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Uber die Sphéren,
die als Gruppenrdume auftreten

Von HaNs SAMELSON, Ziirich

1. Eine Mannigfaltigkeit, deren Punkte die Elemente einer Gruppe
bilden derart, daBl die Gruppen-Operationen durch stetige Funktionen
in der Mannigfaltigkeit vermittelt werden, heilt eine Gruppen-Mannig-
faltigkeit (im folgenden auch kurz: Gruppe). Ist die' Mannigfaltigkeit
geschlossen, so darf man bekanntlich annehmen, dafi die Mannigfaltigkeit
analytisch ist und die Gruppenoperationen durch analytische Funktionen
in der Mannigfaltigkeit dargestellt werden, daB also eine geschlossene
Lie’sche Gruppe vorliegt. Die Frage, welche Mannigfaltigkeiten als
Gruppen-Mannigfaltigkeiten auftreten konnen, kann man zunéichst ein-
mal auf die einfachsten geschlossenen Mannigfaltigkeiten, die n-dimen-
sionalen Sphéren S,, spezialisieren. Es gilt der Satz:

Dre einzigen Sphiren, die Gruppen-Mannigfaltigkeiten sind, sind die S,
und die S,.

Das folgt aus einem allgemeinen Satz von Cartan, nach dem fiir jede
geschlossene Gruppe, deren Dimension = 3 ist, die dritte Betti’sche Zahl
nicht verschwindet!). Der Beweis dieses Satzes beruht auf der Cartan’-
schen Theorie der Integralinvarianten in Gruppen. Bei dem elementaren
Charakter des Satzes iiber die Sphiren diirfte aber ein elementarer
Beweis von Interesse sein. Ein solcher wird in dieser Arbeit geliefert.

Da der Beweis im Rahmen der Homologietheorie gefiihrt wird, wird
der Begriff der Sphére durch den allgemeineren der Homologiesphére
ersetzt; das bedeutet hier: geschlossene Mannigfaltigkeit (der Dimension
n), deren Betti’sche Zahlen auBer der nullten und der n-ten verschwinden.
(Bekanntlich kénnen aus Griinden der Charakteristik nur Homologie-
sphéren ungerader Dimension als Gruppen auftreten.) Der n-dimensionale
projektive Raum werde mit P, bezeichnet; fiir ungerade » ist P, eine
Homologiesphére.

In der vorliegenden Arbeit werden wir dann den folgenden Satz be-
weisen :

Satz A. Die Gruppen-Mannigfaltigkeit G sei eine Homologiesphire
dann ist G entweder der S, oder der S, oder dem P3; homoéomorph.

Es sei hier daran erinnert, dafl 8,, S;, P, tatsichlich als Gruppen auf-
treten: S, als multiplikative Gruppe der komplexen Zahlen vom Betrag 1,
S, als multiplikative Gruppe der Quaternionen vom Betrag 1, P; als
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multiplikative Gruppe der ,,homogenen‘‘, d. h. bis auf einen reellen Faktor
bestimmten, Quaternionen, oder (was dasselbe ist) als Gruppe der Kugel-
drehungen.

Ferner sei bemerkt, dal man aus der Tatsache, daBl von den Sphéren
nur die S, und die 8, Gruppen sind, leicht einen Teil des bekannten
Frobenius’schen Satzes iiber die Schiefkorper schlieen kann, namlich:
Der Rang eines Schiefkorpers iiber den reellen Zahlen ist entweder 1
oder 2 oder 4.2)

Ein Anhang am SchluB der Arbeit enthalt Varianten zu einigen Beweisen.

2. Wir stellen zunéchst einige bekannte Tatsachen zusammen:

a) U sei eine Untergruppe der geschlossenen n-dimensionalen Lie’schen
Gruppe G, d. h. eine Untergruppe im abstrakt-gruppentheoretischen Sinn,
die eine abgeschlossene Punktmenge von G ist. Dann ist bekannt: Man
kann in einer hinreichend kleinen, dem euklidischen R, hom&omorphen,
Umgebung V des Einheitspunktes e von ¢ ein Koordinatensystem so ein-
fithren, dal der Teil von U, der in V liegt, also der Durchschnitt U. ¥V, eine
Ebene in V durch den Punkt e bildet3); die Dimension dieser Ebene ist
die Dimension der Untergruppe. Aus diesem lokalen Verhalten und der
Kompaktheit von U schliet man leicht: Ist die Untergruppe U zusam-
menhéngend, dann ist sie eine topologisch und sogar analytisch in & ein-
gelagerte Mannigfaltigkeit; ist U nicht zusammenh#ngend, dann ist die
Komponente U?, die den Punkt e enthilt, selbst eine zusammenhéangende
Untergruppe von @, also eine Mannigfaltigkeit in @, und U besteht aus
endlich vielen Nebengruppen von U?, die die Komponenten von U sind;
U! ist bekanntlich Normalteiler von U.

