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Sur le groupe des homographies et des

antihomographies d'une variable complexe

Par B. de Kerekjarto, Budapest À M. ÉUe Cartan
en témoignage de haute estime.

Dans le présent mémoire, je démontrerai le théorème suivant concernant

la caractérisation topologique du groupe des homographies et des

antihomographies d'une variable complexe.

Théorème, Soit G1 un groupe de transformations topologiques de la
surface d'une sphère en elle-même tel qu'à deux triples quelconques de points
(A°, B°, G°) et (A, B, C) correspondent deux et seulement deux transformations

de G! qui changent le triple (A°, B°, G°) en (A, B, G) et qui varient
continuement avec le triple (A, B, C). Le groupe G1 est homéomorphe au
groupe des homographies et des antihomographies d'une variable complexe.

Dans un mémoire intitulé ,,Sur le caractère topologique du groupe homo-

graphique de la sphère" (à paraître dans le Journal de Mathématiques pures
et appliquées) j'ai démontré le théorème suivant:

Théorème. Si G est un groupe de transformations topologiques d'une
surface en elle-même tel qu'à deux triples quelconques de points (A0, B°, C°)
et (A, B, C) correspond une transformation de G et une seule qui change le

triple (A°, B°, C°) en (A, B, G) et qui varie continuement avec le triple
(A, JS, G)y le groupe G est homéomorphe au groupe des homographies d'une
variable complexe.

De ce dernier théorème on peut déduire facilement le premier; mais la
démonstration du théorème sur le groupe homographique utilise des

moyens assez difficiles tels que rénumération des groupes continus
connexes d'ordre 2. Vu l'importance du groupe Gr des homographies et
des antihomographies dans la géométrie projective de la droite
complexe1), il est intéressant d'observer que la caractérisation directe du

groupe G' peut être démontrée, sans supposer la continuité du groupe,
par des méthodes plus faciles que nous allons développer.

1. Soient T et Tr les deux transformations du groupe G1 qui changent
le triple (A°, B°, C°) en (A, B, C). La transformation T-*Tf E laisse
les points A, B, G invariants de même que l'identité / et la transformation

U2 de G1 ; il y a parmi ces trois transformations deux qui sont iden-

*) Voir à ce sujet l'œuvre de Élie Cartan: Leçons sur la Géométrie Projective
Complexe. Paris, 1931.
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tiques, d'où E2 /. La transformation involutive E admettant 3 points
invariants est homéomorphe à une symétrie2); ses points invariants
forment une courbe simple et fermée passant par A, B, C que nous
appellerons cercle déterminé par ces 3 points ; la transformation E sera
appelée symétrie par rapport à ce cercle. Il résulte que 'par trois points
quelconques passe un cercle et un seul.

Deux cercles quelconques k et k1 passant par les points A et B se
croisent dans ces points; cela veut dire que le cercle k sépare les deux
arcs c[ et c2 de k' déterminés par les points A et B, et inversement k'
sépare les arcs cx et c2 de k déterminés par A et B. Autrement la courbe

cx -f cf2 séparerait les arcs c2 et c[ (pour un choix convenable des

indices); en désignant par A1 et B1 deux points de c[ et par Cf un point
de c2, différents de A et de B, le cercle passant par A1', B1, C" aurait donc
au moins 3 points communs avec l'un des cercles k et k' ; c'est une
contradiction. Nous en concluons que le faisceau des cercles passant par les points
A et B est placé comme le faisceau des grands cercles passant par deux

points opposés de la sphère.
La transformée de la symétrie Epar une transformation quelconque de

G1 est une symétrie; par conséquent, le système des cercles est changé en lui-
même par toute transformation du groupe Gf.

Des deux transformations T et Tf qui changent (^4°, JB°, C°) en
(^4, B, G) l'une, T, conserve le sens, l'autre T' T • E le change en le

sens opposé. Les transformations de Gr qui conservent le sens forment
un sous-groupe G de G1 qui est triplement transitif sur la sphère: à deux
triples quelconques (^4°, B°, C°) et {A, B, C) correspond une transformation

de G et une seule qui change (^4°, B°, C°) en (A, B, C).

