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UberdenRang geschlossenerLiescherGruppen
Von Heinz Hopf, Zurich l.e.j. Brouwer

zum 60. Geburt8tag

1. Der ,,Rang" k einer geschlossenen Lieschen Grappe G soll im
folgenden so definiert sein : G enthàlt A-dimensionale, aber nicht hôher-
dimensionale Abelsche Untergruppen. Dièse Définition weicht zwar von
der ûblichen etwas ab, sie ist aber am Platze, wenn man will, daû der
nachstehende Satz von E. Cartan fur beliebige geschlossene Gruppen,
nicht nur fur halb-einfache, Giiltigkeit habe:1)

Die Summe der Bettischen Zahlen einer geschlossenen Gruppe vom Range
X ist gleich 2\

Da der Rang bereits durch die Eigenschaften der Gruppe in der Um-
gebung des Eins-Elementes bestimmt ist, vermittelt der Satz eine der
interessanten Beziehungen, die zwischen der lokalen und der globalen
Struktur von G bestehen. Er ist von Cartan im Rahmen seiner Théorie
der invarianten Intégrale durch eine Rechnung bewiesen worden.

Wir werden im folgenden fur den Rang eine Deutung innerhalb der
Homologie-Theorie der Gruppen-Mannigfaltigkeiten angeben, welche
die Giiltigkeit des Satzes in Evidenz setzt. Als Koeffizientenbereich fur
die Homologien soll der Kôrper der rationalen Zahlen — oder auch der
Kôrper der reellen Zahlen — dienen; dann ist, wie ich gezeigt habe, der
Homologie-Ring 9t(C?) einer geschlossenen Gruppe G dimensionstreu
isomorph dem Homologie-Ring eines topologischen Produktes

S1xS2x'"x8l9 l ^ 1

wobei die $t Sphàren von ungeraden Dimensionen sind.2) Es ist klar, daû
die Summe der Bettischen Zahlen dièses Produktes, also auch die Summe
der Bettischen Zahlen von G, gleich 2l ist; daher ist der Cartansche Satz
mit dem folgenden âquivalent :

Der Rang A von G ist gleich der Anzahl l der Faktoren in dem Sphâren-
produkt, dessen Ring dem Ring von G isomorph ist.

Dieser Satz enthàlt die Deutung des Ranges als HomologiegrôBe ; er

x) (2), Nr. 56; (4), §VII,p.24. — Die fetten Nummern in Klammern beziehen
sich auf das Literatur-Verzeichnis am Ende der Arbeit.

2) JET. Hopf, Ûber die Topologie der Gruppen-Mannigfaltigkeiten und
ihrer Verallgemeinerungen [Annals of Math. 42 (1941)].
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wird im folgenden neu bewiesen werden, und zwar mit prinzipiell anderen
Hilfsmitteln als denen, auf welchen der fruhere Beweis des Cartanschen
Satzes beruht.3)

2. Die zu beweisende Gleiehheit zwischen der ,,lokal" definierbaren
Zahl A und der ,,global" defînierten Zahl l wird mit Hilfe des Brouwer-
schen Abbildungsgrades zu Tage treten. Wir betrachten fur eine ganze
Zahl k die Abbildung x6 pk(x) - xk

welche jedem Elément von G seine k-te Potenz zuordnet, ihr Grad sei yk.
Die Gleiehheit A l ist gesichert, sobald fur eine Zahl k > 1 die beiden
folgenden Satze bewiesen sind:

Satz I, Der Homologie-Ring der geschlossenenGruppeG sei dem Ring des

topologischen Produktes von l Spharen ungerader Dimensionen dimensions-
treu isomorph; dann ist yk kl.

Satz II. Die geschlossene Gruppe G enthalte eine X-dimensionale Abelsche

Untergruppe, und es gebe keine hoher-dimensionale Abelsche Untergruppe
von G; dann ist yk k^.

Beide Satze gelten fur beliebige ganze Zahlen k.

3. Die Beweise der beiden Satze werden ganz unabhangig voneinander
sein; der Abbildungsgrad zeigt sich in ihnen von zwei verschiedenen
Seiten : das eine Mal tritt er als eine der GroBen auf, die zu dem Homo-
logietypus einer Abbildung gehoren, das andere Mal als Bedeckungszahl
der Umgebungen einzelner Punkte. Mit diesen Andeutungen ist folgendes
gemeint:4)

Eine Abbildung / einer Mannigfaltigkeit M in sich bewirkt eine
Abbildung des Homologie-Ringes 3i(M) in sich, die wir ebenfalls / nennen;
sie ist ein additiver Homomorphismus. Die algebraischen Eigenschaften
dieser Ring-Abbildung charakterisieren den Homologietypus der
Abbildung / von M. Das Eins-Element des Ringes 91 (M), das durch den
orientierten Grundzyklus von M reprasentiert wird, bezeichnen wir selbst
mit Jf ; dann ist der Grad y von / durch die Gleichung

f(M) yM

gegeben. Dies ist die algebraische und globale Définition des Grades, die
wir beim Beweise des Satzes I benutzen.

3) Dadurch wird die in Fufinote 30 meiner Arbeit2) gestellte Aufgabe gelost.
*) Aile im folgenden benutzten Eigenschaften des Abbildungsgrades findet man im

Kap. XII der ,,Topologie I" von Aleocandroff-Hopf [Berlin 1935].
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Dem Beweise des Satzes II dagegen liegt die anschauliche und lokale
Bedeutung des Grades zugrunde. Die Abbildung / heiBe im Punkte q
,,glatt", wenn jeder Punkt p, der auf q abgebildet wird, eine Umgebung
besitzt, in welcher / eineindeutig ist ; ist / in q glatt, so besteht das Urbild
/~1(g) nur aus endlich vielen Punkten, da in der Umgebung eines Hâu-
fungspunktes von Urbildpunkten von q die geforderte Eineindeutigkeit
nieht bestehen kônnte ; eine Umgebung von q erleidet also eine endliche
Anzahl schlichter Bedeckungen durch die Bildmenge; die Bedeckungs-
zahl, d. h. die Anzahl der positiven Bedeckungen vermindert uni die
Anzahl der negativen Bedeckungen, ist der Grad von /. Er hàngt nicht
von dem Punkt q ab, es gilt also der folgende ,,Hauptsatz" ûber den
Abbildungsgrad : Ist die Abbildung / in zwei verschiedenen Punkten qx
und q2 glatt, so sind die Bedeckungszahlen in den beiden Punkten einan-
der gleich ; ist insbesondere die Bedeckungszahl in einem Punkt qx von 0

verschieden, so kann sie in keinem Punkt gleich 0 sein, es gibt also zu
jedem Punkt q wenigstens einen Punkt p mit f(p) — q.

Die Glattheit in einem Punkte q ist speziell dann gesichert, wenn /
stetig differenzierbar ist und die Funktionaldeterminante in keinem

Urbildpunkt von q verschwindet ; das Vorzeichen einer Bedeckung von q
ist dasselbe wie das Vorzeichen der Funktionaldeterminante in dem
betreffenden Urbildpunkt.

4. Der Satz I wird im § 1 bewiesen (fur beliebige h). Die Untersuchung
des Homologietypus der Abbildungen pk geschieht mit Hilfe des Begriffes
der ,,minimalen" Elemente eines Homologieringes (Nr. 5) und unter
Benutzung der Théorie des ,,Umkehrungs-Homomorphismus" (Nr. 9).

