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Ûber ausgezeichnete
Vektorsterne und regulâre Polytope

Von H. Hadwiger, Bern

Ein System von n, aile in einem festen Punkt 0 angreifenden Vektoren

cti, <x2, an

eines «s-dimensionalen Vektorraumes Rs, nennen wir Vektorstern, und
bezeichnen einen solchen mit Sn, und schreiben gelegentlich

@), {01>...0n}. (1)

Wir setzen voraus, daB der Rang von Qn stets gleich s ist, das heiBt, die

von den Vektoren des Sw aufgespannte Vektormannigfaltigkeit ist mit
dem Vektorraum Rs identisch. In dièse Voraussetzung ist die Bedingung
n ^ s mit eingeschlossen.

Ziel dieser Arbeit ist es, einige durch besondere Eigenschaften
ausgezeichnete Typen von Vektorsternen in gegenseitige Beziehung zu
bringen. So lassen sich einfache Zusammenhànge nachweisen, die zwischen
den Sternen vom Pohllcèschen Typus, den Koordinatensternen und den

regelmâBigen Sternen, insbesondere den den regulàren Polytopen zu-
geordneten regulàren Sternen bestehen.

Wir entwickeln zunàchst die Begriffe, die wir zur Charakterisierung der

ausgezeichneten Sterne, die wir studieren werden, verwenden.
Ist K eine, den Ursprung 0 festlassende kongruente Abbildung des

Vektorraumes B8 auf sich, so bezeichnen wir mit K [x] den Bildvektor
von ï, und in sinngemâBer Ûbertragung auf aile Vektoren eines Sternes,
mit K [©J den Bildstern von Sw.

Die Gruppe aller K, die einen gegebenen Stern Qn invariant lassen,

so daB also

gilt, nennen wir die zum Qn gehôrende Gruppe. Sie kann auch als Permu-
tationsgruppe der zu Qn gehôrenden Vektoren a^ aufgefaBt werden, oder
als Gruppe von kogredienten Permutationen von Zeilen und Spalten der

zu Qn gehôrenden Gram'schen Matrix

A || (a,, ak) || (2)

welche dièse in sich ûberftihren.
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Auf Grand der Eigenschaften dieser Grappe lassen sich gewisse
wichtige Sterntypen charakterisieren. Ein Stern heiBt transitiv, wenn
seine Gruppe transitiv ist, das heiBt, wenn durch Operationen der Grappe
jeder Vektor in jeden anderen ubergefiïhrt werden kann. Anschaulich
gesehen ist fur transitive Sterne charakteristisch, daB hinsichtlieh der
gestaltlichen Beziehungen, die ein Vektor mit dem gesamten Stern ein-
geht, aile Vektoren des Sternes àquivalent sind.

EinVektor s heiBt Symmetrievektor eines Sternes Qn, wenn seine Gruppe
eine Untergruppe von nur die Vektoren As invariant lassenden Abbil-
dungen aufweist. Der Vektor 5 kann zu Sn gehôren oder nicht.

Einen Stern nennen wir symmetrisch, wenn aile seine Vektoren
Symmetrievektoren sind. Einen transitiven und symmetrischen Stern
wollen wir regelmâfiig nennen. Die vom Mittelpunkt eines regulâren
(konvexen) Polytops nach den Ecken fuhrenden Vektoren bilden einen
regulâren Stern. Die regulâren Vielecke des jR2 sollen als regulàre Polytope
mitzàhlen. Im Rx sei ©2 {*> — 3e} der einzige regulàre Stern.

Besonders wichtig ist der aus s orthogonalen Einheitsvektoren be-
stehende Einheitsstern

<&. {*»...*.}. (3)

Er ist offenbar transitiv aber nicht symmetrisch. Der Diederstern im i?3 ist
fur n > 6 symmetrisch aber nicht transitiv. Der Simplexstern, der zum
Simplex gehôrende regulàre Stern, ist transitiv und symmetrisch.