2. Soit U un point de la sphère; nous l'appellerons point à Vinfini ; les

cercles passant par U seront aussi appelés droites. Par deux points
quelconques A et B, différents de U, passe une droite et une seule.

Si A et B sont deux points différents de 17, il y a deux transformations
a et E dans Gr qui échangent entre eux A et B et laissent U invariant.
Ces deux transformations sont involutives; l'une d'elles, a, conserve le

sens; l'autre, E, est une symétrie par rapport à une droite l. En désignant

par Er la symétrie par rapport à la droite V passant par A et JB, on
obtient la relation a E * E''. La transformation involutive a conservant
le sens est homéomorphe à une demi-rotation; elle admet deux points
invariants U et 0. Comme a change la droite V en elle-même, le point 0

2) Voir B. von Kerékjârtô: Vorlesungen ûber Topologie. Berlin, 1923. pag. 223
et seq.
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appartient au segment AB de la droite V. Nous appelons 0 milieu du
segment AB, et a aou demi-rotation autour des points 0, U.

Il n'y a aucune autre transformation involutive dans le groupe G qui
admet les points invariants O et U. Si a! était une autre, désignons par
B1 af (A) l'image d'un point arbitraire A obtenue par ar, et par
Ar a (Br) l'image de Bf obtenue par a. Soit T la transformation de G

qui change A en Af et laisse B1 et U invariants. La transformée de a' par
jP, c'est-à-dire la transformation a" T~xa' T conserve le sens, admet le

point invariant U et échange entre eux les points Af et Br de même que la
transformation a ; il résulte de là que a'1 est identique à cr. Par suite, le

point invariant O' T(0) de a" est identique à O. La transformation T
qui admet 3 points invariants, Bf, UetO, est l'identité; par conséquent:

A un couple quelconque C, D correspond une demi-rotation autour de ce

couple et une seule. Soit en effet T une transformation de G qui change O

enCetUenD ; la transformée de la demi-rotation aou par T, c'est-à-dire
T~xaov T oCD est la demi-rotation autour du couple O, D.

3. Les demi-rotations a sont liées entre elles par la réciprocité suivante :

Si la demi-rotation aCD échange entre eux les points C et D\ la demi-
rotation oc,Dt échange entre eux les points C et D.

La demi-rotation aCJ> change le cercle k passant par les points C, D
et G1 en lui-même, par suite Dr appartient à ce même cercle k. La
transformation t du groupe G qui change le triple de points (C, D, Cr) en
(Cr, Dr, G) transforme le cercle k en lui-même. Comme le couple C, D
sépare sur le cercle k les points G1 et D', il résulte que les points D et Df
appartiennent à un même arc G G' de k. La transformation t qui échange
entre eux les points G et G1 et transforme D en Dr change, par
conséquent, chacun des arcs de k déterminés par les points C et Gf en lui-
même et admet sur chacun un point invariant P et Q. Le carré de r admet
4 points invariants P, Q, C, Cf, donc t2=/. La transformation involutive

r échange entre eux les points G et G1 de même D et Dr. La transformée

irlaCDr ^e ccd Par T es^ involutive; ses points invariants sont G1 =r(C)
et jD/=t(D); par suite:

aCD X ~
L'expression à gauche montre que la demi-rotation oc,Dt échange entre
eux les points G et D,

4. Nous appellerons les cercles k et k! passant par les points C et D
perpendiculaires si la symétrie Sh par rapport au cercle k change le cercle
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kf en lui-même. Il y a un cercle Jer et un seul passant par les points G et D
de Je qui est perpendiculaire sur Je. Si Je! est perpendiculaire sur Je, le produit

des symétries 27fc et 27*, est la demi-rotation aCD autour des points
communs de Je et de Je1 (voir § 2) ; comme aCD= g"^ 27*, • 27fc, il résulte
que la symétrie 27*, par rapport à Je1 change le cercle Je en lui-même.

