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Uber denRang geschlossenerLiescher Gruppen

Von HEeinz Hopr, Ziirich L.E.J. Brouwer
zum 60. Geburtstag

1. Der ,,Rang®“ A einer geschlossenen Lieschen Gruppe G soll im
folgenden so definiert sein: G' enthélt A-dimensionale, aber nicht héher-
dimensionale Abelsche Untergruppen. Diese Definition weicht zwar von
der tiblichen etwas ab, sie ist aber am Platze, wenn man will, da3 der
nachstehende Satz von E. Cartan fiir beliebige geschlossene Gruppen,
nicht nur fiir halb-einfache, Giiltigkeit habe:1)

Drie Summe der Bettischen Zahlen einer geschlossenen Gruppe vom Range
A st gleich 27

Da der Rang bereits durch die Eigenschaften der Gruppe in der Um-
gebung des Eins-Elementes bestimmt ist, vermittelt der Satz eine der
interessanten Beziehungen, die zwischen der lokalen und der globalen
Struktur von G bestehen. Er ist von Cartan im Rahmen seiner Theorie
der invarianten Integrale durch eine Rechnung bewiesen worden.

Wir werden im folgenden fiir den Rang eine Deutung innerhalb der
Homologie-Theorie der Gruppen-Mannigfaltigkeiten angeben, welche
die Giiltigkeit des Satzes in Evidenz setzt. Als Koeffizientenbereich fiir
die Homologien soll der Korper der rationalen Zahlen — oder auch der
Korper der reellen Zahlen — dienen; dann ist, wie ich gezeigt habe, der
Homologie-Ring R (@) einer geschlossenen Gruppe G dimensionstreu
isomorph dem Homologie-Ring eines topologischen Produktes

S;=<8y>=<-x=x8;,, =1,

wobei die S; Sphiaren von ungeraden Dimensionen sind.2) Es ist klar, daf3
die Summe der Bettischen Zahlen dieses Produktes, also auch die Summe
der Bettischen Zahlen von G, gleich 2% ist; daher ist der Cartansche Satz
mit dem folgenden dquivalent:

Der Rang A von G ist gleich der Anzahl | der Faktoren in dem Sphdren-
produlkt, dessen Ring dem Ring von G isomorph ist.

Dieser Satz enthalt die Deutung des Ranges als Homologiegrofle; er

1) (2), Nr.56; (4), § VII, p.24.—Die fetten Nummern in Klammern beziehen
sich auf das Literatur-Verzeichnis am Ende der Arbeit.

%) H.Hopf, Uber die Topologie der Gruppen-Mannigfaltigkeiten und
ihrer Verallgemeinerungen [Annals of Math. 42 (1941)].
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wird im folgenden neu bewiesen werden, und zwar mit prinzipiell anderen
Hilfsmitteln als denen, auf welchen der friihere Beweis des Cartanschen
Satzes beruht.3)

2. Die zu beweisende Gleichheit zwischen der ,,lokal® definierbaren
Zahl A und der ,,global‘‘ definierten Zahl I wird mit Hilfe des Brouwer-
schen Abbildungsgrades zu Tage treten. Wir betrachten fiir eine ganze
Zahl k die Abbildung
b k(x) = xk >
welche jedem Element von G seine k-te Potenz zuordnet; ihr Grad sei y,.
Die Gleichheit 2 = [ ist gesichert, sobald fiir eine Zahl £ > 1 die beiden
folgenden Sitze bewiesen sind:

Satz I. Der Homologie-Ring der geschlossenen Gruppe G sei dem Ring des
topologischen Produktes von | Sphiren ungerader Dimensionen dimensions-
trew tsomorph; dann ist v, = kb

Satz I1. Die geschlossene Gruppe G enthalte eine A-dimensionale Abelsche
Untergruppe, und es gebe keine hioher-dimensionale Abelsche Untergruppe
von G; dann ist y, = k.

Beide Satze gelten fiir beliebige ganze Zahlen k.

3. Die Beweise der beiden Satze werden ganz unabhangig voneinander
sein; der Abbildungsgrad zeigt sich in ihnen von zwei verschiedenen
Seiten : das eine Mal tritt er als eine der GroBen auf, die zu dem Homo-
logietypus einer Abbildung gehoéren, das andere Mal als Bedeckungszahl
der Umgebungen einzelner Punkte. Mit diesen Andeutungen ist folgendes
gemeint :4)

Eine Abbildung f einer Mannigfaltigkeit M in sich bewirkt eine Ab-
bildung des Homologie-Ringes R (M) in sich, die wir ebenfalls f nennen;
sie ist ein additiver Homomorphismus. Die algebraischen Eigenschaften
dieser Ring-Abbildung charakterisieren den Homologietypus der Ab-
bildung f von M. Das Eins-Element des Ringes R(M), das durch den
orientierten Grundzyklus von M reprisentiert wird, bezeichnen wir selbst
mit M ; dann ist der Grad y von f durch die Gleichung

(M)=yM

gegeben. Dies ist die algebraische und globale Definition des Grades, die
wir beim Beweise des Satzes I benutzen.

3) Dadurch wird die in FuBnote 30 meiner Arbeit?) gestellte Aufgabe gelost.
4) Alle im folgenden benutzten Eigenschaften des Abbildungsgrades findet man im
Kap. XII der ,,Topologie I‘ von Alexandroff-Hopf [Berlin 1935].
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Dem Beweise des Satzes II dagegen liegt die anschauliche und lokale
Bedeutung des Grades zugrunde. Die Abbildung f heile im Punkte ¢
»glatt®‘, wenn jeder Punkt p, der auf g abgebildet wird, eine Umgebung
besitzt, in welcher f eineindeutig ist; ist f in ¢ glatt, so besteht das Urbild
f~(g) nur aus endlich vielen Punkten, da in der Umgebung eines Hiu-
fungspunktes von Urbildpunkten von ¢ die geforderte Eineindeutigkeit
nicht bestehen konnte; eine Umgebung von ¢ erleidet also eine endliche
Anzahl schlichter Bedeckungen durch die Bildmenge; die Bedeckungs-
zahl, d. h. die Anzahl der positiven Bedeckungen vermindert um die
Anzahl der negativen Bedeckungen, ist der Grad von f. Er hingt nicht
von dem Punkt ¢ ab, es gilt also der folgende ,,Hauptsatz‘ iiber den
Abbildungsgrad: Ist die Abbildung f in zwei verschiedenen Punkten ¢,
und ¢, glatt, so sind die Bedeckungszahlen in den beiden Punkten einan-
der gleich ; ist insbesondere die Bedeckungszahl in einem Punkt ¢, von 0
verschieden, so kann sie in keinem Punkt gleich O sein, es gibt also zu
jedem Punkt ¢ wenigstens einen Punkt p mit f(p) = q.

Die Glattheit in einem Punkte ¢ ist speziell dann gesichert, wenn f
stetig differenzierbar ist und die Funktionaldeterminante in keinem
Urbildpunkt von ¢ verschwindet; das Vorzeichen einer Bedeckung von ¢
ist dasselbe wie das Vorzeichen der Funktionaldeterminante in dem
betreffenden Urbildpunkt.

4. Der Satz I wird im § 1 bewiesen (fiir beliebige k). Die Untersuchung
des Homologietypus der Abbildungen p, geschieht mit Hilfe des Begriffes
der ,,minimalen‘‘ Elemente eines Homologieringes (Nr. 5) und unter
Benutzung der Theorie des ,,Umkehrungs-Homomorphismus** (Nr. 9).