Einen weiteren Gesichtspunkt, nach welchem Sterne ausgezeichnet
werden kônnen, gewinnt man, wenn man die Eigenwerte der 6/ram'sehen
Matrix (2), das heiBt die n Wurzeln

Al9 /.%, An (4)

der charakteristischen Gleichung

0 (5)

studiert. So hat E. Stiefel1) eine Kennzeichnung der PoTii&e'schen Sterne
fur den Fall n s + 1 auf Grand der Eigenwerte (4) gegeben. Unter
einem Pohlke'schen Stern versteht man einen Qn, der durch schiefe oder
orthogonale Parallelprojektion eines (£n im Rn auf den R8,s n — 1,

entsteht.

1) E. Stiefel, Zum Satz von Pohlke. Comment. Math. Helv. 10 (1937/38), S. 208 bis
225. Vgl. bes. Satz 4 auf S. 213 und die in Satz 5 auf S. 214 enthaltene Umkehrung.
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Fur die Entwicklung der in diesem Aufsatz zur Sprache kommenden
Zusammenhànge interessieren uns solche Sterne Qn, die durch Ortho-
gonalprojektion eines Cn im Rn auf einen R8, n 2^ s, entstehen. Wir
nennen sie Pohlke'sche Normalsterne.

Dem Gedankengang von Stiefel folgend, wàre es nicht sehwierig, die
analogen Bedingungen im Falle eines solchen Sternes fur beliebige
n ^ s zu finden. Wir werden aber den bezuglichen Satz spâter aus
anderen leichter folgern. (Es handelt sich um Satz III.)

Allgemein làBt sich ûber die Eigenwerte (4) aussagen, daB genau n — s
davon verschwinden mussen, da s der Rang von A ist. Da weiter A
symmetrisch und nicht negativ définit ist, sind die s nicht verschwinden-
den Eigenwerte reell und positiv.

Noch eine letzte fur uns wesentliche Définition :

Ein Qn {cti, an} heiBt Koordinatenstern, wenn fur aile Vektoren x

aus R8 die Identitât gilt
n

Offensichtlich ist ein Einheitsstern (£8 ein Koordinatenstern, da ja die
Darstellung

27 (e,,, x) e, x (7)

als gelâufige Komponentenzerlegung nach den Richtungen der s Koordi-
natenvektoren interpretiert wird. Die Bildung von (6) kann als direkte
Verallgemeinerung der Darstellung (7) angesehen werden. Da, wie sich

spàter ergeben wird, der (£8 der einzige <58 ist, der einen Koordinatenstern
darstellt, sind nur die Falle n > s intéressant.

1. Auf einen ersten Zusammenhang, der zwischen ausgezeichneten
Sternen besteht, eintretend, beweisen wir den folgenden Satz :

Satz I. Ein Qn ist dann und nur dann ein Koordinutenstern, wenn er ein
Pohlke'scher Normalstern ist.

Wir ûberlegen uns, daB im Falle n > s <5n {Oi, an} im R8 dann
und nur dann ein Pohlke9scher Normalstern ist, wenn es in einem zu R8

orthogonalen i?n_8 ein Sn {al5 an} so gibt, daB die

ev a, + âv (8)
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im Rn) in den man die Ràume R8 und Bn_s eingelagert hat, einen (£n

bilden. Im Palle n s gilt offenbar das letzte bereits fur die

e, o,. (9)

Dièse Aussagen stellen eine Interprétation der Définition der Pohlkey8Ghen

Normalsterne dar.

a) Es sei Qn, n > s, ein PoM&e'scher Normalstern. Es gilt dann

1,2, ...,n), (10)

(e e> ^"^
Fur aile Vektoren s aus i?s ist

(âv,x) O, (11)
insbesondere auch

(5p, (V) 0 (12)

Da (£n {ex, eM} im JBn ein Koordinatenstern ist, gilt fur aile
Vektoren aus Rn, insbesondere auch fur jeden Vektor x aus Rs

f (e,, *) e, i, (13)

oder mit Rûcksicht auf (11)

Z (o,, x) (a, + 5,) f (o,, i) ar + £ (or, x) ôF x (U)

Da der Vektor w

2(0,,,*)**

zum Raum iîs3 in dem die beiden anderen in der Relation (14) auftreten-
den Vektoren liegen, orthogonal ist, mu6 er verschwinden. Es resultiert