Toute transformation de Of change deux cercles perpendiculaires en deux
cercles perpendiculaires. Soient en effet Je et Je' deux cercles perpendiculaires

aux points communs G et D, et soient Je1 T(Je), Je'x T(Jef) leurs
images obtenues par la transformation T de G'. 2Jk T~xEkT, et
£h* T~x£k,T sont les symétries par rapport à Jex et Je[; de la relation

27* • 27*, or02) découle: T-xEkT • 27-127*, T= ï7-1 crci) T ; cette relation
signifie que 27*x * 27*' <V b' c'est-à-dire que le produit des symétries

par rapport à Jex et à Je[ est la demi-rotation autour des points communs
G! T(G) et Dr ^(D) des cercles Jex et &{; par suite les cercles Je± et
Je[ sont perpendiculaires.

5. Soit 0 un point quelconque différent de U, et soient Ji et Af deux
points qui se correspondent par la demi-rotation aou ; désignons par l
la droite passant par les points 0 et A ; elle passe aussi par le point A1'.

Il y a un cercle jfe et un seul perpendiculaire sur l aux points A et A'.
Nous allons démontrer que & est perpendiculaire sur toute droite passant

par le point 0. Considérons d'abord la droite V perpendiculaire sur l
passant par O. Comme la symétrie 2Jt, par rapport à V échange entre eux
les points A et A', elle transforme le cercle Je en lui-même. Il résulte de là

que la demi-rotation aou 27Z • 27^ change le cercle Je en lui-même. —
Soient ensuite lx et l[ deux droites perpendiculaires quelconques passant
par O ; désignons par Al9 A[, Bx, B[ les points communs de Je avec ces

droites. Comme la demi-rotation aou transforme chacun des cercles
Je, lly l[ en lui-même, les points Ax et A[, d'une part, et les points B1 et
Bx, d'autre part, sont échangés entre eux par aou Le produit des symétries

Uh et 27j> par rapport aux droites lx et l[ est la demi-rotation aou.

Il en résulte que la symétrie Uh échange entre eux les points Bx et B[,
elle laisse invariants les points A x et A [. Le cercle Je passant par ces
4 points est donc invariant par la symétrie 27Il? c'est-à-dire que Je est

perpendiculaire sur la droite lx.

6. Désignons par (l) le faisceau des droites passant par O, et par (Je)

le faisceau des cercles Je perpendiculaires sur le faisceau (l). Par tout
point du plan, sauf O, passe une et une seule droite l, et un et un seul
cercle Je appartenant à ces faisceaux.
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Les transformations de G qui laissent les points 0 et U invariants
forment un sous-groupe Gou qui est simplement transitif sur la sphère
privée des points 0 et U ; à deux points quelconques P et Pr différents de
0 et de U correspond donc une transformation de Gou et une seule qui
change P en Pr. Les transformations de Gou transforment le faisceau
des droites (l) en lui-même ; d'après § 4 elles changent aussi le faisceau
des cercles (k) perpendiculaires sur (l) en lui-même.

Les transformations de Gou qui changent un cercle k du faisceau (k)
en lui-même forment un sous-groupe simplement transitif sur k] c'est
donc un groupe cyclique continu3) d'ordre 1 que nous désignons par Fou.
Les transformations du faisceau (k) en lui-même engendrées par le

groupe rou forment un groupe cyclique isomorphe à Fou. Comme le
faisceau (k) est un ensemble ouvert, ce groupe cyclique doit se réduire à
l'élément identique. Par suite, toute transformation de rou change chacun
des cercles perpendiculaires sur le faisceau (l) en lui-même.

Nous appellerons les transformations contenues dans le groupe Fov
rotations autour des points 0 et U. Nous désignerons les cercles du
faisceau (k) par kou et les appellerons cercles de centres 0, U.

7. Les éléments du groupe Fou sont échangeables avec tous les éléments du

groupe Gou. Soit en effet p un élément quelconque de Gou, et q* un
élément de rou, où oc désigne le paramètre canonique du groupe cyclique
rou (0 5^ oc < 1) tel que le produit des transformations £a et q*' est
£a+a\ La transformation fjr^q^fi change tout cercle kou en lui-même,
elle appartient donc au groupe Fou, c'est-à-dire:

où ocf f(oc) est déterminé de telle façon qu'on ait /(0) 0, et par suite

/(l) 1. Posons dans la relation

oc ocx + #2 + • • • + #n > nous obtenons :

d'où
/(«l + *• + ••' + ««) /(*l) + /(«.) + • • • + /(*w) •

8) Concernant la continuité des groupes transitifs de la droite, voir : B. de Kerékjârtô :
Sur les groupes transitifs de la droite, Acta Scient. Mathem., t. X. (1940).
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En posant ocx oc2 • • • ocn 1/n, on obtient de là f(l/n) Ijn et
f(mjn) mjn pour tous entiers m,n (n =£ 0). Comme f(oc) est continu,
il résulte donc f(oc) oc pour toute valeur réelle de oc. La relation
obtenue

signifie que fi et £a sont échangeables.

