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Sur le groupe des homographies et des
antihomographies d'une variable complexe

Par B. de KEREKJARTO, Budapest A M. Elie Cartan
en témoignage de haute estime.

Dans le présent mémoire, je démontrerai le théoréme suivant concer-
nant la caractérisation topologique du groupe des homographies et des
antihomographies d’une variable complexe.

Théordme. Soit G' un groupe de transformations topologiques de la
surface d’une sphére en elle-méme tel qu’a deux triples quelconques de points
(4°, B°, C°) et (A, B, C) correspondent deux et seulement deux transforma-
tions de G’ qui changent le triple (A°, B°, C°) en (A, B, C) et qui varient
continuement avec le triple (A, B, C). Le groupe G’ est homéomorphe au
groupe des homographies et des antithomographies d’une variable complexe.

Dans un mémoire intitulé ,,Sur le caractére topologique du groupe homo-
graphique de la sphére** (& paraitre dans le Journal de Mathématiques pures
et appliquées) j’ai démontré le théoréme suivant:

Théordme. Si G est un groupe de transformations topologiques d’une
surface en elle-méme tel qu’a deux triples quelconques de points (A°, B°, C°)
et (4, B, C) correspond une transformation de G et une seule qui change le
triple (A°, B°, C°) en (A, B, C) et qui varie continuement avec le triple
(4, B, C), le groupe G est homéomorphe au groupe des homographies d’une
variable complexe.

De ce dernier théoréme on peut déduire facilement le premier; mais la
démonstration du théoréme sur le groupe homographique utilise des
moyens assez difficiles tels que I'’énumération des groupes continus
connexes d’ordre 2. Vu I'importance du groupe G’ des homographies et
des antihomographies dans la géométrie projective de la droite com-
plexel), il est intéressant d’observer que la caractérisation directe du
groupe @’ peut étre démontrée, sans supposer la continuité du groupe,
par des méthodes plus faciles que nous allons développer.

1. Soient 7' et T" les deux transformations du groupe G’ qui changent
le triple (4°, B°, C°) en (4, B, C). La transformation 717" = 2 laisse
les points 4, B, C invariants de méme que l'identité I et la transforma-
tion 22 de G’; il y a parmi ces trois transformations deux qui sont iden-

1) Voir & ce sujet 'ceuvre de Elie Cartan: Legons sur la Géométrie Projec-
tive Complexe. Paris, 1931.
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tiques, d’out 22 = I. La transformation involutive 2 admettant 3 points
invariants est homéomorphe & une symétrie?); ses points invariants
forment une courbe simple et fermée passant par 4, B, C que nous
appellerons cercle déterminé par ces 3 points; la transformation J' sera
appelée symétrie par rapport a ce cercle. Il résulte que par trois points
quelconques passe un cercle et un seul.

Deux cercles quelconques k et k’ passant par les points A et B se
croisent dans ces points; cela veut dire que le cercle k sépare les deux
arcs c; et ¢, de k' déterminés par les points 4 et B, et inversement k'
sépare les arcs c, et ¢, de k déterminés par 4 et B. Autrement la courbe
¢, + c, séparerait les arcs c, et ¢; (pour un choix convenable des in-
dices); en désignant par A’ et B’ deux points de cj et par ¢’ un point
de ¢,, différents de A et de B, le cercle passant par A4’, B’, ¢/ aurait donc
au moins 3 points communs avec 1’'un des cercles k et £’; c’est une contra-
diction. Nous en concluons que le faisceau des cercles passant par les points
A et B est placé comme le faisceau des grands cercles passant par deux
points opposés de la sphére.

La transformée de la symétrie 2 par une transformation quelconque de
G’ est une symétrie; par conséquent, le systéme des cercles est changé en lui-
méme par toute transformation du groupe G’.

Des deux transformations 7' et 7 qui changent (4°, B° C°) en
(4, B, O) 'une, T, conserve le sens, autre 77 = T - J'le change en le
sens opposé. Les transformations de G’ qui conservent le sens forment
un sous-groupe G de G’ qui est triplement transitif sur la sphére: & deux
triples quelconques (4°, B°, C°) et (4, B, C) correspond une transforma-
tion de @ et une seule qui change (4°, B°, C°) en (4, B, C).

R. Soit U un point de la sphére; nous I'appellerons point & Uinfini ; les
cercles passant par U seront aussi appelés droites. Par deux points quel-
conques A et B, différents de U, passe une droite et une seule.

