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Sur une classe de transformations différentielles

dans l'espace à trois dimensions. I.

Par Alexandre Ostrowski, Baie

Introduction
Si z est une fonction indéterminée de x, on peut toujours introduire

deux variables X, Z par des équations

dz\ „ i dz\

mais, en considérant Z comme fonction de X, l'expression de -j~r con-

tient en général ¦. Or, on peut choisir les fonctions / et g de sorte
dx

dZ dz
que 1 expression de -~r ne dépende que de x, de z et de -j~ :

(L2L ctx

dZ / dz

et qu'en plus x et z puissent être tirés des relations (1) et (2) en fonctions

de X, Z et -= On a alors affaire à une transformation de contact.
dJL

Par exemple, en posant avec Euler et Legendre

*=£ ¦*->-*£¦ <3>

on a
dz dz d2z

xdZ dx dx dx2__ __ -—x. (4)

dx2

II existe aussi des transformations de cette sorte dans le cas d'une
fonction z d'un nombre quelconque n de variables indépendantes

xi > - • • > xn • Ce sont des transformations de contact dans l'espace à n + 1

dimensions, dont la théorie, amorcée par Euler, Legendre, Ampère et
Jacobi et poursuivie par Du Bois-Reymond et Darboux, a été surtout
développée dans l'œuvre magnifique de Sophus Lie et complétée par
S. Cantor et F. Engel.
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On peut se demander s'il existe aussi des transformations analogues
dans le cas par exemple de plusieurs fonctions d'une variable indépendante.
Mais il est facile de montrer que, si par exemple, yx et y2 sont deux
fonctions indéterminées d'une variable indépendante x9 on obtient, en
posant

pour les dérivées —~- -—- des expressions dépendant des dérivées
aç aç

secondes de yx et y2 et que ces dérivées ne disparaissent de f, rj1, r\2 que si

les fonctions f, g,h sont indépendantes de —p- et —~- c'est-à-dire,
ax dx

si notre transformation est une transformation ponctuelle.

Toutefois, en combinant par exemple la transformation (3) avec la
transformation identique U u, u étant une fonction indéterminée de x,
on exprime au moins les fonctions z et u de x par Z, U et X et par les

dZ dU dU duldH
dérivées-=^=-, -7=- bien que lexpression de la dérivée ——- -—-/-——dX dX r dX dx/ dx2
contienne la dérivée seconde de z. On a ici affaire à une transformation
qui est réversible sans être une transformation de contact.

Plus généralement, si yv(x), (v 1, n) sont n fonctions indéterminées

de x, il existe des transformations

telles qu'en dérivant ces relations, on puisse exprimer x et les yv en fonctions

de f, r\v et des dérivées des r\v par rapport à £ jusqu'à l'ordre Je.

Nous appelons des transformations de cette sorte transformations réversibles

d'éléments de ligne d'ordre k. Si k 1, nous parlerons tout simplement

de transformations R.
Le présent mémoire est consacré à l'étude des transformations R pour

n 2, c'est-à-dire dans l'espace à trois dimensions. Dans un mémoire
suivant nous établirons les principaux théorèmes concernant les
transformations R dans l'espace à un nombre quelconque de dimensions.

Si f, r\x et rj2 sont donnés en fonctions de x, yl9 y2, -~ p1} -j^=p2ax ax
de manière à conduire à une transformation R, nous montrons tout
d'abord que les expressions de f, rjx, rj2 dépendent d'une même fonction
de pl3 p2, c'est-à-dire qu'il existe une fonction
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telle que f, rjl9 rj2 s'expriment tous les trois par x, yl9 y2 et r. La fonction
r jouit, en fonction de px et p2> de la propriété que ses courbes de niveau
sont des droites, r peut être choisi naturellement de différentes façons.
Nous choisissons r d'une manière ,,canonique", de sorte que r est uni-
voquement déterminé par l'équation ,,Pfaffienne" ds 0, où

ds edyx — a(x, yl9 y2, r) dy2 — b(x, yl9 y2, r) dx

Ici l'on a ou bien e= 1, a r (type I), ou bien e— 1, b r, —- 0
or

(type II), ou bien e 0, a — 1, b r (type III).
La forme ds sera appelée la première forme adjointe rattachée à notre

transformation R. En considérant les expressions de x, yl9 y2 en

fonctions de |, rjl9 rj2, -—- n1, -~£- =?t2, on exprime de la même façon

x> Vi Vl2 Par f » ^iî V2 e^ Par une grandeur

définie univoquement par une équation do 0, où

do ed^ — oc(Ç, rj1} rj2, q) dr\2 — /?(£, rjl9 rj2, q)

la seconde forme adjointe rattachée à notre transformation R, satisfait aux
conditions analogues à celles énoncées pour ds.

Notre transformation R se réduit alors à une transformation ponctuelle
entre deux espaces à 4 dimensions

satisfaisant à la condition
do — [xds (5)

(théorème I).
Ici les formes adjointes ds et do peuvent être choisies arbitrairement

(théorème III), et chaque transformation satisfaisant à (5) définit une
transformation R.

De l'autre côté, si la forme ds est donnée, il suffit de choisir les expressions

de |, tjl9 rj2 en fonctions des x, yl9 y2, r de sorte qu'elles satisfassent
à une certaine équation différentielle (24,4) du texte, pour qu'il soit
possible, en leur adjoignant une quatrième fonction q(x, yl9 y2, r),
d'obtenir une transformation R (théorème IV). Toutefois il y a certains
cas d'exception.
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Les transformations R ne forment pas un groupe, mais si Ton ne
considère que les transformations R dont les deux formes adjointes sont
égales entre elles quand on remplace f, ?7i, ^2> £ dans do resp. par
x> Vu V21 r ~ les transformations R symétriques — l'ensemble des
transformations R symétriques appartenant à une forme adjointe fixe forme
un groupe.

Dans notre discussion, nous faisons généralement abstraction des
transformations R provenant d'une transformation ponctuelle entre
x, yx, y2 d'un côté et f, r\x, r\2 de l'autre. Toutefois, nous montrons
(théorème II) que la condition nécessaire et suffisante pour qu'une forme
adjointe do puisse être transformée par une transformation ponctuelle en
la forme adjointe dyx — rdx est que les coefficients de do soient des

polynômes au plus linéaires en q. (Une telle forme adjointe sera appelée
axiale.)

L'intérêt de ce résultat consiste en ceci que les transformations R
symétriques correspondant à la forme dyx — rdx se réduisent aux
transformations de contact dans le plan des x, yx.

Ces résultats sont développés dans le chapitre I du présent mémoire.
Le § 1 de ce chapitre contient la démonstration que les transformations
de contact dans le sens de Sophus Lie n'existent pas dans notre cas.
Le § 2 est consacré à la définition des fonctions r et q. Dans le § 3 nous
démontrons le théorème I qui peut être considéré comme le résultat
principal de ce chapitre, et nous ajoutons quelques remarques sur les
transformations R du point de vue de la théorie des groupes.

Dans le § 4, les théorèmes II et III sur l'équivalence des formes
adjointes sont démontrés. Relevons qu'il résulte du No. 62 du § 10 du second

chapitre, que notre procédé de démonstration du théorème III contient
une solution de l'équation différentielle aux dérivées partielles du premier
ordre à deux variables indépendantes dans le cas général. Dans le § 5

nous démontrons le théorème IV, et nous ajoutons au § 6 quelques

remarques sur l'intégration de l'équation différentielle (24,4).
Pour un nombre n > 2 de fonctions de x, la solution du problème de

trouver toutes les transformations R sera obtenue en généralisant les

considérations du chapitre I. Mais dans le cas spécial n 2 on obtient
une solution particulièrement simple de notre problème en faisant usage
des transformations de contact dans l'espace à trois dimensions. Cette
solution est exposée dans le chapitre II.

En éliminant r et g des 4 relations existant pour une transformation R
entre x, ylf y2,r et f, rj±, rj2, Q, on obtient une correspondance entre les

espaces 8(x, yly y2) et £(£, rjl9 rj2), définie par un couple d'équations
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Ov{x9 yl9 y2i f, rjv rj2) 0 * 1, 2 (6)

C'est une correspondance de rang 1 entre 8 et 2. Nous montrerons dans
le § 7 que réciproquement la transformation R est univoquement
déterminée par la correspondance (6) et par ds, à l'exception de certaines
transformations R, transformations R singulières, qu'on peut facilement
toutes former (théorème V).

