Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 13 (1940-1941)

Artikel: Sur le groupe des homographies et des antihomographies d'une

variable complexe.

Autor: Kerékjártó, B. de

DOI: https://doi.org/10.5169/seals-13551

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Sur le groupe des homographies et des antihomographies d'une variable complexe

Par B. de Kerékjártó, Budapest

À M. Élie Cartan en témoignage de haute estime.

Dans le présent mémoire, je démontrerai le théorème suivant concernant la caractérisation topologique du groupe des homographies et des antihomographies d'une variable complexe.

Théorème. Soit G' un groupe de transformations topologiques de la surface d'une sphère en elle-même tel qu'à deux triples quelconques de points $(A^{\circ}, B^{\circ}, C^{\circ})$ et (A, B, C) correspondent deux et seulement deux transformations de G' qui changent le triple $(A^{\circ}, B^{\circ}, C^{\circ})$ en (A, B, C) et qui varient continuement avec le triple (A, B, C). Le groupe G' est homéomorphe au groupe des homographies et des antihomographies d'une variable complexe.

Dans un mémoire intitulé "Sur le caractère topologique du groupe homographique de la sphère" (à paraître dans le Journal de Mathématiques pures et appliquées) j'ai démontré le théorème suivant:

Théorème. Si G est un groupe de transformations topologiques d'une surface en elle-même tel qu'à deux triples quelconques de points $(A^{\circ}, B^{\circ}, C^{\circ})$ et (A, B, C) correspond une transformation de G et une seule qui change le triple $(A^{\circ}, B^{\circ}, C^{\circ})$ en (A, B, C) et qui varie continuement avec le triple (A, B, C), le groupe G est homéomorphe au groupe des homographies d'une variable complexe.

De ce dernier théorème on peut déduire facilement le premier; mais la démonstration du théorème sur le groupe homographique utilise des moyens assez difficiles tels que l'énumération des groupes continus connexes d'ordre 2. Vu l'importance du groupe G' des homographies et des antihomographies dans la géométrie projective de la droite complexe¹), il est intéressant d'observer que la caractérisation directe du groupe G' peut être démontrée, sans supposer la continuité du groupe, par des méthodes plus faciles que nous allons développer.

1. Soient T et T' les deux transformations du groupe G' qui changent le triple $(A^{\circ}, B^{\circ}, C^{\circ})$ en (A, B, C). La transformation $T^{-1}T' = \Sigma$ laisse les points A, B, C invariants de même que l'identité I et la transformation Σ^2 de G'; il y a parmi ces trois transformations deux qui sont iden-

¹⁾ Voir à ce sujet l'œuvre de Élie Cartan: Leçons sur la Géométrie Projective Complexe. Paris, 1931.

tiques, d'où $\Sigma^2 = I$. La transformation involutive Σ admettant 3 points invariants est homéomorphe à une symétrie²); ses points invariants forment une courbe simple et fermée passant par A, B, C que nous appellerons cercle déterminé par ces 3 points; la transformation Σ sera appelée symétrie par rapport à ce cercle. Il résulte que par trois points quelconques passe un cercle et un seul.

Deux cercles quelconques k et k' passant par les points A et B se croisent dans ces points; cela veut dire que le cercle k sépare les deux arcs c'_1 et c'_2 de k' déterminés par les points A et B, et inversement k' sépare les arcs c_1 et c_2 de k déterminés par A et B. Autrement la courbe $c_1 + c'_2$ séparerait les arcs c_2 et c'_1 (pour un choix convenable des indices); en désignant par A' et B' deux points de c'_1 et par C' un point de c_2 , différents de A et de B, le cercle passant par A', B', C' aurait donc au moins 3 points communs avec l'un des cercles k et k'; c'est une contradiction. Nous en concluons que le faisceau des cercles passant par les points A et B est placé comme le faisceau des grands cercles passant par deux points opposés de la sphère.

La transformée de la symétrie Σ par une transformation quelconque de G' est une symétrie; par conséquent, le système des cercles est changé en luimême par toute transformation du groupe G'.

Des deux transformations T et T' qui changent $(A^{\circ}, B^{\circ}, C^{\circ})$ en (A, B, C) l'une, T, conserve le sens, l'autre $T' = T \cdot \Sigma$ le change en le sens opposé. Les transformations de G' qui conservent le sens forment un sous-groupe G de G' qui est triplement transitif sur la sphère: à deux triples quelconques $(A^{\circ}, B^{\circ}, C^{\circ})$ et (A, B, C) correspond une transformation de G et une seule qui change $(A^{\circ}, B^{\circ}, C^{\circ})$ en (A, B, C).

