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Uber die Sphâren,
die als Gruppenrâume auftreten
Von Hans Samelson, Zurich

1. Eine Mannigfaltigkeit, deren Punkte die Elemente einer Gruppe
bilden derart, daB die Gruppen-Operationen durch stetige Funktionen
in der Mannigfaltigkeit vermittelt werden, heiBt eine Gruppen-Mannig-
faltigkeit (im folgenden auch kurz: Gruppe). Ist die Mannigfaltigkeit
geschlossen, so darf man bekanntlich annehmen, daB die Mannigfaltigkeit
analytisch ist und die Gruppenoperationen durch analytische Funktionen
in der Mannigfaltigkeit dargestellt werden, daB also eine geschlossene
Lie'sche Gruppe vorliegt. Die Frage, welche Mannigfaltigkeiten als

Gruppen-Mannigfaltigkeiten auftreten kônnen, kann man zunâchst ein-
mal auf die einfachsten geschlossenen Mannigfaltigkeiten, die w-dimen-
sionalen Sphâren 8n, spezialisieren. Es gilt der Satz :

Die einzigen Sphâren, die Gruppen-Mannigfaltigkeiten sind, sind die Sx

und die S3.

Das folgt aus einem allgemeinen Satz von Cartan, nach dem fur jede
geschlossene Gruppe, deren Dimension ^ 3 ist, die dritte Betti'sche Zahl
nicht verschwindet1). Der Beweis dièses Satzes beruht auf der Cartan'-
schen Théorie der Integralinvarianten in Gruppen. Bei dem elementaren
Charakter des Satzes liber die Sphâren durfte aber ein elementarer
Beweis von Interesse sein. Ein solcher wird in dieser Arbeit geliefert.

Da der Beweis im Rahmen der Homologietheorie gefuhrt wird, wird
der BegrifiE der Sphâre durch den allgemeineren der Homologiesphâre
ersetzt; das bedeutet hier: geschlossene Mannigfaltigkeit (der Dimension
n), deren Betti'sche Zahlen auBer der nullten und der n-ten verschwinden.
(Bekanntlieh kônnen aus Griinden der Charakteristik nur Homologie-
sphâren ungerader Dimension als Gruppen auftreten.) Der w-dimensionale

projektive Raum werde mit Pn bezeichnet; fur ungerade n ist Pn eine

Homologiesphâre.
In der vorliegenden Arbeit werden wir dann den folgenden Satz be-

weisen :

Satz A. Die Gruppen-Mannigfaltiglceit G sei eine Homologiesphâre ;
dann ist G entweder der Sx oder der $3 oder dem P3 homôomorph.

Es sei hier daran erinnert, daB 8l9 S3, P3 tatsâchlich als Gruppen
auftreten: 8X als multiplikative Gruppe der komplexen Zahlen vom Betrag 1,

Ss als multiplikative Gruppe der Quaternionen vom Betrag 1, P3 als
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multiplikative Grappeder ,,homogenen", d. h. bis auf einen reellen Faktor
bestimmten, Quaternionen, oder (was dasselbe ist) als Grappe der Kugel-
drehungen.

Ferner sei bemerkt, daB man aus der Tatsache, daB von den Sphàren
nur die Sx und die #3 Grappen sind, leicht einen Teil des bekannten
Frobenius'schen Satzes uber die Schiefkôrper schliefien kann, nàmlich:
Der Rang eines Schiefkôrpers uber den reellen Zahlen ist entweder 1

oder 2 oder 4.2)

EinAnhang am SchluB derArbeit enthàlt Varianten zu einigenBeweisen.

2. Wir stellen zunàchst einige bekannte Tatsachen zusammen:

a) U sei eine Untergruppe der geschlossenen w-dimensionalen Lie'schen
Grappe G, d. h. eine Untergruppe im abstrakt-gruppentheoretischen Sinn,
die eine abgeschlossene Punktmenge von G ist. Dann ist bekannt : Man
kann in einer hinreichend kleinen, dem euklidischen Rn homôomorphen,
Umgebung V des Einheitspunktes e von G ein Koordinatensystem so ein-
fuhren, daB der Teil von U, der in V liegt, also derDurehschnitt U'V, eine
Ebene in V durch den Punkt e bildet3) ; die Dimension dieser Ebene ist
die Dimension der Untergruppe. Aus diesem lokalen Verhalten und der
Kompaktheit von U schlieBt man leicht : Ist die Untergruppe U zusam-
menhângend, dann ist sie eine topologisch und sogar analytisch in G ein-
gelagerte Mannigfaltigkeit ; ist U nicht zusammenhângend, dann ist die
Komponente U1, die den Punkt e enthàlt, selbst eine zusammenhângende
Untergruppe von G, also eine Mannigfaltigkeit in G, und U besteht aus
endlich vielen Nebengruppen von U1, die die Komponenten von U sind ;