b) Die Gruppe G zerfallt in die (etwa linksseitigen) Nebengruppén aU
der Untergruppe U, wobei a ein beliebiges Element von G bedeutet. Diese
Zerlegung ist eine Faserung von G mit der Faser U.

Dabei versteht man unter der Faserung einer Mannigfaltigkeit M mit
der Faser (-Mannigfaltigkeit) F folgendes %) 5): M ist zerlegt in Mannig-
faltigkeiten, die alle zu F homoomorph sind und ,,Fasern‘‘ heilen; durch
jeden Punkt von @G geht eine und nur eine Faser; und jede Faser besitzt
eine Umgebung in M, die fasertreu homéomorph mit dem topologischen
Produkt F =< F ist; dabei ist ¥ ein Element (Vollkugel); fiir die Dimen-
sionen d(M), d(F), d(E) gilt: d(E) = d(M) — d(F'); ,,fasertreu homoo-
morph‘‘ heilt: jede Faser ist topologisch abgebildet auf eine der Mannig-
faltigkeiten p < F in £ < F, wo p ein Punkt von ¥ ist.

FaBt man die Fasern als Punkte eines Raumes auf, mit dem natiirlichen
Umgebungsbegriff, so erhélt man den Faser- oder Basisraum B, der auch
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mib -l;,—l bezeichnet wird; er ist offenbar eine Mannigfaltigkeit. Ordnet

man jedem Punkt von M die Faser zu, auf der er liegt, so erhalt man eine
stetige Abbildung von M auf B, die Projektion P. Fiir jede hinreichend
kleine Umgebung V eines beliebigen Punktes von B ist dann die Menge
P-1(V), die ganz aus Fasern besteht, fasertreu homoomorph dem topo-
logischen Produkt V =< F'. Es gilt der Satz von Feldbau®):

Ist B ein Element im Faserraum B, dawn ist die Menge P~1(L) fasertreu
homdéomorph dem Produkt E =< F.

DaB} die Zerlegung einer Gruppe G in die Nebengruppen einer Unter-
gruppe U eine Faserung von G mit der Faser U ist, ist ganz leicht zu
sehen. Der Faserraum wird dann auch Nebengruppenraum genannt.

Die Definition und die genannten KEigenschaften der Faserungen
bleiben giiltig, wenn die einzelne Faser statt aus einer (zusammen-
hangenden) Mannigfaltigkeit aus endlich vielen Mannigfaltigkeiten
besteht. Dies ist der Fall bei der Nebengruppen-Zerlegung von G' nach
einer Untergruppe U, die nicht zusammenhéngend ist.

c) Es ist bekannt, daBl die einzige zusammenhdngende geschlossene
Abel’sche Gruppe der Dimension m die toroidale Gruppe, oder kurz:
das Toroid, 7',, ist. Dabei ist 7',, folgendermafen definiert:

K sei die Kreislinie S, in natiirlicher Weise als Gruppe aufgefaflt, also
etwa, als die multiplikative Gruppe der komplexen Zahlen vom Betrag 1;

dann ist T — KxKx-xK

das direkte Produkt von m Exemplaren der Gruppe K ; die Mannigfaltig-
keit T',, ist also das topologische Produkt von m Kreislinien.

