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Ein topologischer Beitrag zur reellen Algebra

Von HEenz Hopr, Ziirich

E. Stiefel hat seine allgemeine Theorie der Systeme von Richtungs-
feldern in geschlossenen Mannigfaltigkeiten!) speziell auf die projektiven
Réume angewandt und ist dadurch zu Ergebnissen gelangt, die nicht nur
vom geometrischen Gesichtspunkt aus interessant sind, sondern die
auch neue und merkwiirdige Satze der reellen Algebra enthalten?). Im
folgenden leite ich dieselben algebraischen Sitze, sowie etwas allge-
meinere, mit einer ebenfalls topologischen, jedoch von der Stiefelschen
verschiedenen Methode her, indem ich den Hauptsatz, der die iibrigen
Satze umfalt, durch Anwendung der Theorie des Umkehrungs-Homo-
mor})hismus der Abbildungen von Mannigfaltigkeiten3) beweise.

Dieser Beweis bildet den Inhalt des § 2. Im § 1 wird der Hauptsatz
{Satz I) formuliert, und es werden Folgerungen aus ihm gezogen; topo-
logische Betrachtungen kommen im § 1 nicht vor.

Der Satz I handelt von stetigen Funktionen; er wird aber zu einem
algebraischen Satz, sobald man diese Funktionen zu Polynomen (in
mehreren Veranderlichen) spezialisiert; und dann wieder werden die
Ergebnisse besonders einfach und besonders interessant, wenn die
Polynome Bilinearformen sind. Nachdem diese Satze, die algebraischen
Charakter haben — sie handeln von der Existenz von Nullstellen ge-
wisser Gleichungssysteme —, auf topologischem Wege entdeckt worden
waren, entstand die Aufgabe, auch Beweise zu finden, die man mit Recht
als ,,algebraisch‘‘ bezeichnen diirfte. Diese Aufgabe — die nicht nur mir,
sondern auch anderen Mathematikern als schwierig erschien — ist von
F. Behrend gelost worden?).

Herr Behrend hat mich auf die Frage aufmerksam gemacht, welche

1) E. Stiefel, Richtungsfelder und Fernparallelismus in n-dimensionalen
Mannigfaltigkeiten, Comment. Math. Helvet. 8 (1936), 305—353.

2) A. a. 0., 349, sowie besonders: E. Stiefel, Uber Richtungsfelder in den pro-
jektiven Rdumen und einen Satz aus der reellen Algebra, Comment. Math.
Helvet. 18 (1941), 201—218.

3) H. Hopf, Zur Algebra der Abbildungen von Mannigfaltigkeiten, Crelles
Journ. 163 (1930), 71-—88. — Neue Begriindung und Verallgemeinerung: H. Freudenthal,
Zum Hopfschen Umkehrhomomorphismus, Ann. of Math. 38 (1937), 847—853;
ferner: A.Komatu, Uber die Ringdualitat eines Kompaktums, Téhoku Math
Journ. 48 (1937), 414—420; H. Whitney, On Products in a complex, Ann. of
Math. 89 (1938), 397—432 (Theorem 6).

4) F. Behrend, Uber Systeme reeller algebraischer Gleichungen, Compos.
Math. 7 (1939), 1—19.
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Verscharfung unser Hauptsatz gestatte, wenn man die in ihm auftreten-
den Funktionen zu symmetrischen Bilinearformen spezialisiert. Dieses
Problem scheint sich sowohl der Stiefelschen Methode der Richtungs-
felder als auch meiner Methode des Umkehrungs-Homomorphismus zu
entziehen. Aber mit einer dritten topologischen Methode habe ich einen —
allerdings nur schwachen — Fortschritt in der gewiinschten Richtung
erzielt. Hieriiber berichte ich kurz im ,,Anhang II‘‘; die ausfiihrliche
Darstellung ist an anderer Stelle erschienen.

Im ,,Anhang I*‘ wird gezeigt, da} nicht nur die algebraischen, sondern
auch gewisse der geometrischen Sitze von Stiefel — nidmlich notwendige
Bedingungen fiir die Existenz von linear unabhangigen Systemen stetiger
Richtungsfelder in den projektiven Raumen — aus dem Satz I abgeleitet
werden konnen.

§ 1. Formulierung des Hauptsatzes ; algebraische Folgerungen v

1. Definite Systeme ungerader Funktionen in zwei Variablenreithen. Es
sei f eine reelle Funktion der r + s reellen Veranderlichen

Ty eoes Xp 3 Y1y -5 Ysy r=1,821; (1)

und zwar sei sie erklart und stetig fiir
r 8
Yat=1, Yy,=1; (2)
o=1 o=1

sie erfiille die Funktionalgleichungen

f(—'xl’“" — Xy Yrseees ys)zf(xla“'axr; —yh"':—ys) (3)
= — (g, cees Ty} Y1y eees Ys) -

Dann sagen wir kurz: ,,f ist eine ungerade Funktion der Variablen-
reihen (1).“

Beispiele sind diejenigen reellen algebraischen Formen in den Variablen
(1), welche homogen in den z, von einer ungeraden Dimension sowie
homogen in den y, von einer ungeraden Dimension sind ; die einfachsten
Fille sind die Bilinearformen in den beiden Variablenreihen.

Ein System

fioeooifa (4)

ungerader Funktionen der Variablen (1) soll ,,definit** heilen, wenn das

Gleichungssystem
) f1=O,...,f,n=0 (40)
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in dem durch (2) gegebenen Bereich der Variablen (1) keine Losung

besitzt.
Besteht das System (4) aus Formen der oben besprochenen Art, so
sind die Gleichungen (4,) immer erfiillt, wenn

entweder z,=-=2,=0 oder y, ==y, =0 (5)

ist; infolge der Homogenitat der f, ist die Definitheit des Systems (4)
gleichbedeutend damit, daB diese trivialen Losungen (5) von (4,) die ein-
zigen sind (die Beschrankung auf den Bereich (2) ist also nicht not-
wendig).

Ein Beispiel eines definiten Systems bei beliebigen r und s wird durch

die Produkte
ZoYq oe=1,...,r, c=1,...,8

geliefert; hier ist » = rs. Ein weiteres Beispiel, und zwar mit
n=r-+s8—1
(also mit » < 7s fiir r > 1, s > 1), ist das folgende:

fyzzxeya’ Q+O’='V+1,
l=sp=r, l1so=s, v=1,...,r4+s8—1.