Der § 2, der den Beweis des Satzes II enthilt (fiir £ > 0), kann ohne
Kenntnis des § 1 gelesen werden; aus der Homologietheorie kommt in
ihm nichts vor. Die Grundlage des Beweises ist die Tatsache, daf} die
Funktionaldeterminante einer Abbildung p, bei positivem k nirgends
negativ ist (Nr. 15). Zur Verrﬂeidung von Komplikationen nehmen wir
die geschlossene Gruppe G als analytisch an, was bekanntlich keine Ein-
schrinkung bedeutet. Aus der Theorie der kontinuierlichen Gruppen
werden die folgenden beiden Satze ohne Beweis benutzt: 1. Die Existenz
eines kanonischen Koordinatensystems in der Umgebung des Eins-
Elementes (Nr. 17). — 2. Die Tatsache, daf} jede kompakte zusammen-
hangende Abelsche Untergruppe von ¢ ein ,,Toroid* ist, d. h. das direkte
Produkt von endlich vielen Kreisdrehungsgruppen (Nr.18). — Zwei
weitere Satze iiber geschlossene Liesche Gruppen, die auf dem Wege zum
Satz II auftreten, werden wir nicht als bekannt voraussetzen, sondern
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mit Hilfe des Abbildungsgrades neu beweisen: a) Jede geschlossene
Gruppe wird von ihren infinitesimalen Transformationen erzeugt, d. h.
sie wird von ihren einparametrigen Untergruppen vollstandig tiberdeckt
(Nr.17). — b) Diejenigen Toroide in ¢, welche nicht in hoherdimen-
sionalen Toroiden enthalten sind, haben sémtlich die gleiche Dimension 4
(Nr. 21).

Im § 3 werden, im AnschluBl an den § 2, noch einige weitere Bemerkun-
gen iiber die Abbildungen p, gemacht; dabei treten die bekannten
,,8ingulédren‘‘ Gruppenelemente auf, und unser Rang 4 = ! wird mittels
der charakteristischen Polynome der zu G' adjungierten linearen Gruppe
ausgedriickt, wie es bei halb-einfachen Gruppen iiblich ist (Nr. 26).

Ich mochte noch feststellen, dafl Gespriache mit Herrn H. Samelson
dazu beigetragen haben, die in dieser Arbeit behandelten Fragen zu
klaren.

§ 1.

b. Der Koeffizientenbereich fiir die Homologien soll immer der rationale
Korper sein. Die Homologieklassen einer geschlossenen orientierbaren
Mannigfaltigkeit M werden in der iiblichen Weise durch Bettische
Addition und Schnitt-Multiplikation zu dem Ring R (M) vereinigt.

Ein homogen-dimensionales Element ¥V von R (M) heilt ,,minimal®,
wenn es keine anderen Vielfachen in R (M) besitzt als die durch Multipli-
kation mit rationalen Zahlen x entstehenden Vielfachen xV — welche
die gleiche Dimension wie V' haben — und als die 0-dimensionalen
Elemente — welche infolge des Poincaré-Veblenschen Dualitatssatzes
Vielfache jedes von 0 verschiedenen Elementes sind ; die 0-dimensionalen
Elemente selbst rechnen wir nicht zu den minimalen.?)

Es gilt der Invarianzsatz: Bei jeder stetigen Abbildung von M in eine
Mannigfaltigkeit M’ ist das Bild eines minimalen Elementes von R (M)
wieder ein minimales Element von R(M’).5)

6. In der Mannigfaltigkeit I" sei eine stetige Multiplikation erklart,
d. h. jedem geordneten Punktepaar (p, ¢) von I' sei ein Punkt p - ¢ von
I’ zugeordnet, der stetig von dem Paar (p, ¢) abhangt. Setzen wir

p-q=L,(q) = R,(p),

so ist L, eine stetige Abbildung von I" in sich; da L, stetig von p abhéngt,
ist die durch L, bewirkte Abbildung des Ringes R (I") in sich unabhangig
von p; wir nennen diese Ringabbildung L ; analog ist die Ringabbildung R
erklart.

5) A.a.0.2), Nr. 32—34.
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Ist M irgend eine Mannigfaltigkeit®), und sind f, g zwei Abbildungen
von M in I', so wird durch

P,,(a) = fla)-g(a) ,

wobei a einen variablen Punkt von M bezeichnet und das Produkt auf der
rechten Seite im Sinne der stetigen Multiplikation in I” zu bilden ist, eine
neue Abbildung von M in I' erklért; die durch f, g, P, , bewirkten Ring-
abbildungen nennen wir ebenfalls f, g, P, ,

Hilfssatz 1. Fiir jedes minimale Element V von R (M) gilt
P; (V)= R{(V) + Lg(V) .

Beweis. Die stetige Multiplikation in /" kann als Abbildung F' des topo-
logischen Produktes I'>< I'" in I" aufgefaf3t werden:

Flp=q)=1p-q

fiir jedes Punktepaar (p, ¢) von I'. Ist Z irgend ein Element von R(I)
und £ das durch einen einfachen Punkt reprisentierte Element, so ist?)

F(E=x<Z)=L(Z), F(Z=<E)= R(Z) . (1)
Sind I7,, I1, die Projektionen von I' < I" auf I', die durch
ILiip=q)=p, IL(px=q) =¢

gegeben sind, so ist?)
IINWZ=<E)=II,(E=<Z)=172, (2a)

I (ExZ)=ILZx=E) =0, (2b)

wobei fiir (2b) vorausgesetzt ist, daBl Z positive Dimension hat.
Die Abbildungen f und ¢ von M in I" bewirken eine Abbildung @ von

MinI'<I':
Q(a) = f(a) < g(a)
fiir jeden Punkt @ von M ; es ist
P,,=FQ, (3)

I1,.Q =f, ILQ =g . (4)

%) Alle Mannigfaltigkeiten sollen geschlossen und orientierbar sein.

7) Analog wie oben bezeichnen wir die durch die stetigen Abbildungen F, I, ... be-
wirkten Ring-Abbildungen selbst mit F, IT, ....
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Es sei nun V ein minimales Element von R(M); nach dem Invarianz-
satz (Nr. 5) ist @ (V) minimales Element von R(I'=< I'); die minimalen
Elemente dieses Ringes sind aber, wie man aus den bekannten Homologie-
und Schnitt-Eigenschaften in Produkt-Mannigfaltigkeiten leicht be-
statigt®), die Elemente

(V'xE) + (B =<V"),

wobei V', V” minimale Elemente von R (I") sind, die auch 0 sein kénnen.
Es gibt also zwei solche Elemente V', V" in R(I"), daB

QUV) = (V' =< E) + (Ex V") (5)

ist. Aus (5), (4), (2a), (2b) folgt
Vi=fV), V'=g(V),

also
Q(V)= (f(V)=E) + (BE=g(V)) . (6)
Aus (6), (3), (1) folgt
P, (V) = R}(V) + Lg(V), (M)

was zu beweisen war.
Y. Wir nehmen jetzt an, daBl die stetige Multiplikation in I" ein Eins-
Element besitzt ; es gebe also einen Punkt e, so daB fiir jeden Punkt p
e'p=p-e=p

ist. Dann ist L, die identische Abbildung von I' auf sich, und L die
identische Abbildung von R(I") auf sich; das Gleiche gilt fir B, und R.
Die Gleichung (7) lautet daher

P, ,(V)=1V)+g(V). (8)

Wir betrachten in I" die Potenzabbildungen

pi (%) = 2F ;
fiir sie gilt
Po() = ¢, Pr(x) = @+ Pr_y(®) 5 (9)
falls in I" die Gruppenaxiome erfiillt sind, sind diese Abbildungen von

vornherein fiir alle positiven und negativen % definiert; andernfalls sind
sie durch (9) wenigstens fiir alle positiven % definiert.

8) Man vgl. Kap. V der ,,Topology‘‘ von Lefschetz [New York 1930].
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Hilfssatz 2. In I sei eine stetige Multiplikation mit Eins-Element er-
klart; die Potenzabbildungen p, seien in dem soeben besprochenen Sinne
definiert. Dann ist fiir jedes minimale Element V von R(I")

(V) =EkV . (10)

Beweis. Fiir k= 0 und k =1 ist (10) offenbar richtig. Setzen wir
M =T,f=p,,g = Ppy, soist nach (9) p, = P, ,, und folglich nach (8)

Pe(V) =V 4+ pp_a(V) .