8. Les transformations du groupe Gou qui changent une demi-droite
lx issue de 0 en elle-même forment un sous-groupe gou simplement
transitif sur l±; désignons par /S un paramètre canonique du groupe
9ou> e* Par f^ un élément quelconque de ce groupe.

Les transformations de gou changent toute demi-droite l[ issue de 0 en
elle-même. Soit en effet @a la transformation du groupe rou qui change la
demi-droite lx en l[, et soit fjfi un élément quelconque du groupe gou.
Comme fjfi et qa sont échangeables, il résulte de la relation fjfi — q'^fjfiq*
que la transformation fjfi change la demi-droite l[ en elle-même.

Nous appellerons les transformations du groupe gou homothéties de
centres 0, U.

Toute transformation T du groupe Oou est le produit d'un élément juP de

gou et d'un élément q* deF0U; la représentation T ju^ç* par un tel produit
est unique. Soit en effet P un point quelconque différent de 0 et de U, et
soit Pf T(P) son image obtenue par T. Désignons par Q le point
commun de la demi-droite OP avec le cercle Jcou passant par Pr. Soit
fjfi la transformation du groupe gou qui change P en Q, et soit £a la
transformation de rou qui change Q en P'. Le produit /jPq* transforme
le point P en P' et laisse les points 0 et U invariants de même que la
transformation T. Il résulte de là que T fjfiq*.

Comme les éléments de gou sont échangeables avec les éléments de

rou, il s'ensuit que le groupe Gou est commutatif.

9. Nous appellerons plan la sphère privée du point à l'infini U. Soit
Ov le sous-groupe de G formé par les transformations qui admettent le

point invariant U.

Toute transformation T du groupe Gv transforme le système des droites

en lui-même, c'est-à-dire qu'elle transforme le système des cercles passant
par le point U en lui-même.

Si les points A et B sont changés par une transformation T deGv en les

points A' et B', le milieu C du segment AB est changé en le milieu C du
segment A'Br. En effet, si acu échange A et J5, sa transformée par T,
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c'est-à-dire T-xocvT échange A'= T(A) et B' T(B) entre eux;
T~xaCXJT est la demi-rotation autour des points G1 T(G) et U, le point
C est donc le milieu du segment A'B1\

10. Si l est une droite et A un point quelconque, il y a une droite
perpendiculaire sur l et une seule passant par A. Si A appartient à l, le produit
de la demi-rotation aAU et de la symétrie Ut par rapport à l est une
symétrie 27^; son axe V est la droite perpendiculaire sur l au point A
(voir § 2). — Si A n'appartient pas à l, soit A1 Zt(A) son symétrique
par rapport à l ; la droite AA! est perpendiculaire sur l, et elle est la seule

perpendiculaire sur l passant par le point A,
Si les droites lx et l2 sont perpendiculaires sur la droite ï, elles n'ont aucun

point commun. C'est une autre forme d'énoncer le résultat que nous
venons d'obtenir.

Si les droites lx et l sont perpendiculaires et si la droite l2 passant par le

point 0 de l n'est pas perpendiculaire sur Z, les droites lx et l2 ont un point
commun. Soit en effet A un point de l2, A1 Ui(A) son symétrique par
rapport à l, et soit B le point commun de la droite AA! avec L Désignons

par G le point commun de lx avec l. Nous pouvons supposer que, sur la
droite l, les points jB et C ne sont pas séparés par 0 ; autrement, nous
employons la demi-rotation aou qui change l et l2 en elles-mêmes, et le

point JB en un point appartenant à la demi-droite OC. Par une homo-
thétie du groupe gou nous changeons le point B en C ; les demi-droites
OA et OB sont changées en elles-mêmes. A la droite AAf correspond
d'après § 4 la droite perpendiculaire sur l passant par G, c'est-à-dire la
droite lx. Au point A correspond donc un point commun des droites lx

et l2.
Des deux dernières propositions il s'ensuit que le système des droites

vérifie Vaxiome d'EUCLIDE sur les parallèles, en appelant deux droites
parallèles si elles n'ont pas de point commun.