Z(av,x)av x, (15)

also ist Qn ein Koordinatenstern.

b) Es sei (3n, n>8, ein Koordinatenstern. Wir wàhlen ein System
von n orthogonalen Einheitsvektoren

so daB die ersten s Vektoren

Pi>...p*
zu R8 gehôren. Die iibrigen Vektoren

•• Vn
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gehôren dann zu einem zu R8 orthogonalen Bn_8. Im Rn bilden wir nun
die s Vektoren n

ql Z (a,, p4) Vv (i 1, 2, ...«); (16)

dann ist mit Rùcksicht auf die Orthogonalitàt der pv

oder

v=l

und da Qn ein Koordinatenstern ist, wird
n

v=l
so da8

resultiert.
Mit (16) werden somit s orthogonale Einheitsvektoren definiert. Es

lassen sich weitere n — s Vektoren

so hinzufùgen, da6 ein System von n orthogonalen Einheitsvektoren

entsteht. Endlich bilden wir die n Vektoren

pt)Vv (* l,2,...n). (18)

Aus (16) folgt nun, daB

ist, so da8 wegen
s

folgt
e, a, + H,, (19)

wenn man n

27(q,>P.)P, 5t (20)

setzt. Die at gehôren dann zu dem von den Vektoren pv, v ^ s + 1 auf-
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gespannten, zu Rs orthogonalen Rn^$. Nun ist mit Beriicksichtigung
von (18)

(ef, cfc) 27(qv,pt) (qP,p*)

oder n

(e,, cfc) (pfc, 27 (qv, pt) qv) (pfc, pt)
v=l

also
1 (* *)

Die Vektoren (19) bilden somit einen (£n, also ist Sn ein Pohlke1scher
Normalstern.

Man ûberlegt sich leicht, da6 der Beweis fur n s mit einigen Ab-
ânderungen der Ausdrucksweise gleich verlàuft. Satz I sagt in diesem
Falle aus, daB der (£g der einzige Koordinatenstern Qs im Rs ist.

2. Durch die Définition des Koordinatensternes wird das Studium der
einem beliebigen Stern

Gn {a1, ...,ûw}

zugeordneten linearen Vektortransformation

x'=T(x) i:(al,,x)a, (22

nahegelegt. Dièse hat folgende Eigenschaften :

T(% + n) T{x) + T(x)) ; (23)

T(<xx) xT(x) ; (24)

(T(x),t))=(T(T)),x). (25)

Wir nennen x Eigenvektor von T, falls

T(x) H ist. (26)

Der zugehôrende Eigenwert A ist wegen

(T(x),x)>0 (27)

positiv. Zwei verschiedenen Eigenwerten zugehôrende Eigenvektoren
sind orthogonal, denn nach (25) gilt

0 (T(x1), ï2) - (TixJ, x,) (Xt - A2) fa, Xt)
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Die Eigenwerte von T sind nun mit den s nicht verschwindenden Eigen-
werten der Gram'achen Matrix

^ 11 (a,, a*) || (2)

identisch. Ist nàmlich A eine r fâche Wurzel der charakteristischen
Gleichung

\A — M!\ 09 (5)

so besitzt das homogène Gleichungssystem

E(av,afl)xv Xx^ (/i= 1,2, ...,n) (28)
v=l

r linear unabhângige Lôsungen. Dièse ergeben r linear unabhàngige
Eigenvektoren von î7, die zum Eigenwert A gehôren, denn aus (28) folgt

n

E E (et,,, c^) x^ A E a^a^

oder wenn man n

E X^CLp X

Setzt'
T(j) Ax (29)

Berucksichtigt man noch, da8 die zu verschiedenen Eigenwerten gehôren-
den Eigenvektoren orthogonal sein mûssen, so ergibt sich, da8 die s nicht
verschwindenden Eigenwerte von A Eigenwerte von T sind, denen s

linear unabhàngige Eigenvektoren

l î #2 9 ' ' • 5

zugehôren. Man darf nach gelâufigen Ûberlegungen annehmen, da8

ist. Ist umgekehrt A ein Eigenwert von T, so kann er nicht von allen
Eigenwerten von A verschieden sein, da sonst der zugehôrende Eigen-
vektor zu allen xt orthogonal sein mûBte, was aber fur keinen nicht
verschwindenden Vektor des Ms môgKch ist. Damit ist die oben stehende

