 1 aufzufassen sind.

Eine Abbildung F des Produktes zweier projektiver Râume in einen

projektiven Raum, wrelche die Eigenschaften (2a) und (2b) besitzt, môge
kurz ,,ungerade" heiBen. Dann sehen wir: Ein définîtes System von n
ungeraden Funktionen der Variablen xx, xr und yx, y8 beivirkt eine

ungerade Abbildung13) des Produktes Pr-1 X P8-i in den Raum Pn_a.

Damit ist der Satz I auf den folgenden zuriickgefuhrt :

Satz /*: Voraussetzung : Es existiert eine ungerade Abbildung13) von
Pr_i X Ps_i in Pn_!. Behauptung : Die Bedingung S (r, s ; n) ist erfûllt. b)

13) Unter einer „Abbildung" einer Mannigfaltigkeit wird immer eine stetige Abbildung
verstanden.

b) Ist s — 1, so ist Pa«_! ein Punkt, (2 a) inhaltslos und die Ungeradheit von jP also
allein durch (2b) eharakterisiert; die Behauptung lautet: n ;> r. Man vergl. Fufinote. °)
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9. Die Ringe des projektiven Baumes und des ProduJctes zweier projek-
tiver Baume. Fur den Beweis des Satzes I* miïssen wir uns zunâchst nâher
mit den Homologie-Eigenschaften von Pn-1 und Pr^1xPs_1 befassen.
Als Koeffizientenbereich legen wir den BestMassenring modulo 2 zugrunde.
Dann ist fur jede geschlossene Mannigfaltigkeit L der Homologiering
5R (L) in bekannter Weise erklârt : seine Elemente sind die Homologie-
klassen, die Addition ist die der Bettischen Gruppen, das Produkt ist der
Schnitt.

Wir betrachten zunâchst einen projektiven Raum Pk. Man weiB, da6
es fur jedes k, 0 ^ k ^ k. genau eine Homologieklasse gibt, die nicht
Null ist; sie wird durch eine /c-dimensionale projektive Ebene repràsen-
tiert; sie heiBe ÇK ; es wird also speziell £0 durch einen Punkt, Ci durch
eine Gerade, Ck-i durch eine (k — l)-dimensionale Ebene, £fc durch den

ganzen Raum Pk dargestellt. Fur jedes K<k ist ÇK der Schnitt von k —- k
Ebenen des Typus fk__1, also, wenn wir kurz Ck-i £ schreiben : 14)

dies gilt auch noch fur k k, indem wir unter f° das Eins-Element des

Ringes 5R(Pfc) verstehen. Dagegen ist ÇK 0 fur aile k> k.
Somit lâBt sich die Struktur des Ringes ^(Pn^i) folgendermaBen

beschreiben :

^(Pn^x) ist der Bing der Polynôme in einer Unbestimmten Ç mit Koeffi-
zienten aus dem BestMassenring mod. 2, wobei f die Belation

Cn 0 (3)

erfullt; mit anderen Worten: bezeichnet F den Ring aller Polynôme in
der Unbestimmten £ mit Koeffizienten mod. 2, so ist ^(P,^) der Rest-
klassenring von Pnach dem von Çn erzeugten Idéal (fn).

Fur die Dimensionszahlen ergibt sich

Dim. £v= (n — 1) — v v 0, 1, ...,n — 1

Daraus folgt weiter: Fur jedes d bildet f™-i-rf eine rf-dimensionale Ho-
mologiebasis ; und zwar sind die Basen {£^i-<*} und { Çd} zueinander dual15).

14) Obère Indizes sind ira folgenden immer Exponenten (nicht etwa Dimensionszahlen).