Si A et B sont deux points différents de U, il y a deux transformations
o et X' dans G’ qui échangent entre eux A4 et B et laissent U invariant.
Ces deux transformations sont involutives; 'une d’elles, o, conserve le
sens; 'autre, 2, est une symétrie par rapport & une droite [. En désignant
par 2" la symétrie par rapport & la droite !’ passant par 4 et B, on ob-
tient la relation ¢ = J - 3’. La transformation involutive ¢ conservant
le sens est homéomorphe & une demi-rotation; elle admet deux points
invariants U et O. Comme ¢ change la droite I’ en elle-méme, le point O

%) Voir B. von Kerékydrté: Vorlesungen iiber Topologie. Berlin, 1923. pag. 223
et seq.
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appartient au segment 4B de la droite I’. Nous appelons O milieu du
segment AB, et 0 = o,y demi-rotation autour des points O, U.

Il n’y a aucune autre transformation involutive dans le groupe @ qui
admet les points invariants O et U. Si ¢/ était une autre, désignons par
B’ = ¢’ (A) Yimage d’un point arbitraire A obtenue par o/, et par
A’ = o (B’) 'image de B’ obtenue par o. Soit 7' la transformation de G
qui change 4 en 4’ et laisse B’ et U invariants. La transformée de ¢’ par
T, c’est-a-dire la transformation ¢” = T-1¢’ T conserve le sens, admet le
point invariant U et échange entre eux les points A’ et B’ de méme que la
transformation ¢ ; il résulte de 13 que ¢” est identique & . Par suite, le
point invariant O’ = T (O) de o” est identique & O. La transformation T
qui admet 3 points invariants, B’, U et O, est I'identité; par conséquent :
c=0¢"=T1%"T=07o.

A un couple quelconque C, D correspond une demi-rotation autour de ce
couple et une seule. Soit en effet 7' une transformation de G qui change O
en C et U en D la transformée de la demi-rotation o, par 7', c’est-a-dire
T'ooy T = o¢p est la demi-rotation autour du couple C, D.

3. Les demi-rotations o sont liées entre elles par la reciprocité suivante:

Si la demi-rotation o, échange entre eux les points C' et D', la demsi-
rotation o . 5 échange entre eux les points C et D.

La demi-rotation ¢,;, change le cercle ¥ passant par les points C, D
et ¢’ en lui-méme, par suite D’ appartient & ce méme cercle k. La trans-
formation 7 du groupe G' qui change le triple de points (C, D, C’) en
(C', D', C) transforme le cercle k£ en lui-méme. Comme le couple C, D
sépare sur le cercle k les points C’ et D’, il résulte que les points D et D’
appartiennent & un méme arc CC’ de k. La transformation = qui échange
entre eux les points C' et ¢/ et transforme D en D’ change, par consé-
quent, chacun des arcs de k déterminés par les points C' et C’ en lui-
méme et admet sur chacun un point invariant P et Q. Le carré de v admet
4 points invariants P, @, C, C’, donc 72=1. La transformation ¢nvolutive
7 échange entre eux les points C' et C’ de méme D et D’. La transformée
T l0yp T de ogp par T est involutive; ses points invariants sont ¢’ =7(C)
et D/ = 7(D); par suite: )

Tl00pT = Ogrp+ -
L’expression & gauche montre que la demi-rotation 0., échange entre
eux les points C et D.

4. Nous appellerons les cercles k et k’ passant par les points C et D
perpendiculaires si la symétrie 2, par rapport au cercle k change le cercle
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k" en lui-méme. Il y a un cercle &’ et un seul passant par les points C et D
de k qui est perpendiculaire sur k. Si &’ est perpendiculaire sur %, le pro-
duit des symétries 2 et X, est la demi-rotation o, autour des points
communs de k et de k&’ (voir § 2) ; comme oyp= 0gp = 2y * Xy, il résulte
que la symétrie X, par rapport & k' change le cercle £ en lui-méme.

Toute transformation de Q' change deux cercles perpendiculaires en deux
cercles perpendiculaires. Soient en effet k et k' deux cercles perpendicu-
laires aux points communs C et D, et soient k, = T (k), kj = T (k') leurs
images obtenues par la transformation 7' de G¢'. 2 = T2, T, et
2 § = T-1 .. T sont les symétries par rapport & k, et ki; de la relation

2 2= ayp découle: T2 T -T2, T= T-1g,,T; cette relation
signifie que 2, - X ¥ = O¢r pr c’est-a-dire que le produit des symétries

par rapport & k, et & kj est la demi-rotation autour des points communs
C’ = T(C) et D' = T (D) des cercles k, et k;; par suite les cercles k, et
k; sont perpendiculaires.