Behauptung betreffend die Eigenwerte von T bewiesen. Es ergeben sich
folgende Sâtze:

Satz II. Ein Sn ist dann und nur dann einKoordinatenstern, wenn die s
nicht verschwindenden Eigenwerte der Oram'schen Matrix von Sn aile 1 sind.

96



Ist nàmlich Sw ein Koordinatenstern, so ist A 1 ein s-facher Eigenwert,
da fur aile Vektoren des B8 die Identitàt

T(x) x

gilt und umgekehrt. In Verbindung mit Satz I gewinnen wir:

Satz III, Ein Sn ist dann und nur dann ein Pohlke'scher Normalstern,
wenn die s nicht verschwindenden Eigenwerte der Gram'schen Matrix von
Sn aile 1 sind.

3. Es zeigt sich nun, daB viele durch Eigenschaften ihrer Gruppe aus-
gezeichnete Sterne Koordinatensterne und somit auch Pohlke'ache
Normalsterne sind.

Wir zeigen zunâchst, daB ein Symmetrievektor eines Sternes Eigen-
vektor der zugeordneten Vektortransformation T ist.

Es sei s ein Symmetrievektor von Sn. Nach Définition gibt es dann
in der Gruppe von Sn eine Untergruppe kongruenter Abbildungen mit
dem invarianten Vektor s, die ®n in sich uberfiihren. Fur einen beliebigen
Vektor folgt aus

)*, %' (30)
v=l

)9 K(x) Kio,) K{xf) (31)

wo K eine Opération der Untergruppe ist. Wegen der Invarianz

K(<5n) <3«

erfahren die a,, durch K nur eine Permutation, so daB sich (31) schreiben
làBt

(32)

oder
T(K(x)) K(T(x)). (33)

Wâhlen wir fur x nun den invarianten Vektor s, so folgt aus (33) wegen

K(s) s

T(s) K{T(s)). (34)

7 Commentarii Mathematici Helvetici



Also ist auch T (s) invariant fur aile K der Untergruppe. Hieraus schlieBen
Wir

T(») As

was zu beweisen war.
Man kann nun nach diesen Vorbereitungen den fur unsere Ziele wich-

tigen Satz beweisen:

Satz IV. Jeder einer Kugel vont Radius 1/— einbesckriebene regélmâjiige
f n

Qn ist ein Koordinatenstern, also auch ein Pohlkëscher Norm,alstern.

Ferner gilt:
i/7"Satz V. Jeder einer Kugel vom Radius 1/ — einbeschriebene regulàre
F n

Qn ist ein Koordinatenstern, also auch ein PohlJce9scher Normalstern.

Da fur s < 4 unmittelbar eingesehen werden kann, daB die regulâren
Sterne regelmâBig sind, folgt die Richtigkeit von Satz V fur die Vielecks-
und Polyedersterne direkt aus Satz IV. Wir folgern spàter den Satz V aus
einem allgemeineren fur aile regulâren Polytope gûltigen Theorem.

Nach Définition ist ein regeli&âBiger Qn symmetrisch und transitiv.
Wegen der Symmetrie ist jeder Vektor a,, von Qn Symmetrievektor, also
wie weiter oben bewiesen wurde auch Eigenvektor der zu ©n gehôrenden,
durch (22) definierten Transformation T. Es sei also

T(ak) hak (35)
und folglich n

K a| (T(ak), afc) 27 (a,, afc)2. (36)

Wegen der Transivitàt von Qn gibt es in der Gruppe von Qn eine Opération

K, so daB

K(<5n) Qn und K(ak) a,

wird. Da K eine kongruente Abbildung ist, gilt zunâchst nach (36)

^ Y =f (o,, o,)2 lta\ ; (37)

denn die rechts auBen stehende Summe entsteht aus der links benach-
barten durch Permutation der Summanden. Da nun die Vektoren tran-
sitiver Sterne aile gleich lang sind, folgt aus (37)

Xk At A ; (38)
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aile Vektoren von Sn sind Eigenvektoren, die zum gleichen Eigenwert X

gehôren. Da der Rang von Qn nach Voraussetzung s ist, muB X ein
«s-fâcher Eigenwert der zu Qn gehôrenden Gramsehen Matrix sein.