Der § 2, der den Beweis des Satzes II enthàlt (fur k > 0), kann ohne
Kenntnis des § 1 gelesen werden; aus der Homologietheorie kommt in
ihm nichts vor. Die Grundlage des Beweises ist die Tatsache, daB die
Funktionaldeterminante einer Abbildung pk bei positivem k nirgends
negativ ist (Nr. 15). Zur Vermeidung von Komplikationen nehmen wir
die geschlossene Grappe G als analytisch an, was bekanntlich keine Ein-
schrânkung bedeutet. Aus der Théorie der kontinuierlichen Gruppen
werden die folgenden beiden Sâtze ohne Beweis benutzt : 1. Die Existenz
eines kanonischen Koordinatensystems in der Umgebung des Eins-
Elementes (Nr. 17). — 2. Die Tatsache, daB jede kompakte zusammen-
hângende Abelsche Untergruppe von G ein ,,Toroid" ist, d. h. das direkte
Produkt von endlich vielen Kreisdrehungsgruppen (Nr. 18). — Zwei
weitere Sâtze ûber geschlossene Liesche Gruppen, die auf dem Wege zum
Satz II auftreten, werden wir nicht als bekannt voraussetzen, sondern
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mit Hilfe des Abbildungsgrades neu beweisen: a) Jede geschlossene
Grappe wird von ihren infinitesimalen Transformationen erzeugt, d. h.
sie wird von ihren einparametrigen Untergruppen vollstàndig ûberdeckt
(Nr. 17). — b) Diejenigen Toroide in G, welche nicht in hôherdimen-
sionalen Toroiden enthalten sind, haben sàmtlich die gleiche Dimension X

(Nr. 21).
Im § 3 werden, im AnschluB an den § 2, noch einige weitere Bemerkun-

gen ûber die Abbildungen pk gemacht; dabei treten die bekannten
,,singulâren" Gruppenelemente auf, und unser Rang A l wird mittels
der charakteristischen Polynôme der zu 0 adjungierten linearen Grappe
ausgedruckt, wie es bei halb-einfachen Grappen ublich ist (Nr. 26).

Ich môchte noch feststellen, daB Gesprâche mit Herrn H. Samelson
dazu beigetragen haben, die in dieser Arbeit behandelten Fragen zu
klâren.

§1.
6. Der Koeffizientenbereich fur die Homologien soll immer der rationale

Kôrper sein. Die Homologieklassen einer geschlossenen orientierbaren
Mannigfaltigkeit M werden in der ublichen Weise durch Bettische
Addition und Schnitt-Multiplikation zu dem Ring 91 (M) vereinigt.

Ein homogen-dimensionales Elément V von 9î(Jf) heiBt ,,minimal",
wenn es keine anderen Vielfachen in 9î(ikf) besitzt als die durch Multipli-
kation mit rationalen Zahlen oc entstehenden Vielfachen a V — welche
die gleiche Dimension wie F haben — und als die O-dimensionalen
Elemente — welche infolge des Poincaré-Veblenschen Dualitàtssatzes
Vielfache jedes von 0 verschiedenen Elementes sind ; die O-dimensionalen
Elemente selbst rechnen wir nicht zu den minimalen.5)

Es gilt der Invarianzsatz : Bei jeder stetigen Abbildung von M in eine

Mannigfaltigkeit M' ist das Bild eines minimalen Elementes von %{M)
wieder ein minimales Elément von 31 (Mf).5)

6. In der Mannigfaltigkeit F sei eine stetige Multiplikation erklârt,
d. h. jedem geordneten Punktepaar (p, q) von F sei ein Punkt p • q von
F zugeordnet, der stetig von dem Paar (p, q) abhângt. Setzen wir

p-q Lp(q) Rq(p)

so ist Lp eine stetige Abbildung von F in sich ; da L^ stetig von p abhângt,
ist die durch Lp bewirkte Abbildung des Ringes 91 (F) in sich unabhàngig
von p ; wfr nennen dièse Ringabbildung L ; analog ist die Ringabbildung R
erklàrt.

5j A a Q a^ Nr 32—34.
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Ist M irgend eine Mannigfaltigkeit6), und sind /, g zwei Abbildungen
von M in F, so wird durch

wobei a einen variablen Punkt von M bezeichnet und das Produkt auf der
rechten Seite im Sinne der stetigen Multiplikation in F zu bilden ist, eine
neue Abbildung von M in .Terklârt; die durch /, g, Pf g bewirkten Ring-
abbildungen nennen wir ebenfalls /, g, Pf g

Hilfssatz 1. Fur jedes minimale Elément F von 5R(Jf) gilt

Beweis. Die stetige Multiplikation in F kann als Abbildung F des topo-
logischen Produktes FxFm F aufgefaBt werden:

F(pxq) p-q
fur jedes Punktepaar (p, q) von F. Ist Z irgend ein Elément von 91 (F)
und E das durch einen einfachen Punkt repràsentierte Elément, so ist7)

F(ExZ) L(Z) F(ZxE) R{Z) (1)

Sind II1, II2 die Projektionen von F x F auf F, die durch

gegeben sind, so ist7)

n^ZxE) n2(ExZ) Z (2a)

nl(ExZ) n2{ZxE) 0 (2b)

wobei fur (2b) vorausgesetzt ist, daB Z positive Dimension hat.
Die Abbildungen / und g von M in F bewirken eine Abbildung Q von

M jnFxF:
Q() f(a)xg(a)

fur jeden Punkt a von M ; es ist

Pf,g=FQ, (3)

n&^f, n2Q g. (4)

*) Aile Mannigfaltigkeiten sollen geschlosaen und orientierbar sein.
7) Analog wie oben bezeichnen wir die durch die stetigen Abbildungen F, II,

bewirkten Ring-Abbildungen selbst mit Ff Hf
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Es sei nun F ein minimales Elément von 9î(Jf); nach dem Invarianz-
satz (Nr. 5) ist Q(V) minimales Elément von SR(FxF); die minimalen
Elemente dièses Ringes sind aber, wie man aus den bekannten Homologie-
und Schnitt-Eigenschaften in Produkt-Mannigfaltigkeiten leicht be-

stâtigt8), die Elemente

(V'xE) + (Ex F"),

wobei V, V" minimale Elemente von 9Î(.T) sind, die auch 0 sein kônnen.
Es gibt also zwei solche Elemente V, V" in 91 (T), da8

Q(V) (V'xE) + (ExV") (5)

ist. Aus (5), (4), (2a), (2b) folgt
V' f(V), V g{V),

also

Q(V) (f(V)xE) + (Exg(V)). (6)
Aus (6), (3), (1) folgt

PfJV) Rf(V) + Lg(V) (7)
was zu beweisen war.

7. Wir nehmen jetzt an, da8 die stetige Multiplikation in F ein Eins-
Element besitzt ; es gebe also einen Punkt e, so da6 fur jeden Punkt p

e • p — p ' e p

ist. Dann ist Le die identische Abbildung von F auf sich, und L die
identische Abbildung von 91 (F) auf sich ; das Gleiche gilt fur Re und R.
Die Gleichung (7) lautet daher

Pf,.(V) /(F) + g{V). (8)

Wir betrachten in F die Potenzabbildungen

pk(x) xk ;

fur sie gilt
po(x) e pk(x) x • pk_x{x) ; (9)

falls in F die Gruppenaxiome erfûllt sind, sind dièse Abbildungen von
vornherein fur aile positiven und negativen Je definiert ; andernfalls sind
sie dureh (9) wenigstens fur aile positiven Je definiert.