(6)

Die Definitheit dieses Systems, also die Tatsache, daB die zugehorigen
Gleichungen (4,) nur die trivialen Losungen (5) besitzen, bestitigt man
leicht durch vollstindige Induktion in bezug auf die Anzahl r + s aller
Variablen.

Fiir gewisse r und s gibt es aber auch definite Systeme, die aus weniger
als r 4+ s — 1 ungeraden Funktionen in den Variablen (1) bestehen;
z. B. bilden fiir » = s = 2 bereits die beiden Funktionen

fr= 2y, — %29,

(7)
fo = 1Yy + Xy
ein definites System.

Daher entsteht die Frage: ,,Welches ist, bei gegebenen r und s, die
kleinste Zahl n, fiir welche es ein definites System von # ungeraden
Funktionen in den Variablenreihen (1) gibt?* Diese Minimalzahl heifle
n* (r, 8). 5)

5) Ohne die Forderung, daB die Funktionen f, ungerade seien, ist die Frage un-
interessant; denn die eine Funktion f = X wz . )Zyg bildet immer ein definites System.
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Hat man fiir ein Paar r, s die Zahl n*(r, 8), oder auch nur eine untere
Schranke fiir n*(r, 8), bestimmt, so hat man damit einen Existenzsatz
fiir Losungen von Gleichungen gewonnen: denn aus n < n*(r, s) folgt,
dafl das Gleichungssystem (4,) eine Losung in dem Bereich (2) besitzt;
sind die f, Formen, so ist dies, wie schon betont, gleichbedeutend mit der
Existenz einer nicht-trivialen, d. h. von (5) verschiedenen, Losung.

2. Der Hauptsatz. Die Zahl n*(r, s) kann ich zwar im allgemeinen
nicht bestimmen; jedoch liefert der nachstehende Satz Beschrankungen
nach unten fiir n*. °?)

Satz I. Es gebe ein definites System von n ungeraden Funktionen in den
Variablenreihen x,, ..., x, und y,, ..., y,. Dann ist die folgende Bedingung
erfallt :

Alle: Binemiolboeffictonen ( ’;) il

n—r<k<s (8)
sind gerade. °°)

Diese Bedingung soll kurz mit B (7, $; n) bezeichnet werden. Aus der
Symmetrie-Eigenschaft
n \_(n
(x24)=(%)

der Binomialkoeffizienten folgt, daf}, wie zu erwarten, B (r, s; n) sym-
metrisch in r und s ist, daB also unter der Voraussetzung des Satzes I
auch alle (n) mit ,
k n—s<k<r (8
gerade sind.
Der Beweis des Satzes I wird im § 2 gefiihrt werden.

Eine erste Folgerung aus dem Satz I ergibt sich, wenn man bedenkt,
daB (73) = 1 ist; unter der Voraussetzung des Satzes I kann némlich

daher (8) nicht durch k = 0 befriedigt werden, es kann also nicht
n—r<0, sondern es mul » —r = 0, also » = r sein; und ebenso,
nach (8’) : n = s. Daher und infolge der Existenz des definiten Systems
(6) gilt

max. (r,8) < n*(r,8) =<r+s—1. (9)

ba) Interessante Beschrankungen von n* nach oben gibt Behrend, a. a. O.4), § 4.

5b) Fiir bilineare Formen fy von Stiefel, a. a. 0.3), fiir beliebige Formen ungerader Grade
von Behrend, a. a. 0.%), bewiesen.
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3. Spezialisierungen von r, 8, n.

(@) Im Falle s = 1 wird, wenn n = r ist, (8) durch kein % befriedigt;
das heiBit:

Satz Ia. Fiir s = 1 ist die Behauptung des Satzes I gleichbedeutend mit :
n=r.

Dieser Satz ist dquivalent mit dem nachstehenden Satz B, der eine
bekannte Konsequenz eines Satzes von Borsuk ist; in ihm sind die g,

Funktionen der einen Variablenreihe z,, ..., z,, welche fir Xz =1
stetig und ungerade sind.
Satz B. Wenn die Funktionen g,, ...,9, keine gemeinsame Nullstelle

haben, so ist n = r. ©)

Die Aquivalenz der beiden Satze ist leicht zu sehen : sind Funktionen
f, vorgelegt, welche die Voraussetzung von Ia erfiillen, so setze man in
ihnen die Variable y, = 1 und wende auf die dadurch entstehenden
Funktionen g, den Satz B an; sind Funktionen g, gegeben, die die Vor-
aussetzung des Satzes B erfiillen, so wende man Satz Ia auf die Funk-
tionen f, = y, - g, an.

Somit ist unser Satz I eine Verallgemeinerung des bekannten
Satzes B. ?)

(b) Wir stellen eine Bedingung auf, die hinreichend dafiir ist, daBl die
Zahl n* mit ihrer durch (9) gegebenen oberen Schranke zusammenfillt;
ob die Bedingung hierfiir auch notwendig ist, weill ich nicht.

Es sei n*(r, 8) <r + s — 1; dann gibt es — da man zu einem definiten
System immer beliebige Funktionen hinzufiigen kann, ohne die Definit-

heit zu zerstoren — gewiBl ein definites System mit n =r 4 s — 2;
also ist B (r, s;r -+ 8 — 2) erfiillt, das heilt: (T + ';c— 2) ist gerade

fir s — 2 <k <s, also fiir k =¢ — 1. Folglich:

Satz 1b. Ist der Binomialkoeffizient
r+8—2\ [(r+4+s8—2
§—1 '— r—1

ungerade, so ist n*(r,8) =r + 8 — 1.

$) Alexandroff-Hopf, Topologie I (Berlin 1935), 485, Satz VIII.

a) Da der Satz B bekannt ist, darf man im Beweis des Satzes I auf den Fall s = 1
(und ebenso auf den Fall r = 1) verzichten. Wir werden dies nicht tun, miissen aber
einige Male (FuBlnoten b), ¢), d), e) ) auf Modifikationen hinweisen, welche durch die beiden
genannten Fille bedingt sind. AusschlieBen wollen wir jedoch den ganz trivialen Fall
r = & = 1; in ihm lautet die Behauptung des Satzes I nur: n > 1.
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Die Voraussetzung des Satzes Ib ist z. B. erfiillt, wenn r ungerade
und 8 = 2 ist.

