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Une propriété des variétés du second ordre

Par Louis Kollros, Zurich

Steiner a énoncé sans démonstration une propriété des coniques qu'on
peut généraliser dans l'espace à n dimensions.

On sait que le lieu des sommets des angles droits circonscrits à une
conique est un cercle ; on le désigne sous le nom de cercle orthoptique de la
conique ; le carré de son rayon r est égal à la somme des carrés des demi-
axes de la conique.

Pour une ellipse r2 a2 + b2. Si h et h sont deux hyperboles
conjuguées, celle, h, qui est située dans l'angle aigu des asymptotes a un
cercle orthoptique réel c pour lequel r2 a2 — 62; le cercle orthoptique
c de h est imaginaire. Pour l'hyperbole équilatère r 0. Pour la
parabole r oo; la droite orthoptique de la parabole est la directrice.

Les rayons de courbure d'une conique ont avec son cercle orthoptique
la relation suivante:

Théorème de Steiner1) : ,,Si, en un point P d'une conique, on porte sur la
normale extérieure n une longueur égale au rayon de courbure de la
conique en P, le cercle c' décrit sur cette longueur comme diamètre coupe
orthogonalement le cercle orthoptique." Et inversement: Si Von trace un
cercle c' tangent à une conique en Vun de ses points P et orthogonal à son
cercle orthoptique c, le diamètre de c1 est égal au rayon de courbure de la
conique en P. Si donc p est la polaire de P par rapport au cercle orthoptique

c, le point Pf où p coupe la normale n est le symétrique, par rapport
à P, du centre de courbure de la conique en P.

Ce théorème s'applique aussi à l'hyperbole h située dans l'angle obtus
des asymptotes; le cercle c1 orthogonal au cercle imaginaire c de rayonir
coupe diamétralement le cercle concentrique réel de rayon r; la polaire
de P par rapport à c est l'antipolaire de P par rapport au cercle réel.
Pour l'hyperbole équilatère, la polaire de P par rapport au cercle 0 de

rayon nul est le diamètre perpendiculaire à OP. Pour la parabole, le
centre du cercle c1 est sur la directrice; on a donc le résultat connu: le

rayon de courbure en un point P d'une parabole est le double du segment
de la normale compris entre P et la directrice.

Au § 1 je démontre le théorème de Steiner et je prouve qu'il est une
propriété caractéristique des coniques, c'est-à-dire que, parmi les courbes

planes, les coniques seules jouissent de cette propriété.

*) Crelle 30, p. 271; Oeuvres complètes, tome II, p. 341.
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Dans le § 2 j'indique la généralisation du théorème de Steiner dans
l'espace à trois dimensions: 9,Le diamètre de la sphère tangente à une
quadrique Q en un de ses points P et orthogonale à sa sphère orthoptique est

égal à la somme des rayons de courbure principaux de la quadrique en P",
donc aussi égal à la somme des rayons de courbure des sections normales
de Q menées par deux diamètres conjugués quelconques de l'indicatrice
de P.

Au § 3 je trouve l'équation aux dérivées partielles de toutes les quadri-
ques admettant une sphère donnée comme sphère orthoptique.

Le § 4 montre que le théorème de Steiner est le cas particulier pour
n 2 d'un théorème de l'espace euclidien à n dimensions relatif aux
variétés du second ordre (ou hyperquadriques).

§ 1. Démonstration du théorème de Steiner

Une conique c1 est harmoniquement circonscrite à une conique k quand
il existe un triangle inscrit à c; et polaire à i; il en existe alors une
infinité ; il y aura donc aussi une infinité de triangles polaires de c7 et circonscrits

à k puisqu'on peut transformer les coniques c' et k l'une en l'autre
par polaires réciproques. Si les c! sont des cercles, ils sont orthogonaux au
cercle orthoptique ; ce théorème a été publié par Faure2) ; il se trouve déjà,
sous sa forme projective générale, dans deux manuscrits de Steiner
intitulés : ,,Der neueste Satz" ; l'un est de 1845 et l'autre du 15 juillet 1858 ;

il se généralise dans l'espace à n dimensions: ,,Les hypersphères harmoniquement

circonscrites à une hyperquadrique en coupent orthogonalement
l'hypersphère orthoptique. ' '

