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Uber Richtungsfelder
in den projektiven Rdumen und einen Satz
aus der reellen Algebra

Von EpuArDp STIEFEL, Ziirich

Es wird im folgenden die friiher *) fiir beliebige geschlossene Mannig-
faltigkeiten entwickelte Theorie der Richtungsfelder auf die n-dimen-
sionalen reellen projektiven Raume angewendet. Die vollstindige
Bestimmung der charakteristischen Homologieklassen (mod 2) dieser
Réaume (Satz D) ergibt einerseits Beitrage zur Topologie ihrer Richtungs-
felder (Satze A und B), andererseits folgen aus ihr Ergebnisse iiber reelle
Matrizen und Bilinearformen (Nr. 9). In der nachstehenden Arbeit von
H. Hopf werden dieselben Anwendungen als Folgerungen einer anderen
topologischen Methode erscheinen **).

1. Wenn n gerade ist, so gibt es bekanntlich im n-dimensionalen
reellen projektiven Raum P* — ebenso wie in der n-dimensionalen
Sphire — kein iiberall stetiges Richtungsfeld. Dieser klassische Satz von
Brouwer laft sich folgendermaflen verallgemeinern:

Satz A. Es sei n + 1 = 2X-u, u ungerade. Dann ist es unmoglich,
22 stetige Richtungsfelder im P* so anzubringen, daf in jedem Punkt die
dort angebrachien Richtungen linear unabhdngig voneinander sind1).

Hierin ist unter anderem die Aussage enthalten, dafl unter allen projek-
tiven Riumen hochstens die der Dimensionszahlen n = 24 — 1 paralle-
lisierbar sein koénnen, d. h. daB es hochstens in diesen projektiven
Raumen n stetige und linear unabhingige Felder geben kann. Man weil3,
daB P, P3, P7 parallelisierbar sind; ob es noch weitere parallelisierbare
projektive Raume gibt, weil man nicht2).

*) E. Stiefel, Richtungsfelder und Fernparallelismus in n-dimensionalen
Mannigfaltigkeiten. Comment. Math. Helvet. 8 (1935); diese Arbeit wird im folgenden
als ,,Diss. zitiert.

**) Herr Prof. Dr. H. Hopf war so freundlich, mein urspriinglich vorliegendes Manu-
skript wihrend meiner lingeren Abwesenheit im Militdrdienst fiir den Druck auszu-
arbeiten. Er hat bei dieser Gelegenheit einige Hilfsmittel, die ich als Spezialfialle der
allgemeinen Theorie dargestellt hatte, fiirr die projektiven Raume direkt hergeleitet.
Ferner hat er einen Beweis, der bei mir noch nicht ganz prizis war, durch Benutzung
eines Satzes von Wazewski in Ordnung gebracht. Ich danke ihm herzlich fiir seine
Hilfe, ohne die das Erscheinen der Arbeit zum mindesten stark verzogert worden ware.

1) Fiir A = 1 bereits enthalten in Diss. § 6, Satz 26.

%) Zum Problem der Parallelisierbarkeit vergleiche man Diss., besonders Einleitung,
Nr. 5, 6.
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Der Satz A wird weiter verallgemeinert und verschirft werden. Ein
System von m stetigen und linear unabhéngigen Richtungsfeldern nennen
wir kurz ein ,,m-Feld‘. Wir werden nicht nur m-Felder betrachten, die in
dem ganzen Raum P7, sondern auch solche, die nur in einer offenen Teil-
menge von P, dem ,,Regularititsbereich’ des Feldes, erklart sind; die
abgeschlossene Komplementéarmenge dieses Bereiches heile die ,,Singu-
larititenmenge’ des Feldes. (Uber das Verhalten des Feldes auf dieser
Menge @ wird nichts vorausgesetzt; es kommt oft vor, da3 jedes einzelne
der m Richtungsfelder im ganzen Raum reguldr ist, und daB auf @
lineare Abhéangigkeit zwischen den verschiedenen Feldern eintritt.) Es
gilt der folgende Satz:

Satz B. Der Regularititsbereich eines m-Feldes im P™ enthalte eine
k-dimensionale Ebene P* des P*. Dann sind alle Binomialkoeffizienten

(n+l

u ) mit n—k<pu<m-41

gerade.

Wir zeigen, da8 4 aus B folgt: Ein im ganzen P~" reguléres m-Feld sei
gegeben; dann ist die Voraussetzung von B mit k = n erfiillt; alle
Zahlen (n—/}; 1) mit u =1, 2, ..., m sind daher gerade; fiir den Beweis
der Behauptung m < 2* — das ist ja die Behauptung von 4 — hat man
n+1

9r

mithin nur noch zu zeigen, da@ ( ungerade ist; dies geschieht,

indem man das Polynom (1 4 z)**! modulo 2 nach dem binomischen
Satz entwickelt :

(tapn =2 (")

< ?
= (1 +2)?)* = (1+ 2 =2(@;) i
i
der Koeffizient von z?* ist

n+1\ _ (4w _
Der Satz B ist einerseits eine Folge des niachsten Satzes:

SatzC. Es sei (n _"t 1) ungerade und im P ein m-Feld mit einer Stngu-

laritdtenmenge @ gegeben. Dann enthilt jede Umgebung von @ etnen (m — 1)-
dimensionalen Zyklus mod. 2, der einer Ebene P™1 iym P™ homolog ist.
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Um zu beweisen, dal B aus C folgt, nehmen wir ein m-Feld § und eine
Ebene Pk, welche die Voraussetzungen des Satzes B erfiillen, sowie eine
Zabhl u, welche die dort genannten Ungleichungen befriedigt; infolge
dieser Ungleichungen enthilt P¥ eine Ebene P*-#+! und § ein u-Feld §';
P-4+l hat mit jedem Zyklus, der einer Ebene P#—! homolog ist, einen
Schnittpunkt, ist aber fremd zu der Singularititenmenge @ von &’ und
also auch zu einer gewissen Umgebung U von @ ; folglich enthalt U keinen
Zyklus, der homolog Pr-1 ist; aus Satz C, angewandt auf §’, ergibt sich

daher, daf3 (n j; 1) gerade ist.