Dans le § 8 on part d'une correspondance (6) donnée à priori, et l'on
cherche des conditions sous lesquelles, en choisissant une première forme
adjointe ds, on obtient une transformation R. Cette recherche se réduit
à la discussion du problème de caractériser certaines formes ds que nous
appelons singulières relativement à (6).

Notre résultat est que chaque forme ds est singulière relativement à (6),
si la correspondance (6) est intransitive, c'est-à-dire, si les équations (6)

peuvent être choisies dans la forme

fv(*> Vu 2/2) - Vv(£> Vu V2) 0 v 1, 2

Si la correspondance (6) est transitive, elle définit dans chaque point de

l'espace S un ,,cône élémentaire" d'éléments de ligne. Si ce cône dégénère
dans chaque point de S et devient un élément de surface, on a affaire à

une correspondance faiblement transitive dans S.

Le résultat principal de la discussion du § 8 consiste en ceci que les

formes singulières ds n'existent dans le cas de (6) transitive que si (6) est

faiblement transitive dans 8, et qu'on peut caractériser les formes
singulières comme certaines formes axiales satisfaisant à une certaine
relation linéaire qu'on établit facilement à partir des cônes élémentaires
(dégénérés) définis dans S par (6).

Or, une correspondance (6) (du rang 1) définit d'après S. Lie une
transformation de contact T. On peut alors (§ 9) interpréter nos formules
au moyen de jP. A chaque forme adjointe ds correspond un ensemble D
de 00 4 éléments de surface de S tel que par le point général de 8 passent
oo1 éléments de surface de D. D sera appelé le champ d'éléments de

surface correspondant à ds. D définit évidemment dans S une équation
différentielle aux dérivées partielles du premier ordre. Maintenant, si A

est le champ d'éléments de surface correspondant dans 27 à do, D est

transformé dans A par la transformation de contact T.
On peut dès lors obtenir les équations de notre transformation R de

manière suivante: Chaque élément de ligne (x, y1, y2, px, p2) général
dans S est situé dans un élément de surface du champ D. Si à cet élément
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de surface correspond par T un élément de surface de A passant par le

point (f, rjlt tj2), on a en exprimant f, rj1, rj2 en fonctions de z,y1,yi,p1,
p2, notre transformation R.

Toutefois, le résultat obtenu n'est pas applicable aux transformations
singulières. Pour caractériser les transformations singulières, on peut
utiliser les transformations de contact qui se rattachent à une correspondance

du rang 2, définie par une seule relation

Q(x,Vi>Vi,£,rii,yt) O. (7)

On obtient alors (§ 10) le théorème VI qui est le théorème fondamental
du présent mémoire : Chaque fois qu'une transformation de contact entre 8
et Z transforme un champ D d'éléments de surface de 8 dans un champ â
d'éléments de surface de Z, on obtient par la règle énoncée plus haut une
transformation R, et chaque transformation R peut être obtenue de cette

façon.
Toutefois, en appliquant ce théorème, il faut tenir compte de certaines

singularités dues à la non-uniformité des transformations impliquées.
Nous avons dû dans la discussion des §§ 8, 9 plus entrer dans les

détails que dans la première partie du mémoire. Cela a été nécessaire,

puisque les transformations des équations différentielles aux dérivées

partielles par une transformation de contact générale ne sont pas étudiées
en détail dans les grands traités de Lie-Scheffers, Lie-Engel, Goursat et
Campbell.

Cependant, une discussion générale de cette sorte se heurte à un
obstacle apparemment infranchissable autant qu'on ne fait pas d'hypothèses

très particulières sur les fonctions entrant dans le calcul. Une
équation de la forme

F(r,x,yi,yJ 0 (8)

peut très bien n'admettre aucune solution par rapport à r, même si r
entre effectivement dans F et si F est une fonction holomorphe en
r> x> V\>y<i- Par exemple F pourrait être de la forme e6^1 *• Vl'Vi), G étant
une fonction entière de ses arguments. Il est donc impossible en général
de ,,tirer la valeur de r de l'équation (8)" comme on est accoutumé de le
faire dans les discussions générales de la théorie des équations différentielles

aux dérivées partielles, surtout quand on utilise des considérations
géométriques. Dans de tels cas on est forcé de se borner aux conditions
nécessaires qui deviennent suffisantes dès que la solubilité des équations
est assurée, par exemple dès que les fonctions entrant dans le calcul sont
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algébriques. Quand on a atteint des conditions de cette sorte qu'on
pourrait appeler des conditions algébriquement complètes, on n'a naturellement

pas résolu complètement le problème, mais on a peut-être fait tout
ce qu'on peut faire sans introduire des hypothèses trop spéciales.

C'est dans ce sens seulement qu'on peut considérer les résultats du § 8

comme définitifs.

CHAPITRE I
Etude directe des Transformations JR

§ 1. Préliminaires, exemples

1. Soit x une variable indépendante, et yv y2 deux fonctions indéterminées

de x ; pl9 p2 leurs dérivées premières, zl9 z2 leurs dérivées secondes.
: | M*, tt.ir,,ft, A)

une transformation telle qu'en calculant au moyen de (1,1)

(1,2)

on obtienne premièrement comme l'inverse de a une transformation s :

x ;

(1,3)

et, deuxièmement, en posant

et en dérivant (1,3), des expressions pour pl9 p2 analogues aux formules
(1,2). Les transformations s et a de ce type seront appelées au cours du
présent mémoire transformations R. Elles présentent une certaine
analogie (assez incomplète, il est vrai) avec les transformations de contact
(Cf. No. 3).
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Quand peut-on dire que les transformations s et a sont inverses Tune
de l'autre? Ceci est équivalent aux deux hypothèses suivantes:

/. En substituant dans (1,1) les expressions (1,3) de x,yl9y2 et les

expressions correspondantes de pl9p2, les S équations (1,1) deviennent
des identités pour le couple ,,générall( des deux fonctions 7]lf rj2 de f 1).

//. En substituant dans les équations (1,3) les expressions (1,1) et (1,2),
ces équations deviennent des identités pour le couple »général" des deux

fonctions yx, y2 de x.

Il est évident qu'alors le système (1,1) possède en général pour chaque
couple de fonctions rjv rj2 de f des solutions, et chaque solution est
donnée par (1,3). Le fait analogue subsiste pour le système (1,3).

Si l'on retient l'hypothèse I, l'hypothèse II peut être remplacée par
l'hypothèse suivante:

II0. Le système (1,3) possède une solution pour le couple ,,général" des

deux fonctions yl9 y2 de x.

En effet, désignons par y\, y\ un couple général de fonctions de x et

par p\, pi leurs dérivées premières. Soit alors £°, 77?, rfe une solution des

équations (1,3), et désignons par n\, n\ les dérivées de 17J, if2 par rapport
à |°. Cette solution est alors donnée d'après l'hypothèse I par les formules

*«=f(z,î£,rf) ; vl v^,yl,pl) IZ\'\ ' (M)
et l'on a

Alors, on a en substituant les expressions (1,4) dans (1,5):

Donc, en substituant les expressions (1,1) et (1,2) dans (1,3), ces équations
deviennent des identités pour le couple ,,général" yl9 y2.

1) Si Ton dit qu'une assertion est valable pour un couple général de deux fonctions,
on entend par là qu'il existe une expression différentielle ^ en deux fonctions, telle
que l'assertion en question reste valable autant que l'expression <b ne devient pas 0.
Toutefois, cette notion s'applique généralement dans les recherches sur le comportement

local, de sorte que les fonctions ,,générales" pourraient très bien posséder des

espaces lacunaires, même si elles sont analytiques.
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Dans ce qui suit nous supposons partout que les substitutions (a) et (s)
sont inverses Vune de Vautre dans le sens de ce No.