5. Soit O un point quelconque différent de U, et soient 4 et A’ deux
points qui se correspondent par la demi-rotation o,y ; désignons par I
la droite passant par les points O et 4 ; elle passe aussi par le point 4’.
11 y a un cercle k et un seul perpendiculaire sur ! aux points 4 et 4’.
Nous allons démontrer que k est perpendiculaire sur toute droite passant
par le point O. Considérons d’abord la droite I’ perpendiculaire sur [
passant par 0. Comme la symétrie 2, par rapport & I’ échange entre eux
les points 4 et A’, elle transforme le cercle &k en lui-méme. Il résulte de 13
que la demi-rotation ooy = 2, - 2, change le cercle k£ en lui-méme. —
Soient ensuite I, et I deux droites perpendiculaires quelconques passant
par O ; désignons par 4,, A], B,, Bj les points communs de k avec ces
droites. Comme la demi-rotation o,; transforme chacun des cercles
k,1,,1 en lui-méme, les points 4, et A;, d'une part, et les points B, et
B,, d’autre part, sont échangés entre eux par ¢,y . Le produit des symsé-
tries 2, et X ; Par rapport aux droites I, et I{ est la demi-rotation ¢,y.

Il en résulte que la symétrie 2; échange entre eux les points B, et B,
elle laisse invariants les points A4, et A]. Le cercle k passant par ces
4 points est donc invariant par la symétrie 2, , c’est-d-dire que & est
perpendiculaire sur la droite [, .

6. Désignons par (I) le faisceau des droites passant par O, et par (k)
le faisceau des cercles k& perpendiculaires sur le faisceau (I). Par tout
point du plan, sauf O, passe une et une seule droite /, et un et un seul
cercle k appartenant a ces faisceaux.
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Les transformations de G qui laissent les points O et U invariants
forment un sous-groupe G,y qui est simplement tramsitif sur la sphére
privée des points O et U ; & deux points quelconques P et P’ différents de
O et de U correspond donc une transformation de G, et une seule qui
change P en P’. Les transformations de G, transforment le faisceau
des droites (I) en lui-méme; d’apreés § 4 elles changent aussi le faisceau
des cercles (k) perpendiculaires sur (I) en lui-méme.

Les transformations de G,; qui changent un cercle ¥ du faisceau (k)
en lui-méme forment un sous-groupe simplement transitif sur k; c’est
donc un groupe cyclique continu ®) d’ordre 1 que nous désignons par I'y .
Les transformations du faisceau (k) en lui-méme engendrées par le
groupe Iy, forment un groupe cyclique isomorphe & I',;. Comme le
faisceau (k) est un ensemble ouvert, ce groupe cyclique doit se réduire &
I'élément identique. Par suite, foute transformation de I'yy; change chacun
des cercles perpendiculaires sur le faisceau (1) en lut-méme.

Nous appellerons les transformations contenues dans le groupe Iy,
rotations autour des points O et U. Nous désignerons les cercles du
faisceau (k) par ko, et les appellerons cercles de centres O, U.

V. Les éléments du groupe Iy sont échangeables avec tous les éléments du
groupe G,y. Soit en effet u un élément quelconque de Gy, et p* un
élément de I',;, ou « désigne le parameétre canonique du groupe cyclique
TI'op (0 <x < 1) tel que le produit des transformations p* et o*’ est
0*+®’. La transformation u~1p*u change tout cercle k,; en lui-méme,
elle appartient donc au groupe [I',y, c’est-a-dire:

pleu = o

ou o’ = f(x) est déterminé de telle fagon qu’on ait f(0) = 0, et par suite
f(1) = 1. Posons dans la relation

Qf(a) - [l_IQa,u
& =&, + &y 4+ +++ + «,, nous obtenons:
cer - - - . + eee
Qf(a1+aa+ +°‘”)=,u 19"‘1,u - u lQaz,u e o 19“"/‘—@“&1) Foeg) + 2o+ flay)
d’ol

f(a1+“2+°"+o‘n)=f((x1)+f(“2)+"'+]‘(“'ﬂ)'

3) Concernant la continuité des groupes transitifs de la droite, voir: B.de Kerékjdrts :
Sur les groupes transitifs de la droite, Acta Scient. Mathem., t. X. (1940).
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En posant o«; =y = .- = «, = 1/n, on obtient de 1& f(1/n) = 1/n et
f(m/n) = m/n pour tous entiers m,n (n % 0). Comme f(x) est continu,
il résulte donc f(x) = « pour toute valeur réelle de x. La relation
obtenue

o = wlep

signifie que u et o™ sont échangeables.