Ist q der Radius der Umkugel von Sn, so ist die Spur der C?ram'schen

Matrix ng2, und da dièse eine Invariante ist, gilt

ng2 sX

oder also
X ^ e« (39)

Wâhlen wir fur q den Wert \f — so folgt, da6 die s nicht verschwinden-
f n

den Eigenwerte von Sw aile 1 sind. Mit Rucksicht auf die Sàtze II und

III ist somit Satz IV bewiesen.

4. Besteht ein Qn aus lauter Einheitsvektoren, so nennen wir ihn
normiert. Fur uns sind diejenigen normierten Sn von Interesse, fur die
aile nicht verschwindenden Eigenwerte gleich ausfallen. Die Spurrelation
ergibt fur den 5-fachen Eigenwert

* T (40)

durch analoge Ûberlegung, wie vor (39). Fur aile Vektoren des Raumes

gilt dann n

T(t) =Z(aVix)av — x (41)
v=l 8

In dieser Darstelluns kann

als Projektion des Vektors x auf die durch den Einheitsvektor ov fest-
gelegte Gerade interpretiert werden.

Wir definieren:

Ein Biischel von n Geraden des R8 heiBt P-Bûschel, wenn die Summe
der wProjektionen eines beliebigen Vektors x auf die Geraden den Vektor
n
— X ergibt.

Nach der voranstehenden Betrachtung ist folgendes klar:

Ein Geradenbuschel ist dann und nur dann ein P-Bûschel, wenn der einer

Kugel vom Radius 1/— einbeschriebene Stem der Richtungsvektoren der
f n

Geraden ein Pohlke'scher Normalstern bzw. ein Koordinatenstern ist.
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Fur viele tTberlegungen ist es wichtig, sich an die sich direkt aus der
Définition ergebende Regel zu erinnern:

Das Vereinigungsbilschel zweier P-Bûschel ist wieder ein P-Bûschel.

Spezielle Vorkommnisse derartiger P-Buschel wurden bereits fest-
gestellt :

So hat E. Schônhardt2) den folgenden Satz ausgesprochen :

y)Projiziert man im d-dimensionalen Baum einen Vektor v> senkrecht auf
die sâmilichen n Kcmten eines regularen Kôrpers gleicher Dimension, so

n
ergibt die Summe der Projektionen den Vektor -=- t). "

Der zitierte Satz wurde fur die Dimensionen d 1, 2, 3 von Schônhardt
bewiesen und fur d > 4 als Vermutung ausgesprochen.

Das Verfahren, das Th. Vahlen3) zum Beweise dièses Projektionssatzes
eingeschlagen hat, eignet sich fur die Verallgemeinerung auf beliebige
Dimensionen, und liefert z. B. miihelos das Gewunschte fur das 2^-Zell,
das (s + 1)-Zell und das 2*-Zell.

Nach den Sâtzen von Schônhardt und Vahlen bilden also die Kanten
eines regularen Kôrpers ein P-Bûschel.

Es gelingt, wie man leicht einsehen wird, den Satz aus Satz V abzu-
leiten, so da8 sich also die Vermutung von Schônhardt im vollen Umfange
bestâtigt.

5, Es seienG1,O2, ...,Gnn Geraden eines beliebigen Geradenbuschels
im B8i und 0ik bezeichne den Zwischenwinkel von G{ und Gk.

Wir interessieren uns fur die Quadratsumme

A T Z cos2 6ik (42)

Dièse ist die sogenannte Normalspur der Gram'schen Matrix

A || cos 6ik || (43)

der Richtungseinheitsvektoren, und mit Rûcksicht auf ihre Invarianz
gilt die Relation

8

A Z XI (44)
v=l

2) E. Schônhardt, t3"ber die Summe der Projektionen eines Vektors. Deutsche
Mathematik, Jahrg. 2, Heft 3 (1937), S. 446—451. Der zitierte Satz findet sich auf S. 451.