15) In einer &-dimensionalen Mannigfaltigkeit L heifit die (k — d)-dimensionale Homo-

logiebasis \z19...9zJ zu der d-dimensionalen Homologiebasis \zl9...,zq) dual, wenn

fur die Schnittzahlen gilt : {zi • z{) 1 (zh • z{) 0 fur
Nach dem Poincaré-Veblenschen Dualitàtssatz gibt es in jeder geschlossenen

Mannigfaltigkeit, gleichgïiltig ob orientierbar oder nicht, zu jeder Basis eine (und nur eine) duale,
vorausgesetzt, dafî der Ring mod. 2 als Koeffizientenbereich dient.

Man vergleiche Seifert-Threlfall, Lehrbuch der Topologie (Leipzig und Berlin
1934), 253, Satz III.
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Die Bestimmung des Ringes 9t(Pr_i X Ps_i), die jetzt vorgenommen
werden soll, beruht auf den folgenden beiden Sàtzen (E) und (F), die als

bekannt gelten durfen; U und V sind beliebige geschlossene Mannig-
faltigkeiten ; tinter einer ,,vollen" Bettischen Basis (mod. 2) einer Mannig-
faltigkeit wird eine Basis der ,vollen" Bettischen Gruppe verstanden,
d. h. der direkten Summe der Bettischen Gruppen aller Dimensionen.

(E) Durchlaufen £t und r]j voile Bettische Basen von U bzw. V, so durch-

lâuft ijt x rjj eine voile Bettische Basis von U X F. 16)

(F) Sind |, f ' bzw. rj, r\! Elemente von $l(U) bzw. 5R(F), so gilt fur die
Produkte (mod. 2) in U X V :

(I x y)-tf' xrir) è-è' x n-n'- 17)

Es sei nun U Pr_1, V P^ ; wie oben festgestellt wurde, werden
voile Basen in Pr_x und P8_x von Potenzen

f0,*,...,**-1 bzw. rf>9 v\>...,rf-x

gebildet, wobei | durch eine (r — 2)-dimensionale Ebene in Pr-1 und rj
durch eine (s — 2)-dimensionale Ebene in Pg-1 repràsentiert wird.
Setzen wir

so ist nach (F)
S*Xtf X*.Ya,

und dièse Produkte mit

O^e^r-1, 0 ^ a £s - 1 (4)

bilden nach (E) eine voile Bettische Basis in Pr_x x P«_i. Das Ergebnis
ist:

5R(Pr-i X Pg-i) ist der Ring der Polynôme in zwei Unbestimmten

X, Y mit Koeffizienten aus dem Restklassenring mod. 2, wobei X und Y
die Belatiorœn x, 0 F. 0 (5)

erfilllen; mit anderen Worten: bezeichnet A den Ring aller Polynôme in
den Unbestimmten X, Y mit Koeffizienten mod. 2, so ist SRfPy^ x Ps_i)
der Restklassenring von A nach dem von Xr und Y8 erzeugten Idéal

16) Einen Beweis erhâlt man z. B., indem man den § 3 des Kap. VII in dem Bûche*) von
Alexandroff-Hopf dadurch abândert (und wesentlich vereinfacht), dafi man den dort
zugrunde gelegten ganzzahligen Koeffizientenbereich durch den Ring mod. 2 ersetzt.

17) S. Lefschetz, Topology (New York 1930), 238, Formel (21) — aber, da wir mod. 2

arbeiten, ohne Berucksichtigung von Vorzeichen.
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Fur die Dimensionszahlen ergibt sich durch eine leichte Abzàhlung

Dim. X<? • T° (r + s — 2) - (g + a) (6)

Daraus folgt weiter: Fur jedes d bilden die Produkte XQ * Ya mit
g+a=r+s— 2 — d, wobei g und a auBerdem durch (4) einge-
schrânkt sind, eine d-dimensionale Basis ; setzen wir r -\- s — 2 — d n
und g — n — a, so ist (4) gleichbedeutend mit

0^n — a<r, 0g(x<s,
also mit

0 ^ a Un n — r <o <s (7)

Daher kônnen wir eine d-dimensionale Basis auch folgendermaBen
charakterisieren, wobei d -\- n r + s — 2 ist : sie besteht aus den-

jenigen Produkten Xr^~°'• Ya, fur welche a aile Werte durchlâuft, die
(7) genligen.