U1 ist bekanntlich Normalteiler von U.

b) Die Gruppe G zerfâllt in die (etwa linksseitigen) Nebengruppen aU
der Untergruppe U, wobei a ein beliebiges Elément von G bedeutet. Dièse

Zerlegung ist eine Faserung von G mit der Faser U.

Dabei versteht man unter der Faserung einer Mannigfaltigkeit M mit
der Faser (-Mannigfaltigkeit) F folgendes 4) 5) : M ist zerlegt in Mannig-
faltigkeiten, die aile zu F homôomorph sind und ,,Fasernu heiBen; durch
jeden Punkt von G geht eine und nur eine Faser; und jede Faser besitzt
eine Umgebung in M, die fasertreu homôomorph mit dem topologischen
Produkt E x F ist] dabei ist E ein Elément (Vollkugel); fur die Dimen-
sionen d(M), d(F), d(E) gilt: d(E) d(M) - d(F); ,,fasertreu
homôomorph" heiBt: jede Faser ist topologisch abgebildet auf eine der Mannig-
faltigkeiten p x F in E x F, wo p ein Punkt von E ist.

FaBt man die Fasern als Punkte eines Raumes auf, mit dem naturlichen
Umgebungsbegriff, so erhâlt man den Faser- oder Basisraum B, der auch
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mit -=- bezeichnet wird; er ist offenbar eine Mannigfaltigkeit. Ordnet

man jedem Punkt von M die Faser zu, auf der er liegt, so erhàlt man eine

stetige Abbildung von M auf B, die Projektion P. Fur jede hinreichend
kleine Umgebung V eines beliebigen Punktes von B ist dann die Menge
P~l(V), die ganz aus Fasern besteht, fasertreu homôomorph dem topo-
logischen Produkt F x F. Es gilt der Satz von Feldbau6) :

Ist E ein Elément im Faserraum B, dann ist die Menge P~1(E) fasertreu
homôomorph dem Produkt E xF.

DaB die Zerlegung einer Gruppe G in die Nebengruppen einer Unter-
gruppe U eine Faserung von G mit der Faser U ist, ist ganz leicht zu
sehen. Der Faserraum wird dann auch Nebengruppenraum genannt.

Die Définition und die genannten Eigenschaften der Faserungen
bleiben giiltig, wenn die einzelne Faser statt aus einer (zusammen-
hângenden) Mannigfaltigkeit aus endlich vielen Mannigfaltigkeiten
besteht. Dies ist der Fall bei der Nebengruppen-Zerlegung von G nach
einer Untergruppe U, die nicht zusammenhàngend ist.

c) Es ist bekannt, daB die einzige zusammenhàngende geschlossene
AbeFsche Gruppe der Dimension m die toroidale Gruppe, oder kurz:
das Toroid, Tm ist. Dabei ist Tm folgendermaBen definiert:

K sei die Kreislinie Sl9 in natûrlicher Weise als Gruppe aufgefaBt, also

etwa als die multiplikative Gruppe der komplexen Zahlen vom Betrag 1 ;

dann ist
Tm — K x K x • • x A

das direkte Produkt von m Exemplaren der Gruppe K ; die Mannigfaltigkeit

Tm ist also das topologische Produkt von m Kreislinien.
Das folgt aus den Untersuchungen von Pontrjagin oder aus einfachen

Sâtzen der Lie'schen Théorie.

d) Bei den eindimensionalen oder einparametrigen Untergruppen ver-
zichtet man ausnahmsweise auf die Forderung der Abgeschlossenheit.
DemgemâB gibt es zwei Arten von einparametrigen Untergruppen:
Erstens die geschlossenen ; dièse sind der Gruppe K isomorph; zweitens
die offenen; dièse sind der additiven Gruppe der reellen Zahlen isomorph,
also einer Geraden homôomorph. Beide Arten sind Abelsch. Die abge-
schlossene Huile einer offenen einparametrigen Untergruppe ist eine

zusammenhàngende geschlossene Abelsche Untergruppe, also ein Toroid
Tm ; und zwar ist m > 1. Daraus entnimmt man sofort : Da es in 6? ein-
parametrige Untergruppen gibt (s. u.), so gibt es mindestens eine
geschlossene.