Oft besteht die Singularititenmenge eines Feldes aus den Punkten
eines Komplexes (aus Zellen einer Zerlegung von P*), den wir dann den
,Singularititenkomplex“ des Feldes nennen. In diesem Fall gestattet
der Satz C eine Prazisierung:

Satz C'. Besteht, unter den Voraussetzungen des Satzes C, die Menge Q
aus den Punkten eines Komplexes K, so enthdlt nicht nur eine Umgebung
von @, sondern der Komplex K selbst einen Teilzyklus von der tm Satz C
genannten Art.

Es ist klar, da3 C aus C’ folgt : die Voraussetzungen von C seien erfiillt,
und U sei eine vorgegebene Umgebung von ¢ ; man konstruiere einen in U
gelegenen Komplex K, der die Menge @ enthalt, und betrachte das m-Feld
nur in der Komplementérmenge von K, so daB K also die Rolle des
Singularitatenkomplexes spielt ; durch Anwendung des Satzes C’ auf das
so verkleinerte m-Feld ergibt sich die Giiltigkeit von C.

Die Sitze 4, B, C sind also Konsequenzen des Satzes C’, und der
Beweis dieses Satzes ist daher unser Ziel. Aulerdem werden wir alge-
braische Folgerungen aus dem Satz B ziehen (Nr. 9).

2. Der Beweis des Satzes C’ beruht auf der allgemeinen Theorie der
Systeme von Richtungsfeldern in geschlossenen Mannigfaltigkeiten und
der ,,charakteristischen Homologieklasse*, die ich frither ausfiihrlich dar-
gestellt habe und iiber deren Hauptpunkte ich hier nur kurz berichten
werde?).

Wir betrachten eine differenzierbare geschlossene n-dimensionale
Mannigfaltigkeit M™; Orientierbarkeit wird nicht vorausgesetzt; als
Koeffizientenbereich fiir die Homologien benutzen wir den Restklassen-
ring mod. 2 (frilher hatte ich, um feinere Resultate zu erhalten, fiir
gewisse Dimensionszahlen den Ring der ganzen Zahlen, fiir andere den

3) Diss. § 4, besonders Nr. 4, 5.
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Ring mod. 2 benutzt; fiir unsere gegenwartigen Ziele geniigt der letztere
Ring; die dadurch entstehenden Anderungen sind lediglich Verein-
fachungen). In M™ sei ein m-Feld mit einem Singularititenkomplex K
gegeben (,,m-Feld*‘ und ,,Singularitdtenkomplex*‘ sind analog wie fiir den
Pr erklart); K gehore einer hinreichend feinen Zellenzerlegung von Mn»
an. Wir setzen vorldufig voraus, dal K hochstens (m — 1)-dimensional
ist; jeder (m — 1)-dimensionalen Zelle x; von K wird durch eine Vor-
schrift, auf die wir noch zuriickkommen werden, ein ,,Index‘ j(x,) zu-
geordnet, der eine der beiden Restklassen mod. 2 ist; man bilde den
algebraischen Komplex z = 2'j(z;) z,; es gilt der folgende ,,Hauptsatz**:

2z 18t ein Zyklus mod. 2; seine Homologieklasse F™1 ist unabhingig von
dem speziell betrachteten m-Feld.

z heilt der ,,singulire Zyklus*“ des m-Feldes, F™1 heillt die (m — 1)-
dimensionale ,,charakteristische Homologieklasse' von M™. ‘

Ist & ein m-Feld mit einem Singularititenkomplex K von groferer
Dimension als m — 1, so kann man immer ein m-Feld §’ finden, dessen
Singularitdtenkomplex der aus den (m — 1)-dimensionalen Zellen von K
bestehende Komplex K™-1 ist. (Andeutung der Konstruktion von &’:
in der Zellenzerlegung von M, die dual ist zu der Zerlegung, welcher K
angehort, bilden diejenigen Zellen, deren duale Zellen nicht zu K
gehoren, einen Komplex I', der im Regularitiatsbereich von § liegt; man
behalte das Feld § nur auf I" bei und tilge es in der Komplementarmenge
von I'; das so reduzierte Feld 148t sich zu einem m-Feld §’ mit dem Sin-
gularititenkomplex K™-! erweitern.) Der singulire Zyklus z von §’ liegt
nach seiner Definition in K™1, also in K. Man sieht also: '

Ist der (beliebig-dimensionale) Komplex K Singularititenkomplex eines
m-Feldes, so enthilt er einen Zyklus aus der charakteristischen Homologie-
klasse Fm-1, '

Hieraus ist ersichtlich, daB unser Satz C’ in dem folgenden ent-
halten ist:

Satz D. Die charakteristische Homologieklasse F™1 des projektiven
Raumes P ist die Nullklasse oder die Klasse, welche die Ebene P™1 ent-

hilt, je nachdem (n -m}— 1) gerade oder ungerade ist.

Man kann den Inhalt dieses Satzes auch folgendermaBen ausdriicken.
Da im P die Ebenen Pr r-dimensionale Homologiebasen mod. 2 bilden,

ist es von vorneherein klar, daBl es fiir m = 1, 2, ..., n Restklassen
%, m mod. 2 gibt, welche durch die Homologien
2~ 0y m pPm-1 (1)
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bestimmt sind, wobei z singularer Zyklus eines m-Feldes ist; dann besagt
der Satz D :
Die durch (1) definierten Groflen «,, ,, erfillen die Kongruenzen

a,,,,,_=_( ‘“) mod. 2 . (2)
' m

Bevor wir an den Beweis der Behauptung (2) herangehen, miissen wir
noch den oben erwihnten Begriff des ,,Jndex‘‘ besprechen, der bei der
Definition der singuldaren Zyklen eine wesentliche Rolle spielte.

3. Der Begriff des ,,Index* beruht auf dem nahe verwandten Begriff
der ,,Charakteristik‘‘4). Auf einer Sphare S*»™ des euklidischen Raumes
BR" sei ein m-Feld des R™ gegeben, also ein solches System von m stetigen
Feldern von Richtungen des R”, daf} in jedem einzelnen Punkt der S»m
die dort angebrachten Richtungen linear unabhéngig von einander sind;
(die Richtungen sind im allgemeinen nicht tangential an S»-m). Jedem
solchen Feld § ist als ,,Charakteristik* « () eine der beiden Restklassen
mod. 2 zugeordnet; auf die Definition gehen wir hier nicht ein, sondern
wir stellen nur fest, daB sich aus der Definition unmittelbar die folgenden
drei Eigenschaften (a), (b), (c) ergeben:

(a) Die Charakteristik bleibt ungeéndert bei stetiger Abanderung
von §.