8) Man vgl. Kap. V der ,,Topology" von Lefschetz [New York 1930].
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Hilfssatz 2. In F sei eine stetige Multiplikation mit Eins-Element er-
klàrt ; die Potenzabbildungen pk seien in dem soeben besprochenen Sinne
definiert. Dann ist fur jedes minimale Elément F von 9Î(T)

Pk(V) kV (10)

Beweis. Fur k 0 und & 1 ist (10) ofïenbar richtig. Setzen wir
M J1, / Pi,g pk-!, so ist nach (9) pk Pf g, und folglich nach (8)

PAV) V + pw(7)

Hieraus folgt (10) fur positive k durch SchluB von k — 1 auf k, fur
négative & durch SchluB von k auf k — l.9)

8. Als weitere Vorbereitung fur den Beweis des Satzes I stellen wir hier
Eigenschaften des Ringes der Produkt-Mannigfaltigkeit

P 81xS2x ••• xSt

zusammen, wobei die 8{ Sphâren von ungeraden Dimensionen sind; die
Beweise ubergehen wir.8)

Die durch die Grundzyklen reprâsentierten Elemente der Ringe 91 {81)
und 91 (P), also die Eins-Elemente dieser Ringe, seien selbst mit 8t bzw.
P, die durch einfache Punkte reprâsentierten Elemente dieser Ringe
seien mit i^ bzw. E bezeichnet.

In 9t(P) besteht eine voile Homologiebasis, d. h. die Vereinigung von
Homologiebasen aller Dimensionen, aus den 2l Elementen

Xt x X2 x • • • x Xj (11)

wobei Xt entweder #f oder E{ ist.

Vt sei dasjenige Elément (11), in welchem Xi 8i, Xj Ej fur
j z£ i ist. Vl9 Vl sind minimale Elemente, und zwar bilden sie eine
Basis aller minimalen Elemente von 5R(P): sie sind linear unabhângig,
und jedes minimale Elément ist eine lineare Verbindung von ihnen.

•) Herr B. Eckmann hat mir gezeigt, dafi der Hilfssatz 1 seine Gûltigkeit behâlt, wenn
man die in ihm behauptete Gleichung als Gleichung in einer Hurewiczschen Homotopie-
gruppe deutet und unter V eine Sphâre beliebiger Dimension versteht; sowie, dafi der
Hilfssatz 2 gûltig bleibt, wenn man (10) als Gleichung in einer Hurewiczschen Grappe
deutet und unter V irgend ein Elément dieser Gruppe versteht.

125



Zi sei dasjenige Elément (11), in welchem Xt ±Ei9 Xi 8j fur
j z£ i ist, wobei das Vorzeichen von E{ so gewâhlt ist, da6 Zf V{: -f E
ist. Das System aller Produkte

ZhZi%-Zit »1<ta<--<îr (12)

zusammen mit dem Eins-Element P ist bis auf Vorzeichen identisch mit
dem System der Elemente (11); es bildet also eine Basis in 5R(P); be-
zeichnen wir die Produkte (12), in welchen r> 1 ist, mit Fl5 F2,
so haben wir also eine Basis

P9Zl9...9Zl9Tl9Yl9... ; (13)
sie ist dual zu der Basis

B9Vl9...9Vl9Wl9W%9... ; (14)

(auf den Bau der Elemente W$ kommt es im Augenblick nicht an) ; daB
die Basis (13) zur Basis (14) dual ist, bedeutet: es ist

P • E Zi • F, Yj • W, E

wâhrend fur jedes andere Paar aus (13) und (14), in welchem die Dimen-
sionszahlen der beiden Elemente sich zur Dimensionszahl von P ergànzen,
das Produkt gleich 0 ist.

Folgende Produktregeln sind wichtig :

Z1-Z,-...-Zl= ±E9 (15)

wobei es uns auf das Vorzeichen nicht ankommt ; ferner

•Z,-Z< 0, (16)

Zi • Zô — Zj • Zi fur i^j ; (17)

(die Voraussetzung, da8 die Dimensionen der S{ ungerade sind, ist im
vorstehenden nur fur (17) gebraucht worden).

9. Wir erinnern jetzt an den ,,Umkehrungs-Homomorphismus<4 der
Abbildungen von Mannigfaltigkeiten.10) Es seien M, M' zwei Mannig-
faltigkeiten; { C7t} bzw. { U^} seien voile Homologiebasen in ihren Ringen,
und {X{} bzw. {X^} seien die zu diesen Basen dualen Basen. Eine Ab-
bildung / von M in M'bewirkt eine Abbildung von 3{(M) in (Si(Mr), die
durch

10) H,Hopf, Zut Algebra der Abbildungen von Mannigfaltigkeiten [Crelle's
Joum. 168 (1930), 171—188], Satz I und Satz la.
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gegeben sei; dann gilt der Satz: Die Abbildung q> von 91 (Jf') in SR(Jf),
die durch

gegeben ist, ist nicht nur ein additiver, sondern auch ein multiplikativer
Homomorphismus.

Wir nehmen jetzt an, da8 M und Mr gleiche Dimension haben; dann
ist der Abbildungsgrad y von / erklârt. In den obigen Basen seien
U1 M, U[ M' die Eins-Elemente, Xx E, X[ E' die durch ein-
fache Punkte repràsentierten Elemente der beiden Ringe. Die Gleichung
(18) fur i 1 lautet

es ist also <%n y ; da die C7i fur i > 1 kleinere Dimension haben als
V[ M', ist *a 0 fur i > 1. Folglich lautet (19) fur ?* 1 :

yE ; (20)

auch durch dièse Formel ist der Grad y charakterisiert,

10. Es sei jetzt 0 eine Mannigfaltigkeit, deren Ring dem Ring der
Produkt-Mannigfaltigkeit P aus Nr. 8 dimensionstreu isomorph sei. Die-
jenigen Elemente aus 91(0), die bei diesem Isomorphismus den Elementen
VtiZi, Y^ W5, E aus 9Î(P) entsprechen, bezeichnen wir mit denselben
Buchstaben ; nur statt P schreiben wir G.

Eine Abbildung / von G in sich sei gegeben ; die Bilder / Vh) der mini-
malen Elemente Vh sind nach dem Invarianzsatz (Nr. 5) selbst wieder
minimale Elemente; infolge der Basis-Eigenschaft der Ft- (Nr. 8) bestehen
daher Gleichungen

Vi. (21)

Hilfssatz 3. Der Grad von / ist die Déterminante der yhi.

Beweis. Der Umkehrungs-Homomorphismus cp von / bewirkt unter
anderem die folgenden Substitutionen :

<p(?t)=ZYMZh + i:pi{7t, (22)

wobei die yhi dieselben sind wie in (21). Wir multiplizieren die l
Gleichungen (22) fur i 1, 2, l miteinander; dabei entsteht auf der
rechten Seite eine lineare Verbindung von Produkten i7^, von denen
jedes l Faktoren, teils Zh und teils Yi, enthâlt ; nun ist aber jedes Yi gemâB
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seiner Définition selbst Produkt von mindestens zwei Zn ; diejenigen
11^, welche wenigstens einen Faktor Y^ enthalten, lassen sich daher als
Produkte von mehr als l Faktoren Zh schreiben, ixnd folglich verschwinden
sie auf Grand von (17) und (16). Es ergibt sich also zunâchst

wobei die Produite auf beiden Seiten liber i=l,2,...,Zzu erstrecken
sind. Auf der linken Seite benutze man jetzt die multiplikativ-homo-
morphe Eigenschaft von <p und die Formel (15), und auf der rechten Seite
wende man (17), (16), (15) an; dann erhâlt man

Nach (20) ist daher Det. (yhi) der Grad von /.