Hieraus folgt (10) fiir positive &k durch Schlul von & — 1 auf k, fiir
negative k durch Schlul von %k auf £ — 1.9)

8. Als weitere Vorbereitung fiir den Beweis des Satzes I stellen wir hier
Eigenschaften des Ringes der Produkt-Mannigfaltigkeit

P=8;>%8;>%--x§,

zusammen, wobei die §; Sphiaren von ungeraden Dimensionen sind; die
Beweise tibergehen wir.8)

Die durch die Grundzyklen repriasentierten Elemente der Ringe R (S,)
und R (P), also die Eins-Elemente dieser Ringe, seien selbst mit 8; bzw.
P, die durch einfache Punkte reprasentierten Elemente dieser Ringe
seien mit &, bzw. £ bezeichnet.

In R(P) besteht eine volle Homologiebasis, d. h. die Vereinigung von
Homologiebasen aller Dimensionen, aus den 2! Elementen

X, Xy X, (11)

wobei X, entweder §; oder £, ist.

V, sei dasjenige Element (11), in welchem X, =8,, X; = K, fir
j % ist. V4, ..., V, sind minimale Elemente, und zwar bilden sie eine
Basis aller minimalen Elemente von R (P): sie sind linear unabhéngig,
und jedes minimale Element ist eine lineare Verbindung von ihnen.

%) Herr B. Eckmann hat mir gezeigt, dall der Hilfssatz 1 seine Giiltigkeit behilt, wenn
man die in ihm behauptete Gleichung als Gleichung in einer Hurewiczschen Homotopie-
gruppe deutet und unter V eine Sphire beliebiger Dimension versteht; sowie, da} der
Hilfssatz 2 giiltig bleibt, wenn man (10) als Gleichung in einer Hurewiczschen Gruppe
deutet und unter V irgend ein Element dieser Gruppe versteht.
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Z; sei dasjenige Element (11), in welchem X, = 4+ E;, X, = §, fiir
j # ¢ ist, wobei das Vorzeichen von E, so gewahlt ist, daB Z,-V, = + E
ist. Das System aller Produkte

Zil.Ziz'”Zir’ i1<i2<'“<i1'3 (12)

zusammen mit dem Eins-Element P ist bis auf Vorzeichen identisch mit
dem System der Elemente (11); es bildet also eine Basis in R(P); be-
zeichnen wir die Produkte (12), in welchen > 1 ist, mit Y,, Y,, ...,
80 haben wir also eine Basis

P, Z,.  ,2,,Y,,Y,, ...; (13)
sie 1st dual zu der Basis
E.V,,...,.V,, W, Wy, ... ; (14)

(auf den Bau der Elemente W, kommt es im Augenblick nicht an); da8
die Basis (13) zur Basis (14) dual ist, bedeutet: es ist

P‘E:——Zi'Vi-:Yj.Wj:E’

wiahrend fiir jedes andere Paar aus (13) und (14), in welchem die Dimen-
sionszahlen der beiden Elemente sich zur Dimensionszahl von P erginzen,
das Produkt gleich 0 ist.

Folgende Produktregeln sind wichtig:

Z,Zy...-Z,= +E, (15)

wobei es uns auf das Vorzeichen nicht ankommt; ferner
Z; Z;=0, (16)
Z, Z,=—12;-Z; fur 1+#7; (17)

(die Voraussetzung, daBl die Dimensionen der S; ungerade sind, ist im
vorstehenden nur fiir (17) gebraucht worden).

9. Wir erinnern jetzt an den ,,Umkehrungs-Homomorphismus‘“ der
Abbildungen von Mannigfaltigkeiten.l%) Es seien M, M’ zwei Mannig-
faltigkeiten; { U,} bzw. {U}} seien volle Homologiebasen in ihren Ringen,
und {X,} bzw. {X}} seien die zu diesen Basen dualen Basen. Eine Ab-
bildung f von M in M’ bewirkt eine Abbildung von R(M) in R(M'), die

durch
e f(Uy) =Zo‘i5U; (18)

10) H, Hopf, Zur Algebra der Abbildungen von Mannigfaltigkeiten [Crelle’s
Journ. 168 (1930), 171—188], Satz I und Satz Ia.
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gegeben sei; dann gilt der Satz: Die Abbildung ¢ von R(M’') in R(M),
die durch ,
¢ (X;) =2y X, (19)

gegeben ist, ist nicht nur ein additiver, sondern auch ein multiplikativer
Homomorphismus.

Wir nehmen jetzt an, daB M und M’ gleiche Dimension haben; dann
ist der Abbildungsgrad y von f erklart. In den obigen Basen seien
U,= M, U; = M'die Eins-Elemente, X, = E, X| = E’ die durch ein-
fache Punkte reprasentierten Elemente der beiden Ringe. Die Gleichung
(18) fiir + = 1 lautet

f(Ul) = YU; ’

es ist also «,, = y; da die U, fir ¢ > 1 kleinere Dimension haben als
U = M’, ist a;; = 0 fiir ¢ > 1. Folglich lautet (19) fiir j = 1:

@By =yE ; (20)

auch durch diese Formel ist der Grad y charakterisiert.

10. Es sei jetzt G eine Mannigfaltigkeit, deren Ring dem Ring der
Produkt-Mannigfaltigkeit P aus Nr. 8 dimensionstreu isomorph sei. Die-
jenigen Elemente aus R (G), die bei diesem Isomorphismus den Elementen
VisZ;,Y;, W;, E aus R(P) entsprechen, bezeichnen wir mit denselben
Buchstaben ; nur statt P schreiben wir G.

Eine Abbildung f von G in sich sei gegeben; die Bilder f(V,) der mini-
malen Elemente V, sind nach dem Invarianzsatz (Nr. 5) selbst wieder
minimale Elemente; infolge der Basis-Eigenschaft der V', (Nr. 8) bestehen
daher Gleichungen

(V) =2ZyuV, - (21)

Hilfssatz 3. Der Grad von f ist die Determinante der y,;.

Beweis. Der Umkehrungs-Homomorphismus ¢ von f bewirkt unter
anderem die folgenden Substitutionen:

@(Z;) =27’hizh -+ Zﬂii Y, (22)

wobei die y,; dieselben sind wie in (21). Wir multiplizieren die ! Glei-
chungen (22) fir 7 = 1, 2,...,1 miteinander; dabei entsteht auf der
rechten Seite eine lineare Verbindung von Produkten I7,, von denen
jedes [ Faktoren, teils Z, und teils Y, enthalt ; nun ist aber jedes Y, gemaf3
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seiner Definition selbst Produkt von mindestens zwei Z,; diejenigen
IT),, welche wenigstens einen Faktor Y, enthalten, lassen sich daher als
Produkte von mehr als I Faktoren Z, schreiben, und folglich verschwinden
sie auf Grund von (17) und (16). Es ergibt sich also zunichst

Ilp(Z;) = H(thizh) )

wobei die Produkte auf beiden Seiten iiber 7 = 1, 2, ..., I zu erstrecken
sind. Auf der linken Seite benutze man jetzt die multiplikativ-homo-
morphe Eigenschaft von ¢ und die Formel (15), und auf der rechten Seite
wende man (17), (16), (15) an; dann erhalt man

¢ (B) = Det. (y,;) - & .
Nach (20) ist daher Det. (y,,) der Grad von f.

11. Der Satz I (Nr. 2) ist eine unmittelbare Folge aus dem soeben
bewiesenen Hilfssatz 3 und dem Hilfssatz 2 (Nr. 7); denn fiir die Potenz-
abbildung p, einer Gruppen-Mannigfaltigkeit G' lautet auf Grund des
Hilfssatzes 2 die Substitution (21)

pk(Vz'):kVi! 7::1’27"',l >

ihre Determinante ist £¢; nach dem Hilfssatz 3 ist dies der Grad von p,.