Man fuhre in der Umgebung des Einheitspunktes e von G ein differen-
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zierbares Koordinatensystem ein ; die einparametrigen Untergruppen sind
dann dort differenzierbare Kurven durch e. Es gilt der Existenz- und
Eindeutigkeitssatz : Zu jeder Geraden durch e gibt es genau eine ein-
parametrige Untergruppe, die die Gerade im Punkte e beruhrt. Mit dem
dadurch nahegelegten Umgebungsbegrifif bilden also die einparametrigen
Untergruppen einen (n — l)-dimensionalen projektiven Raum Pn_l9
wenn n die Dimension von G ist.

Zu jeder Halbgeraden oder jedem Vektor im Punkt e gehôrt eine
orientierte einparametrige Untergruppe, d. h. eine einparametrige
Untergruppe, deren Mannigfaltigkeit — Kreis oder Gerade — auf eine der
beiden môglichen Weisen orientiert ist. Die Mannigfaltigkeit der orien-
tierten einparametrigen Untergruppen ist also eine (n — l)-dimensionale
Sphàre Sn_t ; sie ist in evidenter Weise als zweiblàttrige tîberlagerung der

Mannigfaltigkeit Pn^ der einparametrigen Untergruppen aufzufassen.

3. Unter dem Rang X (G) einer (geschlossenen Lie'schen) Gruppe G ver-
steht man die grôBte der Dimensionen der Abel'schen Untergruppen von
G (es làBt sich iibrigens zeigen, dafi k(G) auch gleich der Dimension eines

jeden maximalen Toroids in G ist, also eines solchen, das in keinem grôBe-
ren Toroid enthalten ist).7)

Mit Hilfe dieser Définition zerlegen wir den zu beweisenden Satz A in
zwei Teile :

Satz B. Ist die Gruppe G eine Homologiesphâre, dann ist X(G) 1.

Satz C. Die einzigen geschlossenen Mannigfaltigkeiten, die als Gruppen-
mannigfaltigkeiten vom Range 1 auftreten, sind St, SB, P3.

Offenbar folgt Satz A aus Satz B und Satz C.

4. Den Satz B beweisen wir hier nicht ; er ist aber richtig, als ein Spezial-
fall des folgenden allgemeineren Satzes uber Gruppen-Mannigfaltigkeiten :

Satz Br. Hat die Gruppe G dieselben Betti'schen Zahlen wie das topo-
logische Produkt von l Spharen ungerader Dimensionen, so ist X (G) l.

Denn fur eine Homologiesphâre ist die Voraussetzung von B' mit
l 1 erfùllt.

Fur den Beweis des Satzes B7 verweisen wir auf den Anhang dieser

Arbeit, Abschnitt a. AuBerdem wird im Anhang, Abschnitt b, ein
gànzlich anderer Beweis des Satzes B skizziert, der auf der Théorie der
Faserungen beruht.

Der Satz B ist auch ein Korollar des Cartan'schen Satzes :

Die Summe der BettVschen Zahlen einer geschlossenen Gruppe vom
Rang k ist gleich 2A.8)
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Da aber der Cartan'sehe Beweis dièses Satzes dieselben Hilfsmittel aus
der Théorie der Integralinvarianten benutzt wie der Beweis des in Nr. 1

genannten Satzes ùber die dritte Betti'sehe Zahl, wollen wir uns aus
Grûnden der Méthode nicht auf ihn berufen.

