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Notiz zur Lagrangeschen
Lésung des Keplerschen Problems

Von J. O. FLECKENSTEIN, Basel

1. Dal} schon Lagrange!) bei der Auflosung der Keplerschen Gleichung

t=x -+ esinx 0=e<1) (1)

nach x mit Hilfe seines Reversionstheorems

—t—esint 4 > n2t) — = L (ginsy 2
xr=1—e¢sin —|——2—!—Et—(sm )———é—!——zt?(sm)—}—--- (2)
bei vorausgesetzter — aber von ihm nicht bewiesener — Konvergenz

dieser Reihe auf die Besselschen Funktionen

- « n'n+2K e n+2k
T =3 (— 12— () 3)
als Koeffizienten in der Entwicklung
x_—_—.t—}—ZS'An(s) sin nt ; An(e)=~$—Jn(ns) , (4)
n=1

gestoBen ist, wird verschiedentlich von den Autoren vermerkt; daf er
aber die Besselsche Entdeckung vorweggenommen hat, darauf scheint
nur Whittaker2) hinzuweisen. In der Tat liegt die analytische Pointe in
der Lagrangeschen Rechnung nicht in der blofen Umformung der Reihen-
glieder und der Ersetzung der Potenzen sin’¢ in (2) durch die sinus der
Vielfachen des Arguments, die ihm dann zufillig die Besselschen Funk-
tionen liefert, sondern in der Einfiihrung des Differentialoperators

p= % , den Lagrange wie einen Heaviside-Operator handhabt.
Bestimmt man eine gesuchte Zeitfunktion B(#) durch Anwendung
einer Operatorenrechnung auf eine vorgegebene Funktion S(t)

B(t) = f(p) 8() ,

1) J.L.Lagrange, Sur le probléme de Képler (1771), s.Oeuvres, t.III, p.113—138.

?) H.C. Plummer, An Introductory Treatise on Dynamical Astronomy,
Cambridge (1918), bemerkt, da3 er Whittaker die ‘‘reference, which seems to have been
overlooked” verdankt und schreibt, daB3 Lagrange ‘. .. thus anticipating Bessels work of
(1824) of more than half a century later”.
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indem man etwa f(p) nach Taylor entwickelt, so bedeutet bekanntlich
die Ersetzung des Operators p durch eine algebraisch zu behandelnde
GroBe den Ubergang von dem Bereich der dem Operator unterzogenen
Funktion zu einem zugeordneten anderen, d. h. eine Funktionaltransfor-
mation, wo sich dann der Operator als eine algebraische Multiplikation
abbildet. Im Fall des Heaviside-Operators ist diese Transformation die
Laplacesche, die als Spezialfall die Fouriersche Integraltransformation
enthilt, womit der Zusammenhang zwischen Lagranges mehr ,,indukti-
ver‘ Rechnung und der allgemeinen Fourierschen Entwicklung, die dann
spiter Bessel anwendet, angedeutet sein mag.

Wihrend Bessel3) mit einem Integraloperator die Besselschen Funk-
tionen erhilt, gewinnt sie Lagrange auf dem dazu inversen Weg mittels
des Differentialoperators qv

PP= g

als Fourierkoeffizienten der Reihe (4). Eine kurze, direkte Herleitung der
Besselschen Funktionen auf dem Lagrangeschen Weg ergibt sich nun

wie folgt.
2. Mit dem Operator p schreiben wir das Reversionstheorem (2)

p’n—l
n !

x=1t-+ 3 (—1) g™ gin® ¢
n=1

und nach (4) haben wir also folgende merkwiirdige Relation herzuleiten:

> 1 dr? . © J,(ne) .
—_ 1 - n — —_n\ 7" .
ni‘:;( 1) — g (¢ sin ?) 2;2 - sin ni (5)
Wir setzen
[~ en . K 8'"1 .
2(—1)rprt— sin"t =} (—1)*p* 1 — smm®?! 4 Rg,
n=1 n! n==1 n !

wo im Falle der Konvergenz lim B, = 0 ist.
K->

Die Reihen Y (S;;Z;t konnen wir?) folgendermaBen in Reihen, die nach
sin »
Cco8 1

Es sei

t fortschreiten, umformen:

K X"
0K=Zb"(2 OOSt)" ’ b”=—§1—b' .
n=1

3) F. W. Bessel, Gesammelte Abhandlungen, Bd.I, p. 17 (Abhandlungen der
Berliner Akademie der Wiss. math. Cl. 1816—1817).