Dans le plan, les points d'intersection des cercles c' et de la conique k
peuvent être réels ou imaginaires; dans le cas limite où le cercle cr est

tangent à k, on a le théorème énoncé dans l'introduction.
En négligeant des infiniment petits du troisième ordre, on peut

remplacer la conique k en un de ses points P par son cercle de courbure k1

en P; soit g son rayon; le cercle orthoptique de kr a le rayon £ 1^2 ; tout
cercle tangent à k1 et orthogonal à son cercle orthoptique a un diamètre
égal à q.

Plus généralement, si q est le rayon de courbure d'une courbe plane
quelconque en un de ses points P et si l'on considère deux tangentes tf et
t" voisines de la tangente t à cette courbe en P, le cercle conjugué au
triangle t tf tn rend vers un cercle de diamètre q quand tr et t" se

rapprochent indéfiniment de t.

¦) Nouv. Ann. de Math., t. 19, p. 234 (1860).
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La vérification analytique du théorème de Steiner est très simple
Soit

et2 v2x \ y î—o

l'équation d'une conique;
x2 + y2 A + B

celle de son cercle orthoptique c; P(x, y) un point quelconque de la
conique ;

xx + yy A + B

l'équation de la polaire p de P par rapport au cercle c.

Les équations de la normale à la conique en P sont :

_ xA - yX
x x-\—j- et y y +if — if \ t> '

cette normale coupe la polaire p au point P! pour lequel le paramètre X a
la valeur: X A -\- B — x2 — y2

Le diamètre d PP! du cercle c' sera donc:

+ JL.

On trouve la même expression si l'on calcule le rayon de courbure à la
conique en P.

Le théorème de Steiner est une propriété caractéristique des coniques.
Etant donné le cercle fixe c : x2 + y2 r2, cherchons toutes les courbes

planes telles que — P étant un point quelconque de la courbe, M le centre
de courbure en P et Pr le symétrique de M par rapport à P — le cercle
c' de diamètre d PP! soit orthogonal au cercle donné c.

Pour trouver l'équation différentielle la plus simple de cette famille
de courbes, il faut choisir le système de coordonnées dans lequel le rayon
de courbure s'exprime le plus simplement. Considérons la courbe comme
enveloppe de la droite:

x cos u + y sin u p ;

p et u sont les coordonnées polaires du pied N de la perpendiculaire
abaissée de l'origine 0 sur la droite. Lorsque P se déplace sur la courbe le

segment ON p est une fonction de l'angle u. Il est facile de voir que la
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dérivée pr(u) de la fonction p(u) est représentée par la distance du point N
au point de contact P de la droite avec son enveloppe et que le rayon de
courbure de cette enveloppe en P est égal à la somme de la fonction p (u)
et de sa seconde dérivée p/f(u).

Ainsi les deux conditions du problème sont:

d p + p"
et

,+$+*¦-*+(4)\
condition d'orthogonalité de c et c'. On en déduit l'équation différentielle
des courbes cherchées:

pp" + p'2 + 2p2 r2

La substitution p2 t la transforme en:

t" + U 2r>
dont l'intégrale est:

r2
t — p2 C cos 2u + D sin 2u + —- •

C'est l'équation tangentielle de toutes les coniques admettant le cercle
donné comme cercle orthoptique.

Les directions des axes sont données par p' 0 ou tg 2u= -^ et

leurs longueurs 2a et 2b par:

a2 A ^- + ]/c2 + D2
2 f

; A + B

Pour C 2) 0, on a le cercle de rayon —=¦ ; si D 0 et C =£ 0, on a

les coniques rapportées à leurs axes : ellipses ou hyperboles suivant que B
est positif ou négatif; leur équation peut s'écrire:

p2 A cos2^ + B &in2u ;

si G 0 et D ^ 0, on a les coniques précédentes tournées de 45° autour
de leur centre.
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§ 2. Généralisation dans l'espace à trois dimensions

Soit f(xl9 x2, x3) 0 l'équation d'une surface dans l'espace à trois
dimensions.