Insbesondere bilden

X'-1. Y82 Xr~2 • F8"1
bzw.

Y X

Basen der Dimensionen 1 bzw. r + s — 2, und zwar ergibt sich aus den

Multiplikationsregeln, daB dièse Basen zueinander dual sind. c)

10. Topologische Deutung der Bedingung S (r, s; n). Wir behaupten:
Die Bedingung © (r, s ; n) ist gleichbedeutend mit dem Bestehen der Relation

(X + Yp 0 (8)
im i?if2#e 9t(Pr_-! X Ps_x) d)

Beweis. Nach dem binomischen Satz und nach (5) ist

w-*-r* (9)

wobei die Summe iiber aile Je zu erstrecken ist, die die Bedingungen

O^k^n und n — r <k<8 (10)
erfûUen.

c) Ist 8=1, so besteht die erste dieser Basen nur ans X»*—2 • F*—1, die zweite nur
aus X; analog fur r 1 ; man vergleiehe Fufînote b).

d) Ist « 1 oder r 1, so lautet (8) einfach: Xn 0 bzw. Fn 0.
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Gilt nun 23 (r, s; n), so ist daher jeder Koeffizient auf dër rechten Seite

von (9) das Null-Element des Koeffizîentenringes — des Restklassen-
ringes mod. 2 —, und folglich gilt auch (8).

Es gelte andererseits (8); dann verschwindet die rechte Seite von (9);
die dort auftretenden Xr^k • Yk bilden aber nach Nr. 9 eine Basis der
Dimension r + s — 2 —• n und sind daher gewiB linear unabhângig, und
daher ist jeder Koeffizient das Null-Element des Koeffizientenringes ; es

sind also aile diejenigen I ^ I gerade, fur welche (10) gilt ; da aber die

ln\ ^ '
I I fur welche die erste Bedingung (10) niait gilt, ohnehin Null sind,

ist bereits die Gultigkeit der zweiten Bedingung (10) fur die Geradheit

von I
^

I hinreichend. Folglich ist 33 (r, s\ n) erflillt.

Aus der damit bewiesenen Âquivalenz der Bedingungen 33 (r, s ; n)
und (8) ergibt sich, da6 der Satz I* gleichbedeutend mit dem folgenden
ist:

Satz I**. Voraussetzung : Es existiert eine ungerade Abbildung von
Pr-i X Ps_i in Pw_i. Behauptung; Im Ringe 5R(Pr_! X P,_i) gilt (8).

11. Der Umkehrungs-Homomorphismus. Ich berichte hier iiber die
Méthode, die zum Beweis des Satzes I** fûhren wird. L und A seien

geschlossene Mannigfaltigkeiten. Ihre Dimensionszahlen seien l bzw. A.

Der Koeffizientenbereich sei weiterhin der Restklassenring mod. 2. Die
Homologieringe werden mit 3i(L) und 3l(A) bezeichnet. 18)

Jede Abbildung / von L in A bewirkt bekanntlich eine Abbildung von
51 (L) in 91 (A); dièse Ringabbildung nennen wir ebenfalls /; sie ist
dimensionstreu ; sie ist ein additiver, aber im allgemeinen kein multipli-
kativer Homomorphismus.