8. Les transformations du groupe G,; qui changent une demi-droite
l, issue de O en elle-méme forment un sous-groupe g,, simplement
transitif sur [;; désignons par g un parametre canonique du groupe
Jou,> €t par uf un élément quelconque de ce groupe.

Les transformations de g,y changent toute demi-droite 1] issue de O en
elle-méme. Soit en effet p* la transformation du groupe I',; qui change la
demi-droite I, en I, et soit uf un élément quelconque du groupe g,y-
Comme uf et o* sont échangeables, il résulte de la relation uf = o= ub o>
que la transformation uf change la demi-droite I; en elle-méme.

Nous appellerons les transformations du groupe g,; homothéties de
centres O, U.

Toute transformation T du groupe Gy est le produit d’'un élément uf de
Jop e d’'un élément o* de I'yy; la représentation T = uP o par un tel produst
est unique. Soit en effet P un point quelconque différent de O et de U, et
soit P’ = T (P) son image obtenue par 7. Désignons par ¢ le point
commun de la demi-droite OP. avec le cercle k,; passant par P’. Soit
w8 la transformation du groupe g,y qui change P en @, et soit o la
transformation de I'y; qui change @ en P’. Le produit ufp* transforme
le point P en P’ et laisse les points O et U invariants de méme que la
transformation 7'. Il résulte de 1& que 7' = uf o

Comme les éléments de g,; sont échangeables avec les éléments de
I'yyp, il s’ensuit que le groupe Gy est commutatif.

9. Nous appellerons plarn la sphére privée du point & Iinfini U. Soit
Gy le sous-groupe de G formé par les transformations qui admettent le
point invariant U.

Toute transformation T du groupe Gy transforme le systéme des droites
en lui-méme, c’est-a-dire qu’elle transforme le systéme des cercles passant
par le point U en lui-méme.

Si les points A et B sont changés par une transformation T de Gy en les
points A’ et B’, le miliew C du segment A B est changé en le miliew C' du
segment A'B’. En effet, si ooy échange 4 et B, sa transformée par T,
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c’est-d-dire T-10,,;T échange A’ = T (A) et B’ = T(B) entre eux;
T-'64yT est la demi-rotation autour des points ¢’ = T'(C) et U, le point
C’ est donc le milieu du segment 4’ B’.

10. Sv I est une droite et A un point quelconque, il y a une droite perpen-
diculaire sur | et une seule passant par A. Si A appartient & [, le produit
de la demi-rotation ¢, et de la symétrie 2, par rapport & I est une
symétrie 2, ; son axe I’ est la droite perpendiculaire sur ! au point 4
(voir § 2). — Si A n’appartient pas & [, soit 4’ = 2;(4) son symétrique
par rapport a I, la droite A4’ est perpendiculaire sur !, et elle est la seule
perpendiculaire sur ! passant par le point 4.

St les droites 1, et 1, sont perpendiculaires sur la droite 1, elles n’ont aucun
pornt commun. C’est une autre forme d’énoncer le résultat que nous
venons d’obtenir.

Si les droites 1, et | sont perpendiculaires et si la droite 1, passant par le
point O de | n’est pas perpendiculaire sur 1, les droites 1, et l, ont un point
commun. Soit en effet 4 un point de l,, 4’ = 2;(A4) son symétrique par
rapport & I, et soit B le point commun de la droite A4’ avec I. Désignons
par C le point commun de I, avec I. Nous pouvons supposer que, sur la
droite I, les points B et C ne sont pas séparés par O ; autrement, nous
employons la demi-rotation ¢,; qui change I et I, en elles-mémes, et le
point B en un point appartenant & la demi-droite OC. Par une homo-
thétie du groupe g,y nous changeons le point B en C; les demi-droites
OA et OB sont changées en elles-mémes. A la droite A4’ correspond
d’aprés § 4 la droite perpendiculaire sur ! passant par C, c’est-a-dire la
droite /,. Au point A correspond donc un point commun des droites [,
et 1,.