2. Si les fonctions f, rjl9 rj2 dans (1,1) ne contiennent pas pl9p2, les

fonctions x, y1, y2 de (1,3) sont indépendantes de nl9 n2.
En effet, les 3 fonctions dans (1,1) sont assurément indépendantes,

puisque dans le cas contraire il existerait une relation entre £, rjv rj2 et
alors les équations (1,3) ne seraient pas résolubles pour le couple ,,général"
Vu V*•

Donc on peut exprimer x, yl9 y2 comme fonctions de f, rj1, rj2. Mais
d'un autre côté, d'après nos hypothèses, ces 3 fonctions sont exprimables
par les expressions de droite en (1,3). Donc, si ces 3 expressions n'étaient
pas indépendantes de tcx tz2 on obtiendrait du moins une équation
différentielle pour rjid), r]2(£) et le couple rjv r\2 ne serait pas ,,général".

Il s'agit donc dans ce cas d'une transformation ponctuelle et de son
inverse.

Dans ce qui suit nous allons supposer, si le contraire n'est pas dit
explicitement, que les transformations (1,1), (1,3) ne se réduisent pas à

des transformations ponctuelles. Alors au moins l'une des variables

pi, p2 entre effectivement dans (1,1), et au moins l'une des variables
7tl9 n2 entre effectivement dans (1,3).

3. Les expressions (1,2) de nl9 n2 contiennent z1} z2. Nous allons
maintenant montrer que ces expressions contiennent effectivement au moins
Vune des variables zl9 z29 s9il ne s'agit pas d'une transformation ponctuelle.

En effet, si nx et n2 étaient indépendantes de zl9 z2, il résulte des
formules (1,2) que le rang de la matrice

serait égal à 1. Mais alors les 3 fonctions rjl9 t]2, f, considérées comme
fonctions de Pi,p2, seraient toutes les 3 exprimables par l'une d'elles.

Il existerait donc une fonction p p(x, yl9 y29px, p2) telle que f, rjl9 rj2

pourraient être exprimés en fonctions de 4 variables x9y1,y2,p:

f ==£(*, yl9 y^p)
m m (#> yi> y* p) »

% î?i(«, yi, yt, p)
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Alors on a pour r\x et rj2 :

+ PiV»^ + pA, + *&

r.
Or,

(ly)
zV + *V + PP + PP + Px

contient effectivement une des variables zt et z2 qui n'entrent pas
d'après notre hypothèse dans 7z1,ti2. On a donc

Çp Sp

mais les expressions de droite ne dépendant ici que de x, yl9 y2, p, nous
aurions exprimé 5 grandeurs

f, Vi, rç2,tti>^2 (3,1)

en fonctions de 4 grandeurs x, yl9 y2, V-
II existerait donc une relation non-identique entre les 5 grandeurs

(3,1) tandis que rjXi r\2 est un couple ^général" de fonctions de f.
En particulier il n'est donc pas possible que dans une transformation

(1,1) qui ne se réduit pas à une transformation ponctuelle, les 5 expressions
(3,1) s'expriment au moyen de x, yl9 y2, pl9 p2.

Les transformations de contact dans le sens étroit de Sophtts Lie ne peuvent
donc pas être généralisées au cas de 2 fonctions d'une variable indépendante

si Von ne veut pas se borner aux transformations ponctuelles 2).

4. Exemples. I. Posons

On a évidemment

dx —

+ P2)'z— Pi
dx

donc
2) Cf. Lie-Schefïers, Géométrie der Berùhriingstransformationen, T. I. (1896), pp.

478 — 480.
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i
II. Pour

on obtient
Pi „ _ Pi —Pi —

c'est essentiellement la transformation de Legendre.

III. En posant

t Pi Pi /imç x r\x — rç2 2/i £1L y2 (4,3)

on a

IV. Des formules

il résulte
=in"x * ni

Pi _ P2

» ~ I Vx r\i > y* rj2 • (4,4°)

Dans cette transformation, chaque point se déplace suivant une parallèle
à l'axe des x, le facteur dont se multiplie x étant proportionnel à la
tangente de l'angle formé par la projection de l'élément de ligne sur le

plan des yl9 y2 avec l'axe des y2.

V. Une généralisation de l'exemple précédent est donnée par les

formules :
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m Vi > n% y% (*,«)

si

v%

En effet, on a

n Pi n
2h ™i _ Pi

donc en résolvant la première équation (4,5) par rapport à x :

VI. Enfin, si

lk • (4>6)

on obtient

2 Pi \ Pi /
X

^2 J^2

/ p2 \ / Pz ni Pi

^2 ni

§ 2. Les fonctions r et q

5. Désignons par

une fonction de ses 5 arguments jouissant de la propriété de rester
indépendante de zx,z2 quand on y exprime les arguments f, ...,n2 par
x> Vii V2i Pi> Pz> zi> Z2- Par exemple, les 3 fonctions x, yl9 y2 dans (1,3)
jouissent de cette propriété.

Posons a a a

Alors on peut écrire (1,2) dans la forme

nv /———77— v — 1, 2 (5,2)
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Donc, en dérivant k par rapport à zx et z2 :

+(^(«+f;1«i)-f;i(^.+^,18!1)X=o.
Les deux relations (5,3), (5,4) ne sont pas satisfaites identiquement en k,
sans quoi nx et n2 seraient indépendantes de zx et z2. Donc on obtient
pour k une équation différentielle :

y< + < 0 (5,5)

où y est indépendant du choix de #c. En plus, y ne dépend évidemment

pas de zl9 z2, et l'on obtient de (5,3), (5,4) les trois expressions pour y :

dont Tune au moins ne devient pas indéterminée.

6. La condition (5,5) est évidemment nécessaire et suffisante pour que k
jouisse de la propriété en question. Or, y — y(Çf rjl9 ...,%), jouit aussi
de la propriété de rester, exprimé par x,yl9...9 indépendant de zx et z2.
Donc

yy^ + y^o • (6,i)

y pourrait très bien être Oouoo (dans ce dernier cas, l'équation (5,5) se

réduit à Kni 0) ou bien, plus généralement, être indépendant de nx et
n%. Nous distinguons trois cas:

1. y est fini et indépendant de nX9n2. Alors, nous posons

Q ni-y (Ç 9 t}u rj2) nz (6,2)
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2. y dépend au moins d'une des variables nl97i2. Alors, nous posons

Q y (6,3)

3. y est égal à oo. Alors, nous posons

Q 7l2. (6,4)

7. Dans le cas 2. g y, g est aussi une intégrale de (5,5), donc chaque
fonction k s'exprime par g, en adjoignant ë,rjl9r)2. Or l'expression
ni ~~ Qn2 satisfait elle aussi la condition (5,5). Donc cette expression
s'exprime par |, rj1, rj2, g :

nx — gn2 <p (g ; |, rj1} rj2) (7,1)

Dans les cas 1. et 3, k est une fonction de n1 — yn2 ou de n2. Donc, dans
tous les trois cas k est une fonction de f, rjl9 rj2i g.

Nous supposons dès maintenant que x,y19y2 dans (1,3) sont exprimés

en fonctions de f, r\x, r\2, q et les dérivées partielles sont à

calculer dans cette hypothèse.

Dans l'exemple II du No. 4 on a g n2, dans les exemples I, III-—VI:

Q- n2
'

8. Considérons maintenant une fonction k (x, yx, y2, plf p2) qui,
exprimée par les variables grecques, ne dépende pas de Ci, C2 • H résulte
évidemment d'un raisonnement complètement symétrique au précédent
que notre fonction k satisfait à une équation différentielle

c^i + ^a 0
> c c(*>3/i>^2,Pi,:P2) > (8,1)

où la fonction c appartient, elle aussi, à la classe des fonctions k et satisfait
à l'équation différentielle

De même, posons r c, si c dépend effectivement d'une des variables

Pi,p2. Si c est indépendant de pl9 p2 et fini, posons

r p1-c(x,yliy2)p2 ; (8,3)
Enfin, pour c oo, soit

r 2>2 • (8,4)

Dans le cas c r il existe une fonction f(r;x,yl9 y2) telle que

Pi - *T2 /(r ; x, yx, y2) (8,5)
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Dans tous les trois cas chaque fonction k s'exprime par x, yl9 y2ir.
Dans ce qui suit nous supposerons que £, rjl9 r\2 en (1,1) sont

exprimés en fonctions de x, yx, y2, r et leurs dérivées partielles sont à

calculer dans cette hypothèse.