11. Der Satz I (Nr. 2) ist eine unmittelbare Folge aus dem soeben
bewiesenen Hilfssatz 3 und dem Hilfssatz 2 (Nr. 7); denn fur die Potenz-
abbildung pk einer Gruppen-Mannigfaltigkeit G lautet auf Grand des

Hilfssatzes 2 die Substitution (21)

ihre Déterminante ist Je1; nach dem Hilfssatz 3 ist dies der Grad von pk.
Es sei noch darauf aufmerksam gemacht, ciaB die Giiltigkeit des asso-

ziativen Gesetzes der stetigen Multiplikation in G nicht benutzt worden
ist ; nur muB ein Eins-Element e existieren, und die Potenzen pk mûssen
so definiert sein, daB die Formeln (9) gelten.

§ 2.

12. G sei eine w-dimensionale Liesche Grappe ; vorlâufig setzen wir nicht
voraus, daB sie geschlossen sei; ihr Eins-Element heiBe e. Es seien

Abbildungen h±, h2, hr gegeben, welche eine Umgebung von e so in
eine Umgebung von e abbilden, daB

hQ(e) c, q 1, 2, ...,r (1)

ist. Dann ist auch das Produkt

h(x) ht(x) ' h2(x) • • hr(x)

eine Abbildung mit h (e) c.

Wir benutzen in der Umgebung von c ein festes Koordinatensystem ;

die Nummern der Koordinaten deuten wir durch obère Indizes an. Die
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hç (x) seien stetig differenzierbare Funktionen der xk ; dann sind die
Funktionalmatrizen H, H1, H2, Hr der Abbildungen h,hx,h2y ...,hr
im Punkte e definiert.

Wir behaupten:
H^H1 + H2+-- + Hr. (2)

Es geniigt, dies fur r 2 zu beweisen, da sich dann der allgemeine Fall
durch wiederholte Anwendung ergibt.

Die Multiplikation in G sei durch

yz f(y;z)
gegeben, in Koordinaten:

Aus

f(y,e) y, f(e;z)
folgt

wobei (ôjj) die Einheitsmatrix ist. Differentiation von

h^x) ftyiix) ; h2(x))
ergibt

dxk ~ j dyi dxk ^ y M dxk '

also nach (1) und (3)

Das ist die Behauptung (2) fur r 2.

13. Wir wollen die Funktionalmatrix der Potenzabbildung11)

pk(x) xfc

von G in sich an einer Stelle x a untersuchen ; die Matrix selbst hângt
zwar von den Koordinatensystemen in den Umgebungen der Punkte a und
pk(a) ak ab, aber wesentlich sind nur solche Eigenschaften, die von der
Koordinatenwahl unabhângig sind; wir werden die Koordinatensysteme
môglichst bequem wâhlen. Da wir uns besonders fur das Vorzeichen der

n) Obère Indizes sind im folgenden immer Exponenten (nicht Koordmaten-Nummern),

9 Commentera Mathematici Helvetid



Funktionaldeterminante interessieren, haben wir dabei aufOrientierungs-
fragen zu achten.

Die Mannigfaltigkeit G ist analytisch und orientierbar; es sind also
lokale analytische Koordinatensysteme ausgezeichnet, die dort, wo sie

libereinandergreifen, durch regulâre Transformationen mit positiver
Funktionaldeterminante auseinander hervorgehen, und es sind beliebige
regulâre Koordinatentransformationen mit positiven Determinanten zu-
gelassen. Durch solche Koordinatentransformationen werden wir jetzt in
den Umgebungen der Punkte a und ak spezielle Koordinatensysteme ein-
fûhren, und in bezug auf dièse Système werden wir die Punktionalmatrix
Pk der Abbildung pk bereehnen. Das Verschwinden oder Nicht-Ver-
sehwinden (Nr. 14) sowie das Vorzeichen (Nr. 15) der Funktional-
determinante von pk wird durch die spezielle Wahl der Koordinatensysteme

nicht beeinfluBt.
In der Umgebung des Punktes e nehmen wir ein festes Koordinaten-

system; die Abbildung x->xa einer Umgebung von e auf eine Umgebung
von a hat, da sie sich durch eine Déformation von G erzeugen lâBt,
positive Funktionaldeterminante; infolgedessen kann man durch eine

zugelassene Koordinatentransformation in der Umgebung von a erreichen,
da8 die Funktionalmatrix dieser Abbildung die Einheitsmatrix E wird.
Ebenso kann man durch eine zugelassene Koordinatentransformation in
der Umgebung des Punktes ak erreichen, da8 die Funktionalmatrix der
Abbildung x->ak"1xa einer Umgebung von e auf eine Umgebung von ak

die Einheitsmatrix E wird. Damit sind in den Umgebungen von e, a, ak

Koordinatensysteme eingefuhrt, an denen wir festhalten wollen.
Es sei k > 0. Setzen wir

«-£ xaQ hQ(x)
und

h(x) hk_x{x) • hk_2(x) • • hx{x) • hQ(x)

so verifiziert man leicht die Identitât

xk ak-i. ^(xar1) -a

Man kann also die Abbildung pk(x), welche x in xk iiberfuhrt, in drei
Schritten ausfùhren:

x-+xa~x x1-^h(x1) x2->ak-1x2a xk

Die Funktionalmatrizen des ersten und des dritten Schrittes sind, dank
der von uns gewâhlten Koordinatensysteme, die Einheitsmatrizen ; die

130



Funktionalmatrix Pk von pk an der Stelle x a ist daher gleich der
Funktionalmatrix von h an der Stelle xx e ; dièse Matrix ist nach Nr. 12

wenn JSTe die Funktionalmatrix von h^ an der Stelle e bezeichnet.
Nun ist hQ die £-te Itération der Abbildung ht, und es ist ~hx (e) e ;

folglich ist JïG die @-te Potenz der Matrix H1. Schreiben wir -4 statt H1,
so haben wir damit das folgende Résultat :

Bei geeigneter Wahl von zugelassenen Koordinatensystemen in den Um-
gebungen der PunJcte a und ak ist die Funktionalmatrix der Abbildung
pk(x) xk, h > 0, an der Stelle x — a

Pk E + A+A* + '- + A*-i ; (4)

dabei bezeichnet A die Funktionalmatrix der Abbildung x->a~1xa an der
Stelle x c, also die Matrix derjenigen adjungierten linearen Transformation,

welche zum Elément a gehôrt.

14. Wir fassen die Matrix A und ihre Potenzen als lineare Transforma-
tionen des Vektorbûndels im Punkte e auf. Ein ,,Fixvektor" von A ist ein
Vektor x mit A x x, also ein Eigenvektor mit dem Eigenwert + 1 • Wir
behaupten :

Dann und nur dann ist die Déterminante \Pk\ — 0, wenn es einen
Vektor gibt, der Fixvektor von Ak, aber nicht Fixvektor von A ist.

Beweis. Aus (4) folgt
Pk- (E - A) JE - Ak (5a)

(E -A)-Pk=-E -Ak (5b)

Es gebe nun erstens einen Vektor x der in der Behauptung genannten
Art ; dann ist (wenn o den Nullvektor bezeichnet)

(E - Ak)x o (E - A)x x' ^ o

und nach (5a) Pkxr o, also \Pk\ 0.