8) Th. Vahleri, Bemerkungen zu der Arbeit : E. Schônhardt, Ûber die Summe
der Projektionen eines Vektors. Deutsche Mathematik, Jahrg. 2, Heft 3 (1937),
S. 452—454.

100



Da andererseits wegen der Spurregel

n
2mi A*y — n

sein muB, folgert man die Ungleichung

A ^ — • (45)

In (45) gilt das Gleichheitszeichen offenbar dann und nur dann, wenn
aile Eigenwerte gleich sind. Es gilt somit der folgende Satz :

Satz VI. Ein Geradenbûschel ist dann und nur dann ein P-Bûschel, wenn
die Quadratsumme der Kosinuswerte der Zwischenwinkél den minimalen

n%
Wert annimmt.

s
Es sei auBerdem G eine beliebige Gerade im Raum, und Qv der Zwischenwinkél

von G und Gv des oben betrachteten Buschels. Ist e, |e| 1,

Richtungsvektor von G und a,,, | aj 1, Richtungsvektor von (?„, so gilt

(^(e), e Z (ûv, e)2 Z cos2 6V. (46)

Sind aile nicht verschwindenden Eigenwerte von T gleich, so ist

woraus wir mit Riickblick auf (46) folgern, daB stets

Z cos2 6V=— (47)
v—1 ^

ist. Im umgekehrten Sinne ist der analoge SchluB môglich.
Es ergibt sich :

Satz VII. Ein Geradenbûschel ist dann und nur dann ein P-Bttschel,
wenn die Quadratsumme der Kosinuswerte der Zwischenwinkél der Bûschel-
geraden mit einer verànderlichen Geraden konstant ausfâllt. Die fragliche

Konstante ist — •

s

6. Wir bezeichnen ein P-Buschel mit n Geraden im R8 mit P(n, s). So
bilden s orthogonale Geraden im R8 offenbar ein P(s, s). Nach Satz V
gibt es stets ein P(n,s), wenn n die Eckpunktszahl eines regulàren
Polytops im R8 ist, oder sich als Summe solcher Zahlen darstellen làBt.
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Eine derartige Zerlegung ist fur s ^ 3 aber nicht flir aile n ^ s môglich4),
so daB die Existenz eines P(n, s) fur beliebige n ^ s zunàchst fraglich
ist. Wir zeigen aber:

Existenzsatz : Fur jede Zahl n ^ s existiert ein P(n, s).

Es gilt nàmlich:
a) Aus der Existenz eines P(n, s) und eines P(m, s) folgt die Existenz

eines P(n -\- m, s).

b) Aus der Existenz eines P(n, s) folgt die Existenz eines P(n,n — s).

Die Aussage a) ist eine direkte Folge der Définition und wurde frùher
bereits erwâhnt; b) ergibt sich so: Wenn ein P(n, s) existiert, so gibt es

i/7~einen der Kugel vom Radius 1/— einbeschriebener Koordinatenstern

im Rs

Nach der Charakterisierung der Koordinatensterne, die wir zu Beginn
von Satz I gewàhlt haben, gibt es einen Stern

Qn {âl9 ...,ân} im Rn_s

wo Rn_s orthogonal zu Rs ist, so daB im Rn die Vektoren

— fl _L_ et

einen (gw bilden. Wegen der Symmetrie dieser Kennzeichnung ist offenbar
~Qn im Rn_s ein Koordinatenstern, und wegen

__ a2 -2 I Â I — 1/—
n

ist ®n der Kugel vom Radius 1/ s einbeschrieben. So ergibt sich
F n

die Existenz eines P (n, n — s).