(b) Liegt R im R"t! und fiigt man zu § ein Feld konstanter (d. h.
paralleler) Richtungen des R**! hinzu, die nicht im R” liegen, so hat das
dadurch auf §»™ entstandene (m + 1)-Feld des R"+! die gleiche Charak-
teristik wie das gegebene m-Feld § des R™.

(¢) Fir m =1 ist «(§) die bekannte Kroneckersche Charakteristik,
also der Abbildungsgrad (mod. 2) derjenigen Abbildung der 81 auf
die Richtungskugel des R™, welche durch die Richtungen des Feldes
vermittelt wird.

Von den weiteren Eigenschaften, die sich aus den vorstehenden er-
geben, heben wir im Augenblick die folgende Verallgemeinerung von (c)
hervor, deren Beweis wir wohl iibergehen diirfen:

(d) Besteht jedes der m — 1 ersten Richtungsfeldern von § aus kon-
stanten Richtungen, wahrend die Richtungen des m-ten Feldes einer
Ebene R»-m+1 des R™ parallel sind, so ist o () gleich dem Grade der
Abbildung von S8»™ auf die Richtungskugel von R»-m+1; welche durch
die Richtungen des m-ten Feldes vermittelt wird.

In meiner fritheren Darstellung war iibrigens immer m < » voraus-

4) Diss. § 1, besonders Nr. 4, ferner § 2, § 3, Nr. 1.
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gesetzt; jetzt ist es zweckméfig, auch m = n zuzulassen; man bestitigt
leicht, dafl die vorstehenden Eigenschaften dann (und nur dann) giiltig
bleiben, wenn man festsetzt:

(e) Die Charakteristik eines n-Feldes auf einer S° des R”, also eines
Paares von zwei n-Beinen, die in zwei Punkten des R" angebracht sind,
ist =0 oder = 1 mod. 2, je nachdem die beiden n-Beine die gleiche
Orientierung oder verschiedene Orientierungen des R" bestimmen5).

Wir werden spater noch einige weitere Eigenschaften der Charakteristik
nennen. Jetzt definieren wir den ,,Index*‘. Es sei also in der Mannigfaltig-
keit M" ein m-Feld mit einem (m — 1)-dimensionalen Singularititen-
komplex K gegeben, und x sei ein (m — 1)-dimensionales Simplex von K.
Wir nehmen eine kleine Sphire S*»™ in M", deren Mittelpunkt ein
innerer Punkt von z ist, und die z umschlingt; das m-Feld ist auf ihr
regulir und hat eine Charakteristik «; aus (a) folgt leicht, dafl x von
der speziellen Wahl der Sphére S®™ nicht abhangt; diese Grofe « ist
der Index j(x).

4., Im Falle m = 1, in welchem z ein Punkt ist, ist demnach j(x) der
in der iiblichen Weise erklarte Index (mod. 2) einer isolierten Singularitit
eines Richtungsfeldes. Die charakteristische Homologieklasse F° wird
durch einen mit der Indexsumme 2'j (z;) multiplizierten Punkt reprisen-
tiert; die Indexsumme ist bekanntlich die Eulersche Charakteristik von
M™; man sieht also: F° ist dann und nur dann die Nullklasse, wenn die
Eulersche Charakteristik von M™ gerade ist®).

Da der projektive Raum P* die Charakteristik 1 oder 0 hat, je nachdem
n gerade oder ungerade ist, bedeutet das Vorstehende die Giiltigkeit der
Behauptung (2), also des Satzes D, fiir m = 1 bei beliebigem .

Wir wollen sogleich auch noch die Fille m = n erledigen. Man kann
im P» — etwa indem man P" als euklidischen E® mit einer unendlich
fernen Ebene P! auffalt — ein n-Feld konstruieren, dessen Singula-
rititenkomplex K eine Ebene Pm! ist; ein (n — 1)-dimensionales
Simplex z zerlegt die m-dimensionale Umgebung eines seiner inneren
Punkte in zwei Gebiete, in deren jedem durch das dort regulire n-Feld
eine Orientierung bestimmt ist; aus der Definition des Index und aus
Nr. 3, (e) folgt: sind diese beiden Orientierungen lings x kohérent, so ist
j(x) =0, sind sie nicht koharent, so ist j(x) = 1. Daraus ist ersichtlich:
der singulire Zyklus (Nr. 2) des n-Feldes ist gleich 0 oder gleich P*1, je

5) Da das n-Feld auf S° aus n Feldern von Richtungspaaren besteht, entspricht einer
Reihenfolge der Richtungen in dem einen n-Bein eine bestimmte Reihenfolge in dem
anderen n-Bein.

¢) Diss. § 5, Nr. 2.
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nachdem P* orientierbar ist oder nicht’). Da P fiir ungerades =
orientierbar, fiir gerades n nicht orientierbar ist, ist damit (2) fiir m =n
bewiesen.

b. Die somit bewiesene Giiltigkeit von (2) fir m =1 und m =n
ermoglicht eine Umformung der Behauptung (2) fiir 1 < m < n. Setzen

wir fiir einen Augenblick | +1) . m> 80 sind die firl<m<n
g m ,m n,m

durch die Pascalsche Dreiecksregel

ﬂn,m = ﬂn—-l,m—l + ﬂn-—l,m

zusammen mit den Randbedingungen

ﬁn,1=n+1’ ﬂn,n=n+1
vollstindig charakterisiert. Die Behauptung (2) lautet:

O m = Pum (mod.2) fir 1 =m=n;
die Giiltigkeit von
X1 =n-+1, Cpn =1+ 1

haben wir soeben bewiesen; es bleibt also noch die Giiltigkeit der Kon-

gruenzen
&n,m = %n—1,m—1 =+ Xpn—1,m

(3)

fir 1<m<n
nachzuweisen.

Dieser Nachweis wird durch eine Konstruktion folgender Art erfolgen.
Im P» wird ein m-Feld § angegeben werden, dessen Singularitdten-
komplex K aus zwei Ebenen P™* und P? ! besteht, und dessen singularer
Zyklus z = & P! 4 &, P ist, wobei &, und &, gewisse Restklassen
mod. 2 und P7!, P™1 als Zyklen mod. 2 aufzufassen sind; ohne da8 £,
und &, explizit bestimmt zu werden brauchen, wird dann in einem
Raume P! erstens ein (m — 1)-Feld &’ mit einem singuliren Zyklus
2, = & P™? und zweitens ein m-Feld §” mit einem singuliren Zyklus
zy = &, Pm1 konstruiert werden, wobei P™2? und P™ ! Ebenen des
Pr1 aufgefallt als Zyklen mod. 2, sind. Damit wird der Beweis beendet
sein; denn aus der Definition der «, , folgt

‘xn,m = 51 + g:2 ’ (xn—-l,m—l = 51 ’ ‘xn—l,m = 52 ’

also die Giiltigkeit von (3).