Es sei zweitens \Pk\ 0; dann gibt es einen Vektor x ^ o mit
PkX o ; nach (5b) ist x Fixvektor von Ak\ wàre er auch Fixvektor von
A, so wâre AQx x fur jedes q, also nach (4) Pkx kx ; dies ist nicht
vertràglich mit x ^ o, Pkx o ; folglich ist x nicht Fixvektor von A.
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15. Von jetzt an sei die Oruppe G geschlossen. Wir behaupten:
Fur jedes k > 0 und an jeder Stelle a von G ist die Déterminante

O. (6)

Beweis. Fur ein beliebiges Elément b von G sei B die zugehorige
adjungierte Matrix, d. h. die Funktionalmatrix der Transformation
x-^b~xxb an der Stelle x e, und Cb(£) das charakteristische Polynom
von JS, also

Cb(Ç) \ÇE-B\.
Bekanntlich gilt fur geschlossene Gruppen der Satz, daB die Wurzeln

dieser Polynôme den Betrag 1 haben. Ich erinnere an den Beweis12) : die
Koeffizienten der Polynôme Gb sind stetige Funktionen von b, also, da b

auf der geschlossenen Mannigfaltigkeit G variiert, beschrankt; folglich
sind auch die Wurzeln beschrankt; da aber, wenn £ Wurzel von Cb ist,
die Potenz Çm Wurzel von Cbm ist, sind auch aile Potenzen der Wurzeln
mit positiven und mit negativen Exponenten beschrankt; das ist nur
môglich, wenn die Wurzeln den Betrag 1 haben.

Insbesondere hat Cb keine réelle Wurzel £ > 1, und da Cô(£) fur groBe
positive £ positiv ist, ist daher

C5(£)>0 fur £>1. (7)

Wir betrachten nun die von dem Parameter £ abhangige Matrizenschar

pfc(f) £*-!£ + Ç*-*A + ••• + £^fe~2 + A"-1

so daB also nach Nr. 13

p*u) Pu
ist. Dann ist

also, wenn man zu den Determinanten ubergeht und beachtet, daB Ak
die zu dem Elément ak gehorige adjungierte Matrix ist,

Hieraus und aus (7) folgt
|Pfc(£)|>0 fur £>1,

also

Das ist die Behauptung (6).

«) (8), Nr. 39.
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Es sei noch bemerkt, daB der hiermit fur geschlossene Gruppen be-
wiesene Satz fur oflfene Gruppen im allgemeinen nicht gilt: bei der
6-dimensionalen Gruppe der eigentlichen affinen Transformationen der
(x, £/)-Ebene,

xf ax -f by + s
ad — bc> 0

yr ex + dy + t

hat, wenn man a, 6, c, d> s, t als Koordinaten benutzt, die Funktional-
determinante der Abbildung p2 den Wert

4:{ad - 6c) {a + df ((a + 1) (d + 1) - 6c)

und dieser kann negativ werden — z. B. fur a — — 2, d — J,6 c O.

16. Fur jedes Elément q der geschlossenen Gruppe 0 und fur jedes k>0
hat die Oleichung

xk q
wenigstens eine Losung x in G.13)

Beweis. GemaB dem ,,Hauptsatzu uber den Abbildungsgrad (Nr. 3)

genugt es, einen Punkt qx zu finden, in welchem die Abbildung pk glatt
und die Bedeckungszahl nicht 0 ist. Da G analytisch und pk eine analy-
tische Abbildung ist, verschwindet die Funktionaldeterminante auf
einer abgeschlossenen und hochstens (n — l)-dimensionalen Menge N,
und das Bild Nf pk(N) ist ebenfalls abgeschlossen und hochstens

(n — l)-dimensional; (n ist die Dimension von G). Im Punkte e ist, wie
man z. B. aus (4) abliest, die Funktionaldeterminante nicht 0; daher

gibt es eine Umgebung U von e, welche schlicht auf ein Gebiet U' ab-

gebildet wird. In Uf gibt es Punkte, die nicht zu N' gehôren; jeder solche
Punkt q± hat die gewunschten Eigenschaften : da er nicht zu Nr gehôrt,
ist pk ni ihm glatt, da die Funktionaldeterminante nach Nr. 15 nirgends
negativ ist, ist seine Bedeckungszahl nicht negativ, und zwar ist sie gleich
der Anzahl der Urbilder von qx\ dièse Anzahl ist nicht 0, da q1 zu U1

gehôrt.
Den hiermit bewiesenen Satz kann man offenbar auch so formulieren:

Fur k>0 ist
pk{G) G.

1S) Der Satz ist bekannt, denn er ist eine unmittelbare Folge des bekannten Satzes m
Nr. 17 — man vgl. Fuûnote 15, uberdies ist er ein Korollar unseres Satzes I, den wir aber
aus Grunden der Méthode hier nicht benutzen wollen.
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Auch dieser Satz verliert seine Gultigkeit fur offene Gruppen: in der
multiplikativen Grappe der reellen Matrizen

[ c d mit ad — bc 1

\ c a j
ist

die Spur dieser Matrix ist (a ~\- d)2 — 2 ; zu einer Matrix Q, deren Spur
< — 2 ist, gibt es daher keine Losung X der Gleichung X2 — Q ; Bei-

spiel: © (""o - J) •

17. Jedes Elément q der geschlossenen Gruppe G gehôrt einer einpara-
metrigen Untergruppe von G an1*)] dieselbe Behauptung druckt man oft
so aus: die Gruppe G wird von ihren infinitesimalen Transformationen
erzeugt15).

Beweis. U sei eine ofiEene Umgebung des Punktes e, in welcher ein
kanonisches Koordinatensystem existiert16) ; hieraus folgen zwei Tat-
sachen: 1. jeder Punkt von U gehort einer einparametrigen Untergruppe
von G an, 2. fur jeden Punkt q von U und jedes h > 0 gibt es in U einen
Punkt x mit xk q ; dièse zweite Tatsache kann man auch so formulieren :

Uapk(U). (8)

Es sei x irgend ein Punkt von G. Infolge der Geschlossenheit von G
enthalt die Folge seiner positiven Potenzen xm eine konvergente Teil-
folge, es gibt also eine solche Zahlenfolge m1<m2< • • •, daB lim xm%

existiert; dann ist lim o;w*~">n*-1= c ; somit liegt jedenfalls eine Potenz xk
in U, und da U offen ist, gibt es eine Umgebung V(x) von x mit
pk(V(x)) c U.

Jedem Punkt x ist eine solche Umgebung V(x) zugeordnet; da G

geschlossen ist, kann man aus dem unendlichen System dieser V(x)
endlich viele, etwa Vl9 F2, Vm, so auswahlen, daB EVt G ist;
es gibt Zahlen Jct mit

pkl(Vl) C U »=l,...,m (9)

14) Unter einer einparametrigen Gruppe soll immer eine zusammenhangende ein-
dimensionale Gruppe verstanden werden, wie in (5), p 86 und p. 184 ff.

15) Bieser Satz ist bekannt: er ergibt sich erstens leicht aus (3), Nr 47, und er folgt
zweitens auch aus der Deutung der einparametrigen Untergruppen als geodatische Lmien
— man vergleiehe (1), chap. II — und der Tatsache, dafi m einer geschlossenen Riemann-
schen Mannigfaltigkeit zwischen je zwei Punkten eme kurzeste Verbmdung existiert.

") (6), § 39.
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Setzen wir kx • k2 • • km le* und erklàren wir k[ durch k{ • k^ &*,
so ergibt sich aus (9) durch Ausûbung von p

PiciVjŒp^U); (10)

nach (8) ist U c pki(U), und hieraus folgt durch Ausûbung von p

Pki{U)cpk.(U);

hieraus und aus (10) ergibt sich

Dies gilt fur i 1, ...,m, und es ist UVi G; folglich ist auch

pk* (G) c pk* U), Nach Nr. 16 ist aber pk* (G) G; es ist also Gcpk*(U),
und somit

Dies bedeutet : zu jedem Punkt q von G gibt es einen solchen Punkt x
in U, dafi #** q ist ; da # einer einparametrigen Grappe G1 angehôrt,
gehôrt seine Potenz q derselben Grappe Gx an.