Des deux derniéres propositions il s’ensuit que le systéme des droites
vérifie Uaxiome A’ BEUCLIDE sur les paralléles, en appelant deux droites
paralléles si elles n’ont pas de point commun.

11. Soit O un point différent de U et soit [ une droite passant par le
point O. Nous choisissons un point 4, sur ! et formons la suite suivante
appelée chaine OA, :

Ao - 0, A‘l’ Az = O'AIU(AO), csay A” = GAn—IU (A,n__z), cee o
Désignons par 4_; = o,y (4,) 'image de A, obtenue par la demi-
rotation oy, et par 4,, 4_,, 4_,, ... les éléments de la chaine O4_,.

Pour tout entier n, le point A, est le miliew du segment A, A, ..
La demi-rotation o, change le point 4, en 4_,, et O en lui-méme;
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d’aprés § 9 elle change le point 4, en un point 4, tel que 4_; est le milieu
du segment OA;; il résulte de 13 que A, est identique &4 A_,. Par une
induction de » & n 4 1, on vérifie de la méme fagon que la demi-rotation
o,y change le point 4, en 4_,, pour tout »n. Similairement on conclut que
pour tous entiers n et k, le point A, est le miliew du segment A, _, A, ..

Désignons par 7' ’homothétie du groupe g, qui change le point 4,
en 4,. Comme 4, est le milieu du segment O A4,, il résulte du § 9 que
A, = T(A,) est le milieu du segment déterminé par O et T'(4,), par suite
T(4,) = A,. Par le méme raisonnement, on vérifie que la transformation
T change le point A,» en Agn+1, pour tout entier » > 0.

Désignons par 4,, le milieu du segment O4,, par 4, le milieu du
segment 04, , et ainsi de suite. D’aprés le § 9 on voit que l'inverse de
la transformation T' change le point 4, en 4,,, celuien 4,, ... .

La sutte des points A,, Ay, A, ... tend vers le point U, et la suite des
points Ay, Ay, ... vers le point O. En effet la suite 4,, 4,, 4,, 44, ..
est monotone, elle est changée par la transformation 7' en la suite
Ay, A, A,, ...; le point limite de la suite est donc un point invariant
de 7T, celui-ci doit coincider avec le point U. La deuxiéme partie de
I’énoncé découle des mémes raisons.

Nous introduisons sur la droite I la coordonnée x par la prescription
suivante. A tout point A4, nous attribuons la coordonnée = = n
(n =0, +1, +2,...); au milieu du segment 4,4, _,, que nous désignons

. . 2n +1 -
par A (;,;q), Dous attribuons la coordonnée x = -——2_1—:— ; au milieu du
segment A, A (,.1),, que nous désignons par 4, , nous attribuons
i 2n +1 . . .
la coordonnée x = 4+ , et ainsi de suite.

Les points A, se succédent sur la droite ! dans le méme ordre que les
nombres dyadiques x leur correspondants. De la proposition ci-dessus
nous concluons que, pour tout nombre dyadique z, la suite des points

A4, 3 4,. }» -+ converge vers le point 4,, et plus généralement: si la
suite de nombres dyadiques z,, z,, ... converge vers le nombre dyadique
x, la suite des points 4, ,4, ,... converge vers le point A4,. Nous

pouvons donc étendre 1’attribution de la coordonnée x continuement a
tous les points de la droite.

Le miliew du segment A A,/ a la coordonnée % (x + x'). Soient d’abord
z et 2’ des nombres dyadiques; nous les mettons sous les formes & =m/2*
et ' = m'/2% et désignons par A4; le point de coordonnée 1/2*+. Dans
la chaine OA], les points A, et A, sont respectivement le 2m-iéme et le
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2m’-iéme élément; le milieu du segment A4;,4;,. = A, 4, est donc
Pélément d’indice (m + m’) de cette chaine dont la coordonnée est
(m + m’)[2k+t = L(x + 2'). De la continuité de la coordonnée on ob-
tient la méme proposition pour des nombres réels x et ' quelconques.