Die Elemente von %(L) und S (A), die einfach gezâhlten Punkten ent-
sprechen, seien mit p bzw. n bezeichnet ; dann ist immer

w- (H)

Es gilt nun der folgende Satz : 18)

Zu jeder Abbildung f von L in A gibt es eine Abbildung q> von $i(A) in
9i(L) mit folgenden Eigenschaften :

18) Man vergleiche die unter 3) zitierten Arbeiten; die von mir a. a. O. gemachte
Voraussetzung, daB die beiden Mannigfaltigkeiten gleiche Dimension haben, ist unnôtig. Da
wir den Koeffizientenbereich mod. 2 zugrunde legen, brauchen wir nichts ùber die Orien-
tierbarkeit der Mannigfaltigkeiten vorauszusetzen.
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(A) <p ist ein additiver und multiplikativer Homomorphismus ;
(B) <p ist mit f durch die Funktionalgleichung

(12)

verknilpft; hierin sind z und f beliebige Elemente von 5R(£) bzw. 31 (A).

(p heiBt der ,,Umkehrungs-Homomorphismus" von / ; da8 er durch / in
eindeutiger Weise bestimmt ist, ergibt sich aus dem spateren Satz (D).

Jetzt zeigen wir zunachst :

(C) Ist f homogen-dimensional19) von der Dimension o, so ist auch
<p(Ç) homogen-dimensional; und zwar ist

Dim. <p(C) a + l — X

Beweis. 20) Ist ç?(£) 0, so ist nichts zu beweisen21); es sei <p(Ç) ^ 0 ;

dann laBt sich ç?(f) in der Form

<p(Ç) ZQl+ZQ2+-.. + ZQk (13)

schreiben, wobei ZÇt emen homogen ^rdimensionales, von 0 verschiedenes
Elément von $l(L) bezeichnet und die gt paarweise voneinander ver-
schieden sind. Aus dem Dualitatssatz 15) folgt, da6 es ein homogen
(l — pj-dimensionales Elément zl_Qi gibt, fur welches ZQi • zt__Qi p
ist ; dann ist h

ubt man hierauf / aus, so folgt nach (12) und (11)

C-f(zi-Ql) =n + Zf{ZQt. z^Ql) (14)

Hierin ist die linke Seite homogen (a + l — qx — A)-dimensional; das-
selbe gilt daher fur die rechte Seite; hier aber ist n homogen 0-dimen-
sional und ^0, das Glied f(ZQi-zl_Qi) dagegen homogen-dimensional
von der Dimension gt — qx ^ 022); das ist nur môglich, wenn (14)
einfach

19) Alexandroff Hopf, wie «), 169.

20) Der Satz C ergibt sich auch unmittelbar aus jeder emzelnen der verschiedenen
Definitionen von cp;z) ich will hier aber auf dièse Definitionen nicht eingehen, sondern

zejgen, daô aile Eigenschaften von cp aus den Eigenschaften (A) und (B) folgen.
21) Der Null-Zyklus ist homogen-dimensional von jeder Dimension.
22) Zyklen negativer Dimension sind immer gleich 0 zu setzen.
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lautet und a + l — gt — A 0, also q± a + l — A ist. Da gx aber
nicht vor den anderen q{ ausgezeichnet ist, folgt hieraus weiter, da8 die
rechte Seite von (13) nur aus einem Glied besteht. Damit ist (C) bewiesen.

Es seien jetzt {^} und {Çk} Basen in L bzw. A von derselben Dimension
d; ihre dualen Basen 15) {z'h}, {£^} sind von den Dimensionen l — d bzw.
A — d; die Dualitàt bedeutet das Bestehen der Relationen

p fur h i
0 fur h ^ i

n fur j k
0 fur j^k ' (15)

/ bewirkt eine Substitution
k ; (16)

da <p(Çj) nach (C) die Dimension l — d hat, bewirkt ç? eine Substitution

Es gilt nun :

(D) Die (p-Substitution (17) is£ die Transponierte der f-Substitution (16),
dasheipt

ocH au (18)

lîeweis. Aus (17), (15), (11) folgt

f(v(fy ' zi) Z<*ihf(*'h • ^) ocjtfip) ocHn ;

aus (16), (15) folgt

aus (12), mit C C'j und z zi} folgt daher (18).