11. Soit 0 un point différent de U et soit l une droite passant par le

point 0. Nous choisissons un point Ax sur l et formons la suite suivante
appelée chaîne OAX :

Ao O, Al9 A2 crAiU(A0),..., An oAn_xxj v^n-2)?

Désignons par A_x aov {Ax) l'image de Ax obtenue par la demi-
rotation o0Jj9 et par Ao, A_l9 A_2, les éléments de la chaîne OA_x.
Pour tout entier n, le point An est le milieu du segment An^xAn+1.

La demi-rotation aou change le point Ax en A^lf et O en lui-même;
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d'après § 9 elle change le point A2 en un point A2 tel que A_x est le milieu
du segment OA 2 ; il résulte de là que A2 est identique à A_2. Par une
induction de n à n -f 1, on vérifie de la même façon que la demi-rotation
aou change le point An en A^n, pour tout n. Similairement on conclut que
pour tous entiers n et h, le point An est le milieu du segment An_kAn+k.

Désignons par T l'homothétie du groupe gou qui change le point Ax
en A2. Comme A1 est le milieu du segment OA2, il résulte du § 9 que
A2 T(At) est le milieu du segment déterminé par 0 et T(A2), par suite
T(A2) A±. Par le même raisonnement, on vérifie que la transformation
T change le point A2n en A2n+i, pour tout entier n > 0.

Désignons par Ay% le milieu du segment OAl9 par Ay^ le milieu du
segment OAy%, et ainsi de suite. D'après le § 9 on voit que l'inverse de
la transformation T change le point Ax en AVi, celui en A%,

La suite des points Ax, A2, A±, tend vers le point U, et la suite des

points Ay2, Ay^ vers le point 0. En effet la suite AQ, Al9 A2, AAi
est monotone, elle est changée par la transformation T en la suite
Ao, A2i Aé, ...; le point limite de la suite est donc un point invariant
de T ; celui-ci doit coïncider avec le point U. La deuxième partie de
l'énoncé découle des mêmes raisons.

Nous introduisons sur la droite l la coordonnée x par la prescription
suivante. A tout point An nous attribuons la coordonnée x n
(n 0, i 1, ± 2, ; au milieu du segment AnAn+1, que nous désignons

par A{2n+1)i nous attribuons la coordonnée x —-— ; au milieu du

segment An/iA{n+1)/2, que nous désignons par Jl(2n+1)/4, nous attribuons

la coordonnée x ^— et ainsi de suite.
4

Les points Ax se succèdent sur la droite l dans le même ordre que les

nombres dyadiques x leur correspondants. De la proposition ci-dessus

nous concluons que, pour tout nombre dyadique x, la suite des points
Ax 1, Ai, converge vers le point Ax, et plus généralement: si la

suite de nombres dyadiques xx, x2, converge vers le nombre dyadique
x, la suite des points AXl, Ax%, converge vers le point Ax. Nous

pouvons donc étendre l'attribution de la coordonnée x continuement à

tous les points de la droite.

Le milieu du segment AXAX, a la coordonnée \(x + xr). Soient d'abord
xet xf des nombres dyadiques; nous les mettons sous les formes x m/2k
et x1 mf/2k et désignons par A[ le point de coordonnée l/2fc+1. Dans
la chaîne OA[, les points Ax et Ax, sont respectivement le 2m-ième et le
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2m'-ième élément; le milieu du segment Ar2mAr2m, AXAX, est donc
l'élément d'indice (m -\- mf) de cette chaîne dont la coordonnée est
(m + mr)/2k+1 -|(# + xr). De la continuité de la coordonnée on
obtient la même proposition pour des nombres réels x et xr quelconques.