(c) Wir stellen eine Bedingung auf, die notwendig dafiir ist, daf3 die
Zahl n* mit ihrer durch (9) gegebenen wunteren Schranke zusammenfallt;
ob die Bedingung hierfiir auch hinreichend ist, ist fraglich.

Es gebe ein definites System mit % = s ; dann sind nach (8’) alle (Z)

gerade fiir 0 < k < r; das ist die Bedingung B (, #; »); um ihre Bedeu-
tung festzustellen, schreiben wir n in der Form

n=2 u, u ungerade , (10)

und betrachten die binomische Entwicklung von (1 ¢)*, wobei ¢ eine
Unbestimmte ist: N
(L4t = ((1 4 5?)*,

also modulo 2:

A+=0+) =124 ... i

hieraus ist ersichtlich: "
(21) %0 mod. 2 ;

unter der Bedingung B (7, n; n) ist daher nicht 0 < 2} < r, also ist

r <22, (11)
Folglich:

Satz Ic. Wenn es ein definites System mit n = s gibt — mit anderen
Worten : wenn n*(r, 8) = 8 ist — , 8o ist r durch (11) beschrdnkt, wobes 22
durch (10) bestimmdt ist.

(@) Es sei r =s. Die Bedingung B (r, r; n) lautet: ™) ist gerade
gung A g

fir n —r <k <r. Um diese Bedingung zu untersuchen, setzen wir

n=2%4+m, 0=m<2,
und behaupten:

(Z)s,_eo mod. 2 . (12)

Fir m = 0 ist dies trivial; es sei m > 0; dann betrachten wir wieder
(1 + t)» modulo 2:

A+r=004+* A+om=0+¢*) -1+ .- +tm) =

=14 ftm o in
es gilt also (12). '
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Unter der Bedingung B (r, r; n) ist daher nicht n» — r < m < r, also
nicht gleichzeitig » >n — m und r > m, also, da n — m = 2* > m ist,
jedenfalls nicht » > 2¢; es ist also 2# = r. Wenn

201 < r < 20 (13)
ist, so ist also 2¢ = 2¢, und folglich » = 2¢. Somit gilt

Satz Id. Ein definites System stetiger ungerader Funktionen in zweimal
r Variablen x,, ..., x, und y,, ..., y, besteht aus wenigstens 2¢ Funktionen,
wobei o durch (13) bestimmt vst.

(e) In jedem der Satze Ic und Id ist enthalten:

Satz Ie. Ein definites System von n stetigen ungeraden Funktionen der
zweimal n Variablen x,, ..., x, und y,, ..., y, 18t hochstens dann moglich,
wenn n eine Potenz von 2 ist.

Ein Beispiel hierzu mit n = 2 ist das System (7); iiber weitere Bei-
spiele zum Satz Ie sowie zum Satz Ic wird in der nichsten Nummer
etwas gesagt werden.

4. Der Satz von Hurwitz-Radon. Ein System (4) von Bilinearformen
fv——“za’qavxgya , v=1,...,n, (14)
0,0

in den Variablen (1) ist gewil dann definit, wenn die Gleichung
2f = Xa% - Xy, (15)

(als Identitdt in den x, und y,) erfiillt ist. Fiir diesen Spezialfall und
unter der weiteren Voraussetzung
$=mn

ist der maximale Wert 7*(n) von r, der bei gegebenem n moglich ist,
durch Hurwitz und durch Radon bestimmt worden?):

Man stelle n in der Form

n=16%-28.qu, 0<B<3, u ungerade,

dar; dann ist
r*(n) = 28 + 8« (16)

") A. Hurwitz, Uber die Komposition der quadratischen Formen, Math.
Ann. 88 (1923), 1—25 (Math. Werke, Bd. II, 641—666). — J. Radon, Lineare Scharen
orthogonaler Matrizen, Abh. math. Sem. Hamburg 1 (1922), 1—14. — Die obige
Formulierung stammt von Radon.
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Fiir diejenigen 7, die nicht durch 16 teilbar sind, in denen also & = 0
ist, ist derjenige Teil dieses Satzes, welcher besagt, dal der Wert (16)
durch kein 7 iibertroffen werden kann, in unserem Satz Ic¢ enthalten.
Der andere Teil des Hurwitz-Radonschen Satzes, durch welchen die
Existenz von Losungen (14) der Gleichung (15) mit dem durch (16)
gegebenen Wert r = r* — (und mit s = n) — festgestellt wird, zeigt,
daB die Schranke (11) in unserem Satz I ¢ wenigstens fiir diejenigen » nicht
verbessert werden kann, die == 0 mod. 16 sind.

Fir r = ¢ = n geht der obige Satz in den beriihmten Satz von
Hurwitz iiber®): ‘

Identititen (15) fir Bilinearformen (14) mit r = s = n existieren nur fir
n=1,2,4,8.

Zu unserem Satz Ie gibt es also fiir n = 22 mit 4 > 3 kein Beispiel vom
Typus (14), (15); es sind fiir diese » iiberhaupt keine definiten Systeme
von n ungeraden Funktionen in zweimal n» Variablen bekannt. °)

b. Matrizen ungerader Funktionen einer Variablenrethe. Unter einer
ungeraden Funktion der Variablen

Bis cony By (1,)

soll immer eine solche reelle Funktion g dieser Variablen verstanden
werden, welche fiir ,

P xze =1 (2,)
erklart und stetig ist und die Funktionalgleichung

g(— xla-“:_wr)=—“g(xla"'axr) (3.0)

erfiillt. Wir betrachten eine Matrix, die aus derartigen ungeraden Funk-
tionen g, , besteht:

8) A. Hurwitz, Uber die Komposition der quadratischen Formen von
beliebig vielen Variablen, Nachr. Ges. d. Wiss. Gottingen 1898, 309—316 (Math.
Werke, Bd. IT, 565—571).

%) Ubrigens besteht ein prinzipieller Unterschied zwischen den Hurwitz-Radonschen
und unseren Sitzen: jene gelten, wie aus den beiden Arbeiten von Hurwitz hervorgeht,
nicht nur fir reelle, sondern auch fiir komplexe Bilinearformen, allgemeiner sogar fiir
solche, deren Koeffizienten einem beliebigen Korper, dessen Charakteristik =42 ist,
angehoren.
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Satz I1I. Dafir, daf die Matriz G durchweg den Rang s hat, ist die
Bedingung B (r, s; n) notwendig.