5. Wir kommen jetzt zum Hauptteil der Arbeit, nàmlich zum Beweis
des Satzes C: Aus A (G) 1 folgt G St oder 8S oder P3.

Es sei also G eine Grappe mit X(G) 1; die Dimension von G sei n.
Wir durfen annehmen, da8 n von 2 verschieden ist ; denn bekanntlich ist
die einzige geschlossene zweidimensionale Gruppe das Toroid T2, also

vom Rang 2; dièse Tatsache làfit sich auch leicht aus Bf folgern.
Wir betrachten eine geschlossene einparametrige Untergruppe von G

(solche gibt es immer, vgl. Nr. 2, d) ; sie heiBe L.
Mit N bezeichnen wir den Normalisator von L, d. h. die Gruppe der-

jenigen Elemente a von G, fur die

aLarx L
gilt, die also die Untergruppe L in sich transformieren. N enthàlt L. Wir
behaupten :

Der Normalisator N von L ist eindimensional und besteht aus einer
(endlichen) Anzahl Nebengruppen von L :

N L + axL + a2L + ••• + ar_xL

Weil N natiirlich abgeschlossen ist, ist das gleichbedeutend mit der
Behauptung : Die Komponente iV^1 von N, die den Einheitspunkt e von G

enthàlt (und die infolgedessen auch L enthâlt), fâllt mit L zusammen.
Beweis: Jedes Elément a des Normalisators N bewirkt einen Auto-

morphismus von L durch die Zuordnung /p->a/par1, wo p die Gruppe L
durchlâuft. Die Automorphismen von L, also die der Gruppe K (Nr. 2, c),
kennt man aber: Neben der Identitàt gibt es noch genau einen, der jedem
Elément p sein Inverses p~x zuordnet, die Inversion von L (oder K). (In
der Darstellung durch die komplexen Zahlen vom Betrag 1 bedeutet die
Inversion den Ûbergang zur konjugiert-komplexen Zahl.) Die Auto-
morphismengruppe ist also diskret, sogar endlich. Ist nun b ein Punkt
von N, der der e-Komponente N1 angehôrt, dann laBt sich der von b be-

stimmte Automorphismus von L stetig in die Identitàt uberfuhren : man
lasse b in N1 nach e wandern. Also ist dieser Automorphismus die
Identitàt, und das heiBt : b ist mit jedem Elément von L vertauschbar.

Sei nun L1 eine beliebige einparametrige Untergruppe von JV1. Dann
ist, wie eben gezeigt, jedes Elément von L! mit jedem Elément von L
vertauschbar. Also ist die abgeschlossene Huile der von L und L1 er-

148



zeugten Gruppe eine (zusammenhângende) Àbel'sche Gruppe, ein Toroid
T'm.

Nun ist X(G) 1, d. h. die Toroide in G sind hôchstens eindimensional.
Das Toroid T'm, das ja die Gruppe L enthàlt, muB also mit L zusammen-
fallen, und das ist nur môglich, wenn auch Lf mit L zusammenfâllt. L ist
also die einzige einparametrige Untergruppe von N1; dann ist aber N1
mit L identisch. Damit ist die Behauptung uber N bewiesen.

Es wird sich spâter noch zeigen, daB fur n > 1 die Anzahl r der Kom-
ponenten von N gleich zwei ist (Nr. 7).

6. Wir betrachten den Nebengruppenraum

(vgl. Nr. 2, b). Die Punkte von W sind also die Nebengruppen aN von N.
Weil N eindimensional ist, ist W eine (n — l)-dimensionale Mannigfaltig-
keit; dabei ist n die Dimension d(G) von G.

Bekanntlich entsprechen nun die Nebengruppen des Normalisators Nv
einer Untergruppe U einer Gruppe eineindeutig den zu U konjugierten
Untergruppen, nâmlich dadurch, daB jede Nebengruppe aNv von Nv
genau aus denjenigen Elementen der Gruppe besteht, die U in eine
bestimmte konjugierte Untergruppe, in a Uar1, transformieren.