Posons: df 32/ _, _f
on aura (en supprimant le signe somme) :

f.dxi 0

et les 3 égalités: dft fikdxk i et h 1, 2, 3, la sommation devant
être faite sur l'indice qui se répète. Soit n la normale en un point
quelconque P(x4) de la surface; ses cosinus directeurs sont:

c=-£- où F*=n+
donc

dCj
__

df{ dF

Mais

dc{

pour un déplacement de P sur une de ses lignes de courbure, q étant le

rayon de courbure correspondant. On a donc en remplaçant ci et d/i par
leurs valeurs:

fikk
Si, aux trois équations ainsi obtenues :

tu -
dF

/23 da;3 — /2 -^- 0

(JET
\ JTÇT

/33 1 diC3 — /3 -jr 0

on ajoute:
fi dxx + /2 dx2 + fB dx3 0

on aura 4 équations homogènes en dxl3 dx2, dx3 et ^- ; il faut donc

que l'on ait, quand P se déplace sur une ligne de courbure :
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F/il ~~ /12 /13 /l
Ff { i t712 /22 ~— /23 /2

/ 23 /33 ~~ /3

fx h U 0

0

C'est l'équation du second degré en q dont les deux racines sont les rayons
de courbure principaux q± et g2 de la surface en P.

Dans le cas particulier des quadriques:

h ~~ At ' /si ~ At

l'équation en q devient :

et flk 0 si i ^ 1c ;

l(±-L) (J—*L\+A(±-.JL\ (±-1.)

t4îU, e/U, g/
ou

OÙ

Le coefficient de — q, somme des deux rayons de courbure principaux,
peut aussi s'écrire :

Mais on trouve la même expression en calculant le diamètre d de la sphère
tangente à la quadrique en P et orthogonale à sa sphère orthoptique :
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Les 3 équations de la normale n à la quadrique en P(Zi) sont:

X, x€ + fil ;

le plan polaire:
XiXi At + A2 + Az

de P par rapport à la sphère orthoptique coupe n au point Pr pour lequel

puisque xifi 1 ; alors PPf ou

On a donc le

Théorème : Le diamètre de la sphère tangente à une quadrique Q en Vun
quelconque de ses points P et orthogonale à la sphère orthoptique de Q est égal
à la somme des rayons de courbure 'principaux de la quadrique en P, donc
aussi égal à la somme des rayons de courbure des sections normales deQ
menées par deux diamètres conjugués quelconques de l'indicatrice de P.

§ 3. Equation aux dérivées partielles des quadriques admettant une
sphère donnée comme sphère orthoptique

Pour trouver cette équation nous utiliserons dans l'espace à trois
dimensions le système de coordonnées tangentielles analogue à celui que
nous avons employé dans le plan au § 1.

Nous considérons la surface comme enveloppe du plan:

p xx cos u cos v + x2 sin u cos v + #3 sin v ;

la distance p OJ^, la longitude u et la latitude v sont les trois coordon-
données polaires du pied N de la perpendiculaire abaissée de l'origine O

sur le plan; xly x29 xz sont les coordonnées rectangulaires du point de
contact P du plan avec la surface. Quand P varie sur la surface, p est
une fonction de u et v. Si l'on calcule les dérivées partielles pfu et pfv,

on voit que le déterminant des coefficients de xl9 x2 et x3 dans les ex-

pressions de p, —^— et prv est égal à un; on a donc:

ou
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Les rayons de courbure principaux gt et q2 de la surface en P s'expriment

à l'aide des dérivées partielles secondes p£u, p^v, p"v. Si l'on
désigne par J2, S et T les expressions suivantes :

;

on a:
et

Si donc on reporte sur la normale extérieure n à la surface en P la
longueur PP1 d qx + £2, la sphère de diamètre d sera orthogonale
à la sphère fixe : x\-\- x\-\- x\ r% si Ton a :

OU

et enfin en remplaçant d par sa valeur R -\- T

C'est l'équation aux dérivées partielles cherchée.