Es sei noch darauf aufmerksam gemacht, :daB die Giiltigkeit des asso-
ziativen Gesetzes der stetigen Multiplikation in G nicht benutzt worden
ist ; nur muf} ein Eins-Element e existieren, und die Potenzen p, miissen
so definiert sein, dafl die Formeln (9) gelten.

§ 2.

12. G sei eine n-dimensionale Liesche Gruppe; vorlaufig setzen wir nicht
voraus, dal sie geschlossen sei; ihr Kins-Element heifle e. Es seien
Abbildungen A, k,, ..., h, gegeben, welche eine Umgebung von e so in
eine Umgebung von e abbilden, dafl

ho(e) =e, e=12,...,7r, (1)
ist. Dann ist auch das Produkt
h(z) = hy(z) - hy () - ... * b ()

eine Abbildung mit A (e) = e.
Wir benutzen in der Umgebung von e ein festes Koordinatensystem ;
die Nummern der Koordinaten deuten wir durch obere Indizes an. Die
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hi(x) seien stetig differenzierbare Funktionen der *; dann sind die
Funktionalmatrizen H, H,, H,, ..., H, der Abbildungen %, h,, k,, ..., h,
im Punkte e definiert.

Wir behaupten:
H=H,+H,+ -+ H,. (2)

Es geniigt, dies fiir » = 2 zu beweisen, da sich dann der allgemeine Fall
durch wiederholte Anwendung ergibt.
Die Multiplikation in G sei durch

y-z=fy;2)
gegeben, in Koordinaten:

(y+2)f = fi(yY, ..., y"; 2L, ...,2") .
Aus
fly;e)=1y, fle;2) =2

(%3‘): - ( gﬁ )H = 0i; (3)

wobei (;;) die Einheitsmatrix ist. Differentiation von

folgt

B (@) = fi(ha(2) 5 ha(2))
ergibt
oh off oni aff ok
Tk 2oy o % e

i

also nach (1) und (3)
oh? . oh? oh}
(52)....= (5.t (38,

Das ist die Behauptung (2) fiir r = 2.
13. Wir wollen die Funktionalmatrix der Potenzabbildung!?) |

Py (%) = ¥

von @ in sich an einer Stelle # = a untersuchen; die Matrix selbst hingt
zwar von den Koordinatensystemen in den Umgebungen der Punkte @ und
Pi(a) = a* ab, aber wesentlich sind nur solche Eigenschaften, die von der
Koordinatenwahl unabhéngig sind ; wir werden die Koordinatensysteme
moglichst bequem wahlen. Da wir uns besonders fiir das Vorzeichen der

11) Obere Indizes sind im folgenden immer Exponenten (nicht Koordinaten-Nummern).
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Funktionaldeterminante interessieren, haben wir dabei auf Orientierungs-
fragen zu achten.

Die Mannigfaltigkeit G ist analytisch und orientierbar; es sind also
lokale analytische Koordinatensysteme ausgezeichnet, die dort, wo sie
tibereinandergreifen, durch regulire Transformationen mit positiver
Funktionaldeterminante auseinander hervorgehen, und es sind beliebige
regulire Koordinatentransformationen mit positiven Determinanten zu-
gelassen. Durch solche Koordinatentransformationen werden wir jetzt in
den Umgebungen der Punkte a und a* spezielle Koordinatensysteme ein-
fithren, und in bezug auf diese Systeme werden wir die Funktionalmatrix
P, der Abbildung p, berechnen. Das Verschwinden oder Nicht-Ver-
schwinden (Nr. 14) sowie das Vorzeichen (Nr.15) der Funktional-
determinante von p, wird durch die spezielle Wahl der Koordinaten-
systeme nicht beeinflullt.

In der Umgebung des Punktes ¢ nehmen wir ein festes Koordinaten-
system ; die Abbildung x— xa einer Umgebung von e auf eine Umgebung
von a hat, da sie sich durch eine Deformation von G erzeugen laQt,
positive Funktionaldeterminante; infolgedessen kann man durch eine
zugelassene Koordinatentransformation in der Umgebung von a erreichen,
dafB die Funktionalmatrix dieser Abbildung die Einheitsmatrix ¥ wird.
Ebenso kann man durch eine zugelassene Koordinatentransformation in
der Umgebung des Punktes a* erreichen, daf3 die Funktionalmatrix der
Abbildung z—a*1za einer Umgebung von e auf eine Umgebung von a*
die Einheitsmatrix £ wird. Damit sind in den Umgebungen von e, a, a*
Koordinatensysteme eingefiihrt, an denen wir festhalten wollen.

Es sei & > 0. Setzen wir

a—@ xa® = he(x)
und
h(z) = hy_y(2) * Bpa () ...« by (%) - ho(2) ,

so verifiziert man leicht die Identitat
2k = ab1-h(za?t)-a.

Man kann also die Abbildung p,(z), welche z in z* iiberfiithrt, in drei
Schritten ausfiihren:

r—>xat = x,—~>h(x,) = r,—~>a*lx,a = xF .

Die Funktionalmatrizen des ersten und des dritten Schrittes sind, dank
der von uns gewahlten Koordinatensysteme, die Einheitsmatrizen; die
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Funktionalmatrix P, von p, an der Stelle x =a ist daher gleich der
Funktionalmatrix von A an der Stelle z, = e ; diese Matrix ist nach Nr. 12

H=H,,+H,+ " +H +H,y,

wenn H, die Funktionalmatrix von A¢ an der Stelle e bezeichnet.

Nun ist &, die g-te Iteration der Abbildung %, und es ist %,(e) = e;
folglich ist H, die p-te Potenz der Matrix H,. Schreiben wir 4 statt H,,
so haben wir damit das folgende Resultat:

Bei geergneter Wahl von zugelassenen Koordinatensystemen in den Um-
gebungen der Punkte a und a* ist die Funktionalmatriz der Abbildung
Pu(x) = 2%, k> 0, an der Stelle x = a

Po=E+ A+ A* - + A1 (4)

daber bezeichnet A die Funktionalmatriz der Abbildung x—a'za an der
Stelle x = e, also die Matriz derjenigen adjungierten linearen Transforma-
tion, welche zum Element a gehort.

14. Wir fassen die Matrix 4 und ihre Potenzen als lineare Transforma-
tionen des Vektorbiindels im Punkte ¢ auf. Ein ,,Fixvektor von A4 ist ein
Vektor x mit 4 x = %, also ein Eigenvektor mit dem Eigenwert 4 1. Wir
behaupten:

Dann und nur dann ist die Determinante | P,| = 0, wenn es einen
Vektor gibt, der Fixvektor von A*, aber nicht Fixvektor von A ist.

Bewers. Aus (4) folgt
P,-(B— A)=FE — A*, (5a)

(E — A)- P, = E — Ak . (5b)

Es gebe nun erstens einen Vektor x der in der Behauptung genannten
Art; dann ist (wenn o den Nullvektor bezeichnet)

(B — A¥)x = »p, (E— A)yx=1% +#0o,

und nach (5a) P,x’ = o, also | P, | = 0.

Es sei zweitens |P,| = 0; dann gibt es einen Vektor x 7+ p mit
P.x =p; nach (5b) ist x Fixvektor von 4%; wire er auch Fixvektor von
A4, so wire A%x = x fiir jedes p, also nach (4) P,x = kx; dies ist nicht
vertriglich mit x 5= o, P,x = o ; folglich ist x nicht Fixvektor von 4.
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16. Von jetzt an sei die Gruppe G geschlossen. Wir behaupten :
Far jedes k > 0 und an jeder Stelle a von @ st die Determinante

[Pyl 20. (6)

Beweis. Fiir ein beliebiges Element b von G sei B die zugehorige
adjungierte Matrix, d.h. die Funktionalmatrix der Transformation
x—>b"1xb an der Stelle x == ¢, und C,({) das charakteristische Polynom

von B, also
Cy(8) =|lE — BJ.