) Dieses Kriterium fiir die Orientierbarkeit gilt nicht nur fiir Pn, sondern fiir alle ge-
schlossenen Mannigfaltigkeiten Mn,
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Hierzu sei noch folgendes bemerkt. Wenn das Feld § so konstruiert ist,
daB K aus zwei Ebenen P! und P! besteht, so ist von vornherein
klar, daB der singulire Zyklus die Gestalt & P! - £,P™ ! hat; denn es
gibt, wie man sich leicht iiberlegt, in K keine anderen (m -- 1)-dimen-
sionalen Zyklen als die von der angegebenen Gestalt; ebenso folgt aus
der Tatsache, daB &’ und §” je eine Ebene als Singularititenkomplex
besitzen, sofort, da die singuliren Zyklen von der Gestalt z, = £/Pm-2
zg = E"P™1 gind. Zu beweisen wird nur sein, daB fiir die speziell kon-
struierten Felder &' = §&,, §” = &, ist; und die Index-Betrachtungen, die
zum Beweis dieser Gleichheiten nétig sind, konnen in der Umgebung
beliebiger Punkte der betreffenden Ebenen vorgenommen werden, wobei
man im Falle des Feldes § nur die Punkte der Schnittebene von PPt
und P! vermeiden mu8. .

6. Um den Gedankengang spiter nicht unterbrechen zu miissen,
stellen wir hier, in Fortsetzung von Nr. 3, noch einige Eigenschaften der
,,Charakteristik *‘ zusammen.

Durch stetige Abanderung des in Nr. 3, (b), genannten Feldes kon-
stanter Richtungen ergibt sich, bei Beriicksichtigung von (a), die fol-
gende Verallgemeinerung von (b):

(b’) Die Giiltigkeit von (b) bleibt erhalten, wenn von den Richtungen
des neu hinzugefiigten Feldes nicht vorausgesetzt wird, dafl sie parallel
sind, sondern nur, daB sie iiberall aus dem R™ herauszeigen.

Dies 1aBt sich noch weiter verallgemeinern:

(f) Auf der Sphiare §»m des R», der im R"+! liegt, seien m -+ 1 Rich-
tungsfelder B,, B,, ..., B,, des R**! gegeben, die ein (m 4 1)-Feld B
bilden; die Richtungen von B, sollen iiberall aus R" herauszeigen, wah-
rend iiber die B, mit 7 > 0 nichts Derartiges vorausgesetzt wird ; projiziert
man B;, i > 0, von B, aus auf B, so entsteht ein Richtungsfeld B} des
Rr; die Felder B[, ..., B, bilden ein m-Feld B’ des B auf §r—m.
Behauptung: 8 und B’ haben die gleiche Charakteristik.

Dabei ist unter ,,Projektion einer Richtung v, von der Richtung v, aus
auf den R"*‘ diejenige Richtung des R"™ zu verstehen, die in der 2-dimen-
sionalen Halbebene liegt, welche von der, durch v, bestimmten (un-
orientierten) Geraden und der Richtung v, aufgespannt wird; sie ist
immer definiert, wenn v, und v, unabhéngig sind und nicht beide in R"
liegen. Der Beweis von (f) erfolgt, indem man die Felder B,,7> 0,
stetig in die Felder B iiberfiihrt und dann den Satz (b’) anwendet; daB
diese Uberfiithrung moglich ist, ohne daB jemals eine lineare Abhéangigkeit
eintritt, ist leicht zu sehen.
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Etwas weniger naheliegend ist die ndchste und letzte Eigenschaft der
Charakteristik, die wir bendtigen; sie kann als Verallgemeinerung der
folgenden Eigenschaft (g,) des Abbildungsgrades angesehen werden:

(g,) Die Sphire 8" wurde durch ihre Aquatorsphire 81 in die Halb-
kugeln 4 und B zerlegt; ebenso die Sphire S} durch 8 in 4, und B,;
wird dann S” so in Sf abgebildet, daBl 81 in ST, 4 in 4,, B in B, ab-
gebildet wird, so hat die Abbildung von 87 in 8] denselben Grad wie die
Abbildung von 8™1in 871

Der Beweis ergibt sich aus den Grundeigenschaften des Abbildungs-
grades und darf hier wohl iibergangen werden. Wir behaupten, da8 die
Charakteristik eines (m -+ 1)-Feldes die folgende Eigenschaft (g) besitzt,
welche im Falle m = 0 offenbar mit (g,) d4quivalent ist:

(9) Die Sphére 8™ des R™+! werde durch die Aquatorsphare S»m-1in
die Halften A und B zerlegt; S»~™1 liege in der Ebene R" (ob die ganze
S»m in R* liegt, ist gleichgiiltig); auf S»™ sei ein Richtungsfeld B,,
gegeben, dessen Richtungen auf S»™1in R" liegen, auf 4 nach der einen,
auf B nach der anderen Seite von R" weg weisen; ferner seien in der ab-
geschlossenen Vollkugel V»—m+1 die von 8"™ begrenzt wird, m Felder
By, ..., B,,1 von Richtungen gegeben, die parallel zu R und iiberall
linear unabhéngig sind; die Felder B, ..., B,,_;, B, sollen auf §»m
iiberall linear unabhéngig sein; sie bilden also auf 7~ ein (m 4 1)-Feld
B des R** und auf §»™1ein (m + 1)-Feld B” des R". Behauptung: Die
Charakteristik von B auf 8™ ist gleich der Charakteristik von 8B” auf
Sn—m—1

Der Beweis wird folgendermaflen erbracht werden: durch eine stetige
Abinderung, bei welcher sich nach (a) die beiden zu untersuchenden
Charakteristiken nicht @ndern, werden die gegebenen Felder in eine
solche Lage gebracht, dal man die Charakteristiken nach (d) als Ab-
bildungsgrade deuten kann, und diese Grade werden auf Grund von (g,)
einander gleich sein.

