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Notiz zur Lagrangeschen
Lôsung des Keplerschen Problems

Von J. O. Fleckensteist, Basel

1. DaB schon Lagrange1) bei der Auflôsung der Keplerschen Gleichung

t x + esinx (0 ^ e < 1) (1)

nach x mit Hilfe seines Reversionstheorems

s2 d s3 d2
x t-esmt + -Jlw(sinH)-TÏ-w(SinH) + (2)

bei vorausgesetzter — aber von ihm nicht bewiesener — Konvergenz
dieser Reihe auf die Besselschen Funktionen

(3)

als Koeffizienten in der Entwicklung

x t+2ZAn(e) sin nt ; An(e) -i-Jn(ne) (4)

gestoBen ist, wird verschiedentlich von den Autoren vermerkt; daB er
aber die Besselsche Entdeckung vorweggenommen hat, darauf scheint
nur Whittaker2) hinzuweisen. In der Tat liegt die analytische Pointe in
der Lagrangeschen Rechnung nicht in der bloBen Umformung der Reihen-
glieder und der Ersetzung der Potenzen sinv£ in (2) durch die sinus der
Vielfachen des Arguments, die ihm dann zufàllig die Besselschen
Funktionen liefert, sondern in der Einfûhrung des Differentialoperators

p -j- den Lagrange wie einen Heaviside-Operator handhabt.

Bestimmt man eine gesuchte Zeitfunktion B(t) durch Anwendung
einer Operatorenrechnung auf eine vorgegebene Funktion 8(t)

x) J.L.Lagrange, Sur le problème de Kepler (1771), s.Oeuvres, t.III, p. 113—138.

2) H. G. Plummer, An Introductory Treatise on Dynamical Astronomy,
Cambridge (1918), bemerkt, dafi er Whittaker die "référence, which seems to hâve been
overlooked" verdankt und schreibt, dafi Lagrange "... thus anticipating Bessels work of
(1824) of more than half a eentury later".
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indem man etwa f(p) nach Taylor entwickelt, so bedeutet bekanntKch
die Ersetzung des Operators p durch eine algebraisch zu behandelnde
GrôBe den Ûbergang von dem Bereich der dem Operator unterzogenen
Funktion zu einem zugeordneten anderen, d. h. eine Funktionaltransfor-
mation, wo sich dann der Operator als eine algebraische Multiplikation
abbildet. Im Fall des Heaviside-Operators ist dièse Transformation die
Laplaoesche, die als Spezialfall die Fouriersche Integraltransformation
enthàlt, womit der Zusammenhang zwischen Lagranges mehr ,,indukti-
ver" Rechnung und der allgemeinen Fourierschen Entwicklung, die dann
spàter Bessel anwendet, angedeutet sein mag.

Wâhrend Bessel3) mit einem Integraloperator die Besselschen Funk-
tionen erhâlt, gewinnt sie Lagrange auf dem dazu inversen Weg mittels
des Differentialoperators ,„

als Fourierkoeffizienten der Reihe (4). Eine kurze, direkte Herleitung der
Besselschen Funktionen auf dem Lagrangeschen Weg ergibt sich nun
wie folgt.

2. Mit dem Operator p schreiben wir das Reversionstheorem (2)

oo sqU—I

x t + Z (— l)n en smn t
n=l n •

und nach (4) haben wir also folgende merkwurdige Relation herzuleiten:

00 1 dn~1 °° J
£< ^i (i *>•^_ sin nt (5)

Wir setzen

Z (— l)n p71"1 —r sinn t Z (— l)w ??n~1 —r sin71 ^ + -Rjp >

n=l ^ ï «=1 ^ ï

wo im Falle der Konvergenz lim RK 0 ist.

Die Reihen £8mnt kônnen wir4) folgendermaBen in Reihen, die nach
cos

sm n t fortschreiten, umformen:
cos n

Es sei K n

n=l
n %n

3) F. W. Bessel, Gesammelte Abhandlungen, Bd. I, p. 17 (Abhandlungen der
Berliner Akademie der Wiss. math. CL 1816—1817).

4) vgl. jE7. W. Brown und C7. Shook, Planetary Theory, Cambridge 1933, p. 45 u. ff.
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Da CK eine gerade Funktion von t ist, kann CK in Cosinustermen der
Vielfachen von t entwickelt werden. Mit der Abkiirzung z oceu, so daB

oc2
2 oc cos t z -\ ist, haben wir nach dem Binomischen Satz

Die Koeffizienten der cos nt erhàlt man aus den Koeffizienten von zn und
oc2nzrn, die also jeweils gleich sein mussen, sodaB es genûgt, nur die
Koeffizienten von zny n > 0 zu sammeln und dann zn durch 2 <xn cos nt
zu ersetzen. Demnach ist allgemein der Koeffizient von 2 cos nt

6,(,,2u (n+4)(n + 3) (n+6) (n+5) (n+é)