Bekanntlich gilt fiir geschlossene Gruppen der Satz, dal} die Wurzeln
dieser Polynome den Betrag 1 haben. Ich erinnere an den Beweis!?): die
Koeffizienten der Polynome C, sind stetige Funktionen von b, also, da b
auf der geschlossenen Mannigfaltigkeit G variiert, beschrankt; folglich
sind auch die Wurzeln beschrankt; da aber, wenn { Wurzel von C, ist,
die Potenz {™ Wurzel von Cym ist, sind auch alle Potenzen der Wurzeln
mit positiven und mit negativen Exponenten beschrankt; das ist nur
moglich, wenn die Wurzeln den Betrag 1 haben.

Insbesondere hat C, keine reelle Wurzel ¢ > 1, und da C,({) fiir grolle
positive { positiv ist, ist daher

0,()>0 fir ¢>1. (7)

Wir betrachten nun die von dem Parameter { abhingige Matrizenschar

P, (l) = C*1E 4 t+24 4 --- + £ A2 4 AR
so daB also nach Nr. 13
Pk(l) = Pk

ist. Dann ist
(CE — A)- P,(0) = (¥E — A*,

also, wenn man zu den Determinanten iibergeht und beachtet, dal A*
die zu dem Element a* gehorige adjungierte Matrix ist,

Oa(c) ’ 'Pk(C)I = Oak(Ck) .
Hieraus und aus (7) folgt

| P(8)| >0 fir {>1,
also
| P(1)] 2 0.
Das ist die Behauptung (6).
12) (8), Nr. 39.
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Es sei noch bemerkt, daBl der hiermit fiir geschlossene Gruppen be-
wiesene Satz fiir offene Gruppen im allgemeinen nicht gilt: bei der
6-dimensionalen Gruppe der eigentlichen affinen Transformationen der
(2, y)-Ebene,

' =ax 4+ by + s

, ad —bc>0,
y' =cx +dy 4t

hat, wenn man a, b, ¢, d, s, ¢ als Koordinaten benutzt, die Funktional-
determinante der Abbildung p, den Wert

4(ad — be) (@ + d)? (@ + 1) (d + 1) — be),

und dieser kann negativ werden — z. B. fire = — 2,d = — },b=c¢=0.

16. Fir jedes Element q der geschlossenen Gruppe G und fir jedes k>0
hat die Qleichung
xk = gq
wenigstens ewne Losung x in G.13)

Beweis. Gemall dem ,,Hauptsatz‘‘ iiber den Abbildungsgrad (Nr. 3)
geniigh es, einen Punkt ¢, zu finden, in welchem die Abbildung p, glatt
und die Bedeckungszahl nicht 0 ist. Da G analytisch und p, eine analy-
tische Abbildung ist, verschwindet die Funktionaldeterminante auf
einer abgeschlossenen und hochstens (n — 1)-dimensionalen Menge N,
und das Bild N’ = p,(N) ist ebenfalls abgeschlossen und hoéchstens
(n — 1)-dimensional; (» ist die Dimension von G). Im Punkte e ist, wie
man z. B. aus (4) abliest, die Funktionaldeterminante nicht 0; daher
gibt es eine Umgebung U von e, welche schlicht auf ein Gebiet U’ ab-
gebildet wird. In U’ gibt es Punkte, die nicht zu N’ gehoren ; jeder solche
Punkt ¢, hat die gewiinschten Eigenschaften: da er nicht zu N’ gehort,
ist p, in ihm glatt; da die Funktionaldeterminante nach Nr. 15 nirgends
negativ ist, ist seine Bedeckungszahl nicht negativ, und zwar ist sie gleich
der Anzahl der Urbilder von ¢,; diese Anzahl ist nicht 0, da ¢, zu U’
gehort.

Den hiermit bewiesenen Satz kann man offenbar auch so formulieren:
Fir k> 0 w8t

(@) =G .

13) Der Satz ist bekannt, denn er ist eine unmittelbare Folge des bekannten Satzes in
Nr. 17 — man vgl. FuBnote 15; tiberdies ist er ein Korollar unseres Satzes I, den wir aber
aus Griinden der Methode hier nicht benutzen wollen.
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Auch dieser Satz verliert seine Giiltigkeit fiir offene Gruppen: in der
multiplikativen Gruppe der reellen Matrizen

a b

X:( ) mit ad—be— 1
c d

ist
P(X)=X?=(a+d)X —E ;

die Spur dieser Matrix ist (¢ -+ d)? — 2; zu einer Matrix ), deren Spur
< — 2 ist, gibt es daher keine Losung X der Gleichung X? = @ ; Bei-

spiel: Qz(—g _;) .

19. Jedes Element q der geschlossemen Gruppe G gehort einer einpara-
metrigen Untergruppe von G an'?); dieselbe Behauptung driickt man oft
so aus: die Gruppe G wird von thren infinitesimalen Transformationen
erzeugt'®).

Beweis. U sei eine offene Umgebung des Punktes e, in welcher ein
kanonisches Koordinatensystem existiert!¢); hieraus folgen zwei Tat-
sachen: 1. jeder Punkt von U gehort einer einparametrigen Untergruppe
von @G an, 2. fiir jeden Punkt ¢ von U und jedes k > 0 gibt es in U einen
Punkt z mit 2* = ¢ ; diese zweite Tatsache kann man auch so formulieren :

U c p.(U) . (8)

Es sei z irgend ein Punkt von G. Infolge der Geschlossenheit von G
enthilt die Folge seiner positiven Potenzen a™ eine konvergente Teil-
folge, es gibt also eine solche Zahlenfolge m; < m, < ---, dafl lim z™
existiert; dann ist lim 2™~ ™-1= ¢ ; somit liegt jedenfalls eine Potenz a¥
in U, und da U offen ist, gibt es eine Umgebung V(x) von x mit
n(V(2) CU.

Jedem Punkt z ist eine solche Umgebung V(x) zugeordnet; da G
geschlossen ist, kann man aus dem unendlichen System dieser V()
endlich viele, etwa V,, V,,..., V., so auswihlen, dal 2V, = @ ist;
es gibt Zahlen k; mit

e (VoycU, i=1,...,m . (9)

14) Unter einer einparametrigen Gruppe soll immer eine zusammenhéngende ein-
dimensionale Gruppe verstanden werden, wie in (5), p. 86 und p. 184 ff.

15) Dieser Satz ist bekannt: er ergibt sich erstens leicht aus (8), Nr. 47, und er folgt
zweitens auch aus der Deutung der einparametrigen Untergruppen als geodétische Linien
— man vergleiche (1), chap. II — und der Tatsache, daB in einer geschlossenen Riemann-
schen Mannigfaltigkeit zwischen je zwei Punkten eine kiirzeste Verbindung existiert.

%) (8), § 39.
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Setzen wir k, - k, - ... - k,, = k* und erklaren wir &} durch %, - k, = k*,
so ergibt sich aus (9) durch Ausiibung von o
1

Pee (Vi) € 1 (U) 5 (10)
nach (8) ist U c p,,(U), und hieraus folgt durch Ausiibung von Py
1]
pk;(U) c pk"’(U) ;

hieraus und aus (10) ergibt sich
Pes (Vi) € pae(U)

Dies gilt fiir ¢ =1,...,m, und es ist 2V, = G; folglich ist auch
Pie(() C Ppe(U). Nach Nr. 16 ist aber p,.(G) = G ; es ist also @ C e (U),

und somit
P (U) =G .