Or, q, exprimé en fonction des variables latines, appartient évidemment
à la classe des fonctions k. Il en résulte que q peut être exprimé par
*,1h,ir,,r:

Q e(*,yi,Vt,r). (8,6)

De même r s'exprime par f, rj1, rj2, q :

Dans les exemples I, II du No. 4 on a resp. : r px + p2 ; r p2 ; et

dans les exemples III—VI : r -^-

9. La fonction r r(pl9p2, x, ylf y2), définie par (8,3) au moyen d'une
fonction arbitraire c(x, yl9 y2), ou bien par (8,5) au moyen d'une fonction
arbitraire f(r, x, yl9 y2), ou bien par (8,4) comme p2} possède la propriété
qu'en posant r c0 et en variant la constante c0, on obtienne un champ
de droites dans le plan des pl9 p2. Les variables x, ylf y2 sont alors à

considérer comme paramètres.
Or, il est facile de voir que, réciproquement, au champ le plus général

de droites g du plan des Pi,Pz, dépendant des paramètres x,yl3y29
correspond une et une seule fonction r(p1,p2,x,y1, y2), définie comme
en haut, telle que le champ g consiste en les lignes de niveau de r.

En effet, soit
A(t)p1+B(t)p2 C(t) (9,1)

l'équation de la droite générale de g, dont on obtient les droites
individuelles pour les valeurs particulières de t.

Alors, si A (t) ^ 0, on peut supposer dès le commencement A(t) 1.

Maintenant, si B(t) ne dépend pas de t, posons c — B(t)9 alors

** Pi - cp2 (9,2)

est une fonction dont les lignes de niveau forment le champ g.
Si B(t) dépend effectivement de t, posons B(t) — r et exprimons

r:
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Alors l'équation générale des droites de gf est

Vi - rp2 /(r, x, yt, y2) (9,3)

Donc g est l'ensemble des lignes de niveau de la fonction r tirée de (9,3).

Si enfin A(t) 0, l'équation (9,1) se réduit à

C(t)

donc 5 consiste, dans ce cas aussi, en les lignes de niveau de la fonction
r p2.

10. Supposons de l'autre côté que la fonction F(ply p2) soit une fonction

générale dont les lignes de niveau sont des droites. Alors,
l'inclinaison de la tangente le long d'une ligne de niveau F(pXi p2) c étant
constante, FrpJF^ doit être une fonction de F:

F'
P2

Fr
donc, en écrivant que le Jacobien des deux fonctions F et —™ est 0 :

FnF" 2Ff F! F" -\-FnF" 0 3) (10 1)

11. En interprétant p±, p2 comme des grandeurs caractéristiques d'un
élément de ligne issu du point P(x, yl9 y2), on a une relation linéaire
entre px et p2 pour r const., donc un élément de surface passant par
x> Vi> y2- Un ensemble de oo4 éléments de surface, tel que par chaque

point général de l'espace passent oo1 éléments de surface de cet ensemble,
sera appelé dans la suite un champ d'éléments de surface.

La fonction /f(plip2,x,yli y2) fait correspondre à chaque point P de

l'espace S des {xiy1, y2) à trois dimensions, oo1 éléments de surface

passant par P, caractérisés par la valeur de r. L'ensemble de ces oo1

éléments de surface forme donc un champ D d'éléments de surface. Le
fait analogue étant exact pour l'espace £des (|, r}x, rj2), on voit donc que
notre transformation est une transformation entre les deux champs D
et A d'éléments de surface, ainsi définis au moyen des deux fonctions

r et q.
Le champ D peut être caractérisé dans les trois cas considérés au

No. 8, comme l'ensemble des éléments de surface appartenant à une
équation différentielle aux dérivées partielles du premier ordre.

8) Dans notre discussion est évidemment contenue la détermination de l'intégrale
générale de l'équation (10,l)«
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Dans le cas I, où la fonction r est donnée par (8,5), les éléments de
ligne passant par P(x,yl9 y2) et correspondant à un r fixe, satisfont à la
relation

dyt - rdy2 - /(r, x, yl9 y2) dx 0 (11,1; I)

et sont donc situés sur l'élément de surface passant par P et dont les
coordonnées de direction p, q ont les valeurs

Ces éléments de surface appartiennent à l'équation différentielle aux
dérivées partielles :

9t/i / 3t/i
¦ârs==/te'yi>yi'a) • (I)

Dans le cas II, où r est donné par (8,3), on a pour une valeur fixe de r
l'élément de surface

dyx — c(x, yl9 y2) dy2 — rdx 0 (11,1; II)

aux coordonnées de direction

L'équation différentielle aux dérivées partielles correspondante est

-jj± c(z9y1.yt) (II)

Dans ce cas, les oo1 éléments de surface passant par un point P tournent
autour d'un axe orthogonal à l'axe des x, mais non parallèle à l'axe
des yx.

Enfin, dans le cas III, où r est donné par (8,4), l'élément de surface
correspondant à un r fixe, est donné par

dy2 — rdx 0 (11,1; III)

Ces éléments de surface sont tous parallèles à l'axe des yx. Dans l'équation
différentielle correspondante on prendra y2 comme fonction de x et yl9
et l'on aura
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Il est évident qu'en permutant les variables x, yx, y2 convenablement,
chacun des cas II, III se réduit au cas I.

On peut aussi caractériser les éléments de surface au moyen des
cosinus directeurs de la normale :

a cos {n, x), p cos (n, yx), y cos (n, y2), (11,2)

de sorte que Ton ait

p: q: -l=oc: y: (3 p - JL g j£-. (11,3)

On obtient alors dans les cas I, II, III resp. pour les champs d'éléments
de surface correspondant à ces cas:

I f(j) S^O

III 0=0.
Les équations différentielles correspondant aux exemples I, II, III

du No. 4 sont :

dVi
__ i a2/2 _ 0 fyi _ 0

dy2 dyx dx

Relevons enfin qu'une équation différentielle aux dérivées partielles
du premier ordre à deux variables indépendantes

• ¦£•¦¦»¦•)-°
peut toujours être réduite à une des formes (I), (II), (III).

Si F contient -^—, (11,4) équivaut à (I). Si J^ ne contient que -^—,

(11,4) se réduit à (II). Enfin (III) est le cas limite de (II) pour c oo.

Notre transformation R correspond donc à une transformation d'une
équation différentielle aux dérivées partielles du premier ordre dans 8
en une équation analogue dans E.

Nous verrons au § 10 que notre transformation entre D et A s'obtient
au moyen d'une transformation de contact, faisant correspondre les deux
équations différentielles en question l'une à l'autre.

Les champs d'éléments de surface correspondant aux équations
linéaires jouent dans la suite un rôle particulier. Ces champs sont earac-
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térisés par le fait que leurs éléments de surface passant par un point
général P tournent autour d'un élément de ligne — Vaxe du champ dans
P. Un tel champ d'éléments de surface sera appelé linéaire.

Aux cas des types II et III correspondent toujours des champs linéaires.
Quant au type I, la condition nécessaire et suffisante pour que le champ
correspondant soit linéaire, est que / soit un polynôme en r, au plus
linéaire.

En désignant les cosinus directeurs de l'axe l par

ocQ cos(î, x), y0 cos (l, y2), (11,5)

et en posant dans le cas I: f(r, x, yl9 y2) A(x, yl9 y2)r + B(x, yly y2),

on a pour les cosinus directeurs d'un élément de surface général du
champ dans les cas I, II, III resp. :

(I) * + Bp-Ay Q, (II)

donc pour l'axe du champ :

1 : B: —A j
0 : C : 1

0:1:0

' Ar + B (I)
(II)

(III)

(III) 0 0, (11,6)

(11,7)

§ 3. Les formes adjointes et la réduction aux transformations

ponctuelles en 4 variables

12. Posons 7 /TX
Vi — Qd"rj2 — <pdi; (1)

*?i — ydfJ2 — ($£ (H)
drj2 — ç>d$ (III)

(12,1)

suivant que y contient effectivement l'une des deux variables rjly t)2, en
est indépendant, ou devient 00.