12. Nous introduisons un systéme de coordonnées rectangulaires (x, y)
dans le plan. Soient I et I’ deux droites perpendiculaires passant par le
point O ; nous les appelons axes. Nous définissons la coordonnée x sur la
droite ! par la méthode décrite dans le § 11. Soit k,,un cercle quelconque
de centres O, U ; désignons par A, A’ et B, B’ ses points de rencontre
avec les droites I et I’. Si x = a est la coordonnée du point 4, celle de 4’

est x = — a, car le point O de coordonnée x = 0 est le milieu du segment
AA’ ; nous attribuons aux points B et B’ de I’ les coordonnées y = a et
y = — a, de telle fagon qu’a I’'une des demi-droites de I’ déterminées par

le point O correspondent les valeurs positives, & l'autre les valeurs
négatives de la coordonnée y.

Si P est un point quelconque du plan, menons par P les perpendicu-
laires sur [ et sur I’, et désignons par 4, et par B, leurs points de rencontre
avec ces droites. Soient z et y les coordonnées respectives des points 4,
et B,. Nous attribuons au point P le couple des nombres réels (x, y)
comme ses coordonnées.

11 résulte de la définition immédiatement que les droites paralléles aux
axes sont représentées par les équations y = const. et x = const.

13. Avec les coordonnées (x, ) les symétries 2; et 2, par rapport aux
axes s’expriment par les formules suivantes:

2pr =2, yYy=—y; 2nz'=—z y =y.

En effet, la symétrie 2, change tout point de la droite I en lui-méme et
toute perpendiculaire sur I, c’est-a-dire toute droite x = const. en elle-
méme; par conséquent: 2’ = x. — Si deux points P et P’ de la droite I’
se correspondent par la symétrie 2, le point O est le milieu du segment
PP’, par suite les coordonnées de P et de P’ ont les valeurs (0, y) et
(0,—v). Les perpendiculaires sur I’ passant par P et par P’ se corres-
pondent par 2, d’ott ¥’ = — y. — Par le méme raisonnement on déduit
Pexpression de 2.

Comme les droites ¥y = ¢ et * = ¢’ sont perpendiculaires d’apres § 10,
on obtient par le méme raisonnement que la symétrie par rapport & la
droite y = ¢ s’exprime par les formules:
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' =z, y=2c—y,
et la symétrie par rapport & la droite x = ¢’ par les formules:
' =2¢"—2z, y =uy.
Soient (z,, y,) et (x,, y,) deux points quelconques. Le produit des

y1+yzetx= x, +x

symétries par rapport aux droites y = 5 58 exprime

par la formule:
= (v, + ) —2, Y =U+Y)—y;

d’apres § 2 ce produit est la demi-rotation autour des points U et
T+ %2 Y+ Yo
2 ’ 2
points (x,, y,) et (x,, y¥,), d’aprés les formules que nous venons d’établir,
T+ %, Yt Yo
2 ’ 2
du segment limité par les points (x,, y,) et (Zs, Ys).

. Comme cette demi-rotation échange entre eux les

il résulte que le point de coordonnées ( ) est le milieu

14. Pour déterminer l’expression des transformations du groupe G,
avec les coordonnées (x, y), nous rappelons que, d’aprés § 9, toute trans-
formation de G'; change le milieu d’'un segment quelconque en le milieu
du segment correspondant. Soit

x’:u(x, ?/), y,—_—v(x’ y)

Pexpression d’'une transformation de G';;. Les fonctions u(z, y), v(z, y)
satisfont donc aux équations fonctionnelles suivantes:

1 2 1
T = B CICRPARCNES) PG
1
’U(xl—gx2 ’ yl_lz—yz)z—é' [’v(xn Y1) + v (2, yz)] . (1)

Il est connu que les seules solutions continues de ces équations sont
les fonctions linéaires entiéres?). Pour le montrer retranchons « (0, 0) de
I’équation (1) & gauche et & droite, et posons

u/(x, y) = u(z, y) —u(0, 0) ;

nous obtenons ainsi ’équation de méme forme:

4) Voir W. Sierpin'ski: Sur les fonctions convexes mesurables, Fundamenta
Mathematicae, t. 1. (1920), p. 125—129; en particulier, Note !) de la page 129.
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u' (wl -; T2 , ! _g ?/z) =—;—[u’(xl,y1)+u’(x2,y2)] avec: u’(0,0)=0.