Mit Hilfe von a) und b) gelingt der Existenznachweis fur ein beliebiges
P(n, s), s^2, leicht. Wir nehmen einmal an, der Beweis sei geleistet fur
aile Dimensionen, die kleiner sind als s. Es gibt also P(n,r) fur aile

n ^ r und 1 ^ r < s ; nach b) gibt es also auch stets ein P(r -f- s, s), und

4) Im Falle s 3 z. B. gestatten aile Zahlen eine derartige Zerlegung mit Ausnahme von
n 5. So bliebe die Existenz eines F (5, 3) ungewifî.
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wegen der Existenz des P(s, s) naeh a) ein P(ks -f- r, s), 1 fg r < s,
1 fg k, sowie auch ein P(&s, s).

Der Existenzsatz ist somit auch richtig fur die Dimension s. Da er aber
fur s 1 (trivialerweise) richtig ist, ist er fur aile s richtig, w. z b. w.

7, Wir beweisen jetzt:
Die vom Mittelpunkt eines regularen Polytops durch die EcJcpunkte

gelegten Geraden bilden ein P-Buschelh).

Nach Satz VI genugt es, nachzurechnen, daB die Quadratsumme der
n2

Kosinuswerte der Zwischenwinkel den kleinsten Wert — erreicht.
s

In der unten folgenden Tabelle sind die zu dieser Verifikation erforder-
lichen Elemente zusammengestellt6).

Die Kolonnen der Tabelle enthalten:

1. Die Dimension s des Raumes.

2. Die Bezeichnung des regularen Polytops.
3. Die Eckpunktzahl n.
4. Die Nummer i der Sorte von Kosinuswerten. Die n2 Elemente der

Crram'schen Matrix wurden zweckmaBig m Sorten gleicher Elemente
eingeteilt.

5. Die Zahl m% der ni der ^-ten Sorte enthaltenen gleichen Kosinuswerte.
Ofïenbar gilt Zmt n2,

6. Der Kosinuswert cos 6t der i-ten Sorte.

7. Die Quadratsumme
A Zmt cos2 6Z

8. Der Wert A der s nicht verschwmdenden, zusammenfallenden Eigen-
werte der GVam'schen Matrix des Polytops.

n2
Es stellt sich in der Tat heraus, daB A stets den Wert — annimmt.

s

Mit dem obenstehenden Satz ist nun auch der aquivalente Satz V,
dessen Beweis wir noch schuldig geblieben sind, sichergestellt.

5) Bei allen Polytopen mit Gegenecken wird die entsprechende Achse zweimal gehefert,
und mufi îm P-Buschel auch doppelt gezahlt werden. Selbstverstandhch bilden m diesen
Fallen die einfach gezahlten Geraden ebenfalls ein P-Buschel mit halber Geradenzahl. So

entsteht z. B. aus dem Oktaederbuschel mit 6 Geraden das Orthogonalbuschel mit
3 Geraden.

6) Als Unterlage diente. A. Urech, Polytopes réguliers de l'espace à n dimensions

et leurs groupes de rotations, Thèse E. P. F., Zurich (1925).
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8

4

4

4

4

Polytop
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n
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8

4

Polytop

120-Zell
(Fortsetzung)

n

600

i

5
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9
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14
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23
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8

4

s

8

8

Polytop
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n
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1
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8

3
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1

1

8

1

0
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A
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8
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X
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2
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Zum Schlusse weisen wir noch auf folgendes hin : Wenn man auBer
der durch Satz VII klargestellten, fur P-Bxischel charakteristischen
Eigenschaft der Winkel der Eùschelgeraden mit einer beliebigen Geraden,
verlangt, daB die Summe der Kosinuswerte verschwindet, so gelangt
man zu dem von L. Schlâfli eingefùhrten Begriff des eutaktischen
Bûschels. Herr W. Gruner in Bern machte mich in freundlieher Weise
darauf aufmerksam, daB bereits L. Schlâfli die Eutaxie der regulâren
Buschel hergeleitet hat.7)

(Eingegangen den 9. August 1940.)

7) L. Schlàfli, Théorie der vielfachen Kontinuitàt, herausgegeben von
J. H. Graf, Bern 1901, § 35. Ûber die Summe der Quadrate der Projektionen eines
Strahles auf symmetrisch verteilte Bichtungen, S. 134—139.
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