4) vgl. E. W. Brown und C. Shook, Planetary Theory, Cambridge 1933, p. 45 u. fi.
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Da Cj eine gerade Funktion von ¢ ist, kann Cp in Cosinustermen der

Vielfachen von ¢ entwickelt werden. Mit der Abkiirzung z = «e’, so dafl
2
2x cos t =2z + —“z—- ist, haben wir nach dem Binomischen Satz

K “2 n
OK == 2_?12“” (z + 7) _

K a2  nr—1) & x2®

J— -n »MN J— . .

___n‘:,‘12 2 (1—{—nz2+ 31 A )

Die Koeffizienten der cos nt erhilt man aus den Koeffizienten von z* und
xmz ", die also jeweils gleich sein miissen, sodafl es geniigt, nur die
Koeffizienten von z*, n > 0 zu sammeln und dann z* durch 2 x™ cos nt
zu ersetzen. Demnach ist allgemein der Koeffizient von 2 cos nt

4 6 5 4
byt (1 2) byt T OED oy 2O WA OED -

(wir notieren nur die ersten Glieder des Koeffizienten). Durch analoge
Uberlegungen findet man, daB in

K
Sg =3 (— 1)*b, (2 sin t)»
n=1

die Terme mit ungeradem n = 2u + 1 die sinus der ungeraden Viel-
fachen von ¢, die Terme mit geradem Index n = 2u die cosinus der
geraden Vielfachen von ¢ enthalten. Mit den gleichen Substitutionen wie
oben folgt dann mit

2
27« sin t—-—z-——“—
2
und x 42\ 1 n
SK=Z'2_"’ (z-—-—-———) (-—-— ].)2 =
n=1 z
—1 4 —1) (n—2 8 n
752_nzn(1_n“+m__1.%_"<n 22 >.ﬁ_+...)(__1,,

(6)
als Koeffizient von 2 sin (2u + 1) ¢

(2p + 5) (24 + 4)

(— 1)k bapsr + (20 + 3) baprs + 1.3 by pts -+
2 7) (2 6) (2 5
I )(£;3)( ¢+ 5) b2,,+7+.--$

und als Koeffizient von 2 cos 2ut

85



2 4) (2 3
R L =1

2u + 8) (2u + 5) (2u + 4
4 (2p+ )(1pf;3)(ﬂ+ ) ba s + - -

Fiihrt man jetzt

b, = 2n !

ein, so erhilt man in der Entwicklung
K 1
2 (— 1) —— pn~1 (e sin #)»
n=1 n!
als Koeffizienten von 2 sin (2u + 1) ¢

" B g2t 0 " pRHtR g2 put8
(—1) (2‘u—|—1)!22l‘+1+( pt )(2,u—1‘—3)!1!22ﬂ+3+

PRI+ g2 ptS

p2p.+27\ e2p+2 A+1
(2u + 24 + 1)1 A1 22wt2rsd

o { @uAb2A41) - @ptA + 2)) +o,

(A=3,4,5,...u),

und als Koeffizienten von 2 cos 2ut

P21 g2p 5 5 pRUHL g2pte
(2u) 1 ¢ +(2p +2) Gu L2l 11 omre T

(— l)ug

pz n+3 c2put+d

PRI g2pt2)

+ - {@Cu+24)--2u+21+1)} (2u+22) T A1 22m+2R s olbLl I

(A=3,4,5,...u).
Nun ist allgemein

p?#+2X  angewendet auf sin (2u4-1) ¢ gleich (—1)#+A (2u-4-1)2#+2A gin (2u-+-1) ¢

p*#+22-1 gngewendet auf cos 2ut gleich (— 1)#+A (2u)2p+22-1 gin 24t .

Ersetzt man also in den Koeffizienten die p* durch ihre Differentiations-
resultate, so erhalten wir allgemein fiir die Koeffizienten von sin 2u?

86



z (2p)2e2 (__;_)2"+ (— 1t (2u)2p+2 (_g_)z"+2+

a1 ol Cut+ 111!
0 (2/,6)2‘”'3 e \2ptt (2M)2p+2 A-1 e \2n+22
Fevgtr(s) e e gra(s) b

und von sin (2u + 1)¢
2 1)2& 2pu+1 9 1)2p-+2 2pu+3
(2p+1) (_S_)" 4 (e L2t DR (8)" n

(2u+1)'10! 2u+2)11! \ 2
o (21 1)20H4 2+ (2u—+1)20+2r (¢ 2,;,+2A+1 |
D 2'(2) AR CPRS EY Y 'A'(?) Y

also fiir §; eine Reihe, die nach sin n¢ fortschreitet (n = 2u gesetzt).
Lassen wir in der Doppelsumme

g o 5 K N i e \n+2h ;
k=22 2V 077 ('é‘) Sk bk (7)

Koo gehen, so haben wir (vorbehaltlich der absoluten Konvergenz
von (7)) in der Tat die Entwicklung (4) nach sin »¢ mit den Koeffizienten

o0 nn+2l<—1 £ n+2k 1
K‘Eo(—-l) (n 4+ «)! x! (_2—) ::;I,—J”(ne)

und damit die Auflosung der Keplerschen Gleichung in der Lagrange-
Besselschen Form.