De même soit

yx — rdy2—fdx (I)
y1 — cdy2 — rdx (II)

dy2 — rdx (III)
(12,2)

suivant que c contient effectivement l'une des variables p1$ p2, en est
indépendant, ou devient 00.
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Les formes ds et da seront appelées dans la suite la première et la
seconde forme adjointe correspondant à la transformation B considérée.
Nous distinguerons les formes adjointes des types I, II, III, suivant
que la première, la deuxième ou la troisième des formules (12,1)
respectivement (12,2) est valable.

En posant
da tdr\x — ocdrj2 — fidÇ (12,3)

ds edyx — ady2 — bdx (12,4)

il résulte de (6,2), (6,4), (7,1), (8,3), (8,4) et (8,5):

b (12,5)

0 (12,6)

13. En utilisant les expressions de £, rjl9 tj2 par x, yly y2, r9 on
remplacera les formules (5,2) par

Il en résulte pour /? Enx — an2:

(eôr)1 — ocôrj2) + w(erj[r — oct)2r)
H (51+l>

Or, /S étant dans tous les cas indépendant de zx, z2, donc de w, il résulte

Mais, d'après (5,1) et (12,5), pour e 1 :

llv1) ."=1,2
(13,3)

En introduisant ces valeurs dans la première des relations (13,2), on
obtient :
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Or, les expressions entre parenthèses étant indépendantes de p2, cette
relation se décompose en deux, que nous écrivons avec la deuxième des

équations (13,2):

(13,4)

H'r

Multiplions ces 3 équations respectivement par dx, dy2, dr et faisons la
somme; on obtient

— ï'Vlds)+<x(dr)2 — ti't9ld8)— e(dVl~rj[yjds) O

fids (13,5)

— /»& (13,6)

La formule (13,6) s'obtient du reste immédiatement de (13,5), en y
comparant des deux côtés les coefficients de dyx. Pour e 0on obtient les

relations correspondant à (13,3) en permutant les indices 1 et 2 et en
posant a 0. Les formules correspondant aux équations (13,4)
s'obtiennent de la même façon, et Ton arrive dans ce cas aussi aux formules
(13,5) et (13,6).

14. Nous pouvons maintenant formuler le résultat suivant:
Théorème /. Les substitutions a et s d'une transformation R s'obtiennent

à partir d'une transformation ponctuelle de Vespace à 4 dimensions :

=£0»

et de son inverse

x r

(14,1)

(14,2)

satisfaisant à Véquation (13,5), en y remplaçant r et q par les expressions
tirées suivant le cas, la première d'une des équations

Px — rp2 /(r, yX9 y2, x), r px - c(x, yl9 y2) p2, r p2, (14,3)

et la seconde d'une des équations
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ou
ou

c c

y ;

>(s, 2/1,

K(f> Vu

2/2) ou
ou

c 00

00

Chaque couple des substitutions a, s obtenu de cette façon, appartient à une
transformation R. — Nous avons encore à démontrer la dernière assertion
de ce théorème.

Supposons en effet que, étant donné un couple de deux fonctions
arbitraires :

la transformation ponctuelle (14,1), (14,2) satisfasse à la condition (13,5);
alors je dis, qu'en remplaçant q et r resp. par des fonctions de nx,n2,
Vu *?2> S ou de ply p2, yx, y2, x} tirées de (14,3) et (14,4), on obtient
deux transformations 0, s, inverses l'une de l'autre.

En effet, supposons que yx, y2 soient deux fonctions indéterminées de

x, et pl9 p2 leurs dérivées premières. Alors la forme différentielle edyx —

ady2 — bdx devient (epx — ap2 — b)dx, donc 0. Il en résulte que
l'expression de gauche en (13,5) disparaît aussi. Donc on a

nx — qtz2 (p(Q) ou nx — yn2 q ou bien n2 Q 9

et l'on a pour la grandeur q obtenue de (14,1), la relation correspondante
(14,4). Donc, d'après (14,2), x, yx, y2 s'expriment par f, r\x, rj2, nx, n2;
et, le même raisonnement étant applicable à partir de la transformation
(14,2) et des fonctions rjx, rj2 de £, les hypothèses du No. 2 sont en effet
satisfaites.

La transformation (14,1), (14,2), ainsi que les expressions r, q> et les

formes adjointes ds, do sont évidemment, d'après notre discussion,
univoquement déterminées par la transformation R donnée.

Quant à la question, dans quelle mesure la transformation (14,1),
(14,2) et les formes adjointes ds, do peuvent être choisies arbitrairement,
nous nous en occuperons dans les §§ 4 et 5. Dans le § 4 nous montrerons
que les deux formes ds, do peuvent être choisies arbitrairement. Dans le
§ 5 nous établirons les conditions sous lesquelles une transformation
ponctuelle de l'espace de 4 dimensions peut conduire, au sens du théorème

I, à une transformation R.
Dans le cas, où dans une forme adjointe ds le coefficient 6 est linéaire

et entier en r, c'est-à-dire correspond à un champ linéaire d'éléments de
surface et à une équation différentielle linéaire, nous parlons d'une forme
adjointe axiale, et les axes du champ correspondant d'éléments de surface
sont aussi appelées les axes de ds.
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Voici les formes ds, do correspondant aux exemples I, II et III —VI
du No. 4:

ds dyx + dy2 — rdx do dr\x — Qdrj2, (I)
ds dy2 — rdx do dtj2 — qd£ (II)
ds dyx — rdy2 do dr\x —- Qdrj2 (III—VI)

15. Considérons parallèlement à la transformation R, or, (1,1),
satisfaisant à la condition (13,5), une transformation R, 8, appliquée aux
variables f, rjv, nv:

X X{ê, ^1,^2,^,^2)
(15,1)^= ^(^^1^2,^1,^2) > jK=l, 2,

et satisfaisant à la condition
(15,2)

analogue à (13,5).
Formons le ,,produit" /Scr en substituant dans (15,1) les valeurs (1,1)

et (1,2). Sous quelle condition la transformation résultante sera-t-elle
aussi une transformation i£?

Tout d'abord les expressions de gauche en (15,1) devraient posséder la
propriété de devenir indépendantes de zt,z2 quand on y exprime les

arguments f, n2 par x, yl9 y2, pl9 p2, zl9 z2. Mais alors, ces fonctions
sont des fonctions du type des fonctions k, considérées au No. 5, et sont

exprimables en fonction de 4 arguments f, rjl9 rj2, q, où q est la fonction
définie pour la transformation o. On a donc

dox do (15,3)

et la transformation So satisfait à la relation

dS friido (15,4)

16. Il résulte de (15,3) en particulier, que le produit o2 d'une
transformation o par elle-même ne peut être une transformation R que si
Ton a

Q r(7c1,n2, | ïfr,^) (16,1)

Une transformation de ce type, pour laquelle les 2 formes adjointes
s'expriment de la même façon au moyen des variables et des différentielles

correspondantes, sera appelée symétrique.
Il résulte maintenant de (15,3) que toutes les transformations R
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formant un groupe donné, sont des transformations symétriques avec
la même forme adjointe. Les transformations ponctuelles en 4 variables,
correspondant aux transformations R d'un groupe, possèdent alors leur
forme adjointe comme un invariant relatif.

S'il s'agit en particulier de la forme adjointe

dyx pxdx, r px, g nx, (16,2)

les transformations JB correspondantes se réduisent évidemment aux
transformations de contact au sens de Lie, dans le plan des x, yx, en y
adjoignant une transformation de la forme

ih -F(«,fc,y,,ft) (16,3)

Si deux formes adjointes da, ds se correspondent par des transformations

a, s, du type (14,1), (14,2), elles sont équivalentes.
Soit maintenant 8 une transformation générale du type (14,1), qui

possède da comme un invariant relatif. Alors on obtient évidemment la
transformation générale possédant ds comme un invariant relatif, dans
la forme

Les groupes de transformations appartenant aux formes adjointes
équivalentes sont isomorphes. Or, toutes les formes adjointes sont équivalentes

entre elles, comme nous le montrerons au § 4. Il en résulte que les

groupes de transformations R appartenant à une forme adjointe da, sont
isomorphes aux groupes appartenant à la forme adjointe (16,2), qu'on
obtient de la théorie des transformations de contact du plan.