12. Beweis des Satzes J*\ F sei eine ungerade Abbildung von Pr_x X P8_t
in Pn_x. Die Bedingungen (2a) und (2b) aus Nr. 8 lauten in den Bezeich-

nungen aus Nr. 9: 14)

f^-1 x *f-2) - cn~2

F(e~2 x t^*-1) Cn~2

oder

Y8-1) f71"2
*

Da, wie in Nr. 9 festgestellt wurde, die Basis {Y, X} dual zur Basis

{X*-1- Ys-2,Xr~2' Y8-1} und die Basis {C} dual zur Basis {C1"2} ist,
folgt nach Nr. 11 (D) aus (19) fur den Umkehrungs-Homomorphismus 0
von F :

0 (C) X + F (20)
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Da 0 ein multiplikativer Homomorphismus ist, folgt hieraus

(X + Yy 0
und damit folgt aus

C* 0 (3)
die Gultigkeit der Behauptung

(X + F)» 0 e) (8)

A N H A N G I
Système von Richtungsfeldern in den projektiven Rauineii 23)

Mit Pk wird der &-dimensionale réelle projektive Raum bezeichnet.

Satz V. Auf einer (r — l)-dimensionalen Ebene Pr_x des Baumes Pn_!
seien s — 1 stetige Felder von Bichtungen des Pw-1 angebracht, welche in
jedem Punkte von Pr-1 linear unabhângig voneinander sind. Dann ist die
Bedingung 23 (r, s; n) erfUllt.

Beweis. Im euklidischen Raum Rn mit den Koordinaten (xx, xn)
sei 8n_1 die Sphàre mit dem Mittelpunkt o (0, 0) und dem Radius 1 ;

wir fassen sie als zweiblàttrige Ûberlagerung von Pn_x auf, derart, da8
je zwei antipodische Punkte von /Sn-1 einem Punkte von Pn_x ent-
sprechen ; der Ebene Pr_1 entspricht eine GroBkugel Sr__x von Sn_x ; wir
durfen annehmen, da6 $,._! der Schnitt von Sn_1 mit der (xt, xr)~
Koordinatenebene des Rn ist.

Jeder Richtung des Pn_1 entsprechen zwei Tangentialrichtungen der
Sn_ly die durch Spiegelung am Mittelpunkt o ineinander iibergehen;
einem Richtungsfeld auf Pr_x entspricht daher ein Feld von Tangenten
der /Sn-1, das auf 8r__x erklârt und symmetrisch in bezug auf o ist ; reprà-
sentieren wir dièse Tangentialrichtungen etwa durch Vektoren der
Lange 1, so sind deren Komponenten ungerade Funktionen von xx, xr.

Die Vektoren qt, g^, welche auf dièse Weise den auf Pr_t gege-
benen Richtungen entsprechen, sind an jeder Stelle linear unabhângig;
da sie tangential an $„_! sind, so ist auch das System g2, g^, x,
welches durch Hinzufugung des Normalvektors 3e (xt, xr, 0, 0)

e) Fur 5=1 hat man den Beweis folgendermafîen zu modifizieren : Nur die zweite
Gleichung (19) ist sinnvoll, (20) lautet: cp{Ç) X, und daraus folgt Xn — 0; analog fur
r 1. Man vergleiche die Fufinoten a), b), c), d).

28) Die Sâtze dièses Anhanges stammen von Stiefel, a. a. O.a).
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der $,._! entsteht, linear unabhàngig; folglich hat, wenn wir die v-te
Komponente von Qa mit gav bezeichnen, die Matrix

9n 9m

98-1, 1 • • *9s-l, n

xx... xr 0.. .0

durchweg, d. h. fur aile (x1, xr) mit Ux2q 1, den Rang s. Daher ist
nach Satz II (Nr. 5) die Bedingung 33 (r, s; n) erfiillt.