Es ist bekannt, daB auch der hiermit bewiesene Satz nicht fur aile
offenen Gruppen gilt ; dièse Tatsache ist, da ein Elément g, fur welches
die Gleichung x2 q keine Lôsung besitzt, keiner einparametrigen
Grappe angehôren kann, in der Bemerkung am SchluB von Nr. 16 ent-
halten.17)

18. Nach dem Satz aus Nr. 17 liegt jeder Punkt von G auf einer
einparametrigen, also Abelschen, zusammenhângenden Untergruppe Gx

von G ; die abgeschlossene Huile von Gx ist eine abgeschlossene
Untergruppe von G, also eine Liesche Grappe18) ; sie ist kompakt, Abelsch und
zusammenhângend ; folglich ist sie nach bekannten Sàtzen das direkte
Produkt von endlich vielen geschlossenen einparametrigen Gruppen,
also von Kreisdrehungsgruppen19). Eine solche Grappe wollen wir ein
,,Toroid" nennen. Wir haben also gezeigt:

Jeder Punkt von G liegt auf einem Toroid, welches Untergruppe von G ist.

19. Es sei hier an einige Eigenschaften der Toroide erinnert. Ein
A-dimensionales Toroid T^ wird durch Koordinaten xx, x\ be-
schrieben, wobei die xt die Restklassen der reellen Zahlen modulo 1 durch-
laufen; die Zuordnung zwischen den Punkten von Tx und den Systemen

17) Man vergleiche (3), Nr. 24.

18) (3), Nr. 26; (5), Th. 50.

19) (8), Nr. 43; sowie, ohne Benutzung von Differenzierbarkeitseigenschaften: (6),
Th. 42.
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(xl9 xx) ist eineindeutig. Das Produkt zweierElemente x (xt,...,xx)
und y={yl9...,y\) ist durch

x-y=(x1 + yl9...,xx + y\)
gegeben.

Wir werden die folgenden beiden Tatsachen benutzen.

(a) Auf jedem Toroid T gibt es Punkte c, deren Potenzen cm uberall dicht
auf T liegen.

Das ist in dem klassischen Approximationssatz von Kronecker ent-
halten, der uberdies besagt, daB diejenigen c (c1, cx) die genannte
Eigenschaft haben, fur welche die einzige Relation

™ici + *•• + ^ACA m

mit ganzen ml9 ...,mx,m die triviale mit m1 • • • m^ 0 ist.20)

Da fur ein c, dessen Potenzen auf T uberall dicht sind, T die kleinste
abgeschlossene Grappe ist, welche c enthàlt, soll ein solches c ein erzeu-
gendes Elément von T heiBen.

(6) Fur jedes Elément q des X-dimensionalen Toroids Tx und jede ganze
Zdhl k > 0 hat die Oleichung xk q genau k* Lôsungen x auf Tx.

Dièse Lôsungen sind nàmlich, wie man leicht bestàtigt, wenn
q (qlt 9 q^) ist, die Elemente x (x1, xx) mit

Xi~

wobei m1, mx ganze Zahlen sind, welche unabhângig voneinander die
Werte 0, 1, k — 1 durchlaufen.

20. In G gibt es nach Nr. 18 ein Toroid; es gibt daher auch ein maximales

Toroid, d. h. ein solches, das nicht in einem hôher-dimensionalen
Toroid enthalten ist; es gebe in G ein maximales Toroid Tx von der
Dimension A. Dann gilt der Satz :

Fur jedes k > 0 hat die Abbildung pk von G den Grad kx.

Beweis. Es sei c ein erzeugendes Elément von Tx, gemâB Nr. 19 (a),
und es sei x ein Elément von G, das die Gleichung xk c erfullt. Nach

ao) Eine Zusammenstellung verschiedener Beweise findet man bei J. F. Koksma,
Diophantische Approximationen [Berlin 1936], p. 83; einige von ihnen bewegen
sich im Rahmen der Théorie der stetigen Moduln, also der kontinuierlichen Abelschen
Gruppen; hierher gehôrt auch ein neuer Beweis von Pontrjagin: (5), p. 150, Ex. 51.
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Nr. 18 liegt x auf einem Toroid Tf; dann liegt auch jede Potenz von x,
also auch jede Potenz von c, also, da c das Toroid Tx erzeugt, auch Tx auf
T'\ da Î7A maximal ist, ist T! TA. Folglich liegt a: auf rA, und wir
sehen : aile Lôsungen x der Gleichung xk c liegen auf jPa

Wir behaupten, da6 in jedem dieser Punkte a; die Funktionaldeter-
minante der Abbildung pk von 0 verschieden ist; nach Nr. 14 ist dies
bewiesen, sobald gezeigt ist: ist x Fixvektor der zu c gehôrigen adjun-
gierten Transformation 0, so ist x auch Fixvektor der zu x gehôrigen
adjungierten Transformation X. Nun ist aber ein Fixvektor x von G auch
Fixvektor der adjungierten Transformationen Cm, die zu den Potenzen
cm gehôren, und aus Stetigkeitsgriinden auch Fixvektor jeder
Transformation C, die zu einem Hâufungspunkt c' der cm gehôrt; aile Punkte
von T\, also auch unsere x, sind solche cf. Damit ist die Behauptung
bewiesen.

Da die Funktionaldeterminante von pk in keinem Urbildpunkt von c

verschwindet, ist pk im Punkte c glatt (Nr. 3), und die Bedeckungszahl
in c ist definiert; da die Funktionaldeterminante nirgends negativ ist
(Nr. 15), ist die Bedeckungszahl gleich der Anzahl der Urbildpunkte ; wir
sahen schon, daB es keine anderen Urbilder von c gibt als diejenigen auf
Tx', deren Anzahl ist nach Nr. 19 (b) gleich kx. Dièse Zahl ist also die
Bedeckungszahl des Punktes c, und somit der Grad der Abbildung pk.

21. Da der Grad von pk nicht von dem speziell gewàhlten maximalen
Toroid abhângt, ist ein Korollar des soeben bewiesenen Satzes :

Aile maximalen Toroide haben die gleiche Dimension A.21)

Da ferner in jeder abgeschlossenen g-dimensionalen Abelschen Unter-
gruppe von G die Komponente, welche das Eins-Element enthàlt, ein
£-dimensionales Toroid ist, sieht man : Die Zahl X ist die hôchste Dimension,
welche eine Abelsche Untergruppe von G haben kann.

Durch den Satz aus Nr. 20 zusammen mit den soeben gemachten
Bemerkungen ist der Satz II (Nr. 2) fur aile positiven Zahlen Je bewiesen.

22. Damit ist unser Ziel, das in Nr. 1 gesteckt worden ist, nâmlich der
Beweis der Gleichheit A l, erreicht ; hierfur hâtte ja der Beweis der
Sâtze I und II fur ein einziges k > 1 genûgt. Da wir den Satz I fur aile k,
auch fur die negativen, bewiesen haben, ist damit auch die Gûltigkeit des

Satzes II fur die negativen k gesichert. Man wird aber wunschen, den
Satz II auch fur dièse k ohne den algebraisch-topologischen Apparat

21) Dieser Satz folgt leicht aus (6), Teil II, p. 354—366, oder auch aus (1), chap. I.
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des § 1 zu beweisen; ein solcher Beweis wird sich spâter ergeben; im
Augenblick bemerke ich als Vorbereitung dazu nur folgendes:

Da sehon bewiesen ist, daB pk fur k > 0 den Grad k* hat, gerriigt es fur
den Beweis der Behauptxing, daB p_k den Grad (— k)* habe, zu zeigen:
die Abbildung p_x, also die Inversion, welche x mit xr1 vertauscht, hat
den Grad (— 1)\ Sind xl9 xn kanonische Koordinaten in der Um-
gebung des Punktes e, so befôrdert /p_1 den Punkt mit den Koordinaten x{
in den Punkt mit den Koordinaten — xt ; daraus ist ersichtlich : der Grad
von p_x ist (— l)n. Unsere Behauptung, dieser Grad sei (— 1)A, ist daher
gleichbedeutend mit der folgenden:

X=n mod. 2. (11)

Dièse Tatsache aber wird sich in Nr. 27 aus einem allgemeinen Satze
ablesen lassen.22)

§3.
Es sollen hier noch einige Zusâtze zu dem Inhalt des § 2 gemacht

werden, um einerseits den Zusammenhang mit bekannten Begrifïen aus
der Théorie der kontinuierlichen Gruppen herzustellen23), und um an-
dererseits die Frage nach der Anzahl der Lôsungen der Gleichung xk q
noch etwas weiter zu verfolgen. Wie bisher ist G eine geschlossene
w-dimensionale Grappe und A ihr Rang, d. h. die Dimension ihrer maxi-
malen Toroide.