Durchfiihrung des Beweises: Wir benutzen den folgenden Satz von
T. Wazewski : ,In der Vollkugel V (beliebiger Dimension) seien stetige
Funktionen

v

v > u=1,....m; wv=1,...,n; m<n]

so gegeben, daB die Matrix (v,,) durchweg den Rang m bat; dann kann
man diese Matrix durch Hinzufiigung von » — m weiteren Zeilen, deren
Elemente ebenfalls stetige Funktionen in ¥V sind, zu einer quadratischen
n-reihigen Matrix erginzen, deren Determinante nirgends verschwindet®).

8) T. Wazewsk:, Sur les matrices dont les éléments sont des fonctions
continues. Compos. Math. 2 (1935), 63—68.
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Auf Grund dieses Satzes lassen sich in unserer Vollkugel V»—m+1 Felder
W,, ..., W,_,, von Richtungen, die parallel zu R sind, so anbringen, daBl
By, .o> By, Wy, ..., W,,_,, in jedem Punkt von V7»—m+1l linear un-
abhingig sind.

Wir fithren nun in V7™  Polarkoordinaten‘ (¢, r) ein: mit ¢ be-
zeichnen wir den variablen Punkt auf 8™ mit r den Abstand vom

Mittelpunkt ¢ von V7»m+l, Dem Punkt, der auf dem Strahl E; im
Abstand r von ¢ liegt, ordnen wir die Koordinaten (p, r) zu; den Radius
von V7-m+l nehmen wir gleich 1 an; der Punkt ¢ hat also die Koordinaten
(p, 1) und der Punkt ¢ die Koordinaten (p, 0) mit unbestimmtem ¢. Die
Richtungen der Felder B, und W; denken wir uns durch Vektoren
v;(®, 7), w; (g, r), bzw., wenn r = 1 ist, durch v,(¢), w,(p) gegeben. Mit e
bezeichnen wir einen festen Vektor, der senkrecht auf R® steht. Dann
lassen sich die Vektoren v,, auf S»™ in der Gestalt

m—1 n—m
On(p) = 2 as(g) 0:(9) + 2;(p) wy(p) + c(9) ¢
= i=
darstellen. Der Koeffizient c¢(p) ist auf der einen der Halbkugeln 4, B
positiv, auf der anderen negativ und auf 8»—™-1 gleich 0; da v,, ..., v,,_;,
v,, iberall linear unabhéngig sind, ist fiir jeden Punkt ¢ von 8§n—m-1
wenigstens einer der Koeffizienten b,(¢) von 0 verschieden.
Wir definieren nun v,, (g, 7) fiir 0 < r << 1 durch

0, (@, 7) = r2a (@) v;(p) + 2'b;(@) w,(p, ) + clp) e
und betrachten die Vektoren

0o(@ 7)s v vy Dppa (@, 1), 0 (@, 7)

auf 8™ in Abhéngigkeit von dem Parameter r, der von 1 bis 0 lauft. Wir
behaupten: diese m + 1 Vektoren sind stets linear unabhéngig; in der
Tat: die v, mit ¢ = 0, ..., m — 1 sind nach Voraussetzung unabhéngig,
und daB v™(p, r) nie von v, (g, 1), ..., v, (p, ) abhéngig ist, folgt, wenn
@ auf 8»m-1 liegt, daraus, daf dann wenigstens ein b, # 0 ist, und wenn
@ nicht auf S*»-™-1 liegt, aus ¢ = 0. Die Vektoren v,, ..., v,, bilden also
fiir jeden Wert von r mit 1 > r > 0 auf S» ™ ein (m + 1)-Feld B(r) des
Rn+1; gie bilden aber auch fiir alle diese » auf S»™1 ein (m 4 1)-Feld
B”(r) des R», da v,,, wenn ¢ auf S»-m-1 liegt, infolge ¢(p) = 0 immer ein
Vektor des R" ist. Auf Grund der Eigenschaft (a) aus Nr. 3 dndern sich
die Charakteristiken der Felder B(r) und 8B”(r) nicht, wahrend r von 1
bis 0 lauft. Fiir » = 1 handelt es sich um die vorgelegten Felder B, 8”;
fiir » = 0 haben wir die Vektoren
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Ui( ’ 0) = vi(q): 1= 0, ceeym — 1,
O (P, 0) = 2'b;(p) w;(g) +clp) e,

wobei ¢ wieder den Mittelpunkt von V™™ bezeichnet. Fiir jedes 1<m
bilden die v;(p, 0) ein konstantes Richtungsfeld; die Vektoren v,,(p, 0)
sind der Ebene R™™tl parallel, welche von w,(g), ..., w,_,,(¢), e auf-
gespannt wird; liegt ¢ auf S»™1 so sind die v, (p, 0) der, in Rr—m+1
gelegenen, Ebene R"™ parallel, die von den w,(q) aufgespannt wird.
Aus Nr. 3, (d), folgt daher: die Charakteristiken x und «” von B(0) und
B”(0) sind gleich den Graden derjenigen Abbildungen von S™™ bzw.
S7-m-1 guf die Richtungskugeln S7™ bzw. 87~™ ! der Riume R* ™+ bzw,
R7m  welche durch die Vektoren v, (¢, 0) vermittelt werden. Diese
beiden Abbildungen erfiillen aber, infolge des Verhaltens des Vor-
zeichens von c(p), die Voraussetzungen des Satzes (g,); folglich ist
o« = «” was zu beweisen war.