Dies bedeutet: zu jedem Punkt ¢ von G gibt es einen solchen Punkt «
in U, daB 2** = ¢ ist; da z einer einparametrigen Gruppe G, angehort,
gehort seine Potenz g derselben Gruppe G, an. )

Es ist bekannt, daBl auch der hiermit bewiesene Satz nicht fiir alle
offenen Gruppen gilt; diese Tatsache ist, da ein Element ¢, fiir welches
die Gleichung 2% = ¢ keine Losung besitzt, keiner einparametrigen
Gruppe angehoren kann, in der Bemerkung am Schlufl von Nr. 16 ent-
halten.1?)

18. Nach dem Satz aus Nr. 17 liegt jeder Punkt von G auf einer ein-
parametrigen, also Abelschen, zusammenhingenden Untergruppe @,
von G ; die abgeschlossene Hiille von @, ist eine abgeschlossene Unter-
gruppe von G, also eine Liesche Gruppe!?); sie ist kompakt, Abelsch und
zusammenhingend ; folglich ist sie nach bekannten Satzen das direkte
Produkt von endlich vielen geschlossenen einparametrigen Gruppen,
also von Kreisdrehungsgruppen'®). Eine solche Gruppe wollen wir ein
,»Toroid‘‘ nennen. Wir haben also gezeigt:

Jeder Punkt von Q liegt auf einem Toroid, welches Untergruppe von @ ist.

19. Es sei hier an einige Eigenschaften der Toroide erinnert. Ein
A-dimensionales Toroid 7') wird durch Koordinaten =z,,...,z, be-
schrieben, wobei die x,; die Restklassen der reellen Zahlen modulo 1 durch-
laufen ; die Zuordnung zwischen den Punkten von 7'y und den Systemen

17) Man vergleiche (8), Nr. 24.
18) (3), Nr. 26; (5), Th. 50.

19) (8), Nr. 43; sowie, ohne Benutzung von Differenzierbarkeitseigenschaften: (8),
Th. 42.
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(2y, ..., x,) ist eineindeutig. Das Produkt zweier Elemente x = (z,,...,x,)
und ¥ = (¥;, ..., ¥)) ist durch

Zz: y = (xl + yl’ hEdy x/\ + y)t)
gegeben.

Wir werden die folgenden beiden Tatsachen benutzen.

(a) Auf jedem Toroid T ¢ibt es Punkte c, deren Potenzen c™ diberall dicht
auf T liegen.

Das ist in dem klassischen Approximationssatz von Kronecker ent-
halten, der iiberdies besagt, daB diejenigen ¢ = (c,, ..., ¢)) die genannte
Eigenschaft haben, fiir welche die einzige Relation

miCy + 0+ MyCy =M

mit ganzen m,, ..., my, m die triviale mit m, = +-- = m, = 0 ist.29)

Da fiir ein ¢, dessen Potenzen auf 7 iiberall dicht sind, 7' die kleinste
abgeschlossene Gruppe ist, welche ¢ enthilt, soll ein solches ¢ ein erzeu-
gendes Element von 7' heilen.

(b) Fir jedes Element q des A-dimensionalen Toroids Ty und jede ganze
Zahl k > 0 hat die Gleichung x* = q genau k* Losungen x auf T .

Diese Losungen sind namlich, wie man leicht bestatigh, wenn
qg=(q,-...,q)) ist, die Elemente x = (z,, ..., x)) mit
2, E_fk_"i ,
wobei m,, ..., m) ganze Zahlen sind, welche unabhéngig voneinander die
Werte 0, 1, ..., £ — 1 durchlaufen.

20. In G gibt es nach Nr. 18 ein Toroid; es gibt daher auch ein maxi-
males Toroid, d. h. ein solches, das nicht in einem hoher-dimensionalen
Toroid enthalten ist; es gebe in G ein maximales Toroid 7', von der
Dimension A. Dann gilt der Satz:

Fiir jedes k > 0 hat die Abbildung p, von G den Grad k.

Beweis. Es sei c ein erzeugendes Element von 7'), gemafl Nr. 19 (a),
und es sei z ein Element von @, das die Gleichung x* = ¢ erfiillt. Nach

30) Eine Zusammenstellung verschiedener Beweise findet man bei J.JF. Koksma,
Diophantische Approximationen [Berlin 1936], p. 83; einige von ihnen bewegen
sich im Rahmen der Theorie der stetigen Moduln, also der kontinuierlichen Abelschen
Gruppen; hierher gehort auch ein neuer Beweis von Pontrjagin: (5), p. 150, Ex. 51.
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Nr. 18 liegt « auf einem Toroid 7''; dann liegt auch jede Potenz von =z,
also auch jede Potenz von ¢, also, da ¢ das Toroid T') erzeugt, auch 7'y auf
T'; da T, maximal ist, ist 7’ = T,. Folglich liegt = auf 7'y, und wir
sehen : alle Losungen z der Gleichung x* = ¢ liegen auf T, .

Wir behaupten, daBl in jedem dieser Punkte x die Funktionaldeter-
minante der Abbildung p, von 0 verschieden ist; nach Nr. 14 ist dies
bewiesen, sobald gezeigt ist: ist x Fixvektor der zu ¢ gehorigen adjun-
gierten Transformation C, so ist x auch Fixvektor der zu z gehorigen
adjungierten Transformation X. Nun ist aber ein Fixvektor x von C auch
Fixvektor der adjungierten Transformationen C™, die zu den Potenzen
c¢™ gehoren, und aus Stetigkeitsgriinden auch Fixvektor jeder Trans-
formation C’, die zu einem Haufungspunkt ¢’ der ¢™ gehort ; alle Punkte
von T'), also auch unsere z, sind solche ¢’. Damit ist die Behauptung be-
wiesen.

Da die Funktionaldeterminante von p, in keinem Urbildpunkt von ¢
verschwindet, ist p, im Punkte ¢ glatt (Nr. 3), und die Bedeckungszahl
in c¢ ist definiert; da die Funktionaldeterminante nirgends negativ ist
(Nr. 15), ist die Bedeckungszahl gleich der Anzahl der Urbildpunkte; wir
sahen schon, daf} es keine anderen Urbilder von ¢ gibt als diejenigen auf
T,; deren Anzahl ist nach Nr. 19 (b) gleich k*. Diese Zahl ist also die
Bedeckungszahl des Punktes ¢, und somit der Grad der Abbildung p,, .

21. Da der Grad von p, nicht von dem speziell gewdhlten maximalen
Toroid abhingt, ist ein Korollar des soeben bewiesenen Satzes:

Alle maximalen Toroide haben die gleiche Dimension A.21)

Da ferner in jeder abgeschlossenen g-dimensionalen Abelschen Unter-
gruppe von G die Komponente, welche das Eins-Element enthilt, ein
o-dimensionales Toroid ist, sieht man : Die Zahl 4 ist die héchste Dimension,
welche eine Abelsche Untergruppe von G haben kann.

Durch den Satz aus Nr. 20 zusammen mit den soeben gemachten
Bemerkungen ist der Satz II (Nr. 2) fiir alle positiven Zahlen k& bewiesen.

22. Damit ist unser Ziel, das in Nr. 1 gesteckt worden ist, ndmlich der
Beweis der Gleichheit 4 = [, erreicht; hierfiir hatte ja der Beweis der
Siatze I und II fiir ein einziges k£ > 1 geniigt. Da wir den Satz I fiir alle %,
auch fiir die negativen, bewiesen haben, ist damit auch die Giiltigkeit des
Satzes II fiir die negativen k gesichert. Man wird aber wiinschen, den
Satz IT auch fir diese ¥ ohne den algebraisch-topologischen Apparat

1) Dieser Satz folgt leicht aus (6), Teil II, p. 354—366, oder auch aus (1), chap. I.
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des § 1 zu beweisen; ein solcher Beweis wird sich spater ergeben; im
Augenblick bemerke ich als Vorbereitung dazu nur folgendes:

Da schon bewiesen ist, daB p, fiir £ > 0 den Grad k* hat, geniigt es fiir
den Beweis der Behauptung, daB p_, den Grad (— k)* habe, zu zeigen:
die Abbildung p_,, also die Inversion, welche x mit 2~ vertauscht, hat
den Grad (— 1)*. Sind z,, ..., z, kanonische Koordinaten in der Um-
gebung des Punktes e, so befordert p_; den Punkt mit den Koordinaten
in den Punkt mit den Koordinaten — z, ; daraus ist ersichtlich: der Grad
von p_, ist (— 1)". Unsere Behauptung, dieser Grad sei (— 1)3, ist daher
gleichbedeutend mit der folgenden:

=n mod. 2. (11)

Diese Tatsache aber wird sich in Nr. 27 aus einem allgemeinen Satze
ablesen lassen.??)