Das folgt aus den Untersuchungen von Pontrjagin oder aus einfachen
Satzen der Lie’schen Theorie.

d) Bei den eindimensionalen oder einparametrigen Untergruppen ver-
zichtet man ausnahmsweise auf die Forderung der Abgeschlossenheit.
Demgemall gibt es zwei Arten von einparametrigen Untergruppen:
Erstens die geschlossenen; diese sind der Gruppe K isomorph; zweitens
die offenen ; diese sind der additiven Gruppe der reellen Zahlen isomorph,
also einer Geraden homoéomorph. Beide Arten sind Abelsch. Die abge-
schlossene Hiille einer offenen einparametrigen Untergruppe ist eine zu-
sammenhéngende geschlossene Abelsche Untergruppe, also ein Toroid
T, ; und zwar ist m > 1. Daraus entnimmt man sofort: Da es in G ein-
parametrige Untergruppen gibt (s.u.), so gibt es mindestens eine ge-
schlossene.

Man fiihre in der Umgebung des Einheitspunktes ¢ von @ ein differen-
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zierbares Koordinatensystem ein ; die einparametrigen Untergruppen sind
dann dort differenzierbare Kurven durch e. Es gilt der Existenz- und
Eindeutigkeitssatz: Zu jeder Geraden durch e gibt es genau eine ein-
parametrige Untergruppe, die die Gerade im Punkte e beriihrt. Mit dem
dadurch nahegelegten Umgebungsbegriff bilden also die einparametrigen
Untergruppen einen (n — 1l)-dimensionalen projektiven Raum P,_,,
wenn n die Dimension von ¢ ist.

Zu jeder Halbgeraden oder jedem Vektor im Punkt e gehoért eine
orientierte einparametrige Untergruppe, d. h. eine einparametrige Unter-
gruppe, deren Mannigfaltigkeit — Kreis oder Gerade — auf eine der
beiden moglichen Weisen orientiert ist. Die Mannigfaltigkeit der orien-
tierten einparametrigen Untergruppen ist also eine (» — 1)-dimensionale
Sphire S,_, ; sie ist in evidenter Weise als zweiblattrige Uberlagerung der
Mannigfaltigkeit P,_, der einparametrigen Untergruppen aufzufassen.

3. Unter dem Rang 4 (@) einer (geschlossenen Lie’schen) Gruppe G ver-
steht man die gro8te der Dimensionen der Abel’schen Untergruppen von
G (es 1aBt sich iibrigens zeigen, dafl A1(G) auch gleich der Dimension eines
jeden maximalen Toroids in G ist, also eines solchen, das in keinem grof3e-
ren Toroid enthalten ist). ?)

Mit Hilfe dieser Definition zerlegen wir den zu beweisenden Satz A in
zwei Teile:

Satz B. Ist die Gruppe G eine Homologiesphire, dann ist A(G) = 1.

Satz C. Die einzigen geschlossenen Mannigfaltigkeiten, die als Qruppen-
mannigfaltigkeitten vom Range 1 auftreten, sind 8,, S,, P,.

Offenbar folgt Satz A aus Satz B und Satz C.

4. Den Satz B beweisen wir hier nicht; er ist aber richtig, als ein Spezial-
fall des folgenden allgemeineren Satzes iiber Gruppen-Mannigfaltigkeiten :

Satz B’. Hat die Gruppe G dieselben Betti’schen Zahlen wie das topo-
logische Produkt von l Sphiren ungerader Dimensionen, so ist A(G) = L.

Denn fiir eine Homologiesphire ist die Voraussetzung von B’ mit
I =1 erfillt.

Fiir den Beweis des Satzes B’ verweisen wir auf den Anhang dieser
Arbeit, Abschnitt a. Aullerdem wird im Anhang, Abschnitt b, ein
gianzlich anderer Beweis des Satzes B skizziert, der auf der Theorie der

Faserungen beruht.
Der Satz B ist auch ein Korollar des Cartan’schen Satzes:

Die Summe der Betti’schen Zahlen einer geschlossenen Gruppe vom
Rang A ist gleich 22.8)
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Da aber der Cartan’sche Beweis dieses Satzes dieselben Hilfsmittel aus
der Theorie der Integralinvarianten benutzt wie der Beweis des in Nr. 1
genannten Satzes iiber die dritte Betti’sche Zahl, wollen wir uns aus
Griinden der Methode nicht auf ihn berufen.

b. Wir kommen jetzt zum Hauptteil der Arbeit, namlich zum Beweis
des Satzes C: Aus A(G) = 1 folgt G = 8, oder = 8§, oder = P,.