Ist r n, d. h. sind die Richtungsfelder im ganzen Raum Pn_x erklàrt
und stetig, so ist demnach S {n, s; n) erfûllt; dièse Bedingung ist (Nr. 2)

gleichbedeutend mit S (s, n ; n) ; dièse letztere Bedingung ist in Nr. 3 (c)
untersucht worden; auf Grund des dortigen Ergebnisses gilt, wenn wir
s — 1 m, n — 1 h setzen :

Satz Vc. Die maximale Anzahl m von Richtungsfeldern, welche im
ganzen Baume Pk stetig und in jedem Punkt voneinander linear unabhàngig
sind, ist ^ 2A — 1, wobei 2A die grôfite Potenz von 2 ist, welche ink+l auf-
geht.

Eine A-dimensionale Mannigfaltigkeit ist ,,parallelisierbar", wenn in
ihr k stetige Richtungsfelder existieren, welche in jedem Punkt
voneinander linear unabhàngig sind24). Daher ist im Satz Vc enthalten:

Satz Ve. Der k-dimensionale projektive Raum Pk ist hôchstens dann
parallelisierbar, wenn k-\-l eine Potenz von 2 ist.

Die einzigen projektiven Ràume, deren Parallelisierbarkeit feststeht,
sind diejenigen der Dimensionen 1, 3, 7 25)

A N H A N G II
Definite Système symmetrischer Bilinearformen

Die in Nr. 1 betrachteten Funktionen fv seien jetzt symmetrische
Bilinearformen, es sei also

q 1, ...,r ; or 1, ...,r
24) Stiefel, a. a. O.1).
26) Fiir dièse Dimensionszahlen k erhâlt man k stetige, durchweg linear unabhàngige

Richtungsfelder im P^ mit Hilfe der Matrizen (gav die am SchluÛ von Nr. 5 angegeben
sind.
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Die kleinste Zahl n, fur welche es ein définîtes System von n solchen
Formen gibt, heiBe N(r). Ofïenbar ist N(r) ^ n* (r, r), wobei w* (r, s)
die in Nr. 1 definierte Zahl ist; nach Satz Id ist daher

N(r) ^ 2« (1)

wobei q durch 2^~1 < r 5j 2^ bestimmt ist. Es handelt sich jetzt um die
Frage, ob sich dièse untere Schranke von N(r) vergrôBern làBt. Das ein-
zige mir bekannte Résultat in dieser Richtung lautet :

N(r) ^r + 2 fur r > 2 ; (2)

(das System (7) in Nr. 1 zeigt, daB N(2) 2 ist).
Die Abschâtzung (2) ist fur die meisten r schlechter als (1); nur fur

r — 2e — i und r 2e ist die durch (2) gegebene Schranke um 1 bzw.
um 2 besser als die durch (1) gegebene. Immerhin enthàlt (2) folgendes
Korollar, das man nicht aus (1) entnehmen kann: In der (trivialen)
Ungleichung N(r) ^ r gilt das Gleichheitszeichen nur fur r 2 (und
r 1). In der Terminologie aus Nr. 7 bedeutet dies: Eine kommutative

Divisions-Algebra iiber dem Kôrper der reellen Zahlen hat nur zwei
Einheiten — woraus leicht folgt, daB sie der Kôrper der komplexen
Zahlen ist; fur die Divisions-Algebren tiber dem Kôrper der reellen
Zahlen ist also das assoziative Gesetz eine Folge des kommutativen.

Den Beweis von (2) habe ich an anderer Stelle dargestellt26) ; in ihm
wird die Behauptung (2) auf den folgenden topologischen Satz zuriick-
gefuhrt : Fur k > 1 besitzt der projektive Raum Pk kein topologisches
Modell im euklidischen Raum Bkhl.

(Eingegangen den 7. Dezember 1940.)

a6) H.Hopf, Système symmetrischer Bilinearformen und euklidische
Modelle der projektiven Râume, Vierteljahrsschrift der Naturforsch. Gesellschaft
Zurich LXXXV (1940) (Festschrift Rudolf Fueter), 165—177.
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