§ 4. Equivalence des formes adjointes

17. Nous allons d'abord dire quelques mots sur Véquivalence de deux

formes adjointes par rapport à une transformation ponctuelle en trois
variables. Soit donnée une forme adjointe dans E:

da dr\x — ocdrj2 — j8d£ (17,1)

Considérons une transformation ponctuelle entre 8 et Z:

„,,= !,2. (17,2)
/")

da devient par cette transformation :

da fxds fA{dyx — ady2 — bdx) (17,3)
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où l'on a, en exprimant les différentielles des variables grecques par celles
des variables latines:

si

18. On voit facilement dans l'hypothèse (17,5) que Tune au moins des

expressions a, b dépend effectivement de q. En effet, s'il en était autrement,

on pourrait écrire :

où a0, ax, a2 ne dépendent que de x, yl9 y2.

Donc, le Jacobien de |, rjl9 rj2 en (17,2) par rapport à x, yl9 y2 étant

^ 0, les trois expressions -^— s'exprimeraient par x,y1,y2,
Qo Qo Qo

donc aussi par f, rjl9 r\2. Mais alors il en serait de même pour oc et /?,

tandis que l'une de ces deux grandeurs est toujours égale à q. —

Mais alors, si a dépend effectivement de q, on posera r a, b

f(r, x, yl9 y2). Et si a ne dépend pas de q, on posera a c, b r, et ds

pourra s'écrire dans l'une des deux formes (12,2).

Si, enfin, (17,5) n'est pas valable:

Vi^—"^ — ?** 0 (18,2)
l'équation \^^ 0 (18,3)

est assurément impossible. En effet, dans le cas contraire, les deux équations

(18,2) et (18,3) seraient compatibles, tandis que oc et /? ne sont pas
assurément toutes les deux, exprimables par x, yl9 y2. Donc, l'une de ces
deux équations serait conséquence de l'autre, et le Jacobien de £, rjl9 rj2

par rapport h x, yl9 y2 serait 0. — On peut donc écrire

do (^.—«^,-00 (dy2-Ddx) (18,4)
où
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n'est pas indépendant de q ; en effet, dans le cas contraire, on aurait encore
les trois équations (18,1) avec at 0, et le même raisonnement serait
applicable. On peut donc poser r D, un cas qui se ramène au cas

a c, 6 r en interchangeant les variables y1, y2 ; ds a alors la troisième
des formes (12,2).

On voit donc que, étant donnée une transformation ponctuelle (17,2)
et une forme adjointe (17,1), il existe une fonction

r r(£ V q) (18,6)

telle qu'en adjoignant (18,6) aux expressions (17,2) de x et yv, on obtienne
une transformation de l'espace (f, rjl9 iy2, q) dans l'espace (x, yl9 y2, r),
satisfaisant à la condition (17,3). a, b et la fonction (18,6) sont alors uni-
voquement déterminées par (17,1) et (17,2).

19. Supposons maintenant qu'on ait en particulier oc 0, f} q

un cas qui se ramène, comme nous l'avons dit plus haut, aux transformations

de contact du plan.
On obtient alors pour — a, — b les expressions

en supposant que rjf1Vi £fVi ne deviennent pas 0 tous les deux.

Supposons que a contienne effectivement q. On a alors un ds du type I :

r a ; f(r, x, yl9 y2) b kr + l, (19,2)

où k et l s'obtiennent en résolvant les équations

4 -ftî =0.
(19,3)

Or, je dis qu'on pewJ /aire & et l égales à deux fonctions arbitraires de

x> Vu y2 en choisissant convenablement la transformation (17,2). Il suffit
en effet de déterminer ^ et $ de manière à satisfaire (19,3), c'est-à-dire
de prendre pour £, ^ deux intégrales indépendantes de l'équation aux
dérivées partielles

*J + l< —*<t 0 (19,4)

qu'on obtient à partir de deux équations différentielles
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en exprimant les deux constantes cl9 c2 dont dépend l'intégrale générale
de (19,5), en fonctions de x, ylf y2:

c, zv(x, yx, y2), v= 1, 2. (19,6)
En posant

le déterminant

4 4
ne sera pas identiquement 0, yl9 y2 étant exprimables par x, zlfz2. Donc,
a dépend effectivement de g, et notre assertion est démontrée.

De l'autre côté, une forme adjointe du type II en (12,2) se réduit, en

permutant y2 et x, à une forme adjointe du type I, dans laquelle 6 est

indépendant de r. Donc chaque forme adjointe du type II est équivalente
à dr\x — gd£. Et, quant à la forme adjointe dy2 — rdx, elle se réduit
évidemment à d^ — gdÇ, en posant

Donc:
Théorème II. Pour qu'une forme adjointe ds soit équivalente, par une

transformation ponctuelle, à dyx -— rdx, il est nécessaire et suffisant qu'elle
soit axiale.

En particulier, toutes les formes axiales sont équivalentes entre elles

par des transformations ponctuelles. — D'ailleurs notre résultat est

presque immédiat en termes des équations linéaires correspondantes. Il
se réduit à ce que deux équations linéaires aux dérivées partielles sont
toujours équivalentes par des transformations ponctuelles. En effet,
si, dans le cas de trois variables par exemple, fx c, f2 c sont deux
intégrales indépendantes de la première équation, Fx c, F2 c deux
intégrales indépendantes de la seconde, il suffit de considérer une
transformation ponctuelle par laquelle fl9 f2 deviennent Flf F2.

20. Nous allons maintenant démontrer le théorème annoncé à la fin
du No. 16:

Théorème III: Soient
do^zedm—(xdr\2—Bdi; _^ _(20,1)
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deux formes adjointes. Il existe toujours une transformation R entre les

espaces Zet 8, satisfaisant à la condition (13,5).

Démonstration : II suffit de considérer le cas où do se réduit à la forme
drj2 — QdÇ. On a alors à satisfaire à la condition

dr\2 — gdg f^(edy1 — ady2 — bdx) (20,2)

On peut évidemment supposer e 1, puisque dans le cas contraire ds se

réduit à dy2 — rdx et il suffirait de prendre la transformation identique.
Alors (20,2) se réduit à

ou bien, en éliminant p :

tir — Qè'r =0
(20,3)

Mais si rjf2r et |^ ne sont pas tous les deux 0, il résulte de (20,3)
l'existence de deux fonctions A, k, telles que le système des deux
équations différentielles

Vi Vl
(20,4)

z* +bzyi — KZfr 0

soit satisfait pour z rj2 et pour z £.

21. De l'autre côté, si le système (20,4) possède deux intégrales
indépendantes, on aura, en les désignant par rj2, f, les relations (20,3), où q
est une fonction de z, yl9 y2, r.

En effet, le système

< 0f < + «<1 0 ^ + 6< 0 (21,1)

n'est pas complet, puisqu'en combinant la première équation (21,1) avec
la deuxième et la troisième, on obtient a'r zrVl 0, bfr zry% 0, donc, Tune
des deux fonctions a, b étant r, la relation

<=<>, (21,2)
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qui n'est pas une combinaison linéaire de (21,1). Donc, puisque f n'est
pas constant, l'une au moins des expressions en (21,1) ne s'annule pas
pour z f, et l'on obtient une expression finie pour q.

Il suffit donc de démontrer qu'en choisissant convenablement X et k,
le système (20,4) possède au moins deux intégrales indépendantes.

22. Posons 2 3 24 4dy2 dyx dr

+ b
dx dyx dr

Alors on a

Or, supposons que les coefficients de -=— et — soient ici identiquement

0. Alors le système (20,4) est complet et possède en effet
4 —- 2 2 intégrales indépendantes. Il suffit donc de choisir A et k de
manière à satisfaire aux deux équations différentielles

Ka'r — U'r + b'yt - a'x + ab'ui — ba'Vi - 0 (22,2)

A*; - «A,' + X'x - *'vt + bïyi- <ikVi 0 (22,3)

On considérera ici deux cas, suivant que a r ou 6 r. Dans le premier
cas il résulte de (22,2).

* *K-K. — 'f* • (22>4)

En introduisant cette valeur dans (22,3), on obtient

K + C + 2rU\ *> + r*H vr ° • (22>5)

II suffit donc de prendre pour X une solution de (22,5) et d'en déduire la
valeur de #c par (22,4).

