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Une propriété des variétés du second ordre

Par Lovuis KorLros, Zurich

Steiner a énoncé sans démonstration une propriété des coniques qu’on
peut généraliser dans ’espace & n dimensions.

On sait que le lieu des sommets des angles droits circonscrits & une
conique est un cercle; on le désigne sous le nom de cercle orthoptique de la
conique; le carré de son rayon r est égal a la somme des carrés des demi-
axes de la conique.

Pour une ellipse 72 = a% 4 b2 Si h et % sont deux hyperboles con-
juguées, celle, h, qui est située dans 'angle aigu des asymptotes a un
cercle orthoptique réel ¢ pour lequel 72 = a? — b?; le cercle orthoptique
¢ de h est imaginaire. Pour ’hyperbole équilatére r = 0. Pour la pa-
rabole r = oo; la droite orthoptique de la parabole est la directrice.

Les rayons de courbure d’une conique ont avec son cercle orthoptique
la relation suivante:

Théoréme de Steiner'): ,,Si, en un point P d’une conique, on porte sur la
normale extérieure n une longueur égale au rayon de courbure de la
conique en P, le cercle ¢’ décrit sur cette longueur comme diamétre coupe
orthogonalement le cercle orthoptique.*“ Et inversement: Si 'on trace un
cercle ¢’ tangent & ume conique en U'un de ses points P et orthogonal & son
cercle orthoptique ¢, le diamétre de ¢’ est égal au rayon de courbure de la
conique en P. Si donc p est la polaire de P par rapport au cercle orthop-
tique ¢, le point P’ ou p coupe la normale n est le symétrique, par rapport
& P, du centre de courbure de la conique en P.

Ce théoréme s’applique aussi a I’hyperbole & située dans I’angle obtus
des asymptotes; le cercle ¢’ orthogonal au cercle imaginaire ¢ de rayonr
coupe diamétralement le cercle concentrique réel de rayon r; la polaire
de P par rapport & ¢ est 'antipolaire de P par rapport au cercle réel.
Pour I’hyperbole équilatére, la polaire de P par rapport au cercle O de
rayon nul est le diamétre perpendiculaire & OP. Pour la parabole, le
centre du cercle ¢’ est sur la directrice; on a donc le résultat connu: le
rayon de courbure en un point P d’une parabole est le double du segment
de la normale compris entre P et la directrice.

Au § 1 je démontre le théoréme de Steiner et je prouve qu’il est une
propriété caractéristique des coniques, c’est-d-dire que, parmi les courbes
planes, les coniques seules jouissent de cette propriété.

1) Crelle 30, p. 271; Oeuvres complétes, tome II, p. 341.
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Dans le § 2 j’indique la généralisation du théoréme de Steiner dans
I’espace & trois dimensions: ,,Le diamétre de la sphére tangente & une
quadrique @ en un de ses points P et orthogonale a sa sphére orthoptique est
égal & la somme des rayons de courbure principaux de la quadrique en P,
donc aussi égal & la somme des rayons de courbure des sections normales
de @ menées par deux diamétres conjugués quelconques de ’indicatrice
de P.

Au § 3 je trouve I’équation aux dérivées partielles de toutes les quadri-
ques admettant une sphére donnée comme sphére orthoptique.

Le § 4 montre que le théoréme de Steiner est le cas particulier pour
n = 2 d’'un théoréme de l’espace euclidien & n dimensions relatif aux
variétés du second ordre (ou hyperquadriques).

§ 1. Démonstration du théoréme de Steiner

Une conique ¢’ est harmoniquement circonscrite & une conique k¥ quand
il existe un triangle inscrit & ¢’ et polaire & k; il en existe alors une in-
finité ; il y aura donc aussi une infinité de triangles polaires de ¢’ et circons-
crits & k puisqu’on peut transformer les coniques ¢’ et k£ I'une en 1'autre
par polaires réciproques. Siles ¢’ sont des cercles, ils sont orthogonaux au
cercle orthoptique; ce théoréme a été publié par Faure?); il se trouve déja,
sous sa forme projective générale, dans deux manuscrits de Steiner
intitulés: ,,Der neueste Satz‘‘; 1'un est de 1845 et 'autre du 15 juillet 1858;
il se généralise dans ’espace & » dimensions: ,,Les hypersphéres harmoni-
quement circonscrites & une hyperquadrique en coupent orthogonalement
Phypersphére orthoptique.‘

Dans le plan, les points d’intersection des cercles ¢’ et de la conique k
peuvent étre réels ou imaginaires; dans le cas limite ol le cercle ¢’ est
tangent & k, on a le théoréme énoncé dans l'introduction.