Denn wenn der Rang durchweg s ist, so bilden die linearen Ver-

bindungen
L

@y, 0@ 5 Yseo s ¥) =2 Yoy , v=1,...,0,

o=1

ein definites System ungerader Funktionen im Sinne von Nr. 1.

Besonders naheliegend ist die Betrachtung quadratischer Matrizen @,
also solcher, fiir welche s = n ist; fiir sie ergibt sich aus Satz I¢, analog
wie sich Satz IT aus Satz I ergab:

Satz IIc. Eine n-reihige quadratische Matrix

deren Elemente ungerade Funktionen in den r Variablen (1,) sind, kann
hochstens dann durchweq nicht-singulir sein, wenn die Anzahl r der Varia-
blen nicht grofer ist als die grofite Potenz von 2, die in n aufgeht.

Hierin ist enthalten:

Satz I1e. Die vm Satz I1c genannte Matrix G kann, falls iiberdies r = n
i1st, hochstens dann durchweg nicht-singuldr sein, wemn n eine Potenz
von 2 wst.

Beispiele derartiger nicht-singularer Matrizen mit r = n erhalt man
fir n =1, 2, 4, 8, indem man

Jov = %‘ GoovTe
setzt, wobei die a,,, die Koeffizienten derjenigen Bilinearformen (14)

sind, welche die Identitaten (15) — mit »r = ¢ = » — erfiillen?); Bei-
spiele mit groBeren n sind nicht bekannt.

6. 1Y) Lineare Scharen quadratischer Matrizen aus reellen Zahlen. Wir
machen eine Anwendung des Satzes IIc. Mit 4, sollen n-reihige quadra-

10) Auf der vorletzten Seite der Arbeit®) von Hurwitz sind diese Matrizen angegeben.

11) Die Satze der Nummern 6 und 7 folgen aus dem Spezialfall des Satzes I, in dem die
fv bilineare Formen sind ; sie ergeben sich daher auch aus den in der Einleitung genannten
Arbeiten von Stiefel und von Behrend; insbesondere liefert die Arbeit von Behrend
algebraische Beweise fiir diese Satze.

227



tische Matrizen reeller Zahlen bezeichnet werden; bei gegebenen
A4,,..., 4, bilden die Matrizen

4, + - + %4, (17)

eine ,,lineare Schar‘ von Matrizen, welche von den Parametern z,,...,z,
abhéangt. Die Schar soll ,,durchweg nicht-singular‘ heilen, wenn nur
diejenige Matrix (17) singuldr ist, welche zu den Parametern (0, ..., 0)
gehort.

Satz I111c. Die Anzahl r der Parameter einer linearen, durchweg nicht-
singuliren Schar n-reihiger quadratischer reeller Matrizen ist hichstens
gleich der gropten Potenz von 2, die in n aufgeht.

Denn ist 4,= (a,,,), so hat die Matrix (17) die Elemente
Jov (T1, ..., 2,) = Zaeavxg >
e

sie sind ungerade Funktionen in den z,; daher folgt Satz IIllc aus
Satz IIc.

Korollar : Ist n = 2% - u, u ungerade, so gibt es in jeder Schar

4,4 - + %)\Ag/\

esne Matrix mit (2, ..., x,)) # (0, ..., 0), die einen reellen Higenwert
bestitzt.

Dies erfolgt daraus, dafl nach Satz IIIc die lineare Schar, die von den
Matrizen 4,,..., 4, und der Einheitsmatrix E erzeugt wird, nicht
durchweg nicht-singulér sein kann.

7. 11) Nicht-assoziative Divisions-Algebren iiber dem Korper der reellen
Zahlen. Von den ,,Algebren‘‘ oder ,,hyperkomplexen Systemen‘, die wir
hier betrachten, soll nicht verlangt werden, daf} in ihnen das assoziative
Gesetz der Multiplikation gelte. Dagegen beschrianken wir uns auf
,,Divisions-Algebren‘, d.h. Systeme ohne Nullteiler. Es handle sich
immer um Systeme iiber dem Korper der reellen Zahlen. Die Anzahl der
Einheiten sei n. Man weill, daBl es nur drei Divisions-Algebren gibt, in
denen das assoziative Gesetz gilt: die reellen Zahlen, die komplexen
Zahlen, die Quaternionen; fiir sie ist n = 1, 2 bzw. 4. Ferner hat man
eine nicht-assoziative Divisions-Algebra mit » = 8 studiert: die Cay-
leyschen Zahlen2?). Es ist aber nicht bekannt, ob es auch fiir andere
Werte von n als 1, 2, 4, 8 Divisions-Algebren gibt.

12) Man vergleiche z. B.: L. E. Dickson, Algebren und ihre Zahlentheorie
(Zurich 1927), § 133.
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Satz IV. Die Anzahl n der Einheiten einer Divisions-Algebra iiber dem
Korper der reellen Zahlen ist notwendigerweise eine Potenz von 2.

Beweis. e, ..., ¢, seien die Einheiten einer Divisions-Algebra; ihre
Multiplikation sei durch

€e€; = 2 @0, ¢,
erklart. Fiir zwei GroBen ’
E=2%,0,, 1) =2 Y%
ist dann das Produkt durch‘2

Xy = 2(2 a(_mvxeya)ev
0,0

14

gegeben. Da@} es keine Nullteiler gibt, ist gleichbedeutend damit, dafl die
Bilinearformen

fvzza’eovquo , v=1,...,n,
e,o
ein definites System bilden. Daher folgt der Satz IV aus dem Satz Ie. 2#)

§ 2. Beweis des Hauptsatzes

8. Geometrische Deutung der definiten Systeme ungerader Funktionen.

Es sei ein definites System (4) vorgelegt, wie es in Nr. 1 erklart worden
ist. Da auch die Funktionen

pro_ |

- V{f

stetig und ungerade sind und ein definites System bilden, diirfen wir,
indem wir statt f, wieder f, schreiben, annehmen, daB3

n
Zh=1 (1)
ist. Mt
Durch , s n
=1, 2Yyi=1, Y2 =1
e=1 o=1 yel

sind Spharen S,_,;, S,_;, S,_; erklart, deren Dimensionszahlen durch die
Indizes angegeben sind. Infolge (1) wird durch

szfv(xl’ coey x»r;y]_’ MR yl)

12 a) Im Anhang II kommen wir noch einmal auf Algebren zuriick.
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jedem Punktepaar (z,y) mit = ¢8,_,, y ¢8S,_, ein Punkt 2z ¢S§,_; zu-
geordnet, es wird also eine Abbildung f des topologischen Produktes
S,_; X 8,_; in die Sphére 8,,_, erklart; diese Abbildung ist stetig; sie ist
ferner ,,ungerade‘‘, d. h. es ist

f(—x,y) =fx, —y) = — f(x,y),

wenn wir durch — z, ... die Antipoden der Punkte z, ... bezeichnen.