Es sei also G eine Gruppe mit A(@) = 1; die Dimension von G sei n.
Wir diirfen annehmen, da3 » von 2 verschieden ist; denn bekanntlich ist
die einzige geschlossene zweidimensionale Gruppe das Toroid 7',, also
vom Rang 2; diese Tatsache 148t sich auch leicht aus B’ folgern.

Wir betrachten eine geschlossene einparametrige Untergruppe von G
(solche gibt es immer, vgl. Nr. 2, d); sie heile L.

Mit N bezeichnen wir den Normalisator von L, d. h. die Gruppe der-
jenigen Elemente a von G, fiir die

aLal!=1L

gilt, die also die Untergruppe L in sich transformieren. N enthalt L. Wir
behaupten:

Der Normalisator N von L ist eindimensional und besteht aus einer
(endlichen) Anzahl Nebengruppen von L :

N=L+aL+a,L+ --+a,_,L.

Weil N natiirlich abgeschlossen ist, ist das gleichbedeutend mit der
Behauptung: Die Komponente N! von &, die den Einheitspunkt ¢ von ¢
enthalt (und die infolgedessen auch L enthilt), fallt mit L zusammen.

Beweis: Jedes Element a des Normalisators N bewirkt einen Auto-
morphismus von L durch die Zuordnung p - apa=?, wo p die Gruppe L
durchlauft. Die Automorphismen von L, also die der Gruppe K (Nr. 2, ¢),
kennt man aber: Neben der Identitat gibt es noch genau einen, der jedem
Element p sein Inverses p~! zuordnet, die Inversion von L (oder K). (In
der Darstellung durch die komplexen Zahlen vom Betrag 1 bedeutet die
Inversion den Ubergang zur konjugiert-komplexen Zahl.) Die Auto-
morphismengruppe ist also diskret, sogar endlich. Ist nun b ein Punkt
von N, der der e-Komponente N! angehort, dann 148t sich der von b be-
stimmte Automorphismus von L stetig in die Identitat iiberfithren: man
lasse b in N! nach e wandern. Also ¢st dieser Automorphismus die
Identitat, und das heiflt: b ist mit jedem Element von L vertauschbar.

Sei nun L’ eine beliebige einparametrige Untergruppe von N, Dann
ist, wie eben gezeigt, jedes Element von L’ mit jedem Element von L
vertauschbar. Also ist die abgeschlossene Hiille der von L und L’ er-
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zeugten Gruppe eine (zusammenhingende) Abel’sche Gruppe, ein Toroid
T

Nun ist (@) = 1, d. h. die Toroide in @ sind hochstens eindimensional.
Das Toroid 7,, das ja die Gruppe L enthalt, muB also mit L zusammen-
fallen, und das ist nur moglich, wenn auch L’ mit L zusammenfillt. L ist
also die einzige einparametrige Untergruppe von N!; dann ist aber N1
mit L identisch. Damit ist die Behauptung iiber N bewiesen.

Es wird sich spater noch zeigen, da8 fiir » > 1 die Anzahl r der Kom-
ponenten von N gleich zwei ist (Nr. 7).

6. Wir betrachten den Nebengruppenraum

G
W=+

(vgl. Nr. 2, b). Die Punkte von W sind also die Nebengruppen aN von N.
Weil N eindimensional ist, ist W eine (n — 1)-dimensionale Mannigfaltig-
keit; dabei ist n die Dimension d (@) von G.

Bekanntlich entsprechen nun die Nebengruppen des Normalisators N,
einer Untergruppe U einer Gruppe eineindeutig den zu U konjugierten
Untergruppen, namlich dadurch, dafl jede Nebengruppe a¥N, von N,
genau aus denjenigen Elementen der Gruppe besteht, die U in eine
bestimmte konjugierte Untergruppe, in a Ua™1, transformieren.

Im vorliegenden Fall haben wir U = L und N, = N. Die zu L kon-
jugierten Untergruppen bilden eine Teilmenge der Menge aller geschlosse-
nen einparametrigen Untergruppen, und diese Menge bildet den in
Nr. 2, d, eingefiithrten (n — 1)-dimensionalen projektiven Raum P,_,;
denn da die abgeschlossene Hiille einer offenen einparametrigen Unter-
gruppe ein Toroid 7',, mit m > 1 ist (Nr. 2, d), andererseits aber A(G) =1
ist, so gibt es in G keine offenen einparametrigen Untergruppen. Die —
eineindeutige — Zuordnung der Nebengruppen von N zu den zu L kon-
jugierten Untergruppen ist offenbar eine stetige Abbildung des Neben-
gruppenraumes W in den von den einparametrigen Untergruppen ge-
bildeten P,_,, also eine topologische Abbildung. Aber aus der Tatsache,
daBl die (» — 1)-dimensionale Mannigfaltigkeit W topologisch in den
P, _, abgebildet ist, folgt nach bekannten Satzen (Abbildungsgrad), da W
und P, , homsomorph sind. Wir haben also gezeigt:

G sei eine Qruppe der Dimension n und vom Rang 1. Dann ist der Neben-
gruppenraum —G—, der zu dem Normalisator N einer geschlossenen etnpara-

metrigen Untergruppe L gehort, dem projektiven Raum P,_, homdomorph.
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7. Wir ziehen jetzt den Nebengruppenraum

— G
W=7

heran, dessen Punkte die Nebengruppen aL von L sind. Wegen
N=L+aL+al -+ +a_,L

(Nr. 4) besteht jede Nebengruppe a N von N aus r Nebengruppen von
L, die die Komponenten von aXN sind; andererseits ist jede Nebengruppe
von L in einer Nebengruppe von N enthalten. Ordnet man jeder Neben-
gruppe von L die Nebengruppe von N zu, in der sie liegi:, so erhalt man
eine Abbildung von W auf W, bei der auf jeden Punkt von W genau r
Punkte von W abgebildet werden. Man sieht ganz leicht, daB diese Ab-
bildung im kleinen topologisch ist. (Zwei Nebengruppen von L, die hin-
reichend nahe beieinander liegen, gehoren zu verschiedenen Neben-
gruppen von N.) Also ist W eine r-blattrige Uberlagerungsmannigfaltig-
keit von W, also auch von P, _,.

Da P,_; nur ein- oder zweiblittrige Uberlagerungen besitzt, ist » ent-
weder 1 oder 2. Das hei3t : Entweder ist N = L, oder N besteht aus zwei
Komponenten, also N = L + a,L mit einem gewissen Element a,. Fiir
n = 1 ist bekanntlich @ = K; dann liegt der erste Fall vor. Wir behaup-
ten: Fir n > 1 tritt der zweite Fall ein, also N = L + a,L; und die
Elemente von a, L haben die Eigenschaft: der von ihnen erzeugte Auto-
morphismus von L ist nicht die Identitat, sondern die Inversion von L
(vgl. Nr. 5).

Sei also » > 1 (wegen n % 2 ist dann sogar »n > 2). Wir erteilen der
Gruppe L eine beliebige, aber feste Orientierung (vgl. Nr. 2, d). Es sei a
ein beliebiges Element von G ; wir betrachten die zu L konjugierte Gruppe
aLa~*. Durch die Orientierung von L ist dann auch eine Orientierung von
aLa! bestimmt. Man sieht sofort: sind a, a’ zwei Elemente von G, die zu
derselben Komponente einer Nebengruppe bN von N gehoren, dann
bestimmen sie dieselbe Orientierung der zu 6N gehorenden, zu L kon-
jugierten, Untergruppe bLb-!. Das bedeutet: Jede Komponente der
Nebengruppe bN bestimmt eine der beiden Orientierungen der Gruppe
bLb—1, also eine der beiden orientierten einparametrigen Untergruppen,
die die Untergruppe bLb~! im Sinn von Nr. 2, d, iiberlagern.

Wire jetzt N = L, also N einkomponentig, dann hétte man eine ein-
eindeutige und offenbar stetige Zuordnung der Nebengruppen von N zu
den orientierten, zu dem orientierten L konjugierten, Untergruppen;
d. h. man héatte eine topologische Abbildung der (n — 1)-dimensionalen
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Mannigfaltigkeit W = —g— in die von den orientierten einparametrigen

Untergruppen gebildete Sphire S, _,; ; also wiaren W und 8,_, homéomorph,
da §,_; fiir n > 1 eine (zusammenhéngende) Mannigfaltigkeit ist. Aber
nach Nr. 6 ist W dem projektiven Raum P,_, homéomorph; und P,_, und
8,_; sind nicht homdomorph, da die Dimension 7 von G von 2 verschieden
ist (Nr. 5). Also ist » = 2, also N = L + a, L mit einem gewissen a,;
W ist dann eine zweiblattrige Uberlagerung von P, _,, also der S,_,
homoomorph. '