Im vorliegenden Fall haben wir U L und Nv N. Die zu L
konjugierten Untergruppen bilden eine Teilmenge der Menge aller geschlosse-
nen einparametrigen Untergruppen, und dièse Menge bildet den in
Nr. 2, d, eingefuhrten (n — l)-dimensionalen projektiven Raum Pn_x\
denn da die abgeschlossene Huile einer offenen einparametrigen
Untergruppe ein Toroid Tm mit m > 1 ist (Nr. 2, d), andererseits aber X(G) 1

ist, so gibt es in G keine oflfenen einparametrigen Untergruppen. Die —

eineindeutige — Zuordnung der Nebengruppen von N zu den zu L
konjugierten Untergruppen ist offenbar eine stetige Abbildung des Neben-

gruppenraumes W in den von den einparametrigen Untergruppen ge-
bildeten Pn_x, also eine topologische Abbildung. Aber aus der Tatsache,
daB die {n — l)-dimensionale Mannigfaltigkeit W topologisch in den
Pn-1 abgebildet ist, folgt nach bekannten Sâtzen (Abbildungsgrad), daB W
und Pn-1 homôomorph sind. Wir haben also gezeigt:

G sei eine Gruppe der Dimension n und vom Rang 1. Dann ist der

Nebengruppenraum —, der zu dem Normalisator N einer geschlossenen

einparametrigen Untergruppe L gehort, dem projektiven Raum Pn-1 homôomorph.
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7* Wir ziehen jetzt den Nebengnippenraum

Lt

heran, dessen Punkte die Nebengruppen aL von L sind. Wegen

JV L + axL + a2L + •••-}- ar_xL

(Nr. 4) besteht jede Nebengruppe a N von JV aus r Nebengruppen von
L, die die Komponenten von aN sind; andererseits ist jede Nebengruppe
von L in einer Nebengruppe von JV enthalten. Ordnet man jeder Nebengruppe

von L die Nebengruppe von JV zu, in der sie liegt, so erhâlt man
eine Abbildung von W auf W, bei der auf jeden Punkt von W genau r
Punkte von W abgebildet werden. Man sieht ganz leicht, da8 dièse
Abbildung im kleinen topologisch ist. (Zwei Nebengruppen von L, die hin-
reichend nahe beieinander liegen, gehôren zu verschiedenen
Nebengruppen von JV.) Also ist W eine r-blàttrige Ûberlagerungsmannigfaltig-
keit von W, also auch von Pw-1.

Da Pn_! nur ein- oder zweiblàttrige Ûberlagerungen besitzt, ist r ent-
weder 1 oder 2. Das heiBt: Entweder ist N L, oder N besteht aus zwei
Komponenten, also N L + axL mit einem gewissen Elément ax. Fur
n 1 ist bekanntlich G K; dann liegt der erste Fall vor. Wir behaup-
ten: Fur n > 1 tritt der zweite Fall ein, also N — L -\- axL\ und die
Elemente von G^Lhaben die Eigenschaft : der von ihnen erzeugte Auto-
morphismus von L ist nicht die Identitàt, sondern die Inversion von L
(vgl. Nr. 5).

Sei also n > 1 (wegen n ^ 2 ist dann sogar n > 2). Wir erteilen der
Gruppe L eine beliebige, aber feste Orientierung (vgl. Nr. 2, d). Es sei a
ein beliebiges Elément von G; wir betrachten die zu L konjugierte Gruppe
aLar1. Durch die Orientierung von L ist dann auch eine Orientierung von
aLar1 bestimmt. Man sieht sofort: sind a, a1 zwei Elemente von G, die zu
derselben Komponente einer Nebengruppe bN von JV gehôren, dann
bestimmen sie dieselbe Orientierung der zu bN gehôrenden, zu L kon-
jugierten, Untergruppe bLb~x. Das bedeutet: Jede Komponente der
Nebengruppe bN bestimmt eine der beiden Orientierungen der Gruppe
6L6"1, also eine der beiden orientierten einparametrigen Untergruppen,
die die Untergruppe bLb"1 im Sinn von Nr. 2, d, uberlagern.

Wâre jetzt JV L, also JV einkomponentig, dann hàtte man eine ein-
eindeutige und offenbar stetige Zuordnung der Nebengruppen von JV zu
den orientierten, zu dem orientierten L konjugierten, Untergruppen;
d. h. man hâtte eine topologisehe Abbildung der (n — l)-dimensionalen
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Mannigfaltigkeit W -^- in die von den orientierten einparametrigen