Durch Identifizierung je zweier antipodischer Punkte einer Sphére S,
entsteht ein k-dimensionaler projektiver Raum P,. Daher folgt aus der
Ungeradheit von f erstens, dafl durch f eine stetige Abbildung F des
topologischen Produktes P,_, X P, ; in den Raum P,_, bewirkt wird.
Zweitens: halt man einen Punkt z° von §,_, fest und 1aBt y einen halben
GroBkreis auf S,_; von einem Punkt %° in den Antipoden — y° durch-
laufen, so durchlauft der Bildpunkt f(x° y) auf S,_, einen Weg, der
ebenfalls einen Punkt z° mit dem Antipoden — 2° verbindet; da einem
Weg auf der Sphare §,, der zwei Antipoden verbindet, in P, ein geschlos-
sener Weg vom Homologietypus der projektiven Geraden entspricht, so
bedeutet die eben festgestellte Eigenschaft der ungeraden Abbildung f
fiir die Abbildung F':

F (Punkt x Gerade) ~ Gerade; (2a)

analog ergibt sich:

F (Gerade X Punkt) ~ Gerade; (2b)

dies sind Homologien, in denen ,,Punkt‘ und ,,Gerade‘‘ als Zyklen der
Dimensionen 0 bzw. 1 aufzufassen sind.

Eine Abbildung F des Produktes zweier projektiver Raume in einen
projektiven Raum, welche die Eigenschaften (2a) und (2b) besitzt, moge
kurz ,,ungerade‘‘ heien. Dann sehen wir: Ein definites System von n un-
geraden Funktionen der Variablen z,, ..., x, und y,, ..., y, bewirkt eine
ungerade Abbildung'®) des Produktes P,_, X P,_, in den Raum P, _,.

Damit ist der Satz I auf den folgenden zuriickgefiihrt :

Satz I*: Voraussetzung: Es existiert eine ungerade Abbildung!3) von
P, ,XP,_,in P,_,. Behauptung: Die Bedingung B (r,s;n) ist erfillt. ®)

13) Unter einer ,,Abbildung‘‘ einer Mannigfaltigkeit wird immer eine stetige Abbildung
verstanden.

b) Ist 8 = 1, so ist P,;_; ein Punkt, (2a) inhaltslos und die Ungeradheit von F also
allein durch (2b) charakterisiert; die Behauptung lautet: n > r. Man vergl. FuBinote. %)
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9. Die Ringe des projektiven Raumes und des Produktes zweier projek-
tewer Riaume. Fiir den Beweis des Satzes I* miissen wir uns zunéchst nidher
mit den Homologie-Eigenschaften von P, , und P,_, X P,_, befassen.
Als Koeffizientenbereich legen wir den Restklassenring modulo 2 zugrunde.
Dann ist fiir jede geschlossene Mannigfaltigkeit L der Homologiering
R (L) in bekannter Weise erkliart: seine Elemente sind die Homologie-
klassen, die Addition ist die der Bettischen Gruppen, das Produkt ist der
Schnitt.

Wir betrachten zunachst einen projektiven Raum P,. Man weil3, da@
es fir jedes x, 0 <« <k, genau eine Homologieklasse gibt, die nicht
Null ist; sie wird durch eine «-dimensionale projektive Ebene représen-
tiert; sie heille {, ; es wird also speziell £, durch einen Punkt, £, durch
eine Gerade, {,_, durch eine (¥ — 1)-dimensionale Ebene, ¢, durch den
ganzen Raum P, dargestellt. Fiir jedes « <k ist {, der Schnitt von k — «
Ebenen des Typus {,_,, also, wenn wir kurz {,_, = { schreiben: 14)

Le=1C"

dies gilt auch noch fiir k = k, indem wir unter {° das Eins-Element des
Ringes R(P,) verstehen. Dagegen ist {* = 0 fiir alle «k > k.

Somit lafit sich die Struktur des Ringes R(P,_,) folgendermaBen
beschreiben:

R(P,_,) st der Ring der Polynome in einer Unbestimmien ¢ mit Koeffi-
zienten aus dem Restklassenring mod. 2, wobet { die Relation

=0 (3)

erfullt; mit anderen Worten: bezeichnet I" den Ring aller Polynome in
der Unbestimmten { mit Koeffizienten mod. 2, so ist R(P,_,) der Rest-
klassenring von I' nach dem von {* erzeugten Ideal ({").

Fiir die Dimensionszahlen ergibt sich

Dim. =mnm—1)—9» , »=0,1,....,n—1.

Daraus folgt weiter: Fiir jedes d bildet {»~-¢ eine d-dimensionale Ho-
mologiebasis ; und zwar sind die Basen {{"~1~¢}und {{?} zueinander dual'%).

14) Obere Indizes sind im folgenden immer Ezponenten (nicht etwa Dimensionszahlen).

15) In einer k-dimensionalen Mannigfaltigkeit L heift die (k — d)-dimensionale Homo-

. S ' ] : . .
logiebasis {24,...,2, zu der d-dimensionalen Homologiebasis iz;, ..., z¢} dual, wenn

}
qg
fir die Schnittzahlen gilt: (z;z;) =1, (25 - 2;) = O fir b ==s.

Nach dem Poincaré-Veblenschen Dualititssatz gibt es in jeder geschlossenen Mannig-
faltigkeit, gleichgiiltig ob orientierbar oder nicht, zu jeder Basis eine (und nur eine) duale,
vorausgesetzt, daB der Ring mod. 2 als Koeffizientenbereich dient.