Genau wie eben schlieft man jetzt, dall die zwei Komponenten, aus
denen eine beliebige Nebengruppe aN besteht, verschiedene Orientierun-
gen der zu aN gehorenden, zu L konjugierten, Gruppe aLa~! bestimmen;
sonst hatte man wieder eine eineindeutige Zuordnung der Nebengruppen
von N zu den orientierten einparametrigen Untergruppen von @. Speziell
mul} die zweite Komponente a, L von N selbst die Orientierung von L
umkehren, und das bedeutet: der von ihren Elementen bestimmte Auto-
morphismus von L ist die Inversion von L (vgl. Nr. 5).

FaBt man jetzt die geschlossenen orientierten einparametrigen Unter-
gruppen als (eindimensionale) Zyklen im Sinne der Homologietheorie
(mit den ganzen Zahlen als Koeffizienten) auf, dann liefert das zuletzt

Bewiesene die Gleichung:
a,La;' = — L,

d. h. man erhilt den Zyklus a, La;* aus dem Zyklus L, indem man die
Orientierung von L umkehrt. Andererseits sind @, La;" und L homolog,
sogar homotop in @ : man bilde bL b~ und lasse b in ¢ von e nach a, laufen.
Also gilt:
L~—0L.
Damit kénnen wir folgendes Ergebnis formulieren:

G sei exne Gruppe der Dimension n(> 2) und vom Rang A(G) = 1; L set
eine geschlossene einparametrige Untergruppe. Dann ist der Nebengruppen-

raum —g—der (n — 1)-dimensionalen Sphdire 8,_; homéomorph; fir die als

ganzzahliger Zyklus aufgefaflte Untergruppe L gilt die Homologie :
2L~0 in G.

8. Die Nebengruppenzerlegung ist ein spezieller Fall von Faserung
(Nt. 2, b); und L ist dem Kreis S; homéomorph. Auf Grund des eben
erhaltenen Satzes ist daher der Satz C bewiesen, wenn wir den folgenden
Fasersatz beweisen:
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M sei eine Mannigfaltigkeit der Dimension n (= 3); M ser gefasert mait

der Faser S,; der Faserraum —g—l— ser der S,_, homdéomorph; und fir die
1

Faser gelte die Homologie 28, ~ 0. Dann ist M dreidimensional, und zwar
18t M entweder der S; oder dem P, homéomorph.

Der Beweis dieses Satzes wird in naheliegender Weise mit Hilfe eines
,,Additionssatzes der kombinatorischen Topologie** erbracht. ?)

Der Faserraum, die §,_;, wird durch eine Aquatorsphire S,_, in zwei
Elemente E’ und E” zerlegt:

S,,=E +E", S, ,=E-E".

Die Randsphire von E’ heifie S/, die von E” heile S”; in S’ und'S” hat
- man also zwei Exemplare der Aquatorsphare S,,_,.

P sei die Projektion von M auf S,_, (vgl. Nr. 2, b). Nach dem Satz von
Feldbau kann man die Urbildmenge P-1(E’), die M’ genannt werde, als
das topologische Produkt E’ < S; auffassen. Entsprechend kann man die
Menge M" = P-1(E”) als E” = 8, darstellen. M ist iiberdeckt mit M’

und M7
M=M +M".

Der Durchschnitt D = M’ - M” ist das Urbild P-1(8,_,) der Aquator-
S,_.. Man erkennt unmittelbar, dal D zusammenfillt mit dem Rand
S'=<8;, von M' = E’' =S, und ebenso mit dem Rand S” =8, von
M= E"=8,.