23. Hilfssatz : Es sei T ein Toroid (beliebiger Dimension) in G und a ein
Elément von G, das mit allen Elementen von T vertauschbar ist ; dann
gibt es ein Toroid, welches sowohl T als auch a enthâlt.

Beweis: A sei die von T und a erzeugte abgeschlossene Gruppe und A1

diejenige Komponente von A, die das Eins-Element e enthàlt. Dann ist
eine Potenz am von a in A1 enthalten; denn fur jede hinreichend kleine
Umgebung U von e bildet der Durchschnitt von A und U einen Teil einer
zusammenhângenden Mannigfaltigkeit18), also einen Teil von A1, und in
jedem U gibt es Potenzen von ^ (man vgl. Nr. 17). Aus der Voraus-
setzung uber T und a folgt, daB A Abelsch, also A1 ein Toroid ist. Es sei c

ein erzeugendes Elément von A1 (Nr. 19); da c • arm EA1 ist, kann man
ein Elément 6 von A1 so bestimmen, daB bm c • arm ist ; es gibt (Nr. 18)
ein Toroid Tf, welches das Elément a • b enthàlt. Jedes Elément von T1
ist mit a• b, also auch mit (a• b)m c, also auch mit jedem Elément von

M) Da wir schon wissen, daÛ X l ist, kann (11) auch als Korollar des in Nr. 1 angefûhr-
ten Satzes gelten, welcher besagt, dafî die n-dimensionale Gruppe G den gleichen Homo-
logie-Ring hat wie ein topologisches Produkt aus / Sphàren ungerader Dimensionen.

23) Man vergleiche z. B. (1), Nr. 1—6, und (6), Teil III, p. 379.
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A1 vertauschbar ; folglich ist die von A1 und Tr erzeugte abgeschlossene
Gruppe Tn Abelsch; da sie zusammenhangend ist, ist sie ein Toroid; sie

enthalt A1, also auch T; sie enthalt Tf, also a • b, also, da b €A1 ist, auch

a; sie hat also aile gewunschten Eigenschaften.
Ans dem Hilfssatz folgt unmittelbar : Ein Elément a, das mit allen

Elementen eines X-dimensionalen Toroides Tx vertauschbar ist, liegt selbst

auf diesem Ty, sowie, da die Eins-Komponente (d. h. die Komponente,
die e enthalt) jeder Abelschen Gruppe ein Toroid ist :

Jede X-dimensionale Abelsche Untergruppe von G ist zusammenhangend,
also ein Toroid.

24. Unter dem Normalisator Na eines Elementes a verstehen wir wie
ublich die Gruppe der mit a vertauschbaren Elemente; die Eins-Komponente

von Na bezeichnen wir mit JV* ; sie ist eine abgeschlossene zu-
sammenhangende Liesche Gruppe, und sie hat selbst den Rang X, da ein
maximales Toroid, welches a enthalt, zu ihr gehôrt. Wir behaupten: Die
Gruppe Ni ist die Vereinigung derjenigen X-dimensionalen Toroide, welche a
enthalten.

Beweis: DaB aile die genannten Toroide zu N\ gehôren, ist klar; zu
zeigen ist: jedes Elément b von Nxa liegt auf einem A-dimensionalen
Toroid, welches a enthalt. Es sei also b ein Elément von Nxa ; nach Nr. 18,

angewandt auf die Gruppe Ni, gibt es in Ni ein Toroid, welches b enthalt,
und ein hôchstdimensionales unter diesen Toroiden hat nach Nr. 21 die
Dimension X, da A der Rang von Nxa ist, T\ sei ein solches Toroid. Da es

zu Na gehort, ist a mit jedem Elément von T^ vertauschbar, nach Nr. 23

liegt daher a auf Tx -

25. Im folgenden werden A-dimensionale Toroide immer mit T\ be-
zeichnet. Nach Nr. 18 und Nr. 21 liegt jedes Elément a von G auf wenig-
stens einem î7^.

Définition: Das Elément a heiBt ,,regulari(, wenn es auf nur einem Tx
liegt, und ,,singular"', wenn es auf mindestens zwei Tx liegt.

Ist a regular und a 6 Tx, so folgt aus Nr. 24, daB Nla Tx ist ; ist a
singular und a 6 Tx, so ist Tx echte Untergruppe von Nxa, also hat Na
hohere Dimension als Tx ; mithin laBt sich die Regularitat oder Singula-
ritat auch so charakterisieren : das Elément a ist regular oder singular,
jenachdem sein Normalisator die Dimension A oder hohere Dimension hat.

Hieraus und aus Nr. 24 folgt weiter, daB jedes singulare Elément
unendlich vielen Tx angehort.

Ein erzeugendes Elément eines Tx (Nr. 19) ist, wie man leicht sieht,
immer regular.
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26. Die Normalisatoren hangen eng mit den Fixvektoren zusammen,
die wir in Nr. 14 betrachtet haben. Jeder von o versehiedene Vektor x im
Punkte e ist tangential an eine wohlbestimmte einparametrige Unter-
gruppe; (dièse wird durch die infinitésimale Transformation, die x dar-
stellt, erzeugt)16). Dièse Untergruppe ist offenbar dann und nur dann in
dem Normalisator Na des Elementes a enthalten, wenn x Fixvektor der
zu a gehôrigen adjungierten Transformation A ist, also derjenigen
linearen Transformation des Vektorbundels in e, welche durch die Ab-
bildung x-^a~1xa bewirkt wird. Die Fixvektoren von A erfullen ein
lineares Vektorgebilde, das ,,Fixgebilde" von A ; nach dem eben Gesagten
ist klar : Das Fixgebilde von A ist identisch mit dem Gebilde der Tangential-
vektoren des Normalisators Na im Punkte e.

Insbesondere ist die Dimension von Na gleich der Dimension dièses

Fixgebildes, also gleich der Maximalzahl linear unabhângiger Fixvektoren
von A. Fur die Untersuchung dieser Dimensionszahl ist nun wichtig der
Satz von Weyl, welcher besagt, da8 jede geschlossene Gruppe reeller
linearer Transformationen einer orthogonalen Gruppe àhnlich ist. 24)

Nach diesem Satz kann man im Punkte e ein solches Koordinatensystem
einfûhren, dafi aile Matrizen A orthogonal werden. Fiir eine orthogonale
Matrix aber ist die Maximalzahl linear unabhângiger Fixvektoren, also

Eigenvektoren mit Eigenwerten + 1, gleich der Vielfachheit der Zahl + 1

als Wurzel des charakteristischen Polynoms von A; dièse Vielfachheit
gibt also die Dimension des Normalisators Na an. Damit haben wir auf
Grand der Ergebnisse von Nr. 25 den folgenden Sachverhalt:

Ist das Elément a regular, so besitzt die zugéhôrige adjungierte Matrix A
die Zahl -f-1 als k-fache charakteristische Wurzel ; ist a singulâr, so ist -\- 1

charakteristische Wurzel von A mit einer grôfieren Vielfachheit als A.