12. Nous introduisons un système de coordonnées rectangulaires (x, y)
dans le plan. Soient l et V deux droites perpendiculaires passant par le
point 0 ; nous les appelons axes. Nous définissons la coordonnée x sur la
droite l par la méthode décrite dans le § 11. Soit &0[7un cercle quelconque
de centres 0, U; désignons par A, Ar et JB, B1 ses points de rencontre
avec les droites l et V. Si x a est la coordonnée du point A, celle de Ar
est x — a, car le point 0 de coordonnée x 0 est le milieu du segment
AA1 ; nous attribuons aux points B et Br de V les coordonnées y a et
y __ — a, de telle façon qu'à l'une des demi-droites de V déterminées par
le point 0 correspondent les valeurs positives, à l'autre les valeurs
négatives de la coordonnée y.

Si P est un point quelconque du plan, menons par P les perpendiculaires

sur l et sur V, et désignons par Ax et par By leurs points de rencontre
avec ces droites. Soient x et y les coordonnées respectives des points Ax
et By. Nous attribuons au point P le couple des nombres réels (x, y)
comme ses coordonnées.

Il résulte de la définition immédiatement que les droites parallèles aux
axes sont représentées par les équations y const. et x const.

13. Avec les coordonnées (x, y) les symétries Zt et Xv par rapport aux
axes s'expriment par les formules suivantes :

Ul:xr=x, y' — y; Xv; xr — x, y1 y.

En effet, la symétrie £t change tout point de la droite l en lui-même et
toute perpendiculaire sur Z, c'est-à-dire toute droite x const. en elle-

même; par conséquent: xr x. — Si deux points P et P' de la droite V

se correspondent par la symétrie Zz, le point 0 est le milieu du segment
PP', par suite les coordonnées de P et de P1 ont les valeurs (0, y) et
(0, — y). Les perpendiculaires sur V passant par P et par P1 se

correspondent par Ut, d'où y1 — y. — Par le même raisonnement on déduit
l'expression de 2V.

Comme les droites y c et x c! sont perpendiculaires d'après § 10,

on obtient par le même raisonnement qu.e la symétrie par rapport à la
droite y c s'exprime par les formules :
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x'=xt y'=2c — y,
et la symétrie par rapport à la droite x c' par les formules:

xr=2cr— x, yf y

Soient (a^, yx) et (x2, y2) deux points quelconques. Le produit des

symétries par rapport aux droites y
* 7" et a;= * 1~ 2 s'exprime

par la formule:
xr (xx + x2) — x y' (yx + y2) — y ;

d'après § 2 ce produit est la demi-rotation autour des points U et
i_J_IE—1

9
"T 1. Comme cette demi-rotation échange entre eux les

points (a?!, yj et (^2,2/2)> d'après les formules que nous venons d'établir,

(OT
I 'j* 7/ I ni \

du segment limité par les points (xl9 yx) et (x2, y2).

14, Pour déterminer l'expression des transformations du groupe Ov
avec les coordonnées (x, y), nous rappelons que, d'après § 9, toute
transformation de Gv change le milieu d'un segment quelconque en le milieu
du segment correspondant. Soit

x1 u{x, y), y' v(x, y)

l'expression d'une transformation de Gv. Les fonctions u(x, y), v(x, y)
satisfont donc aux équations fonctionnelles suivantes :

yi)\ (1')

II est connu que les seules solutions continues de ces équations sont
les fonctions linéaires entières4). Pour le montrer retranchons w(0, 0) de

l'équation (1) à gauche et à droite, et posons

ur{x> y) u(x> y) —

nous obtenons ainsi l'équation de même forme:

4) Voir W.Sierpinski: Sur les fonctions convexes mesurables, Fundamenta
Mathematicae, t. 1. (1920), p. 125—129 ; en particulier, Note x) de la page 129.
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«' i^±^ Vl±*L\ -^[u'ix^yj + u'ix^yj] avec: «'(0,0) 0.