Untergruppen gebildete Sphàre Sn-1 ; also wàren W und 5n-1 homôomorph>
da /Sw_1 fur w > 1 eine (zusammenhângende) Mannigfaltigkeit ist. Aber
nach Nr. 6 ist W dem projektiven Raum Pn_1 homôomorph ; und Pn_x und
8n_x sind nicht homôomorph, da die Dimension n von G von 2 verschieden
ist (Nr. 5). Also ist r 2, also N — L -\- axL mit einem gewissen ax\
W ist dann eine zweiblâttrige Ûberlagerung von Pw_1? also der /Sw_1

homôomorph.
Genau wie eben schlieBt man jetzt, daB die zwei Komponenten, aus

denen eine beliebige Nebengruppe aN besteht, verschiedene Orientierun-
gen der zu aN gehôrenden, zuLkonjugierten, Gruppe aLar1 bestimmen;
sonst hâtte man wieder eine eineindeutige Zuordnung der Nebengruppen
von N zu den orientierten einparametrigen Untergruppen von G. Speziell
muB die zweite Komponente axL von iV' selbst die Orientierung von L
umkehren, und das bedeutet: der von ihren Elementen bestimmte Auto-
morphismus von L ist die Inversion von L (vgl. Nr. 5).

FaBt man jetzt die geschlossenen orientierten einparametrigen
Untergruppen als (eindimensionale) Zyklen im Sinne der Homologietheorie
(mit den ganzen Zahlen als Koeffizienten) auf, dann liefert das zuletzt
Bewiesene die Gleichung:

axLap — L

d. h. man erhàlt den Zyklus axLa~[x aus dem Zyklus L, indem man die

Orientierung vonL umkehrt. Andererseits sind axLa^x und L homolog,
sogar homotop in G : man bilde bLb~x und lasse b in G von e nach a± laufen.
Also gilt :

L ^ — L

Damit kônnen wir folgendes Ergebnis formulieren :

G sei eine Gruppe der Dimension n(> 2) und vont Rang K(G) 1; L sei
eine geschlossene einparametrige Uniergruppe. Dann ist der Nebengruppen-

raum-jr-der (n — \)-dimensionalen Sphàre $„_! homôomorph; ftir die als

ganzzahliger Zyklus aufgefapte Untergruppe L gilt die Homologie :

2L^0 in G

8. Die Nebengruppenzerlegung ist ein spezieller Pall von Faserung
(Nr. 2, b); und L ist dem Kreis Sx homôomorph. Auf Grand des eben
erhaltenen Satzes ist daher der Satz C bewiesen, wenn wir den folgenden
Fasersatz beweisen:
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M sei eine Mannigfaltigkeit der Dimension n ^ 3) ; M sei gefasert mit

der Faser S1; der Faserraum -~- sei der $„, homoomorph ; und fur die

Faser gelte die Homologie 28X ~ 0. Dann ist M dreidimensional, und zwar
ist M entweder der 8Z oder dem P3 homoomorph.

Der Beweis dièses Satzes wird in naheliegender Weise mit Hilfe eines

,,Additionssatzes der kombinatorischen Topologie" erbracht.9)
Der Faserraum, die $n_!, wird durch eine Àquatorsphâre 8n_^2 ûi zwei

Elemente E! und E" zerlegt :

Die Randsphàre von E1 heiBe 8\ die von E" heiBe 8!1\ in S' und £" hat
man also zwei Exemplare der Àquatorsphâre 8n_2.

P sei die Projektion von M auf Sn_x (vgl. Nr. 2, b). Nach dem Satz von
Feldbau kann man die Urbildmenge P~1(Er)i die M! genannt werde, als

das topologisehe Produkt E! x8x auffassen. Entsprechend kann man die

Menge M" P-1^") als E" xSx darstellen. M ist uberdeckt mit Mr
und M"\

M M1 + M"

Der Durchschnitt D M ' • M" ist das Urbild P~x(8n_2) der Âquator-
8n_2. Man erkennt unmittelbar, daB D zusammenfàllt mit dem Rand
8f x St von Mr Ef x Sx und ebenso mit dem Rand 8/f x Sx von
M" E//xS1.