Das charakteristische Polynom Ca(Ç) \ CE — A \ ist somit fur jedes
Elément a durch (f — 1)A teilbar, aber nur fur die singulàren Elemente a
durch eine hôhere Potenz von (C — 1) ; dabei beachte man, da8 nicht aile
Elemente singulâr sind, denn z. B. die erzeugenden Elemente eines T^
sind regulâr (Nr. 19) ; es gilt also folgender Satz, durch welchen der Rang
charakterisiert wird:

Die charakteristischen Polynôme der den Elementen a von G adjungierten
linearen Transformationen A sind von der Form

Ca(0 (f - 1)» • Fa(C)

wobei Fa ein Polynom ist, fur welches Fa(l)=^ 0 ist ; dann und nur dann
ist Fa(l) 0, wenn das Elément a singulâr ist.

»*) (6), Teil I, p. 288—289; (8), Nr. 38.
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Da die Koeffizienten des Polynoms Fa analytisch von a abhângen, geht
hieraus zugleich hervor, da8 die singularen Elemente eine abgeschlossene
und nirgends dichte Punktmenge in G bilden.25)

27. Die orthogonalen Transformationen A lassen sich stetig in die
Identitat uberfuhren und haben daher die Déterminante +1 ; die Viel-
fachheit der Zahl +1 als charakteristische Wurzel einer orthogonalen
Matrix mit der Déterminante + 1 ist immer der Variablen-Anzahl n kon-
gruent modulo 2 ; daher folgt aus Nr. 26 zunachst die Kongruenz

X^Ein mod. 2, (11)

wodurch die in Nr. 22 besprochene Lucke ausgefullt ist, und weiter der
folgende allgemeinere Satz:

Die Dimension eines Normalisators Na ist mit der Dimension n sowie
mit dem Rang X von G hongruent modulo 2 ; fur ein singulares Elément a
ist die Dimension von Na daher mindestens X -f- 2.

Fur jedes Elément a von G bilden die konjugierten Elemente ar t~xat>

t£G, eine Mannigfaltigkeit, die bekanntlich mit dem Raum der Rest-
klassen, in welche G nach dem Normalisator Na zerfallt, homoomorph ist,
aus dem letzten Satz folgt daher:

Fur jedes Elément a bildet die Klasse seiner konjugierten Elemente trxat
eine Mannigfaltigkeit gerader Dimension ; wenn a nicht dem Zentrum von G

angehôrt, ist dièse Dimension positiv, also mindestens 2.

28. Wir kehren zu unseren Abbildungen pk(x) xk mit beliebigen
positiven Exponenten k zuruck und untersuchen die Gleichung

s* q (12)
bei gegebenem Elément q,

Jedes Tx, welches eine Losung x von (12) enthalt, enthalt auch q;
folglich liegen aile Lôsungen x in JVj.

Ist q regular, so liegen aile x in dem einzigen Tx, das q enthalt; ihre
Anzahl ist also kx (Nr. 19).

q sei singular und T\ eines der T\, die q enthalten ; wir unterscheiden
zwei Falle, jenachdem es auBer den Lôsungen, die in T\ liegen, noch
andere Lôsungen von (12) gibt oder nicht.

26) Tatsachhch ist dièse Menge nur (n — 3)-dimensional : (6), Teil III, p 379 und (1),
Nr. 6.
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Im ersten Fall sei x eine Lôsung, die nicht in jT° liegt ; nach Nr. 23 ist x
nicht mit allen Elementen von T\ vertauschbar, x gehôrt also gewiB
nicht zum Zentrum von JV* ; die Klasse seiner in N* konjugierten
Elemente, also die Menge der Elemente

xr trxxt, te Ni

ist daher nach Nr. 27 eine mindestens 2-dimensionale Mannigfaltigkeit ;

aber aile Elemente x1 erfûllen die Gleichung (12). Folglich enthàlt die
Menge der Lôsungen von (12) eine mindestens 2-dimensionale
Mannigfaltigkeit.

Zweiter Fall: q ist singulàr, und aile Lôsungen x von (12) liegen in dem-
selben T\. Dann ist ihre Anzahl kx. Wir behaupten, daB dies ein Aus-
nahmefall ist, d. h. daB er hôchstens fur endlich viele k eintreten kann;
genauer : das Zentrum Z von JV * bestehe aus m Komponenten ; dann
kann der Ausnahmefall hôchstens dann eintreten, wenn k ^ m ist.

Beweis: Da es auf jedem Tx, das q enthàlt, kx Lôsungen gibt, liegen aile
k*Lôsungen von (12) auf jedem T\, welches q enthàlt; sie sind daher
Elemente von Z ; wir haben also nur die durch pk bewirkte Abbildung
von Z in sich zu betrachten. Die Eins-Komponente Z1 von Z ist ein
Toroid TQ, und jede Komponente von Z ist mit Z1 homôomorph ; aus
den Eigenschaften der Toroide ist leicht ersichtlich (man vergleiche
Nr. 19, b) : in jeder Komponente, welche iiberhaupt eine Lôsung x
enthàlt, gibt es genau k<* Lôsungen x; da es im ganzen kx Lôsungen
gibt, ist daher k* ^ m • kQ. Hierbei ist q die Dimension von Z\ sie ist
kleiner als A, da aus q A und aus Nr. 23 folgen wurde, daB N^ TQ

Tx ist, entgegen der Tatsache, daB Nq infolge der Singularitât von q

grôBere Dimension hat als A. Aus kx ^ m • k^ und q < k folgt k ^ m.
Fassen wir zusammen:

Ist q regular, so hat die Gleichung (12) genau fcA Lôsungen x. Es sei q

singulàr; dann kann derselbe einfache Sachverhalt — also die Existenz von

genau k* Lôsungen — fur endlich viele Ausnahmewerte von k vorliegen ; fur
aile anderen k gibt es unendlich viele Lôsungen von (12), und zwar enthàlt die

Menge der Lôsungen eine mindestens 2-dimensionale Mannigfaltigkeit.

Das Eins-Element c ist in jeder Gruppe, die nicht Abelsch ist, singulàr ;

daher besitzt die Gleichung
xk e (13)

in jeder geschlossenen, nicht-Abelschen Gruppe wenigstens oo2 Lôsungen,
vorausgesetzt, daB k nicht ein Ausnahmewert ist; die Ausnahmewerte
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kônnen im Palle der Gleichung (13) nicht grôBer sein als die Anzahl m
der Komponenten des Zentrums Z von 6?.

Ein trivialer Ausnahmewert fur jedes singulare Elément q ist fc=l.
Auch k=2 tritt als Ausnahmewert auf: in der Gruppe G A1 der
Quaternionen vom Betrage 1 — also einer Gruppe mit n 3, À l —
hat die Gleichung x2 e nur zwei Lôsungen.26)
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(Eingegangen den 18. September 1940.)

Z6) Dièses Beispiel — G Alt k 2 — ist, wenn man sich auf emfache geschlossene
Gruppen beschrankt, die den vier groBen Killing-Cartanschen Klassen angehoren, das

einzige, m welchem es zu dem Elément e emen Ausnahmewert k > 1 gibt, m welchem
also die Gleichung (13) fur em k :> 1 nur endheh viele Lôsungen hat; man bestatigt dies
leicht mit Hilfe derjemgen Eigenschaften der vier grofîen Klassen, die m (4), § IV,
p. 14, angegeben smd.
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