(2)

En remplaçant xx et yx par 2x et par 2y, et en posant x2 y2 0,
nous obtenons: '[ (3)

En remplaçant dans (2) xl9 yl9 x29 y2 par 2xl92yl92x292y2 nous
obtenons de (2) et (3) l'équation suivante:

ur(x1 + x29 yx + y2) u'{zl9 yx) + uf(x2, y2) (4)

En posant x2 yx 0 et xx x, î/2 ^, nous aurons :

^(a;, y) ^'(a;, 0) + u'(0, y) (5)

En posant dans (4) yx y2 0, nous obtenons

w'(*i + %2, 0) ^'(a;!, 0) + u'(x29 0)

d'où nous concluons, vu la continuité de la fonction u'(x, 0) de x :

u'(x, 0) ax (6)
Similairement

"'(0,2/i + yi) u>'(0, yi) + u'(0, y2)

d'où
uf(0,y) by. (7)

En substituant les expressions obtenues (6) et (7) dans l'équation (5),
nous avons:

u'(x, y) ax + by

Désignons par c la constante w(0, 0), nous obtenons finalement:

u(x, y) ax + by + c.

Similairement, nous obtenons l'expression:

v(x9y) a'x + b'y + cf.
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Notre résultat préliminaire est que toute transformation du groupe Ov
s'exprime par une transformation linéaire entière des coordonnées (x, y)
de la forme :

x' ax + by + c, y' a'x + b'y + c'. (8)

15. Pour les transformations du groupe Gou, les constantes c et c! dans
les équations (8) ont la valeur 0, d'où:

xf ax + by, y' a'x + b'y (9)

Considérons la rotation q* de période 4 contenue dans le groupe Fou.
Elle change le point de coordonnées (1, 0) en (0, 1) et celui-ci en (— 1,0).
En remplaçant ces valeurs de coordonnées dans les équations (9), nous
obtenons les valeurs suivantes des coefficients: a — b' 0, — b af=l.
La rotation g* de période 4 s'exprime donc par les formules

x' — y, y'-=x. (10)

Le groupe Oou est commutatif (§7), par suite les transformations de

Gou représentées par les formules (9) et (10) sont échangeables; il résulte
de là

— a y + bx —a1 x — b!y

par conséquent a 6/et6 — ar. Par le même raisonnement on montre
que ces relations sont aussi valables entre les coefficients des équations (8).
Nous avons ainsi obtenu le résultat suivant :

Toute transformation du groupe Ov s'exprime par les formules

xf ax -f- by + c yr — —bx + ay + of. (11)

16. Introduisons dans le plan la coordonnée complexe

z x + iy
et posons dans les formules (11)

a — ib A c + icr B

nous obtenons l'expression suivante des transformations du groupe Ov :

z' Az + B
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Le groupe G€ ainsi que le groupe des transformations z1 Az + B
sont doublement transitifs dans le plan; c'est-à-dire qu'à deux couples
de points quelconques du plan (P, Q) et (P\Qf) correspond une et
une seule transformation de chacun de ces groupes transformant P en P'
et Q en Q'. Il résulte de là que, pour toutes valeurs complexes A (^ 0)
et B, la transformation z1 Az -\- B appartient au groupe Gv.

Le groupe Gv est donc identique au groupe des transformations linéaires
entières z! Az + B, où A(^ 0) et B sont des nombres complexes
quelconques.

17. Pour approcher l'expression des transformations du groupe G avec
la coordonnée z, nous établirons les relations de la coordonnée z avec les

paramètres canoniques des sous-groupes gou et Fou de Gou (voir § 6 et 8).

L'expression des transformations du groupe Gou avec la coordonnée

complexe z est: zf Az ; posons A reiq> (r > 0). Le sous-groupe gou
des homothéties de centres 0, U correspond à (p 0. Les transformations
de la demi-droite y 0, x > 0 engendrées par les transformations de

9ou s'expriment donc par la formule x! rx, ou, ce qui est le même, par

log x1 log x + log r

Il résulte de là que logr est un paramètre canonique du groupe gou;
il est uniquement déterminé par la propriété de prendre la valeur 0 au
point Ax et la valeur log 2 au point A2 aAi V(O)

Le groupe Fou des rotations autour des points O et U correspond à

r l, OfJ g? <2n. y est un paramètre canonique dans le groupe rou;
il est lié au paramètre <%, introduit dans le § 7, par la relation q> ± 2tioc

De ces observations nous tirons la conclusion suivante :