23. Dans le second cas où b r, a c (z, yl9 y2), on permutera dans
les équations (22,2), (22,3) A et k, a et 6, y2 et x, c'est-à-dire les deux
équations (20,4). On obtient donc dans ce cas un résultat correspondant
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au précédent en effectuant les mêmes permutations dans (22,4) et (22,5),
et en y remplaçant / par c(x, yl9 y2).

Donc, on peut toujours choisir A et k de façon à satisfaire (22,2) et
(22,3).

Nous avons encore à montrer que la fonction g déduite de (20,3} est

indépendante de £ et rj2. Or, soient u, v deux fonctions de r, x, yl9 y2
formant avec £ et y\2 quatre fonctions indépendantes. En introduisant
|, tj2, u, v comme nouvelles variables indépendantes, les équations (21,1)
déviennent

Xv(z) YX + àvzfv + Xyz'f + ^4 0 v 1 2 3 (23,1)

et il résulte de (20,3):

où tous les xv, %v ne s'annulent pas, puisque dans le cas contraire les Xv,
donc aussi les équations (21,1) ne seraient pas linéairement indépendantes.

Mais alors les équations Xv 0 sont des combinaisons linéaires des

équations
< 0,< 0, 4 + ^4=0, (23,2)

les équations (23,2) sont donc équivalentes aux équations (21,1), et le

système (23,2) n'est pas complet. Donc g ne peut s'exprimer par | et r\%

seuls, puisque, si g était indépendant de u et v, le système (23,2) serait
évidemment complet.

Le théorème III est démontré.
Une autre démonstration du théorème III résultera des considérations

du § 10.

§ 5. Equations différentielles pour £, r\x, r\2

24. Quelles conditions doivent être remplies par les fonctions f, r\x, rj2
dans (1,1), pour que cette transformation soit une transformation RI

Tout d'abord, ces trois fonctions, comme fonctions de pl9 p2, doivent
être exprimables par l'une d'elles. Donc le rang de la matrice

(ï ":•¦ v't)
doit être égal à 1. En plus, les lignes de niveau de chacune de ces fonctions
dans le plan des pl9 p2 doivent être des droites. Donc chacune de ces
3 fonctions satisfait à l'équation (10,1).
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De l'autre côté, si ces conditions sont satisfaites, il existe d'après le
No. 9, une fonction r r(plfp2, y1} y2, x) définie par (8,3), (8,4) ou
(8,5), telle que f, t]l9 rj2 soient exprimables par r, z, yl9 y2.

Nous supposerons donc que les fonctions f, %, r\2 soient données dans
la forme

rj2{r,x,y1,y2)
(24>2)

Nous allons maintenant déduire les conditions sous lesquelles, en ajoutant

aux fonctions (24,2) une quatrième fonction g g(r, x, yl9 y2)
convenablement choisie, on obtient une transformation satisfaisant à la
condition (13,5) avec la forme adjointe ds donnée.

En comparant les coefficients de drJdy1,dy2,dx des deux côtés de

(13,5) on obtient
f [ 0eriflr — ocrj2r —

î. —"IL—PS'. + V

(24,3)

Donc, une des quantités oc, (5 étant q et ^
condition nécessaire pour f, r?!, ry2:

tf I
Çyi Y}lyt V}2Vl ^

fv m,, w»,, a

0, on a comme première

Vlx vL

0 (24,4)

Dès que la condition (24,4) est satisfaite pour trois fonctions indépendantes

|', t?!, rj2, les rapports de e, <x, /S en (24,3) sont univoquement
déterminés. Il résulte alors de la comparaison de (12,3) et (12,1) comme
seconde condition nécessaire, que l'un au moins des trois rapports

— — — est indépendant de |, ^, rj2 (donc en particulier est
S £ OC

25. Or il est facile de montrer que, si les trois fonctions £, r/l9 rj2 de

*% %> y\> y% sont indépendantes et satisfont aux conditions déduites au
No. précédent, on peut leur adjoindre une quatrième fonction q
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Q(r, %> Vi, y2) indépendante de f, tjl9 rj29 telle que (13,3) soit satisfait. —
On suppose naturellement que a et 6 soient choisis conformément à

(12,2).
En effet, supposons d'abord qu'en résolvant (24,3), on ait e^O, On

pourra alors supposer e 1. Or, si alors oc est indépendant de f, tjl9 rj2

comme fonctions de r, x, yl9 y2, on posera

q q(t, x, yl9 y2) oc (r, x, yl9 y2)

et exprimera /? par q, |, tj19 tj2:

da aura alors la première des formes (12,1).
De l'autre côté, si oc est exprimable par f, rjx, t]2f mais /3 en est indépendant,

on posera

et rfc aura la deuxième des formes (12,1).

Supposons maintenant qu'on ait e 0. Alors, d'après nos hypothèses,

le rapport — est ^ 0, 7^ 00. On pourra donc poser <% 1, — ($ q
oc

Q(x> yi>y*> r)> oh q sera indépendant de f, %, ^2- L'équation (13,5) est
alors vérifiée en prenant pour da la troisième des formes différentielles
(12,1).

26. Nous arrivons au résultat :

Théorème IV: Une forme adjointe ds en r, x, yu y2 étant donnée; pour
qu'aux trois fonctions indépendantes (24,2) puisse être adjointe une
quatrième fonction q g(r, x, yl9 y2), indépendante de f, r\^r\2, de manière à
satisfaire à une condition (13,5), il est nécessaire et suffisant que f, rjl9 r\2

satisfassent à (24,4) et que Vun au moins des rapports des e, oc, (}, tirés de

(24,3), soit indépendant de f, r\x, rj2.

Il est d'ailleurs facile de montrer que la condition (24,4), à elle seule, ne
suffit pas pour assurer la validité du théorème III. Posons par exemple

ds dyt — rdy2 + dx, e 1, a r, 6 — 1

et
S r, rji % + yi, y* y2-

La relation (24,4) est vérifiée immédiatement, tandis qu'il est impossible
de satisfaire à une condition (13,5). En effet, choisissons r conformément
à la règle du théorème I. On obtient
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1 _l_ yl
_ 1 + Vi _ dx

T~~
V%

~~ dy2
dx

Mais alors on a

—
dx

___
dx

Ç -~~"~ I —-" j —— —————

dr)* '

dx dx df

et les fonctions %(£), î?2(l) satisfont à l'équation différentielle

t dV2 àr\x _ Q

La transformation obtenue n'est donc certainement pas réversible.

27. De l'autre côté on peut se poser le problème, dans quelle mesure les

fonctions x, yl9 y2 de £, rjl9 tj2, q dans la transformation (14,2) peuvent
être choisies arbitrairement.

En multipliant les 4 lignes du déterminant (24,4) resp. par

dr dyx dy2 dx

dq ' dq ' Bq ' dq

et en ajoutant trois lignes à la quatrième, on obtient les relations

où les facteurs Av sont les 4 Jacobiens de f, rjl9 rj2 par rapport aux variables

r, yl9 y2i x. Donc, £, rjl9 rj2 étant indépendants, on obtient la relation

équivalente à l'équation (24,4). Cette relation s'obtient du reste
immédiatement de la relation (13,5), en y comparant les coefficients de dq des

deux côtés.

Supposons maintenant que ds et les trois fonctions x, yl9 y2 de

& Vi* Vif Q soient données. Alors, en remplaçant dans a, b les x, yl9 y2

par leurs valeurs, la relation (27,1) permet en général de déterminer r en
fonction de |, rjl9 tj2, q, et cette fonction de f, rjl9 r\29 q sera en général
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indépendante de x, yl} y2. Alors, la transformation (14,2), appliquée à la
forme ds, la transforme en une forme différentielle

Edr\x — Adrj2 — Bd£ (27,2)

où E, A, B sont des fonctions de f, rjly rj2, Q- Mais alors, afin que (26,2)

soit un multiple d'une forme adjointe ds, il est nécessaire et suffisant
A A

que ou bien 1) -=- soit égal à q, ou bien 2) -=• soit indépendant de q et
H /?

-=- soit égal à g, ou bien 3) que E s'annule et -j- soit égal à q.

On voit qu'en général, ds étant donné, il ne correspond aux trois fonctions
x> V\-> V2 de £, rjl9 r\2, Q aucune transformation B.