7. Wie in Nr. 5 angedeutet wurde, werden wir im projektiven Raum
P spezielle Richtungsfelder zu konstruieren haben. Fiir die Durchfiih-
rung dieser Konstruktionen ist es bequem, im euklidischen Raum R"+!
statt im P” zu arbeiten. Die Beziehung zwischen R"+! und P" besteht ja
darin, dafl man die Geraden durch den Nullpunkt o des R"*! als die
Punkte des P deuten kann. Daraus ergibt sich: Ist x ein von o ver-
schiedener Punkt des R"*! und sind in ihm m Vektoren v, ..., o,, an-

gebracht, welche zusammen mit dem Ortsvektor v, — 02 ein linear un-
abhiangiges System von m + 1 Vektoren bilden, so entsprechen den
Dy, ..., D, im P" m linear unabhingige Richtungen t,, ..., t,,, die in dem
Punkt =’ angebracht sind, welcher x entspricht; sind dagegen v,, vy, ...,
v,, linear abhéngig, so sind auch vy, ..., r,, linear abhiangig, oder diese
Richtungen sind gar nicht definiert; ferner ist klar: dem Vektor v, der
im Punkt x mit den Koordianten z,, #,, ..., z, angebracht ist, entspricht
im P» dieselbe Richtung wie, bei beliebigem A = 0, dem Vektor Av, der
im Punkt mit den Koordinaten Az,, Az,, ..., Az, angebracht ist. Solche
Uberlegungen legen es nahe, den folgenden Begriff einzufiihren: Ein
,,projektives (m -+ 1)-Feld von Vektoren des R™1‘ ist ein System von
m -+ 1 Feldern von Vektoren vy, v,, ..., v,, des R**1, wobei v, immer den
Ortsvektor (z,, z,, ..., #,) bezeichnet und die iibrigen v, im ganzen
R+ gtetige und homogene Funktionen ersten Grades der Koordinaten
Xy, %y, ..., &, sind — (also fiir jedes 4 die Gleichungen v,(Az,, Az, ...,
Az,) = Av,(z,, %, ..., x,) erfiilllen). Dann ist aus dem Vorstehenden
ersichtlich: Jedem projektiven (m - 1)-Feld 8 von Vektoren des R™+!
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entspricht ein m-Feld § von Richtungen im P?; der Singularitdtenmenge
von B, d. h. der Menge der (von o verschiedenen) Punkte des R*+1 in
welchen die Vektoren von B linear abhiingig sind, entspricht die Singu-
larititenmenge von .

Nehmen wir jetzt an, dafl das Feld § einen Singularitdtenkomplex
besitzt, der eine Ebene P™-1 enthilt, zu welcher ein bestimmter Index &
gehért — wie es bei der in Nr. 5 geschilderten Situation der Fall ist.
Pm1 igt das Bild einer Ebene R™ des R"+l, die in dem Singularititen-
komplex von B enthalten ist, und zu der der Index « gehoren moge. Wir
behaupten, dafl & = « ist.

Um dies zu beweisen, nehmen wir einen vom Nullpunkt verschiedenen

Punkt z = (z,, ..., ,) von B™; wir diirfen annehmen, da z, # 0 ist;
die Ebene z, = const., in welcher x liegt, heie R”; die cartesischen
Koordinaten z,, ..., #,_; in der Ebene R"™ konnen wir gleichzeitig als

lokale cartesische Koordinaten in der Umgebung des Punktes z’ von P
auffassen, welcher dem Punkt x entspricht. Dann wird das m-Feld § in
der Umgebung von 2’ im R™ dargestellt durch diejenigen Vektoren
b{, ..., v}, welche entstehen, wenn man die v,, ..., v,, ,,von v, aus auf
R projiziert* (man vergleiche zu dieser Ausdrucksweise Nr. 6, (f)).
Es sei nun 8*™ eine kleine Sphére im R" mit dem Mittelpunkt x; dann
ist der Index & geméaB seiner Definition die Charakteristik des aus den
Vektoren vy, ..., v, bestehenden m-Feldes des R" auf 8»™. Andererseits
ist der Index « gemifB seiner Definition die Charakteristik des aus
Vo, Uy, ..., D,, bestehenden (m + 1)-Feldes des R"t! auf S*™. Die be-
hauptete Gleichheit x = £ besteht daher auf Grund von Nr. 6, (f).

Damit ist nicht nur die Konstruktion von m-Feldern, sondern es sind
auch die notwendigen Index-Betrachtungen vom P” in den R"*! verlegt,
und das in Nr. 5 formulierte Programm laft sich jetzt folgendermafBen
aussprechen :

Es sei 1 < m < n bei beliebigem n > 2. Es wird ein spezielles projek-
tives (m + 1)-Feld B von Vektoren des R"+! angegeben werden, dessen
Singularitditenmenge aus zwei Ebenen R und R} besteht, zu welchen
die Indizes &, bzw. &, gehoren mogen; ferner wird im R”™ erstens ein
projektives m-Feld B’ angegeben werden, das auf einer Ebene Rm-1
singular wird, und zweitens ein projektives (m - 1)-Feld B”, das auf
einer Ebene R™ singuldr wird; die zu R™! und R™ gehorigen Indizes
seien £/ bzw. £”; dann wird gezeigt werden, daB8 &/ = & und &¢” = &, ist.

8. Dieses Programm fithren wir jetzt durch und bedienen uns der
soeben benutzten Bezeichnungen; wir bezeichnen auch wie bisher die
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Koordinaten im R*! mit =z,,x,,..., z,; die Grundvektoren dieses
Koordinatensystems mogen ¢, ¢,, ..., ¢, heilen.
Wir definieren das (m -+ 1)-Feld 8 = {v,, v, ..., v,,} folgendermaflen:

n n-—m
Do= 2 &8¢ ; 0;=X%¢., , 1=1..m—1 ;
v=0 v=0
n—m—I1
v, = 2 T, Cm + Ty €y
. =0
Es ist also: ’
By ==(Ty B Py «encnvcwoinsoovmrsmssssmusmovasmnsgns z,
p, = (0 @ 2 T3 .0ovveneenna. Bpwn U wesassssvnns 0)
v, = (0 0 2y 2, ..., Zpym O ..., 0
Dm___l'_ (0 0 ....... wo xl ................ xn__m 0 )
v, =(0 0 ....... B By, % sisimssevsnss Ly Zn_1)
Wir bestimmen die singuliaren Punkte x = (z,, #,, ..., z,) von B, also

diejenigen Punkte, in denen die m 4 1 Vektoren linear abhéngig sind;
sie sind dadurch charakterisiert, daB3 alle (m 4 1)-reihigen Unterdeter-
minanten der obigen Komponenten-Matrix der v, verschwinden. Die
Determinante aus den m -1 ersten Kolonnen hat den Wert «7**1; folglich
ist x, = 0; die Determinante aus der 2., 3., ..., (m 4 2)-ten Kolonne hat,
auf Grund von z, = 0, den Wert a2™*!; folglich ist z, = 0; so schlieBt
man weiter bis zur Determinante aus der (n — m)-ten, ..., n-ten Kolonne,
deren Verschwinden die Gleichung z,_,_, = 0 liefert; dann hat die
Determinante aus der (n —m -+ 1)-ten, ..., (n +1)-ten Kolonne den Wert
xr_..%,_;,und da sie verschwindet, ist entweder z,_,, = 0 oder z,_; = 0.
Somit liegt der singuldre Punkt auf einer der folgenden beiden Ebenen
RP, R

RY: 2o=x

Ry : zo=m

I

= Tpem—1 = 0, Lpom = 0;

|

=g, =0, x, =0,

Jeder Punkt dieser Ebenen ist aber auch wirklich singular, denn auf RP
verschwindet v,, ;, auf E}® verschwindet v,,.