§ 3.

Es sollen hier noch einige Zusitze zu dem Inhalt des § 2 gemacht
werden, um einerseits den Zusammenhang mit bekannten Begriffen aus
der Theorie der kontinuierlichen Gruppen herzustellen?3), und um an-
dererseits die Frage nach der Anzahl der Losungen der Gleichung z* = ¢
noch etwas weiter zu verfolgen. Wie bisher ist G eine geschlossene
n-dimensionale Gruppe und A ihr Rang, d. h. die Dimension ihrer maxi-
malen Toroide.

23. Hilfssatz: Es sei 7' ein Toroid (beliebiger Dimension) in G und a ein
Element von G, das mit allen Elementen von 7' vertauschbar ist; dann
gibt es ein Toroid, welches sowohl 7' als auch a enthalt.

Beweis: A sei die von 7' und a erzeugte abgeschlossene Gruppe und A?
diejenige Komponente von 4, die das Eins-Element e enthélt. Dann ist
eine Potenz a™ von a in A! enthalten; denn fiir jede hinreichend kleine
Umgebung U von e bildet der Durchschnitt von 4 und U einen Teil einer
zusammenhidngenden Mannigfaltigkeit!®), also einen Teil von 4%, und in
jedem U gibt es Potenzen von“e¢ (man vgl. Nr. 17). Aus der Voraus-
setzung iiber 7' und a folgt, dal A Abelsch, also 4! ein Toroid ist. Es sei ¢
ein erzeugendes Element von 4! (Nr.19); da ¢ -a™ €4 ist, kann man
ein Element b von 4! so bestimmen, dafl 6™ = ¢ - a=™ ist; es gibt (Nr. 18)
ein Toroid 7'/, welches das Element a - b enthalt. Jedes Element von 7'/
ist mit a - b, also auch mit (a-b)™ = ¢, also auch mit jedem Element von

22) Da wir schon wissen, daf3 A = ist, kann (11) auch als Korollar des in Nr. 1 angefiihr-
ten Satzes gelten, welcher besagt, da8 die n-dimensionale Gruppe G den gleichen Homo-
logie-Ring hat wie ein topologisches Produkt aus ! Spharen ungerader Dimensionen.

23) Man vergleiche z. B. (1), Nr. 1—6, und (6), Teil III, p. 379.
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A?! vertauschbar; folglich ist die von A und 7'’ erzeugte abgeschlossene
Gruppe 7" Abelsch; da sie zusammenhéngend ist, ist sie ein Toroid; sie
enthalt A1, also auch 7T'; sie enthalt 7'/, also a - b, also, da b € 4! ist, auch
a; sie hat also alle gewiinschten Eigenschaften.

Aus dem Hilfssatz folgt unmittelbar: Hin Element a, das mat allen
Elementen eines A-dimensionalen Toroides T ) vertauschbar ist, liegt selbst
auf diesem T); sowie, da die Eins-Komponente (d. h. die Komponente,
die e enthalt) jeder Abelschen Gruppe ein Toroid ist:

Jede A-dimensionale Abelsche Untergruppe von G ist zusammenhingend,
also ein Toroid.

24. Unter dem Normalisator N, eines Elementes a verstehen wir wie
iiblich die Gruppe der mit a vertauschbaren Elemente; die Eins-Kom-
ponente von N, bezeichnen wir mit N. ; sie ist eine abgeschlossene zu-
sammenhidngende Liesche Gruppe, und sie hat selbst den Rang 4, da ein
maximales Toroid, welches a enthalt, zu ihr gehort. Wir behaupten: Die
Gruppe N ist die Vereinigung derjenigen A-dimensionalen Toroide, welche a
enthalten.

Beweis: DaB alle die genannten Toroide zu N. gehoren, ist klar; zu
zeigen ist: jedes Element b von N. liegt auf einem A-dimensionalen
Toroid, welches a enthalt. Es sei also b ein Element von N, }, ; nach Nr. 18,
angewandt auf die Gruppe N}, gibt es in N, ein Toroid, welches b enthilt,
und ein hochstdimensionales unter diesen Toroiden hat nach Nr. 21 die
Dimension 4, da 4 der Rang von N, ist; 7' sei ein solches Toroid. Da es
zu N, gehort, ist @ mit jedem Element von 7') vertauschbar; nach Nr. 23
liegt daher a auf 7.

25. Im folgenden werden A-dimensionale Toroide immer mit 7', be-
zeichnet. Nach Nr. 18 und Nr. 21 liegt jedes Element a von G auf wenig-
stens einem 7).

Definition: Das Element a heilit ,,requlir‘, wenn es auf nur einem 7'y
liegt, und ,,singulir*, wenn es auf mindestens zwei 7', liegt.

Ist @ regular und a € T'), so folgt aus Nr. 24, daBB N. = T, ist; ist @
singular und a € 7'y, so ist 7', echte Untergruppe von N, also hat N,
hohere Dimension als 7' ; mithin 1aBt sich die Regularitat oder Singula-
ritit auch so charakterisieren: das Element a ist requlir oder simguldir,
jenachdem sein Normalisator die Dimension A oder hohere Dimension hat.

Hieraus und aus Nr. 24 folgt weiter, daB jedes singulire Element
unendlich vielen 7') angehort.

Ein erzeugendes Element eines 7', (Nr. 19) ist, wie man leicht sieht,
immer regular.

139



26. Die Normalisatoren hiangen eng mit den Fixvektoren zusammen,
die wir in Nr. 14 betrachtet haben. Jeder von o verschiedene Vektor x im
Punkte e ist tangential an eine wohlbestimmte einparametrige Unter-
gruppe; (diese wird durch die infinitesimale Transformation, die x dar-
stellt, erzeugt)'®). Diese Untergruppe ist offenbar dann und nur dann in
dem Normalisator N, des Elementes a enthalten, wenn x Fixvektor der
zu a gehorigen adjungierten Transformation A4 ist, also derjenigen
linearen Transformation des Vektorbiindels in e, welche durch die Ab-
bildung x—a'za bewirkt wird. Die Fixvektoren von A erfiillen ein
lineares Vektorgebilde, das ,,Fixgebilde von 4 ; nach dem eben Gesagten
ist klar: Das Fixgebilde von A ist identisch mit dem Gebilde der Tangential-
vektoren des Normalisators N, im Punkte e.

Insbesondere ist die Dimension von N, gleich der Dimension dieses
Fixgebildes, also gleich der Maximalzahl linear unabhangiger Fixvektoren
von 4. Fir die Untersuchung dieser Dimensionszahl ist nun wichtig der
Satz von Weyl, welcher besagt, dafl jede geschlossene Gruppe reeller
linearer Transformationen einer orthogonalen Gruppe ahnlich ist. 24)
Nach diesem Satz kann man im Punkte e ein solches Koordinatensystem
einfithren, daf3 alle Matrizen 4 orthogonal werden. Fiir eine orthogonale
Matrix aber ist die Maximalzahl linear unabhéngiger Fixvektoren, also
Eigenvektoren mit Eigenwerten -+ 1, gleich der Vielfachheit der Zahl 4-1
als Wurzel des charakteristischen Polynoms von A; diese Vielfachheit
gibt also die Dimension des Normalisators N, an. Damit haben wir auf
Grund der Ergebnisse von Nr. 25 den folgenden Sachverhalt:

Ist das Element a regulir, so besitzt die zugehorige adjungierte Matrix A
die Zahl + 1 als A-fache charakteristische Wurzel; ist a singuldr, so ist + 1
charakteristische Wurzel von A mat einer groferen Vielfachheit als A.