3. Die absolute Konvergenz der Doppelsumme (7) und damit die
Erlaubtheit der Einfiihrung der Koeffizienten J,(ne¢) 1aBt sich fiir hin-
reichend kleine ¢ schon elementar mit dem d’Alembertschen Kriterium
erweisen.

In der Summeb)

0 . . (1) + 1)v+21c € v+2k+1 . ) (v+1)v+2x (f__ v+2x+41
Ké.'o ( 1) (v+1+k)! & '(—2—) sin (v + 1)¢ <hé:)(’v+1+l<)! k! 2)

kann man, weil

(v+1)2c (v+1)2% » (v+1)2% v+ 1)~
(p+1+x)! k! (w+D)! (+1+1)...(»+1+k) &! = (»+1)! (w+1)<u! — (p+1)! &!
ist, setzen

5) Fiir wichtige Hinweise bei der nachfolgenden Majoratenabschétzung danke ich Herrn
Prof. Niethammer.
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o) Bl -

v+l 2K
(v —}(—vli(l—)%;) ’é‘o (v—l—ll '(—%) _ ((:i— ;))v! (—%)v+1 e(v+1) (_;_)z

<

Also wird die Doppelsumme

1 v+2«k v+2x+1 .
(— 1) (v:t_;—k)x)! K ! (%) s (v+1)t’<

> ¥

v=0 x=0

o

'—2— e

(»+ !

(%)2 2 (v_|_ 1) ( € )v+1 ,,(_;_)2
<e

Die Majorante konvergiert, wenn nur

e\ v+l v(_;_)z
v+ 1)" (= e »! e
lim vy (2) — lim | @D (i)e('z')z <1
y->00 £\2 v—
(v4+1)! pv1 (_%)ve(v‘l) (?) e . ?
ist, d. h. fiir

Der Konvergenzradius der Entwicklung ist also groBer oder gleich ¢,

wo ¢, durch
803

202 14 290
% (2)=1 oder g6 =2 (8)

bestimmt ist®). ¢, = 0,660... weicht um weniger als 0,003 von dem von
Laplace angegebenen Wert ¢, = 0,6627... fiir die Giiltigkeit der Ent-
wicklung (2) ab, der sich aus

‘ 1+81‘

1+V1i+&=c¢c¢ (9)

ergibt, wie sich mit wesentlich h6heren Hilfsmitteln zeigen 143t7).

6) Unter dieser Schranke liegen die numerischen Exzentrizitaten der Planeten, Plane-
toiden und sogar mancher periodischer Kometen.
7) vgl. etwa Tisserand, Mécanique céleste, t. I, p. 265.
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Mit der Substitution ¢, = tg «, erhdlt man bekanntlich aus (9) zur
Bestimmung des Laplaceschen Konvergenzradius die transzendente

Gleichung 5
cos «, lognat ctg —+ = 1
1 2 ’

wihrend man mit der Substitution <2 — tg «, fiir ¢, eine analoge Glei-

2
chung aus (8)
cos?x, lognat ctg o = 1
erhilts).

Wihrend die Herleitung der Entwicklung (4) mit Hilfe des Reversions-
theorems (2) von Lagrange eine Einschrinkung der Bedingung 0<e<1
aus (1) zu 0 < e < ¢, = 0,6627. .. erfordert, erlaubt die Anwendung des
Fourierschen Entwicklungssatzes, die Griiltigkeit der weiteren Bedingung
0 < e < 1 zu zeigen. Die Besselsche Herleitung der Entwicklung (4) ist
also fiir das ganze Intervall 0 < ¢ < 1 giiltig.

é-z
149

14eq 2 L
Wt und gge = * = 2 liefern bis auf GréBen

8) Beide Formeln 1+ V143 = ¢ e
von der Ordnung & als erste Naherungslésung

2 &
£=-—e———4— :h..- .

(Eingegangen den 25. Juli 1940.)
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