Der Raum R» sei die durch z, = 0 gegebene Ebene des R™+'. Die
Vektoren v,, v,, ..., v,,_; des Feldes B, welche in Punkten von R" an-
gebracht sind, liegen in R”; das System dieser m Vektoren sei B’. Aus
derselben Determinanten-Betrachtung wie soeben erkennt man, dafl das
projektive m-Feld 8B’ nur auf der folgenden Ebene des R” singulidr wird:
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Rl g =p=i=g, =0,
(also auf dem Schnitt von R* und R7').

Fiir jeden Punkt x von R" verstehen wir unter v,, die Projektion des
in x angebrachten Vektors v,, auf R”, also

9, =00 ...... Oxg2y .00 Xy 10) .

B” sei nun das Feld der in den Punkten von R” angebrachten Vektoren
Do, Uy +ovs Dpyy> D,,. Wieder dieselbe Determinanten-Betrachtung wie
oben zeigt: B” wird singulir nur auf der Ebene

.Rm: xo_—'-xl:"':xn_m_l:()-

Fiir die Untersuchung der Indizes &, und &’ fassen wir die Umgebung
des folgenden Punktes o, ins Auge:

0: %, 3=1, z;,=0 fir j#n—1;

er liegt auf Ry, aber nicht auf R7'; die in ihm auf R senkrecht stehende
(7 + 1 —m)-dimensionale Ebene, also die Ebene

Epyttm . g, =1, z;,=0 fir n—m<j<n—1 und fir j=mn,

ist fremd zu R} und hat mit RP nur den Punkt o, gemeinsam; die
Charakteristik des Feldes B auf einer in E?*™™ gelegenen Sphire mit
dem Mittelpunkt o, ,

S . a2k =12, r>0,

ist daher gleich dem Index &;.

Die Ebene E7+t™ liegt in R"; sie steht senkrecht auf R™-1 und hat
daher mit R™! nur den Punkt o, gemeinsam; daher ist die Charak-
teristik des Feldes B’ auf der Sphire 87™ gleich dem Index &'.

Den Feldern B und B’ sind auf S7™ die Vektoren vy, vy, ..., 0,,_,
gemeinsam, und diese liegen in dem Raum R”; das Feld B entsteht aus
B’ durch Hinzufiigung des Vektors v,,, der infolge der Bedingung
x,_, = 1 tiberall aus dem Raum R" herauszeigt; aus Nr. 6, (b’), folgt daher
die Gleichheit der Charakteristiken von 8 und B’ auf S;~™. Damit ist
& = &' bewiesen.

Um &, und &7 zu untersuchen, betrachten wir die Umgebung des

Punktes

0: Zp =1, ;=0 fir j#n—m;
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er liegt auf R}', aber nicht auf R?; die in ihm auf R? senkrecht stehende
(n + 1 —m)-dimensionale Ebene, also die Ebene

Eittm oz, =1, z,=0firn —m<j<n—1und firj=n,
ist fremd zu R} und hat mit R} nur den Punkt o, gemeinsam; die

Charakteristik des Feldes B auf einer in E3™'™™ gelegenen Sphire mit
dem Mittelpunkt o, ,

. a2 2 2 2
S " it Tyt =1, r>0

ist daher gleich dem Index &,.
Fiigen wir zu den Gleichungen der Ebene Ej+ noch die Gleichung
,_, = 0 hinzu, so erhalten wir die in B+~ gelegene Ebene

Erm: oz, =1, ;=0 fir j>n—m;

das ist die im Punkte o, auf RB™ senkrecht stehende (n — m)-dimensionale
Teilebene des R™ Der Index &” ist daher gleich der Charakteristik des
Feldes B” auf einer Sphiare S»m-1 die in B ™ liegt und 0, zum Mittel-
punkt hat; als diese Sphire wihlen wir die Aquatorsphire von 87—, die
durch z,_, = 0 bestimmt ist.

Auf §»m-1 gind B und B” miteinander identisch. Wir behaupten, da
sich der Satz (g) aus Nr. 6 anwenden 1a8t; in der Tat: 871 liegt in R"
(sogar S;~™ liegt in R"); da die n ersten Grundvektoren e ,e;, ..., ¢,
des R"+! parallel zu R" sind, da ferner die (n+ 1)-te Komponente des
Vektors v,, gleich z,_, ist, und da die beiden Halbkugeln 4 und B, in die
837™ durch 8*-™-1 zerlegt wird, durch die Ungleichungen z, , > 0 und
x, ; < 0 charakterisiert sind, weisen die Vektoren v, auf 4 nach der
einen, auf B nach der anderen Seite von R" weg, wiahrend sie auf §*m-1
selbst in R™ liegen; die Vektoren v,,v,,...,v,,; liegen auf Epti—m
immer in R"; sie sind linear abhéngig nur auf der Ebene B™1, und da
diese fremd zu E?*+'™ ist, sind sie in der von S7~™ begrenzten, in E3*+1—™
gelegenen Vollkugel linear unabhéngig; somit sind alle Voraussetzungen
des Satzes (g) erfiillt, und folglich ist &, = &”.

Damit ist alles bewiesen.

9. Wir ziehen jetzt eine algebraische Folgerung aus dem Satz B
(Nr. 1). Es seien 4,, ..., 4, reelle Matrizen mit je n Zeilen und r Kolon-
nen; sie spannen eine lineare Schar von Matrizen

Ay, oo ¥ = thdy + -+ 9y, 4,

215



auf; die Matrix A4 (0, ..., 0) ist die Nullmatrix; wir sagen, die Schar habe
durchweg den Rang r, wenn alle Matrizen 4 (y,, ..., y,) mit (y,, ..., y,)#
(0, ..., 0) den Rang r haben.

Satz E. Fuar die Existenz etner linearen Schar, welche von s reellen
Matrizen mit n Zeilen und r Kolonnen aufgespannt wird und durchweg den
Rang r hat, ist die folgende Bedingung notwendsq : alle Binomialkoeffizienten

(Z’) mit n —r < u<s sind gerade.