Man vergleiche Seifert- Threlfall, Lehrbuch der Topologie (Leipzig und Berlin
1934), 253, Satz III.
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Die Bestimmung des Ringes R(P,_; X P,_,), die jetzt vorgenommen
werden soll, beruht auf den folgenden beiden Satzen () und (F'), die als
bekannt gelten diirfen; U und V sind beliebige geschlossene Mannig-
faltigkeiten ; unter einer ,,vollen‘‘ Bettischen Basis (mod. 2) einer Mannig-
faltigkeit wird eine Basis der ,,vollen‘‘ Bettischen Gruppe verstanden,
d. h. der direkten Summe der Bettischen Gruppen aller Dimensionen.

(E) Durchlaufen &; und n; volle Bettische Basen von U bzw. V, so durch-
liuft &, x n; eine volle Bettische Basis von U X V. 18)

(F) Sind &, &' bzw. n, " Elemente von R(U) bzw. R(V), so gilt fiir die
Produkte (mod. 2) in U X V:

(ExXn) (8 xn)y=EE XxXn-n. 17

Es sei nun U = P,_,, V = P,_,; wie oben festgestellt wurde, werden
volle Basen in P,_, und P,_, von Potenzen

E &, ..., bzw. %7, ..., n%t

gebildet, wobei & durch eine (r — 2)-dimensionale Ebene in P,_; und 7
durch eine (s — 2)-dimensionale Ebene in P, , reprisentiert wird.

Setzen wir
Exn=X, &xn=7Y,

so ist nach (F)
Exp’=X27Y,

und diese Produkte mit
0<o=r—1, 0<o<s—1 (4)

bilden nach (%) eine volle Bettische Basis in P,_; X P,_,. Das Ergebnis
ist:

R(P,_;, X P,_;) st der Ring der Polynome in zwei Unbestimmien
X, Y mit Koeffizienten aus dem Restklassenring mod. 2, wober X und Y

die Relationen Xr=0, Y®=0 (5)

erfiilllen; mit anderen Worten: bezeichnet 4 den Ring aller Polynome in
den Unbestimmten X, ¥ mit Koeffizienten mod. 2, so ist R(P,_; X P,_;)
der Restklassenring von 4 nach dem von X" und Y?* erzeugten Ideal
(Xr, Y3).

16) Einen Beweis erhalt man z. B., indem man den § 3 des Kap. VII in dem Buche®) von
Alexandroff-Hopf dadurch abéandert (und wesentlich vereinfacht), daB8 man den dort
zugrunde gelegten ganzzahligen Koeffizientenbereich durch den Ring mod. 2 ersetzt.

17) S. Lefschetz, Topology (New York 1930), 238, Formel (21) — aber, da wir mod. 2
arbeiten, ohne Beriicksichtigung von Vorzeichen.
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Fiir die Dimensionszahlen ergibt sich durch eine leichte Abzéhlung
Dim. Xe .Y’ =(r+s8—2) — (0 + o) . (6)

Daraus folgt weiter: Fiir jedes d bilden die Produkte X¢-Y? mit
o0+o=r-+s—2—d, wobei p und ¢ auBerdem durch (4) einge-
schriankt sind, eine d-dimensionale Basis; setzen wirr» -8 — 2 —d =n
und ¢ = n — o, so ist (4) gleichbedeutend mit

0=n—0o<r, 0=Zo0<s,
also mit
0=0c=n, n—r<oc<s. (7

Daher konnen wir eine d-dimensionale Basis auch folgendermaflen
charakterisieren, wobei d + n=7r-48 — 2 ist: sie besteht aus den-
jenigen Produkten X" - Y7 fiir welche o alle Werte durchliuft, die
(7) geniigen.
Insbesondere bilden
Xr-1.ys-2  Xr-2,ys-1
bzw.
Y , X

Basen der Dimensionen 1 bzw. r 4+ s — 2, und zwar ergibt sich aus den
Multiplikationsregeln, dal3 diese Basen zueinander dual sind. °)

10. Topologische Deutung der Bedingung B (r, 8; n). Wir behaupten:
Die Bedingung B (r, 8; n) ist gleichbedeutend mit dem Bestehen der Relation

X+ Y)yr=0 (8)
im Ringe R(P,_, X P,_;) .9
Beweis. Nach dem binomischen Satz und nach (5) ist
(X+Y)n=2(Z)Xn—k-Yk , (9)
k
wobei die Summe iiber alle k zu erstrecken ist, die die Bedingungen

0ksEn und n—r<k<s (10)
erfiillen.

¢) Ist s=1, so besteht die erste dieser Basen nur aus Xr—2. Ys—1 die zweite nur
aus X ; analog fiir » = 1; man vergleiche FuBnote b).

d) Ist 8 = 1 oder r = 1, so lautet (8) einfach: X™ = 0 bzw. Y"=0.
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Gilt nun B (r, 8; n), so ist daher jeder Koeffizient auf der rechten Seite
von (9) das Null-Element des Koeffizientenringes — des Restklassen-
ringes mod. 2 —, und folglich gilt auch (8).

Es gelte andererseits (8); dann verschwindet die rechte Seite von (9);
die dort auftretenden X"—%* - Y* bilden aber nach Nr. 9 eine Basis der
Dimension r+s — 2 — » und sind daher gewill linear unabhingig, und
daher ist jeder Koeffizient das Null-Element des Koeffizientenringes; es

sind also alle diejenigen (Z) gerade, fiir welche (10) gilt ; da aber die

(Z) fir welche die erste Bedingung (10) nicht gilt, ohnehin Null sind,

ist bereits die Giiltigkeit der zweiten Bedingung (10) fiir die Geradheit

von (Z) hinreichend. Folglich ist B (r, s; ») erfiillt.

Aus der damit bewiesenen Aquivalenz der Bedingungen B (r,s;n)
und (8) ergibt sich, dal der Satz I* gleichbedeutend mit dem folgenden
ist:

Satz I**. Voraussetzung: Es existiert eine ungerade Abbildung von
P, , x P,_,in P,_,. Behauptung : Im Ringe R(P,_, X P,_,;) gilt (8).

11. Der Umkehrungs-Homomorphismus. Ich berichte hier iiber die
Methode, die zum Beweis des Satzes I** fithren wird. L. und 4 seien
geschlossene Mannigfaltigkeiten. IThre Dimensionszahlen seien [ bzw. A.
Der Koeffizientenbereich sei weiterhin der Restklassenring mod. 2. Die
Homologieringe werden mit R (L) und R(A) bezeichnet. 18)

Jede Abbildung f von L in A bewirkt bekanntlich eine Abbildung von
R(L) in R(A); diese Ringabbildung nennen wir ebenfalls f; sie ist
dimensionstreu; sie ist ein additiver, aber im allgemeinen kein multipli-
kativer Homomorphismus.