Wir betrachten jetzt eine feste Faser S, von M, und zwar eine solche,
die in D liegt; sie reprasentiert dann die Homologieklasse p < 8, von D,
wo p den einfach gezdhlten Punkt von S’ oder auch von 8” bedeutet.
Daher ist 2.8,, die doppelt gezdhlte Faser, nicht homolog 0 in D. Da-
gegen ist nach Voraussetzung 28, ~ 0 in M. Einem einfachen ,,Additions-
satz‘‘1%) entnimmt man jetzt: Weil der in D liegende Zyklus 2.8, in M
homolog 0 ist, 1aBt er sich darstellen als Summe 2z, + z, zweier in D
liegender Zyklen z,, z,, wobei 2, in M’ und 2, in M"” homolog 0 ist. Da,
wie man leicht bestétigt, 2.5, weder in M’ noch in M” homolog 0 ist, kann
weder 2, noch z, in D homolog 0 sein. Betrachtet man D als Rand S’ =< 8,
von M’ = E’ =< §,, dann sieht man: die Zyklen von D, die in M’ (aber
nicht in D) homolog 0 sind, sind die Linearkombinationen von D selbst
und der Sphire S’ > ¢, wo ¢ ein Punkt von S, ist.

Entsprechend sind die Zyklen von D, die in M” homolog 0 sind, die
Linearkombinationen von D und S” =< ¢q. Also muB} sich schlieBlich 2§, in
D darstellen lassen als lineare Verbindung von D, 8’ =g, 8" =gq. Die
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Dimension von D ist n — 1, die von 8’ =< ¢ und 8" =< ¢ ist » — 2. Wegen
n > 2 muB sich also der eindimensionale Zyklus 28, schreiben lassen als
lineare Verbindung von 8’>=¢ und 8" =gq; daraus folgt: n — 2 =1,
also n = 3. Damit ist der erste Teil der Behauptung iiber M bewiesen.

Jetzt folgt weiter: M’ und M” sind dreidimensionale Volltorusse. M
entsteht aus M’ und M” durch eine gewisse Identifizierung der Rand-
flichen. Das bedeutet: M besitzt ein Heegaard-Diagramm vom Ge-
schlecht 1. Daher ist M bekanntlich ein Linsenraum.?)

Nun 148t sich die erste Betti’sche Gruppe von M leicht bestimmen.
Weil £’ und E” zweidimensionale Elemente sind, 148t sich jeder ein-
dimensionale Zyklus in M so deformieren, da@ er in D liegt. Faf3t man D
als Randtorus des Volltorus M’ auf und beachtet, da3 der Meridiankreis
8" > ¢ von D homolog 0 in M’ ist, so erhalt man: jeder eindimensionale
Zyklus in M ist in M homolog einem Vielfachen der Faser S,, des Breiten-
kreises p =< 8, auf dem Torus D.

Ist S; ~ 0in M, dann ist also die erste Betti’sche Gruppe von M die
Nullgruppe. Der einzige solche Linsenraum ist aber die S,.

Ist 8, nicht ~ 0 in M, dann ist wegen der Voraussetzung 2.8, ~ 0 die
erste Betti’sche Gruppe von M zyklisch von der Ordnung 2. Der einzige
solche Linsenraum ist der P,.

Damit ist der am Anfang dieser Nr. 8 genannte Fasersatz, also auch
der Satz C, also auch der Satz A bewiesen.

Anhang.

a) Der Beweis des Satzes B’, von dem unser Satz B ein Spezialfall ist
(Nr. 4), beruht auf der Betrachtung der Abbildungen p,(z) = z* von G
in sich, die jedem Element x seine k-te Potenz zuordnet; der Grad von
Py 8ei y,. Dann ist B’ eine Konsequenz der folgenden beiden Séatze!?):

Satz 1. Der Homologie-Ring der geschlossenen Gruppe G sei dem Ring des
topologischen Produktes von | Sphiren ungerader Dimensionen dimensions-
trew isomorph ; dann ist y, = k'.

Satz I1. Die geschlossene Gruppe G enthalte eine A-dimensionale Abel’sche
Untergruppe, und es gebe keine héher-dimensionale Abel’sche Untergruppe
von G ; dann ist y, = kM.

Fiir B’ geniigt der Beweis von I und II fiir eine einzige Zahl k > 1,
z. B. k= 2.