Beweis. Wir setzen voraus, dafl die Matrizen 4,, ..., 4, eine Schar der
genannten Art aufspannen; wir werden zeigen, dafl dann im projektiven
Raum Pm1ein (s — 1)-Feld existiert, in dessen Regularitatsbereich eine
Ebene Pr-! liegt; dann wird auf Grund des Satzes B der Satz E be-
wiesen sein.

Ist @ irgend eine quadratische n-reihige nicht-singulire Matrix, so
erfiillen auch die Matrizen QA4,,...,QA, die Voraussetzung ; da
A,=4(1,0,...,0) den Rang r hat, kann man @ offenbar so wihlen,
daB @4, = (9,,) wird, wobei d,,=1 und ,,==0 fiir » 7 ¢ ist; indem
wir statt QA4, wieder 4, schreiben, diirfen wir von vornherein annehmen,

dal 4, = (4,,) ist. Es sei
o= (a’vga') )
dann ist also @, ,, = d,, firv=1,...,n und ¢ =1, ..., r. Daraus, daB3
unsere Matrizen den Rang r haben, folgt iibrigens r < n.

Wir setzen

Qé; Aroo o= "Voyp (L1, ..., )
und betrachten die, von den Parametern z,, ..., x, abhangigen Vektoren
Vo= (Vo1,:..+5%4p) , 0=1,...,8,
im Raume R; dann ist speziell v, = («,, ..., %,, 0, ..., 0). Wir behaup-
ten, daB die Vektoren v, v,,...,v, nur fir (z,,...,z,)=(0,...,0)

linear abhéingig sind; in der Tat: es sei (y,...,¥,) # (0,...,0) und
2y, 0, = 0; diese Relation ist gleichbedeutend mit den Gleichungen

Zaveoqua=0 , v=1,...,n ,
e,0
[e=1,....,r ; o=1,...,8],
die wir auch so schreiben kénnen:

er(zyoaveo)r—-o y yv=1,...,n ;
e o

216



da aber die Kolonnen der Matrix A (y,, ..., ¥,) linear unabhéngig sind,
folgt hieraus (z,, ..., %,) = (0,...,0).

Jetzt seien z,,...,2,,...,z, Koordinaten im RE" Der Ortsvektor
vy = (2, ..., 2,) zusammen mit den Vektoren v,,..., v, — ohne den
Vektor v, — bilden ein projektives s-Feld B im R"; (dabei hingen
Dy, ..., 0, nur von den ersten » Koordinaten ab). Die soeben festgestellte
Unabhéangigkeitseigenschaft der Vektoren v, v,, ..., v, bedeutet: auf
der Ebene Rr, die durch z,,, = ... z, = 0 gegeben ist, besitzt das Feld
B keine andere Singularitat als den Nullpunkt o. Das (s — 1)-Feld &
im P71 das dem Feld B entspricht, besitzt daher keine Singularitat auf
der Ebene Pr-1, welche R" entspricht; P! gehort also zum Regularitéats-
bereich von §. Damit ist die Behauptung bewiesen.

Besonderes Interesse verdient der Fall quadratischer Matrizen, also

der Fall » = n; dann lautet die Behauptung des Satzes X': alle (Z) mit

w=1,2,...,8 — 1sind gerade; auf Grund der Uberlegung, die in Nr. 1
vom Satz B zum Satz A fithrte, konnen wir daher den folgenden Satz

aussprechen?®):

Es sei m = 22 - u, u ungerade, und es existiere eine lineare Schar von
reellen quadratischen n-reithigen Matrizen

A(yl’ ces ys) = y1A1+ se o} ysAtM

welche, abgesehen von A (0, ..., 0), simtlich nicht-singulir sind; dann ist
s < 2A

Insbesondere kann die Maximalzahl s = n hochstens dann erreicht
werden, wenn n eine Potenz von 2 ist; derartige Scharen sind fiir

n =1, 2, 4, 8, aber nicht fiir groBere n bekannt.
SchlieBlich sei noch eine andere Formulierung des Satzes E angegeben:

Es existiere ein solches System von n reellen Bilinearformen

fV(x;y)zzavgaqua , ¥e=l, iee %,
a

Q,

in den Variablenreihen
x:(xly--'sxr), ?/=(y1,~--,?/s),
dap das Gleichungssystem
fv(x,y)::(), v=1...,n,

%) Der Satz ist fir A = 0 elementar, fiilr A = 1 bewiesen in Diss., Satz 27, und fir
A < 4 angekiindigt in meiner Note in den Verh. d. Schweiz. Naturforschenden Gesellschaft
1935, S. 277—278.
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keine anderen Losungen (z,, ..., %, ¥y, ..., y,) besitzt als die trivialen mit
x=(0,...,0) oder y = (0, ..., 0). Dann sind alle Binomialkoeffizienten

(Z’) mit n — r < u < 8 gerade.

In der Tat ist, wie wir schon im Beweis des Satzes E feststellten, das
soeben formulierte Verhalten der Formen f,(x ; y) gleichbedeutend damit,
daf3 die Kolonnen jeder Matrix 4 (y,, .., ¥,) mit (¢,, ..., y,) # (0, ..., 0)
linear unabhangig sind, daBl diese Matrizen also simtlich den Rang r

haben 19),

(Eingegangen den 7. Dezember 1940.)

10) Die Satze aus Nr. 9 (sowie die Verallgemeinerungen, die entstehen, wenn man in der
zweiten Formulierung des Satzes E die Linearformen durch ungerade stetige Funktionen
ersetzt) sind auf einem anderen, aber ebenfalls topologischen Wege bewiesen und samt
weiteren Anwendungen und Spezialisierungen ausfiihrlich dargestellt in der nachstehenden
Arbeit von H. Hopf, Ein topologischer Beitrag zur reellen Algebra. Herrn
F. Behrend, dem Herr Hopf und ich diese Satze mitgeteilt hatten, ist es gelungen, Beweise
zu finden, die in pr#éziserem Sinne ,,algebraisch‘ sind: F. Behrend, Uber Systeme
reeller algebraischer Gleichungen. Compos. Math. 7 (1939), 1-—19. — In der Arbeit
von H. Hopf (Anhang I) findet man iibrigens auch neue Beweise unserer Siatze A und B.
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