En posant p2 t, elle prend la forme simple :

En particulier, si r2 J^ + -42 -f ^3> les intégrales de cette équation
représentées par les quadriques rapportées à leurs axes sont:

t 2>2 (^ cos2w + ^42 sin2^) eos2v + A z

Suivant que le nombre des A{ positifs est trois, deux ou un, ces surfaces
sont des ellipsoïdes, des hyperboloïdes à une nappe ou des hyperboloïdes
à deux nappes.

Les autres intégrales sont les équations tangentielles de ces mêmes

quadriques après une rotation quelconque autour de l'origine.
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§ 4. Propriété des variétés du second ordre

Nous démontrons maintenant le théorème général relatif à une hyper-
quadrique située dans un espace à n dimensions.

Théorème : Le diamètre de Vhypersphère tangente à une hyperquadriqueQ
en Vun de ses points P et orthogonal à Vhypersphère orthoptique de Q est égal
à la somme des (n — 1) rayons de courbure principaux de Vhyperquadrique
en P.

Dans sa „Théorie der vielfachen Kontinuitàt", Schlafli avait déjà
montré (p. 154) qu'une hyperquadrique Q:

x\ x\ x\ _Ax A2 An

a une hypersphère orthoptique.

Si l'on pose : 1 n x2.

les cosinus directeurs c^ de la normale à Fhyperquadrique en un de ses

points P(Xi) sont:

et la distance du centre 0 au plan tangent en P est :

c^ p

en supprimant le signe somme (i 1, 2, n). On a donc aussi pour
cette distance p, l'expression :

Si l'on mène par l'origine 0 n directions (1), (2), (n) formant un
système orthogonal et si l'on désigne leurs cosinus directeurs respectivement

par:
cix pour la direction (1), ciz pour la direction (2), cin pour la direction

(n), i variant de 1 à n, les hyperplans tangents à Q perpendiculaires à

ces n directions formeront aussi un système orthogonal et leurs distances

pk à l'origine seront données par les n équations :

V\ Aic\i k=l,2,...,n
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En les additionnant et en remarquant que les cik satisfont aux
conditions d'orthogonalité :

on a:

Si le point d'intersection I des n hyperplans tangents orthogonaux a les

coordonnées Xif la distance 01 sera donnée par:

et le lieu géométrique de tous les points analogues à / est l'hypersphère
orthoptique :

L'hyperplan polaire n d'un point P{x{) de l'hyperquadrique Q par
rapport à l'hypersphère orthoptique a l'équation:

La normale n à Q en P est donnée par les n équations :

elle coupe n au point Pr pour lequel X =U(Ai — x\) et le diamètre
PP' d de l'hypersphère tangente à Q en P et orthogonale à l'hypersphère

orthoptique de Q est donnée par :

1 x2' 1
d — S (A, — xl) puisque E -£• —- •

II est facile de voir par une méthode analogue à celle du § 2 que d est
aussi égal à la somme des rayons de courbure principaux q19 £2î £n-i
de l'hyperquadrique Q en P.
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Ces Qi sont, en effet, les racines de l'équation du degré (n — 1) en q:

0 0 ~±-

0 ~

JL 1_

Ax pg

o 1—Jl
A2 pq

0

x,

0 JL__L
An VQ An

0

0

ou:

En multipliant par AxA2... Anqn~x et en tenant compte de l'équation
x*

de Q: H—^- 1, on voit que le coefficient de — £n~2, donc la somme

des rayons de courbure principaux de Q en P, est identique à
l'expression trouvée pour d:

Le produit de la distance p par la somme des (^ est égal à la puissance
du point P par rapport à Phypersphère orthoptique de Q.

(Reçu le 31 août 1940.)
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