Die Elemente von R (L) und B(A), die einfach gezihlten Punkten ent-
sprechen, seien mit p bzw. & bezeichnet; dann ist immer

f(p) =m. (11)

Es gilt nun der folgende Satz: %)

Zu jeder Abbildung f von L in A gibt es eine Abbildung ¢ von R(A) in
R (L) mit folgenden Eigenschaften :

18) Man vergleiche die unter 3) zitierten Arbeiten; die von mir a. a. O. gemachte Vor-
aussetzung, daB die beiden Mannigfaltigkeiten gleiche Dimension haben, ist unnétig. Da
wir den Koeffizientenbereich mod. 2 zugrunde legen, brauchen wir nichts iiber die Orien-
tierbarkeit der Mannigfaltigkeiten vorauszusetzen.
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(4) @ st etn additiver und multvplikativer Homomorphismus;
(B) @ ist mit f durch die Funktionalgleichung

He(l)2) =+ f(2) (12)
verkniipft ; hierin sind z und ¢ beliebige Elemente von R (L) bzw. R(A4).

@ heiBlt der ,,Umkehrungs-Homomorphismus* von f; dal er durch f in
eindeutiger Weise bestimmt ist, ergibt sich aus dem spateren Satz (D).

Jetzt zeigen wir zunéchst:

(C) Ist { homogen-dimensional 1®) von der Dimension o, so tist auch
@ (£) homogen-dimensional ; und zwar ist

Dim. p({) =0 +1—A4.

Beweis. 2%) Ist @({) = 0, so ist nichts zu beweisen?'); es sei ¢({) # 0;
dann laBt sich ¢(£) in der Form

¢(C)=Z91+Z¢?2 +~--—+—qu (13)

schreiben, wobei Z ,, einen homogen g,-dimensionales, von 0 verschiedenes
Element von R(L) bezeichnet und die g, paarweise voneinander ver-
schieden sind. Aus dem Dualititssatz %) folgt, dal es ein homogen
(! — o,)-dimensionales Element z,_, gibt, fiir welches Z, -2,_, = p
ist; dann ist %
@) 2%l =1D +t§2zei * 2 —gy

iibt man hierauf f aus, so folgt nach (12) und (11)
k
E-f(o—e) == +.ZI(ZQ~J *Z—py) - (14)

=2
Hierin ist die linke Seite homogen (¢ + I — ¢, — A)-dimensional; das-
selbe gilt daher fiir die rechte Seite; hier aber ist # homogen 0-dimen-
sional und s 0, das Glied f(Z,,-#%_,) dagegen homogen-dimensional
von der Dimension g, — g, # 0 %?); das ist nur moglich, wenn (14)

einfach
Z ¢ f(zl'—'Ql) =

19) Alexandroff-Hopf, wie %), 169.

20) Der Satz C ergibt sich auch unmittelbar aus jeder einzelnen der verschiedenen
Definitionen von ¢ ;3) ich will hier aber auf diese Definitionen nicht eingehen, sondern
zeigen, daB alle Eigenschaften von ¢ aus den Eigenschaften (A) und (B) folgen.

31) Der Null-Zyklus ist homogen-dimensional von jeder Dimension.

32) Zyklen negativer Dimension sind immer gleich 0 zu setzen.
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lautet und 0 +1— o, — 4 =0, also o, =0 + 1l — 1 ist. Da p, aber
nicht vor den anderen g, ausgezeichnet ist, folgt hieraus weiter, dafl die
rechte Seite von (13) nur aus einem Glied besteht. Damit ist (C') bewiesen.

Es seien jetzt {z;} und {{,} Basen in L bzw. A von derselben Dimension
d; ihre dualen Basen 1) {z;}, {{}} sind von den Dimensionen I — d bzw.
A — d; die Dualitat bedeutet das Bestehen der Relationen

fom |7 BT gan|] BISE
f bewirkt eine Substitution
fz:) = Zay & s (16)
da ¢(¢;) nach (C') die Dimension ! — d hat, bewirkt ¢ eine Substitution
@) =Z oz - (17)

Es gilt nun:

(D) Drie @-Substitution (17) ist die Transponierte der f-Substitution (16),
das heif3t (18)

Ky = Qg5 «

Beweis. Aus (17), (15), (11) folgt
f(‘P(C;) L 2;) = Zo‘jhf(z}/z 2y) = o5, f(p) = 5,7 5
aus (16), (15) folgt
C;f(zz) = Za’ikC; =07 ;
aus (12), mit { = ¢} und z = 2,, folgt daher (18).

12. Beweis des Satzes I"". F sei eine ungerade Abbildung von P,_; X P,_,
in P,_,. Die Bedingungen (2a) und (2b) aus Nr. 8 lauten in den Bezeich-
nungen aus Nr. 9: 149)

F(§T~1 X nS—Z) — Cn~2

F(Er—z X .}78—-1) p— C’n—2
oder

F(Xr-1. Y*?) = {n-2

F(Xr2. Y1) = [n-2 : (19)

Da, wie in Nr. 9 festgestellt wurde, die Basis {Y, X} dual zur Basis
{Xr-1. Y2 Xr2. Y1} und die Basis {{} dual zur Basis {{"?} ist,
folgt nach Nr. 11 (D) aus (19) fiir den Umkehrungs-Homomorphismus @

von F :
P =X+7Y. (20)
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Da @ ein multiplikativer Homomorphismus ist, folgt hieraus

X+ Ypr=01",
und damit folgt aus
v =0 (3)
die Giiltigkeit der Behauptung
X+YPr=0.°9 (8)

ANHANG I
Systeme von Richtungsfeldern in den projektiven Riumen 23)

Mit P, wird der k-dimensionale reelle projektive Raum bezeichnet.

Satz V. Auf einer (r — 1)-dimensionalen Ebene P,_, des Raumes P, _,
seien 8 — 1 stetige Felder von Richtungen des P, _, angebracht, welche in
jedem Punkte von P,_; linear unabhdngig voneinander sind. Dann ist die
Bedingung B (r, s; n) erfallt.