Wir betrachten jetzt eine feste Faser 8± von M, und zwar eine solche,
die in D liegt; sie reprâsentiert dann die Homologieklasse p x 81 von D,
wo p den einfach gezàhlten Punkt von Sf oder auch von 8" bedeutet.
Daher ist 2aS1? die doppelt gezàhlte Faser, nieht homolog 0 in D. Da-

gegen ist nach Voraussetzung 2SX ~ 0 in M. Einem einfachen ,,Additions-
satz"10) entnimmt man jetzt: Weil der in D liegende Zyklus 2SX in M
homolog 0 ist, làBt er sich darstellen als Summe zx + z2 zweier in D
liegender Zyklen zx, z2, wobei zx in M' und z2 in Mn homolog 0 ist. Da,
wie man leicht bestàtigt, 18X weder in M! noch in M" homolog 0 ist, kann
weder zx noch z2 in D homolog 0 sein. Betrachtet man D als Rand 8' x 8X

von M' E' x 81} dann sieht man: die Zyklen von D, die in Mr (aber
nicht in D) homolog 0 sind, sind die Linearkombinationen von D selbst
und der Sphâre 8' xq, wo q ein Punkt von 8X ist.

Entsprechend sind die Zyklen von D, die in M'! homolog 0 sind, die
Linearkombinationen von D und 8n x q. Also muB sich schlieBlich 2^ in
D darstçllen lassen als lineare Verbindung von D, 8f x q, 8;/ x q. Die
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Dimension von D ist n — 1, die von 8r xq und S" x q ist n — 2. Wegen
w > 2 mu8 sich also der eindimensionale Zyklus 2SX schreiben lassen als
lineare Verbindung von S' xq und Sff xq\ daraus folgt: 71, — 2=1,
also n 3. Damit ist der erste Teil der Behauptung uber M bewiesen.

Jetzt folgt weiter: Mf und Mff sind dreidimensionale Volltorusse. M
entsteht aus M' und M" durch eine gewisse Identifizierung der Rand-
flâchen. Das bedeutet: M besitzt ein Heegaard-Diagramm vom Ge-
schlecht 1. Daher ist M bekanntlich ein Linsenraum.11)

Nun làfit sich die erste Betti'sche Gruppe von M leicht bestimmen.
Weil Er und E" zweidimensionale Elemente sind, làBt sich jeder
eindimensionale Zyklus in M so deformieren, da6 er in D liegt. FaBt man D
als Randtorus des Volltorus M ' auf und beachtet, daô der Meridiankreis
8' xq von D homolog 0 in Mr ist, so erhâlt man: jeder eindimensionale
Zyklus in M ist in M homolog einem Vielfachen der Faser S±, des Breiten-
kreises p^ auf dem Torus D.

Ist S± ~ 0 in M, dann ist also die erste Betti'sche Gruppe von M die
Nullgruppe. Der einzige solche Linsenraum ist aber die Ss.

Ist S-l nicht /^/ 0 in M, dann ist wegen der Voraussetzung 2^ ^ 0 die
erste Betti'sche Gruppe von M zyklisch von der Ordnung 2. Der einzige
solche Linsenraum ist der P3.

Damit ist der am Anfang dieser Nr. 8 genannte Fasersatz, also auch
der Satz C, also auch der Satz A bewiesen.

Anhang.

a) Der Beweis des Satzes Bf, von dem unser Satz B ein Spezialfall ist
(Nr. 4), beruht auf der Betrachtung der Abbildungen pk(x) xk von G

in sich, die jedem Elément x seine Jc-te Potenz zuordnet ; der Grad von
pk sei yk. Dann ist Bf eine Konsequenz der folgenden beiden Sàtze12) :

Satz I. Der Hontologie-Ring der geschlossenen Gruppe G sei dem Ring des

topologischen Produktes von l Sphâren ungerader Dimensionen dimensions-
treu isomorph; dann ist yk — le1.

Satz II. Die geschlossene Gruppe G enthalte eine k-dimensionale AbeVsche

Untergruppe, und es gebe heine hoher-dimensionale AbeVsche Untergruppe
von G; dann ist yk &A.

Fur B' geniigt der Beweis von I und II fur eine einzige Zahl h > 1,

z. B. le 2.

Zu dem Beweis von II im § 2 der Arbeit von Hopf7) haben wir nichts
hinzuzufugen ; der Beweis von I aber lâBt sich in unserem Falle, also im
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Falle 1=1, wesentlich einfacher fûhren, wenn man sich auf k 2 be-
schxànkt. Dann hat man also zu zeigen : Ist die Grappe G eine Homologie-
sphàre, dann hat die Abbildung p2(x) #2 von @ i*1 sich den Grad 2.