En négligeant des infiniment petits du troisiéme ordre, on peut rem-
placer la conique k en un de ses points P par son cercle de courbure &’
en P; soit g son rayon; le cercle orthoptique de k£’ a le rayon o ¥2; tout
cercle tangent & k’ et orthogonal & son cercle orthoptique a un diamétre
égal & o.

Plus généralement, si g est le rayon de courbure d’une courbe plane
quelconque en un de ses points P et si I’on considére deux tangentes ¢’ et
t” voisines de la tangente ¢ & cette courbe en P, le cercle conjugué au
triangle ¢ ¢t/ t” rend vers un cercle de diamétre o quand ¢’ et ¢” se rap-
prochent indéfiniment de ¢.

) Nouv. Ann. de Math., t. 19, p. 234 (1860).
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La vérification analytique du théoréme de Steiner est trés simple
Soit ’

I’équation d’une conique;

©?*+y?=4+ B

celle de son cercle orthoptique ¢; P(x, y) un point quelconque de la
conique;
xr+yy=A4+ B

I’équation de la polaire p de P par rapport au cercle c.
Les équations de la normale a la conique en P sont:

-zl —  yA
x=x+—~——A et yzy—}——B ;

cette normale coupe la polaire p au point P’ pour lequel le paramétre 4 a
la valeur: A=A 4+ B — x> — y2.
Le diamétre d = PP’ du cercle ¢’ sera donc:

_ _ 2 272
d= (4 + B—x*—1y? V—x?—}-%? .

On trouve la méme expression si 'on calcule le rayon de courbure & la
conique en P.

Le théoréme de Steiner est une propriété caractéristique des coniques.

Etant donné le cercle fixe ¢: 2 4 y% = r2, cherchons toutes les courbes
planes telles que — P étant un point quelconque de la courbe, M le centre
de courbure en P et P’ le symétrique de M par rapport & P — le cercle
¢’ de diamétre d = PP’ soit orthogonal au cercle donné c.

Pour trouver I’équation différentielle la plus simple de cette famille
de courbes, il faut choisir le systéme de coordonnées dans lequel le rayon
de courbure s’exprime le plus simplement. Considérons la courbe comme
enveloppe de la droite:

xcosu -+ ysinu=p;

p et u sont les coordonnées polaires du pied N de la perpendiculaire

abaissée de I'origine O sur la droite. Lorsque P se déplace sur la courbe le
segment ON = p est une fonction de ’angle u. Il est facile de voir que la
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dérivée p’(u) de la fonction p (u) est représentée par la distance du point N
au point de contact P de la droite avec son enveloppe et que le rayon de
courbure de cette enveloppe en P est égal & la somme de la fonction p (u)
et de sa seconde dérivée p” (u).

Ainsi les deux conditions du probléme sont:

d=p+9p’
et

AT d\2
(P+“2—)+P2—7'2+(—2“) ,

condition d’orthogonalité de ¢ et ¢’. On en déduit I'équation différentielle
des courbes cherchées:

pp” + p” + 2p* =12,
La substitution p? = ¢ la transforme en:

t" + 4t = 22

dont l'intégrale est:
2

t=p?=0C cos 2u + D sin 2u+12~ .

C’est I’équation tangentielle de toutes les coniques admettant le cercle

donné comme cercle orthoptique.
e . D
Les directions des axes sont données par p’= 0 ou tg 2u= 0 et

leurs longueurs 2a et 2b par:

7'2
a2::A=7+ 2 D2

7‘2
m:B:7ﬂy@+D2

i A+ B=1r% .,

Pour C =D =0, on a le cercle de ra.yon—;—_é; siD=0et C 4£0,0na

les coniques rapportées a leurs axes: ellipses ou hyperboles suivant que B
est positif ou négatif; leur équation peut s’écrire:

p? = A cos?u + B sin?u ;

81C = 0 et D # 0, on a les coniques précédentes tournées de 45° autour
de leur centre.
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§ 2. Généralisation dans P’espace & trois dimensions
Soit f(z,, x5, 3) = 0 'équation d’une surface dans l’espace & trois
dimensions.