Toutefois, il résulte de cette discussion, qu'en général, x, yx, y2 étant
donnés en fonctions de f, rjl9 rj2, q, on peut trouver r et un ds du type I,
de sorte qu'il en résulte une transformation B avec un do du type I.
En effet, en posant c 1, a r et en calculant E et A y la condition

—- q se réduit à

(*4 q — x^) b + (yr2r}iQ — yf2ri2) r y'U]i q — y[^

De l'autre côté, par (27,1):

Donc, en résolvant par rapport à r et 6 :

yx) d(y29y1)
g 3(g >*?i) 3(g ^8) r 3(g >*?i) 3(g >

3 (g ,%) 3 (g %)
g 3 (g ,*h) 3 (g ,%)

et l'on obtient une transformation JB, si la valeur trouvée de r ne peut être

exprimée en fonction de x, yl9 y2.

§ 6. Intégration des équations différentielles pour |, r}x, rj2; exemples

28. Quant à la détermination des solutions £, r\x, rj2 de l'équation
différentielle (24,4), elle peut être effectuée de la manière suivante:
II existe évidemment 4 fonctions A, B,C, D de r, x, yx,y2> telles que
l'on ait
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0

0 (28,1)

0

Be aC + bD (28,2)

Donc, f, rjlt rj2 sont des intégrales de l'équation différentielle

Az'r + Bz'Vi + CzV2 + Dzfx 0 (28,3)

où A, B, C, D sont assujettis à la condition (28,2).

D'un autre côté, en prenant 4 fonctions A, B,C, D satisfaisant à
(28,2), mais autrement arbitraires, l'équation différentielle (28,3) possède
des systèmes de trois intégrales indépendantes qu'on peut prendre comme

Dans les expressions de f, tjl9 rj2 entrent trois fonctions arbitraires de
trois variables, ce qui correspond à une transformation ponctuelle de £.
Une telle transformation n'affecte pas les grandeurs A, B,C, D.

Enfin, quant à la résolution de l'équation (28,3), elle s'effectue en
intégrant le système différentiel ordinaire du troisième ordre

dr : dyx : dy2 :dx A: B :C : D

et en exprimant les trois constantes arbitraires cv, v 1, 2, 3 en fonctions
àe r,x,yl9y2:

cv zv(r, x, yl3 y2)

Les trois fonctions zv représentent alors un système d'intégrales indépendantes

de (28,3).

29. On peut se poser la question, dans quelle mesure, les 3 fonctions
indépendantes f, rjl9 rj2 de r, x9 ylt y2 étant données, on peut leur
adjoindre une forme adjointe ds de manière à satisfaire aux conditions du
théorème IV. On obtient évidemment de (24,4) les conditions pour
e, a, 6. Posons

Jx~ Hr,yi,y*) >J2~ d(r,y19x) >J*~ d(r,y2>x) '

Alors (24,4) se réduit à

Jxb - J2a - Jze 0 (29,2)
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Si Ton cherche ds dans la première forme (2,2), on aura la relation

Jxb - J2r - Jz 0 (29,3)

qui peut toujours être résolue par rapport à 6, si Jx ^ 0. Dans ce cas il y a
donc exactement une forme ds du premier type (12,2), qui peut être
adjointe aux fonctions f, r\x, rj2.

Si d'autre part Jx 0, (29,3) ne peut être satisfait que si

J%r Jz 0 (29,4)

mais alors pour toute valeur de 6, de sorte qu'alors, chaque forme ds du
premier type de (12,2) peut être adjointe à f, ^, î|8.

Si l'on cherche ds du deuxième type de (12,2), on obtient la relation

Jxr — J2c — J3 0 (29,5)

qui devrait être satisfaite pour une fonction c indépendante de r, ce qui
n'est possible qu'exceptionnellement.

Enfin, pour une forme ds du troisième type de (12,2), on obtient la
relation

Jxr + J2 0 (29,6)

D'ailleurs il est très bien possible qu'à un système des trois fonctions i,
Vi > V* puissent être adjointes exactement une forme ds de chaque type,
comme nous allons le montrer sur un exemple.

30.

On a

Ji

Exemple I :

1

0

0

0 -

1

0

Posons

S-r9 ifc

—x
0
1

l,J2

î

1

0

0

0

1

0

—x
0

— r

1 0 —x
0 0 1

0 0 — r

(30,1)

0,

Avec ces valeurs on tire de (29,3) : b — r2, de (29,5) : c — 1, et la
condition (29,6) est, elle aussi, satisfaite. On obtient donc les trois formes
suivantes de ds:

dyx - rdy2 + r2dx (30,2)

dyx+ dy2-rdx (30,3)

dy2 — rdx (30,4)
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Les équations (24,3) deviennent pour nos valeurs de £, rjl9 rjz :

xoc — /? 0 e — e/j 0 oc — aju 0 roc + b/u 0.

La quatrième de ces équations est équivalente à la troisième, puisqu'on a

dans tous les trois cas — — r. On obtient donc pour /u, 1 :
a

e e, a a /S xa (30,5)

Maintenant, si e 1, c'est-à-dire dans les cas (30,2), (30,3), il en résulte,
suivant que Ton a affaire à (30,2) ou (30,3),

s 1 oc r
e 1 <* —

fi — xr

Dans le premier cas on a « £ et Ton posera q #r. dcr sera alors

cfyi - 1^2 — e<lf £ *r (30,2°)

Dans le deuxième cas on obtient pour do :

dfh + drj2- qdÇ, q - x (30,3°)

Enfin dans le troisième cas on obtient

€ 0, oc= — l, p — x q

et la forme da sera (Cf. exemple II au No. 4).

dt)2- gdÇ, e - x. (30,4°)

Dans le cas des formes (30,2), (30,2°) on obtient d'après le théorème I
pour r et q les expressions suivantes par les dérivées p±, p2 ; %, n2 :

Q ^i — (30,6)

Maintenant, les équations finies de notre transformation R deviennent

(30,2°°)
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Dans le cas des formes (30,3), (30,3°) on a

et les équations finies de la transformation R correspondante deviennent

f Pi + P% > ^i 2/i > ^2 2/2 — x (px + p2)

Enfin pour les formes (30,4), (30,4°) on a

— ^ ^2 y±=Vl » 2/2=^2—

(30,3°°)

(30,4°°)

une transformation qui revient évidemment à la transformation de

Legendre dans le plan des x, y2.
On voit donc que dans ces cas aux fonctions (30,1) correspondent

trois transformations R différentes.

31. Exemple II: Posons

(31,1)
Ici Ton a

0 1 — ft
0 0 1

0 0—3
0, tT2

0

0

1

1

0

0

— 2/2

1

0
1, J3=

0

0

1

1

0

0

— 2/2

— r
0

Pour ces valeurs de Jx,J2y Jz l'équation (29,3) est satisfaite pour chaque b.

On obtient donc une forme adjointe

yx — rdy2 — /(r, z, ylf y2) dx (31,2)

/ étant une fonction arbitraire de ses 4 arguments.
Quant aux conditions (29,5), (29,6), la deuxième n'est pas satisfaite,

tandis qu'on tire de la première une valeur de c qui n'est pas indépendante

de r.
Les équations (24,3) deviennent avec nos valeurs de £, r\x> rj2, e, a, b:

dont la deuxième et la troisième sont équivalentes. On en tire les valeurs

—
2/2
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Donc, oc étant indépendant de f, ril9 rj2, on posera p et Ton
y*

aura pour do :

m ~l\j* (31,3)

On obtient ici les expressions de r et q par 2?i, p2 e^ ^1 > ^2 > en résolvant
les équations

(31,4)

Les équations de notre transformation deviennent alors

x,Tj1 =r(p1,p2,x,y1,y2), rj2 y1—y2r(p1,p2,x,ylyy2)

2/2= —
(31,5)

En choisissant p. ex. / 0 on a r -^-, 0 —- et l'on obtient la
P2 n2

transformation (cf. exemple III au No. 4)

à laquelle correspond le couple des formes adjointes

ds dyx — rdy2 do drjx — odrj2

Fin du premier chapitre.

(Reçu le 3 octobre 1940.)

(31,6)
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