Beweis. Im euklidischen Raum R, mit den Koordinaten (z,, ..., z,)
sei 8,_, die Sphare mit dem Mittelpunkt o = (0, ..., 0) und dem Radius 1;
wir fassen sie als zweiblattrige Uberlagerung von P,_, auf, derart, daB
je zwei antipodische Punkte von 8§,_, einem Punkte von P, , ent-
sprechen; der Ebene P,_; entspricht eine Grofkugel S,_; von S,_;; wir
diirfen annehmen, dafl S,_, der Schnitt von §,_; mit der (z,, ..., z,)-
Koordinatenebene des R, ist.

Jeder Richtung des P, _; entsprechen zwei Tangentialrichtungen der
S,_;, die durch Spiegelung am Mittelpunkt o ineinander iibergehen;
einem Richtungsfeld auf P,_; entspricht daher ein Feld von Tangenten
der S,_;, das auf S,_; erklart und symmetrisch in bezug auf o ist; repré-
sentieren wir diese Tangentialrichtungen etwa durch Vektoren der
Léange 1, so sind deren Komponenten ungerade Funktionen von z,, ..., z,.

Die Vektoren g,, ..., g,_;, welche auf diese Weise den auf P,_, gege-
benen Richtungen entsprechen, sind an jeder Stelle linear unabhéngig;
da sie tangential an §,_; sind, so ist auch das System g,, ..., g,_;, %,
welches durch Hinzufiigung des Normalvektors ¥ = (2, ..., ,, 0, ..., 0)

e) Fir s =1 hat man den Beweis folgendermafen zu modifizieren: Nur die zweite
Gleichung (19) ist sinnvoll, (20) lautet: ¢(35) = X, und daraus folgt X" = 0; analog fur
r = 1. Man vergleiche die Fullinoten a), b), ¢), d).

33) Die Sitze dieses Anhanges stammen von Stiefel, a. a. 0.3).
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der S,_, entsteht, linear unabhingig; folglich hat, wenn wir die »-te
Komponente von g, mit g,, bezeichnen, die Matrix

--------------

oooooooooooooo

durchweg, d. h. fiir alle (z,, ..., ,) mit 2’2} = 1, den Rang s. Daher ist
nach Satz II (Nr. 5) die Bedingung B (r, s; »n) erfiillt.

Ist » = m, d. h. sind die Richtungsfelder im ganzen Raum P, _, erklart
und stetig, so ist demnach B (n, s; n) erfiillt; diese Bedingung ist (Nr. 2)
gleichbedeutend mit B (s, n; n); diese letztere Bedingung ist in Nr. 3 (¢)
untersucht worden; auf Grund des dortigen Ergebnisses gilt, wenn wir
§—1=m, n— 1=k setzen:

Satz Ve. Die maximale Anzahl m von Richtungsfeldern, welche tm
ganzen Raume P, stetig und in jedem Punkt voneinander linear unabhingig
sind, ist < 24 — 1, wobei 22 die grofpte Potenz von 2 ist, welche in k -+ 1 auf-
geht.

Eine k-dimensionale Mannigfaltigkeit ist ,,parallelisierbar‘, wenn in
ihr k stetige Richtungsfelder existieren, welche in jedem Punkt von-
einander linear unabhéngig sind24). Daher ist im Satz V¢ enthalten:

Satz Ve. Der k-dimensionale projektive Raum P, st hochstens dann
parallelisierbar, wenn k -+ 1 eine Potenz von 2 ist.

Die einzigen projektiven Raume, deren Parallelisierbarkeit feststeht,
sind diejenigen der Dimensionen 1, 3, 7 . 2%)

ANHANG II

Definite Systeme symmetrischer Bilinearformen

Die in Nr.1 betrachteten Funktionen f, seien jetzt symmetrische
Bilinearformen, es sei also

fv-'——-zaveowqyo sy Qyoo = Qyag
e,o

o=1,...,r; o=1,...,7r.

24) Stiefel, a. a. 0.1).

25) Fir diese Dimensionszahlen k erhélt man k stetige, durchweg linear unabhéngige
Richtungsfelder im P; mit Hilfe der Matrizen (gg, ), die am SchluB von Nr. 5 angegeben
sind.
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Die kleinste Zahl n, fir welche es ein definites System von 7 solchen
Formen gibt, heile N (r). Offenbar ist N (r) = n* (r, r), wobei n* (r, 3)
die in Nr. 1 definierte Zahl ist; nach Satz Id ist daher

N(r) = 2¢, (1)

wobei g durch 2¢-1 < 7 < 2¢ bestimmt ist. Es handelt sich jetzt um die
Frage, ob sich diese untere Schranke von N (r) vergréBlern lafit. Das ein-
zige mir bekannte Resultat in dieser Richtung lautet:

Nr)=r+ 2 fir r>2; (2)

(das System (7) in Nr. 1 zeigt, daB N (2) = 2 ist).

Die Abschéatzung (2) ist fiir die meisten r schlechter als (1); nur fir
r = 2¢ — 1 und r = 2¢ ist die durch (2) gegebene Schranke um 1 bzw.
um 2 besser als die durch (1) gegebene. Immerhin enthalt (2) folgendes
Korollar, das man nicht aus (1) entnehmen kann: In der (trivialen)
Ungleichung N (r) = r gilt das Gleichheitszeichen nur fiir » = 2 (und
r = 1). In der Terminologie aus Nr. 7 bedeutet dies: Eine kommutative
Divisions-Algebra iiber dem Korper der reellen Zahlen hat nur zwei
Einheiten — woraus leicht folgt, daf} sie der Koérper der komplexen
Zahlen ist; fiir die Divisions-Algebren iiber dem Korper der reellen
Zahlen ist also das assoziative Gesetz eine Folge des kommutativen.

Den Beweis von (2) habe ich an anderer Stelle dargestellt?); in ihm
wird die Behauptung (2) auf den folgenden topologischen Satz zuriick-
gefithrt: Fiir £ > 1 besitzt der projektive Raum P, kein topologisches
Modell im euklidischen Raum R, ;.

(Eingegangen den 7. Dezember 1940.)

%) H. Hopf, Systeme symmetrischer Bilinearformen und euklidische
Modelle der projektiven Raume, Vierteljahrsschrift der Naturforsch. Gesellschaft
Ziirich LXXXYV (1940) (Festschrift Rudolf Fueter), 1656—177.
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