Zum Beweis benutzen wir einen bekannten Fixpunktsatz13), nach dem fur
eine Abbildung / einer Homologiesphâre G in sich die Summe der Fix-
punktindizes gleich (— l)n + cf ist, wo cf der Abbildungsgrad von / ist.
Bei der Abbildung p2 (x) einer Gruppe in sich ist nun der Einheitspunkt e

der einzige Fixpunkt (x2 x hat e als einzige Lôsung), und der Fixpunkt-
index ist, wie man sieht, wenn man kanonische Parameter einfiïhrt,
gleich 1. Also ist cp2 1 — (— l)n. Beachtet man noch, dafi die Dimension

einer Gruppen-Homologiesphàre ungerade ist, so folgt die Behaup-
tung cp2 2.

b) Ein anderer Beweis fur Satz B beruht auf der Théorie der Faserun-

gen; und zwar auf dem folgenden Satz: Die (2r -f l)-dimensionale
Homologiesphâre G sei gefasert mit der Faser S± ; dann hat der Faserraum

-çp dieselben Betti'schen Zahlen wie der komplexe projektive Raum Kr

der (komplexen) Dimension r ; insbesondere hat die Charakteristik den
Wert r + 1. (Dieser Satz war als Vermutung samt einer Beweisskizze von
Herrn H. Hopf ausgesprochen worden; eine allgemeinere Théorie, die den
Satz enthâlt, wird in der Dissertation von Herrn W. Gysin dargestellt
werden.) Damit làBt sich nun leicht zeigen: Eine Gruppen-Homologiesphàre

hat kein Toroid T2 als Untergruppe.

Beweis : Ist ein T2 Untergruppe einer beliebigen Gruppe G, dann ist T2
direktes Produkt K! x K" zweier geschlossener einparametriger Unter-
gruppen K', K" von G. Jede Nebengruppe aT2 von T2 in G ist gefasert in
Nebengruppen von Kf/, und der zugehôrige Nebengruppenraum ist mit
K\ also mit 8X homôomorph (die Faserung von aT2 entsteht aus der
Zerlegung von T2 in Nebengruppen von K" durch Multiplikation mit a).

Man betrachte nun den Nebengruppenraum -==jf FaBt man aile Punkte
G

von -=rr die — als Nebengruppen von K/r in G betrachtet — in derselben

Nebengruppe von T2 liegen, zu einer Faser zusammen, so erhàlt man eine

Faserung von -^ mit der Faser 8X. Daraus folgt, dafi die Charakteristik

0 hat; denn eine in Kreise gefaserte Mannigfaltigkeit besitzt
stetige, fixpunktfreie Deformationen in sich. Nach dem oben genannten
Fasersatz ist also G keine Homologiesphâre.

c) Aus den in Nr. 6 und 7 bewiesenen Tatsachen: -==¦ Pn_l9
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N—L-\-axL, und 2L^0 in G làBt sich die Behauptung ,,n=3" auch
mit Hilfe der Théorie von Hurewicz14) ableiten. Aus dieser Théorie er-
gibt sich nàmlich leicht die Richtigkeit folgender Behauptung : Die zweite

G
Homotopiegruppe von -=r=r Pn_1 ist nicht die Nullgruppe; dann muB

n— 3 sein, denn Pn_x hat dieselben Homotopiegruppen wie Sn_x. Um die
Behauptung zu beweisen, setzen wir fur die bei Hurewicz mit H bezeich-
nete Untergruppe die Gruppe N ein ; die Zahl n im Satz XII bei Hurewicz
setzen wir gleich 2 {n bezeichnet also von hier an nicht mehr die Dimension

von G). Dann ist nach diesem Satz eine gewisse Faktorgruppe von
G \ i' ^ i Untergruppe der Fundamentalgruppe

von N; und zwar besteht dièse Untergruppe aus denjenigen Elementen
der Fundamentalgruppe von L (das ist die Gruppe (Hq)8^1 bei
Hurewicz), die in G nullhomotop sind (mit (GSn~1)0 ist bei Hurewicz die
Klasse der zusammenziehbaren Abbildungen von Sn__1 in G bezeichnet) ;

sie ist nicht die Nullgruppe, denn nach Nr. 7 ist 2 L ~ 0 in G, also 2L
auch homotop 0 in G (weil die Fundamentalgruppe der Gruppe G

kommutativ ist).
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