Posons: of
ox,

_Pr
ox; 0z,

=fik=fki ’

= f; et

on aura (en supprimant le gigne somme):
f.-d:l?,- == O

et les 3 égalités: df, = f,dx,, © et k = 1,2, 3, la sommation devant
étre faite sur l'indice qui se répéte. Soit » la normale en un point quel-
conque P(x,) de la surface; ses cosinus directeurs sont:

c="tt o P=fif4f;

de, _ df; dF

C; fi F

done

Mais
__ duz;

Y

dc;

pour un déplacement de P sur une de ses lignes de courbure, p étant le
rayon de courbure correspondant. On a donc en remplacgant c, et df; par
leurs valeurs:

Fdz, aF
0 :fikdxk“‘fi—F—'
Si, aux trois équations ainsi obtenues :
F ar
(111_——-9—) dz, + frz dizy + f1s dis ""fl“ljw“—'zo
F dF
fra d, + (fzz'“""?) dz, + fas A, "‘“fz-—l;-r-:: 0

F dr
fodoi+  faa day +(f33—-——é—) dzy— o 2B — 0

on ajoute:
frde, +  fades  + [y dag =0,

dF .
on aura 4 équations homogeénes en dx,, dx,, dx; et — - il faut done

que 'on ait, quand P se déplace sur une ligne de courbure:
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F
fn“‘? fre . f1s h
fre fzz""—g“ fas f2 —o .
F
f1s fas fss”“? fs
h fa fa 0

C’est I’équation du second degré en g dont les deux racines sont les rayons
de courbure principaux g, et g, de la surface en P.

Dans le cas particulier des quadriques:

2 2 2
Ly

— T3 _
2=+ + 5 —1=0,

i . . ]- - . . o
]‘i:j‘l—i':fﬁ-‘“}i‘; et fie=0 si 15k ;

22 /1 F 1 F x: 1 F 1 ¥
DD D )
A7 \4, 0 A, e A; \A, 4 4, e

ou
2 2 2

x x x
0 — [(Az‘l' 4,) ZII‘ (A3+A1)Z§+(A1+A2)Z‘z‘] Fo -+ A, 4,4, F*=0,

Y

ou
2
x;

A?

F=)

Le coefficient de — g, somme des deux rayons de courbure principaux,
peut aussi s’écrire:

(4, +A2+A3—‘xf“x§"‘x§)F=91+92 .

Mais on trouve la méme expression en calculant le diamétre d de la sphére
tangente & la quadrique en P et orthogonale & sa sphére orthoptique:

Bttt ai=A,+A4,+ 4, .
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Les 3 équations de la normale » & la quadrique en P(x,) sont:

X, =x;,+ [, ;

le plan polaire:
v, X, =4, + 4, + 4,

de P par rapport & la sphére orthoptique coupe n au point P’ pour lequel
A= (4;,— “’f)
puisque z,f,=1 ; alors PP’ ou

d=X(A;—a)F=0,+¢: -
On a done le

Théoréme : Le diamétre de la sphére tangente & une quadrique @ en Uun
quelconque de ses points P et orthogonale & la sphére orthoptique de @ est égal
a la somme des rayons de courbure principaux de la quadrique en P, donc
aussi égal & la somme des rayons de courbure des sections normales de @
menées par deux diamétres conjugués quelconques de I’indicatrice de P.

§ 3. Equation aux dérivées partielles des quadriques admettant une
sphére donnée comme sphére orthoptique

Pour trouver cette équation nous utiliserons dans I'espace a trois
dimensions le systéme de coordonnées tangentielles analogue & celui que
nous avons employé dans le plan au § 1.

Nous considérons la surface comme enveloppe du plan:

P = &, CO8 % CO8 ¥ -+ Z, 8in % cos v + x, 8in v ;

la distance p = ON, la longitude u et la latitude » sont les trois coordon-
données polaires du pied N de la perpendiculaire abaissée de 1’origine O
sur le plan; z,, z,, ¥, sont les coordonnées rectangulaires du point de
contact P du plan avec la surface. Quand P varie sur la surface, p est
une fonction de u et v. Si l'on calcule les dérivées partielles p., et p,,
on voit que le déterminant des coefficients de x,, z, et z, dans les ex-
Pu

! » .
et », est égal & un; on a donec:
R B Py g -

pressions de p,

P )
x%+w§+x§==p2+( 5 ) + 7,

CcO8 v
ou

'P'N2=( Pa )2+p’2 .

CcCos v
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Les rayons de courbure principaux g, et g, de la surface en P s’expri-
ment & 'aide des dérivées partielles secondes p.,, p.,, p’,. Si 'on
désigne par R, S et T' les expressions suivantes:

7 : 4 *
Do sinv Pyu SRV

_ ro.oQ_ .om_ .
E=p+p,, ; S—cosv+coszvp“’T_coszv cosvp”_'_p’

on a:
BR+T=o¢9+ 0, et RT — 8% =g, 05 .

Si donc on reporte sur la normale extérieure » a la surface en P la
longueur PP’ = d = g, + ¢,, la sphére de diamétre d sera orthogonale
a la sphére fixe: af + 22 + a5 = 72 si Pon a:

(p .3 %)Z—l— PN2— 2+ (—(—Z‘?—'-)2

ou

P\’
272+pd—|—( ")+p,’,2=72

COos v

et enfin en remplagant d par sa valeur R+ 7T :

POy, + 9,7+ secto(ppy, + 1) —tg v . pp,+ 3PP =1 .
C’est I’équation aux dérivées partielles cherchée.