(2)
En remplacant z, et y, par 2z et par 2y, et en posant z, = y, =0,
nous obtenons:

u'(z,y) = % [u 2z, 29)] . (3)

En remplagant dans (2) =z, y;, Z,, ¥» par 2z, 2y,, 22,, 2y, nous
obtenons de (2) et (3) ’équation suivante:

w (2, + %o, Yy + Yo) = u' (21, 1) + w'(2,, Y) - (4)

En posant z, = y, = 0 et x;, = z, y, = y, nous aurons:

uw'(z, y) = u'(x, 0) + %' (0, y) . (5)

En posant dans (4) y, = y, = 0, nous obtenons
u,(xl + X3, 0) = ul(xls O) + u,(xz, O) ’
d’olt nous concluons, vu la continuité de la fonction %’(z, 0) de z:

u'(z,0) =azx. (6)
Similairement

u' (0, ¥y, + ¥2) = u’(0, Y1) + u’(0, ¥,)
d’ou
u,(O’ y) = by * (7)

En substituant les expreséions obtenues (6) et (7) dans I’équation (5),
nous avons:

w'(x,y) =ax + by.
Désignons par ¢ la constante (0, 0), nous obtenons finalement:
u(z,y) =ax+ by +c.
Similairement, nous obtenons 'expression:
v(z,y) =a'x4+b'y+c .
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Notre résultat préliminaire est que foute transformation du groupe Gy

Sexprime par une transformation linéaire entiére des coordonnées (x, y)
de la forme :

' =ax+by+c, y=a'z+by+c. (8)

15. Pour les transformations du groupe @y, les constantes ¢ et ¢’ dans
les équations (8) ont la valeur 0, d’ou:

' =ax+by, y =axz+0by. (9)

Considérons la rotation gi‘ de période 4 contenue dans le groupe I',.
Elle change le point de coordonnées (1, 0) en (0, 1) et celui-ci en (— 1, 0).
En remplacant ces valeurs de coordonnées dans les équations (9), nous
obtenons les valeurs suivantes des coefficients: @ = b’ = 0, — b = a’=1.

La rotation gi de période 4 s’exprime donc par les formules
' =—y, y==x. (10)

Le groupe G, est commutatif (§ 7), par suite les transformations de

Gy représentées par les formules (9) et (10) sont échangeables; il résulte
de la

—ay+br=—a'x—0by,

par conséquent @ = b’ et b = — a’. Par le méme raisonnement on montre
que ces relations sont aussi valables entre les coefficients des équations (8).
Nous avons ainsi obtenu le résultat suivant:

Toute transformation du groupe Gy s’exprime par les formules
' =ax+by+c, y' =—bx+tay+c. (11)
16. Introduisons dans le plan la coordonnée complexe

2=+ 1y
et posons dans les formules (11)
a—itb=A, c+1ic’'=1B,
nous obtenons l’expression suivante des transformations du groupe G, :

2/ =Az+ B.
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Le groupe G';; ainsi que le groupe des transformations 2z’ = Az 4+ B
sont doublement transitifs dans le plan; c’est-a-dire qu’a deux couples
de points quelconques du plan (P,Q) et (P’,Q’) correspond une et
une seule transformation de chacun de ces groupes transformant P en P’
et @ en Q'. Il résulte de 14 que, pour toutes valeurs complexes A (5 0)
et B, la transformation 2’ = Az + B appartient au groupe Gy.

Le groupe Gy est donc identique au groupe des transformations linéaires
entiéres z’' = Az + B, ou A(# 0) et B sont des nombres complexes quel-
conques.

17. Pour approcher ’expression des transformations du groupe @ avec
la coordonnée z, nous établirons les relations de la coordonnée z avec les
parametres canoniques des sous-groupes g, et I'oy de Gy (voir § 6 et 8).

L’expression des transformations du groupe G,, avec la coordonnée
complexe z est: 2/ = Az; posons A =ret? (r > 0). Le sous-groupe ¢,y
des homothéties de centres O, U correspond & ¢ = 0. Les transformations
de la demi-droite y =0, x>0 engendrées par les transformations de
goy 8’expriment donc par la formule ' = rx, ou, ce qui est le méme, par

log 2/ = log x + log r .

11 résulte de 1& que log r est un parameétre canonique du groupe g,y ;
il est uniquement déterminé par la propriété de prendre la valeur 0 au
point A4, et la valeur log 2 au point 4,= 0,4, ;(0) .

Le groupe I'y; des rotations autour des points O et U correspond a
r=1 0<¢p<2nm. ¢ est un parameétre canonique dans le groupe I',y;
il est lié au paramétre «, introduit dans le § 7, par la relation ¢ = 4-27x.