Das charakteristische Polynom C,({) = |{E — A| ist somit fiir jedes
Element @ durch ({ — 1) teilbar, aber nur fiir die singuliren Elemente a
durch eine hohere Potenz von ({ — 1); dabei beachte man, dafl nicht alle
Elemente singular sind, denn z. B. die erzeugenden Elemente eines 7',
sind regular (Nr. 19); es gilt also folgender Satz, durch welchen der Rang
charakterisiert wird:

Die charakteristischen Polynome der den Elementen a von G adjungierten
linearen Transformationen A sind von der Form

Co(Q) = (L — DA Fu(0),

wober F, ein Polynom ist, fir welches F,(1) 5= 0 ist; dann und nur dann
18t F (1) = 0, wenn das Element a singulir ust.

34) (6), Teil I, p. 288—289; (3), Nr. 38.
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Da die Koeffizienten des Polynoms F, analytisch von @ abhéingen, geht
hieraus zugleich hervor, daf die singuliren Elemente eine abgeschlossene
und nirgends dichte Punktmenge in G bilden.25)

27. Die orthogonalen Transformationen A4 lassen sich stetig in die
Identitat iiberfiihren und haben daher die Determinante - 1; die Viel-
fachheit der Zahl + 1 als charakteristische Wurzel einer orthogonalen
Matrix mit der Determinante - 1 ist immer der Variablen-Anzahl n kon-
gruent modulo 2; daher folgt aus Nr. 26 zunéichst die Kongruenz

A= mod. 2 , (11)

wodurch die in Nr. 22 besprochene Liicke ausgefiillt ist, und weiter der
folgende allgemeinere Satz:

Die Dimension eines Normalisators N, ist mit der Dimension n sowie
mit dem Rang A von G kongruent modulo 2; fiir ein singulires Element a
18t die Dimension von N, daher mindestens A-- 2.

Fiir jedes Element a von @ bilden die konjugierten Elemente a’ =t-1at,
t € @, eine Mannigfaltigkeit, die bekanntlich mit dem Raum der Rest-
klassen, in welche @ nach dem Normalisator N, zerfillt, homéomorph ist;
aus dem letzten Satz folgt daher:

Fir jedes Element a bildet die Klasse seiner konjugierten Elemente t—1at
eine Mannigfaltigkeit gerader Dimension ; wenn a nicht dem Zentrum von G
angehort, 1st diese Dimension positiv, also mindestens 2.

28. Wir kehren zu unseren Abbildungen p,(z) = z¥ mit beliebigen
positiven Exponenten k zuriick und untersuchen die Gleichung

x*k = q (12)
bei gegebenem Element g¢.
Jedes 7'), welches eine Losung « von (12) enthalt, enthalt auch g;
folglich liegen alle Losungen z in N .
Ist ¢ regulir, so liegen alle x in dem einzigen 7'y, das q enthélt; ihre

Anzahl ist also k* (Nt. 19).
¢ sei singuldr und 77 eines der 7'y, die q enthalten; wir unterscheiden

zwei Fille, jenachdem es auBer den Losungen, die in 7% liegen, noch
andere Losungen von (12) gibt oder nicht.

35) Tatsachlich ist diese Menge nur (n — 3)-dimensional: (6), Teil III, p. 379 und (1),
Nr. 6.
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Im ersten Fall sei x eine Losung, die nicht in 7' liegt ; nach Nr. 23 ist x
nicht mit allen Elementen von 75 vertauschbar, z gehort also gewi3
nicht zum Zentrum von N;; die Klasse seiner in N} konjugierten Ele-
mente, also die Menge der Elemente

2! = t1lxt, tEN],

ist daher nach Nr. 27 eine mindestens 2-dimensionale Mannigfaltigkeit ;
aber alle Elemente z’ erfiillen die Gleichung (12). Folglich enthalt die
Menge der Losungen von (12) eine mindestens 2-dimensionale Mannig-
faltigkeit.

Zweiter Fall: ¢ ist singuldr, und alle Losungen x von (12) liegen in dem-
selben 7. Dann ist ihre Anzahl k*. Wir behaupten, daB dies ein Aus-
nahmefall ist, d. h. dal er hochstens fiir endlich viele k£ eintreten kann;
genauer: das Zentrum Z von N_ bestehe aus m Komponenten; dann
kann der Ausnahmefall hochstens dann eintreten, wenn £k < m ist.

Beweis : Da es auf jedem T, das q enthilt, k* Losungen gibt, liegen alle
kA Losungen von (12) auf jedem 7'), welches ¢ enthilt; sie sind daher
Elemente von Z; wir haben also nur die durch p, bewirkte Abbildung
von Z in sich zu betrachten. Die Eins-Komponente Z' von Z ist ein
Toroid 7',, und jede Komponente von Z ist mit Z! homdéomorph; aus
den Eigenschaften der Toroide ist leicht ersichtlich (man vergleiche
Nr. 19, b): in jeder Komponente, welche iiberhaupt eine Losung x
enthilt, gibt es genau k¢ Losungen z; da es im ganzen k* Losungen
gibt, ist daher k* < m - ke. Hierbei ist ¢ die Dimension von Z; sie ist
kleiner als 4, da aus ¢ = A und aus Nr. 23 folgen wiirde, dal} N ; = T, =
T, ist, entgegen der Tatsache, dafl N, infolge der Singularitit von ¢
groBere Dimension hat als 2. Aus k* < m - k¢ und ¢ < A folgt k < m.

Fassen wir zusammen:

Ist q regulir, so hat die Qleichung (12) genau k* Losungen x. Es sei q sin-
guldr; dann kann derselbe einfache Sachverhalt — also die Ewxistenz von
genau k* Losungen — fir endlich viele Ausnalmewerte von k vorliegen ; fiir
alle anderen k gibt es unendlich viele Losungen von (12), und zwar enthdilt die
Menge der Losungen eine mindestens 2-dimensionale Mannigfaltigkeit.

Das Eins-Element e ist in jeder Gruppe, die nicht Abelsch ist, singulér;

daher besitzt die Gleichung
xk =e (13)

in jeder geschlossenen, nicht-Abelschen Gruppe wenigstens oo? Losungen,
vorausgesetzt, daB % nicht ein Ausnahmewert ist; die Ausnahmewerte
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konnen im Falle der Gleichung (13) nicht gréBer sein als die Anzahl m
der Komponenten des Zentrums Z von G.

Ein trivialer Ausnahmewert fiir jedes singulidre Element g ist £=1.

Auch k=2 tritt als Ausnahmewert auf: in der Gruppe G=A4, der
Quaternionen vom Betrage 1 — also einer Gruppe mit n =3, A=1 —
hat die Gleichung 2*=-e nur zwei Losungen.5)

(1)
(2)

(3)
(4)

(5)
(6)

)
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2¢) Dieses Beispiel — @ = 4,, k = 2 — ist, wenn man sich auf einfache geschlossene

Gruppen beschriankt, die den vier groBen Killing-Cartanschen Klassen angehdren, das
einzige, in welchem es zu dem Element e einen Ausnahmewert k> 1 gibt, in welchem
also die Gleichung (13) fiir ein k> 1 nur endlich viele Losungen hat; man bestéatigt dies
leicht mit Hilfe derjenigen Eigenschaften der vier groBlen Klassen, die in (4), § IV,
p- 14, angegeben sind.
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