En posant p? = ¢, elle prend la forme simple:
tl, -+ sectv.t,, —tgv.t,+ 6t=2r% .

En particulier, si 72 = A4, + A, + A4, les intégrales de cette équation
représentées par les quadriques rapportées a leurs axes sont:

t = p* = (4, cos?u + 4, sin?u) cos2v 4+ A, s8in3v .

Suivant que le nombre des A; positifs est trois, deux ou un, ces surfaces
sont des ellipsoides, des hyperboloides & une nappe ou des hyperboloides

a deux nappes.
Les autres intégrales sont les équations tangentielles de ces mémes

quadriques aprés une rotation quelconque autour de l’origine.
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§ 4. Propriété des variétés du second ordre

Nous démontrons maintenant le théoréme général relatif & une hyper-
quadrique située dans un espace & n dimensions.

Théoréme : Le diamétre de Uhypersphére tangente & une hyperquadrigie@
en U'un de ses points P et orthogonal a Uhypersphére orthoptique de Q est égal
a la somme des (n — 1) rayons de courbure principauz de I’ hyperquadrique

en P.
Dans sa ,,Theorie der vielfachen Kontinuitat“, Schlifli avait déja

montré (p. 154) qu’une hyperquadrique @ :

a une hypersphére orthoptique.

Si I'on pose: 1 _ 5 a’
p* o1 4]

les cosinus directeurs c; de la normale & I’hyperquadrique en un de ses
points P(z,) sont:

en supprimant le signe somme (¢ = 1, 2,...%). On a donc aussi pour
cette distance p, ’expression:

Si 'on méne par l'origine O » directions (1), (2), ..., (») formant un
systéme orthogonal et si I’on désigne leurs cosinus directeurs respective-
ment par:

¢;, pour la direction (1), ¢; pour la direction (2), ..., ¢; pour la direc-
tion (n), ¢ variant de 1 & n, les hyperplans tangents a @ perpendiculaires &
ces n directions formeront aussi un systéme orthogonal et leurs distances
Py & origine seront données par les » équations:

pr=A;c;, k=1,2,...,n .
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En les additionnant et en remarquant que les c, satisfont aux con-
ditions d’orthogonalité:

2
cik~1,

n
=1

o

t
on a:

Pf‘f‘""l—Pi:Al‘F“"f‘An-

Si le point d’intersection I des » hyperplans tangents orthogonaux a les
coordonnées X ;, la distance O sera donnée par:

OI*=Xi+ -+ + X, =pi+ - + 7

et le lieu géométrique de tous les points analogues & I est ’hypersphére
orthoptique:

Xid o+ Xo=di+ oo+ 4, .

L’hyperplan polaire # d’un point P(x;) de I’hyperquadrique @ par
rapport a ’hypersphére orthoptique a 1’équation:

v, X; =4, + -+ 4,.

La normale n & @ en P est donnée par les » équations:

elle coupe & au point P’ pour lequel A =2'(4; — «3) et le diamétre
PP’ = d de I’hypersphére tangente & @ en P et orthogonale & I’hyper-
spheére orthoptique de ¢ est donnée par:

x? 1

[
4 p

1
d= > 2 (A;—2%) puisque X

11 est facile de voir par une méthode analogue & celle du § 2 que d est
aussi égal & la somme des rayons de courbure principaux g;, @3, ..+ Op—1
de I’hyperquadrique @ en P.

117



Ces g, sont, en effet, les racines de I’équation du degré (= — 1) en p:

r_r 0 1
A, o 4,
1 1 x
0 e T i 0 2
4, po 4,
................................................... =0
1 1 z,
0 0 @ ceneen i pe A
' B T Za 0
Al A2 An

ou:

xf(l 1) (1 1)+ +x$,(1 1) (1 1)_0
Ai\4, pe 4, pe A\4,  pe A4,, pe
En multipliant par 4,4, ... 4,0 et en tenant compte de ’équation

2

oy %
de @: X 4,
des rayons de courbure principaux de @ en P, est identique & l'ex-
pression trouvée pour d:

= 1, on voit que le coefficient de — ¢"2, donc la somme

1
01+ 02+ "‘+Qn_1=;)—2(Ai——x3)-_:d .

Le produit de la distance p par la somme des g, est égal a la puissance
du point P par rapport a I’hypersphére orthoptique de Q.

(Regu le 31 aoiit 1940.)
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