Zu dem Beweis von II im § 2 der Arbeit von Hopf?) haben wir nichts
hinzuzufiigen ; der Beweis von I aber 1afit sich in unserem Falle, also im
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Falle | = 1, wesentlich einfacher fithren, wenn man sich auf &k = 2 be-
schrankt. Dann hat man also zu zeigen: Ist die Gruppe G eine Homologie-
sphéare, dann hat die Abbildung p,(x) = 22 von G in sich den Grad 2.
Zum Beweis beniitzen wir einen bekannten Fixpunktsatz!?), nach dem fiir
eine Abbildung f einer Homologiesphéire G in sich die Summe der Fix-
punktindizes gleich (— 1)" 4 ¢, ist, wo ¢, der Abbildungsgrad von f ist.
Bei der Abbildung p, () einer Gruppe in sich ist nun der Einheitspunkt e
der einzige Fixpunkt (22 = « hat e als einzige Losung), und der Fixpunkt-
index ist, wie man sieht, wenn man kanonische Parameter einfiihrt,
gleich 1. Also ist ¢, = 1 — (— 1)". Beachtet man noch, daf3 die Dimen-
sion einer Gruppen-Homologiesphére ungerade ist, so folgt die Behaup-
tung ¢,, = 2.

b) Ein anderer Beweis fiir Satz B beruht auf der Theorie der Faserun-
gen; und zwar auf dem folgenden Satz: Die (2r + 1)-dimensionale
Homologiesphére G sei gefasert mit der Faser S;; dann hat der Faserraum

—g— dieselben Betti’schen Zahlen wie der komplexe projektive Raum K,
1

der (komplexen) Dimension r; insbesondere hat die Charakteristik den
Wert r + 1. (Dieser Satz war als Vermutung samt einer Beweisskizze von
Herrn H. Hopf ausgesprochen worden ; eine allgemeinere Theorie, die den
Satz enthalt, wird in der Dissertation von Herrn W. Gysin dargestellt
werden.) Damit 148t sich nun leicht zeigen: Eine Gruppen-Homologie-
sphére hat kein Toroid 7', als Untergruppe.

Beweis: Ist ein 7', Untergruppe einer beliebigen Gruppe &, dann ist 7',
direktes Produkt K’ =< K” zweier geschlossener einparametriger Unter-
gruppen K/, K” von G. Jede Nebengruppe a7, von T, in G ist gefasert in
Nebengruppen von K”, und der zugehorige Nebengruppenraum ist mit
K’, also mit §; homoomorph (die Faserung von a7, entsteht aus der
Zerlegung von 7T, in Nebengruppen von K” durch Multiplikation mit a).

Man betrachte nun den Nebengruppenraum —Ig; . Faflt man alle Punkte

von I_?ﬁ , die — als Nebengruppen von K” in G betrachtet — in derselben
Nebengruppe von 7', liegen, zu einer Faser zusammen, so erhélt man eine

Faserung von I—?—,; mit der Faser §;. Daraus folgt, daf} I% die Charak-

teristik 0 hat; denn eine in Kreise gefaserte Mannigfaltigkeit besitzt
stetige, fixpunktfreie Deformationen in sich. Nach dem oben genannten
Fasersatz ist also G keine Homologiesphare.

¢ _ 5

¢) Aus den in Nr.6 und 7 bewiesenen Tatsachen: ~ i 1
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N=L+a,L, und 2L ~0 in G 1aBt sich die Behauptung ,,n = 3* auch
mit Hilfe der Theorie von Hurewicz14) ableiten. Aus dieser Theorie er-
gibt sich namlich leicht die Richtigkeit folgender Behauptung: Die zweite

Homotopiegruppe von _Z% = P,_, st nicht die Nullgruppe; dann mull

n = 3 sein, denn P,_, hat dieselben Homotopiegruppen wie S, _,. Um die
Behauptung zu beweisen, setzen wir fiir die bei Hurewicz mit H bezeich-
nete Untergruppe die Gruppe N ein; die Zahl » im Satz XII bei Hurewicz
setzen wir gleich 2 (n bezeichnet also von hier an nicht mehr die Dimen-
sion von (). Dann ist nach diesem Satz eine gewisse Faktorgruppe von

N

von N; und zwar besteht diese Untergruppe aus denjenigen Elementen
der Fundamentalgruppe von L (das ist die Gruppe (H,)** bei
Hurewicz), die in G' nullhomotop sind (mit (G5#1), ist bei Hurewicz die
Klasse der zusammenziehbaren Abbildungen von §,_; in G bezeichnet);
sie ist nicht die Nullgruppe, denn nach Nr. 7 ist 2L ~ 0 in @, also 2L
auch homotop 0 in G (weil die Fundamentalgruppe der Gruppe G
kommutativ ist).

7Ty (g—) isomorph mit einer Untergruppe der Fundamentalgruppe 7, (V)
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