(wir notieren nur die ersten Glieder des Koeffizienten). Durch analoge
Ùberlegungen findet man, daB in

die Terme mit ungeradem n — 2/j + 1 die sinus der ungeraden
Vielfachen von t, die Terme mit geradem Index n 2/u die cosinus der
geraden Vielfachen von t enthalten. Mit den gleichen Substitutionen wie
oben folgt dann mit

und

Oir
2ioc sin t z

z

K I a2\n n_

2J 2~n \z (—1)2
n=l \ Z /

(6)
als Koeffizient von 2 sin (2/j + 1) t

h 4- (2,, 4- V h 4- {2P + 5> (2^ +

(2jli + 7) (2fi + 6) (2fi + 5)

und als Koeffizient von 2 cos 2fit
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2)

Fiihrt man jetzt

6) {2(i + 5) (2/t + 4)

x ^
2nn\

ein, so erhâlt man in der Entwicklung
K 1

(— l)n —p p71-1 (e sin t)n

als Kœffizienten von 2 sin (2^ + 1) t

(-1)" r 3) 1

5) 4)

«2f>t+2X+l

3, 4, 5, .../*),

und als Koeffizienten von 2 cos

2) 1 ~l

4) (2^ + 3)

(A =3, 4, 5, .../W).
Nun ist allgemein

angewendet auf sin (2^+1) t gleich (—1)^+A (2/w+l)2^+2A sin (2/^+1)

angewendet auf cos 2^£ gleich (— 1)^+A (2/a)2^+aA-1 sin 2/^e

Ersetzt man also in den Koeffizienten die pv durch ihre Differentiations-
resultate, so erhalten wir allgemein fur die Koeffizienten von sin 2fit
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+ l 1; (2/*+2) 21

und von sin (2/j, + 1) t

+l 1; (2/1+1)11!

s\2*+4, (2/K)^+2X-i /t

^ ;

2!\2 ' /O I 1 I 1\f1ll O I I

also fur /S^ eine Reihe, die nach sin nt fortschreitet (n 2fi gesetzt).
Lassen wir in der Doppelsumme

K K mn+ZX-l 1 c\n+2>.-l 1 c\

K-+oo gehen, so haben wir (vorbehaltlich der absoluten Konvergenz
von (7)) in derTat die Entwicklung (4) nach sin nt mit den Koeffizienten

n+2K 1

und damit die Auflosung der Keplerschen Gleichung in der Lagrange-
Besselschen Form.

3. Die absolute Konvergenz der Doppelsumme (7) und damit die
Erlaubtheit der Einfuhrung der Koeffizienten Jn(ne) laBt sich fur hin-
reichend kleine e schon elementar mit dem d'Alembertschen Kriterium
erweisen.

In der Summe6)

V+2K+ 1

kann man, weil

(v+l)2K (v+1)2k {v+\)2k
+1 + k)Ik\
ist, setzen

5) Fur wichtige Hinweise bei der nachfolgenden Majoratenabschatzung danke ich Herrn
Prof. Niethammer.
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Also wird die Doppelsumme

v=0 #c=0 (-

2k

(v+1)1

v+2k+1

2/

-tt) e

Die Majorante konvergiert, wenn nur

lim
v->oo

lim

ist, d. h. fur

T|e < 1

Der Konvergenzradius der Entwicklung ist also grôBer oder gleich e0,

wo e0 durch

oder sne
4 2 (8)

bestimmt ist6). eo= 0,660... weicht um weniger als 0,003 von dem von
Laplace angegebenen Wert ex 0,6627... fur die Gultigkeit der
Entwicklung (2) ab, der sich aus

(9)

ergibt, wie sich mit wesentlich hôheren Hilfsmitteln zeigen lâBt7).

6) Unter dieser Schranke liegen die numerischen Exzentrizitâten der Planeten, Plane-
toiden und sogar maneher periodischer Kometen.

7) vgl. etwa Tisserand, Mécanique céleste, 1.1, p. 265.
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Mit der Substitution et tg ocx erhàlt man bekanntlich aus (9) zur
Bestimniung des Laplaceschen Konvergenzradius die transzendente
Gleichung

cos ocx lognat ctg -—- 1

wâhrend man mit der Substitution ~- tg oco fur e0 eine analoge Glei-

chung aus (8)
cos2(X0 lognat ctg oto 1

erhâlt8).
Wâhrend die Herleitung der Entwicklung (4) mit Hilfe des Reversions-

theorems (2) von Lagrange eine Einschrânkung der Bedingung 0<e<l
aus (l)zuO<6<e1 0,6627... erfordert, erlaubt die Anwendung des

Fourierschen Entwicklungssatzes, die Gultigkeit der weiteren Bedingung
0 g e < 1 zu zeigen. Die Besselsche Herleitung der Entwicklung (4) ist
also fur das ganze Intervall 0 < e < 1 gultig.

e8) Beid© Formeln l + f/l + cî £1e 1+fl2und soe1+ 4 2 liefern bis auf Grôfien
von der Ordnung £8 als erste Nâherungslôsung

* - 2 é8
+

(Eingegangen den 25. Juli 1940.)
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