Soit p le paramètre canonique du groupe gou déterminé de telle façon
qu'à un point Ax correspond la valeur p 0, et au point A2 aAiU (O)

la valeur log 2. Soit oc (0 ^ oc < 1) le paramètre canonique du groupe
cyclique rou. En désignant par fjfi et ga les éléments des sous-groupes
gou et rou de Gou, tout élément du groupe Gov peut être exprimé dans

la forme /jPq* (voir § 8). Nous introduisons la coordonnée complexe z en
attribuant au point Ax la valeur z 1, et à tout point P fjfiQot(A1)

la valeur z eP+27ri(X. Avec la coordonnée z déterminée de cette façon,
les transformations du groupe Gou s'expriment par la formule z' Az, et

celles du groupe Gv par la formule z1 Az + B.
Pour exprimer les transformations du groupe Go, laissant invariant

le point O, échangeons les rôles des points O et U dans l'énoncé que nous
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venons de formuler. Il faut donc introduire un paramètre canonique pr
dans le groupe gou tel qu'au point Ax correspond la valeur P'=0, et au
point A2 oAi0(U) la valeur fir log 2. En vertu du théorème de
réciprocité démontré dans le § 3, il résulte de la relation A2 <rAl0(U) que
oA'v(0) Al5 c'est-à-dire que A2 est le milieu du segment 0Aly donc

A2=AVjt. Le paramètre fi introduit ci-dessus prend au point Ay% la
valeur — log 2. Par conséquent f}' —/?. Pour obtenir la proposition
relative au groupe Go analogue à celle obtenue par rapport au groupe GUf
il faut donc remplacer le paramètre p du groupe gou par —/?; en
remplaçant en même temps oc par —oc et, par suite, z par 1/z, nous obtenons
le résultat suivant:

Les transformations du groupe Go laissant le point 0 invariant s'expriment
avec la coordonnée z par la formule :

—r=Af \- Bf c'est-à-dire: zr „, Z,—tt- •

18. Désignons par Q le point de coordonnée z q, et par 0Q le sous-

groupe de G formé par les transformations laissant Q invariant. La
transformation

appartenant au groupe Gv, change le point O en Q. Le transformé du

groupe Go par T est le groupe GQ. Il résulte de là que les transformations
contenues dans le groupe GQ s'expriment par la formule:

3'= +q3= B'(z-q) + A> +q •

D'après un théorème de M. Brouwer5) toute transformation du groupe
G admet au moins un point invariant; par suite toute transformation du

groupe G peut être exprimée par une transformation linéaire de la
coordonnée z.

Sans employer le théorème de M. Brouwer, on peut aboutir au même
résultat par le raisonnement suivant. Soit T une transformation
quelconque de G, et soit Q un point différent de U et de T-1^). Il y a au
moins une transformation Tx dans le groupe Gv qui change Q en T(Q);
la transformation T2= T- T^"1 admet le point invariant Q, elle appartient
donc au groupe GQ. La transformation T T2TX est le produit de deux

5) Voir p. ex. B. von Kerékjârtô : Vorlesungen ûber Topologie, p. 193.

01
6 Commentarii Mathematicl Helvetici O1



transformations linéaires T2 et Tl9 par suite T s'exprime aussi par une
transformation linéaire de z.

Comme le groupe G ainsi que le groupe des transformations linéaires

zr — —— gont triplement transitifs sur la sphère, il résulte que,
\j Z —j~ XJ

pour toutes valeurs complexes A, B, C, D, telles que AD— BC ^ 0,

la transformation z' —^ =- appartient à G. Nous avons donc dé-
Cz-\-D rr

montré le théorème suivant:

Le groupe G est identique au groupe homographique

+ B
zf

Cz + D

où A, B,C, D désignent des nombres complexes quelconques tels que
AD — BC #0.

Le groupe G! peut être obtenu en multipliant le groupe G par une
symétrie quelconque 2Jdu groupe G! (voir § 1). La symétrie par rapport
à Taxe x s'exprime par la formule zr z (voir § 13). Par conséquent,
toute transformation du groupe G1 qui n'appartient pas à G est une
antihomographie :

Az + B
Z ~ Cz + D '

En résumé, G' est le groupe des homographies et des antihomographies.

(Reçu le 10 juillet 1940.)
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