De ces observations nous tirons la conclusion suivante:

Soit § le parameétre canonique du groupe g,; déterminé de telle fagon
qu’a un point A4, correspond la valeur 8 = 0, et au point 4,=0, y (0)
la valeur log 2. Soit « (0 <« < 1) le parametre canonique du groupe
cyclique I'y;. En désignant par pf et o* les éléments des sous-groupes
Jouv €t Loy de Gy, tout élément du groupe G, peut étre exprimé dans
la forme uf g* (voir § 8). Nous introduisons la coordonnée complexe z en
attribuant au point 4; la valeur z = 1, et & tout point P = ufp*(4,)
la valeur z = ef+27ix Avec la coordonnée z déterminée de cette facon,
les transformations du groupe Gy §’'expriment par la formule 2’ = Az, et
celles du groupe Gy par la formule 2’ = Az + B.

Pour exprimer les transformations du groupe G, laissant invariant
le point O, échangeons les rdles des points O et U dans I’énoncé que nous
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venons de formuler. Il faut donc introduire un paramétre canonique g’
dans le groupe g, tel qu’au point A4, correspond la valeur 8’ =0, et au
point A; = o, ,(U) la valeur p/ = log 2. En vertu du théoréme de réci-
procité démontré dans le § 3, il résulte de la relation 4; = o, o(U) que
¢ 415(0) = 4,, c’est-d-dire que A} est le milieu du segment OA4,, donc

Ay = A,,. Le paramétre § introduit ci-dessus prend au point 4y la
valeur — log 2. Par conséquent 8’ = — 8. Pour obtenir la proposition
relative au groupe G, analogue & celle obtenue par rapport au groupe G,
il faut donc remplacer le paramétre § du groupe g,, par — 8, en rem-
plagant en méme temps « par — « et, par suite, z par 1/z, nous obtenons
le résultat suivant:

Les transformations du groupe G, laissant le point O invariant s’expriment
avec la coordonnée z par la formule :
1

1 .
'*z—,—‘ =4’ ;— + B’ s c’est-a-dire; 2/ =

2
Bz4 A

18. Désignons par @ le point de coordonnée z = g, et par Gy le sous-
groupe de G formé par les transformations laissant ¢ invariant. La

transformation
T:2 =2+4¢,

appartenant au groupe G';, change le point O en Q. Le transformé du
groupe G, par T est le groupe (4. Il résulte de 14 que les transformations
contenues dans le groupe G, s’expriment par la formule:

r__ r—q
T Fe—pra 1

D’aprés un théoréme de M. Brouwer®) toute transformation du groupe
G admet au moins un point invariant; par suite toute transformation du
groupe G peut étre exprimée par une transformation linéaire de la coor-
donnée 2.

Sans employer le théoreme de M. Brouwer, on peut aboutir au méme
résultat par le raisonnement suivant. Soit 7' une transformation quel-
conque de @, et soit @ un point différent de U et de 7-1(U). Il y a au
moins une transformation 7', dans le groupe G'y; qui change @ en T'(Q);
la transformation 7', = T'- T admet le point invariant @, elle appartient
donc au groupe G,. La transformation 7' = T, T, est le produit de deux

%) Voir p. ex. B. von Kerékjdrté: Vorlesungen iiber Topologie, p. 193.
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transformations linéaires 7', et 7';, par suite 7' s’exprime aussi par une
transformation linéaire de z.

Comme le groupe G ainsi que le groupe des transformations linéaires

B . [ Y . 4
r_ SEE sont triplement transitifs sur la spheére, il résulte que,

~ Cz—+D
pour toutes valeurs complexes 4, B, C, D, telles que AD — BC # 0,
. ,_ Az+ B _ N
la transformation 2z’ = e D appartient & . Nous avons donc dé

montré le théoréme suivant:
Le groupe G est identique au groupe homographique

Az -+ B
— Cz+ D

/

ouw A, B,C,D désignent des nombres complexes quelconques tels que
AD — BC # 0.

Le groupe G’ peut étre obtenu en multipliant le groupe G par une
symétrie quelconque 2'du groupe G’ (voir § 1). La symétrie par rapport
& Paxe x s’exprime par la formule 2z’ = z (voir § 13). Par conséquent,
toute transformation du groupe G’ qui n’appartient pas & G est une anti-
homographie:

__Az+4 B
~ Cz+D

!/

En résumé, G’ est le groupe des homographies et des antihomographies.

(Regu le 10 juillet 1940.)
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