2. Soit U un point de la sphère; nous l'appellerons point à l'infini; les cercles passant par U seront aussi appelés droites. Par deux points quelconques A et B, différents de U, passe une droite et une seule.

Si A et B sont deux points différents de U, il y a deux transformations σ et Σ dans G' qui échangent entre eux A et B et laissent U invariant. Ces deux transformations sont involutives; l'une d'elles, σ , conserve le sens; l'autre, Σ , est une symétrie par rapport à une droite l. En désignant par Σ' la symétrie par rapport à la droite l' passant par A et B, on obtient la relation $\sigma = \Sigma \cdot \Sigma'$. La transformation involutive σ conservant le sens est homéomorphe à une demi-rotation; elle admet deux points invariants U et O. Comme σ change la droite l' en elle-même, le point O

²) Voir B. von Kerékjártó: Vorlesungen über Topologie. Berlin, 1923. pag. 223 et seq.

appartient au segment AB de la droite l'. Nous appelons O milieu du segment AB, et $\sigma = \sigma_{OU}$ demi-rotation autour des points O, U.

Il n'y a aucune autre transformation involutive dans le groupe G qui admet les points invariants O et U. Si σ' était une autre, désignons par $B' = \sigma'$ (A) l'image d'un point arbitraire A obtenue par σ' , et par $A' = \sigma$ (B') l'image de B' obtenue par σ . Soit T la transformation de G qui change A en A' et laisse B' et U invariants. La transformée de σ' par T, c'est-à-dire la transformation $\sigma'' = T^{-1}\sigma'T$ conserve le sens, admet le point invariant U et échange entre eux les points A' et B' de même que la transformation σ ; il résulte de là que σ'' est identique à σ . Par suite, le point invariant O' = T(O) de σ'' est identique à O. La transformation T qui admet 3 points invariants, B', U et O, est l'identité; par conséquent: $\sigma = \sigma'' = T^{-1}\sigma'T = \sigma'$.

A un couple quelconque C, D correspond une demi-rotation autour de ce couple et une seule. Soit en effet T une transformation de G qui change O en C et U en D; la transformée de la demi-rotation σ_{OU} par T, c'est-à-dire $T^{-1}\sigma_{OU}$ $T = \sigma_{CD}$ est la demi-rotation autour du couple C, D.

3. Les demi-rotations σ sont liées entre elles par la reciprocité suivante : Si la demi-rotation σ_{CD} échange entre eux les points C' et D', la demi-rotation $\sigma_{C',D'}$ échange entre eux les points C et D.

La demi-rotation σ_{CD} change le cercle k passant par les points C,D et C' en lui-même, par suite D' appartient à ce même cercle k. La transformation τ du groupe G qui change le triple de points (C,D,C') en (C',D',C) transforme le cercle k en lui-même. Comme le couple C,D sépare sur le cercle k les points C' et D', il résulte que les points D et D' appartiennent à un même arc CC' de k. La transformation τ qui échange entre eux les points C et C' et transforme D en D' change, par conséquent, chacun des arcs de k déterminés par les points C et C' en lui-même et admet sur chacun un point invariant P et Q. Le carré de τ admet 4 points invariants P,Q,C,C', donc $\tau^2=I$. La transformation involutive τ échange entre eux les points C et C' de même D et D'. La transformée $\tau^{-1}\sigma_{CD}\tau$ de σ_{CD} par τ est involutive; ses points invariants sont $C'=\tau(C)$ et $D'=\tau(D)$; par suite: $\tau^{-1}\sigma_{CD}\tau=\sigma_{C',D'}$.

L'expression à gauche montre que la demi-rotation $\sigma_{C'D'}$ échange entre eux les points C et D.

4. Nous appellerons les cercles k et k' passant par les points C et D perpendiculaires si la symétrie Σ_k par rapport au cercle k change le cercle

k' en lui-même. Il y a un cercle k' et un seul passant par les points C et D de k qui est perpendiculaire sur k. Si k' est perpendiculaire sur k, le produit des symétries Σ_k et Σ_k , est la demi-rotation σ_{CD} autour des points communs de k et de k' (voir § 2); comme $\sigma_{CD} = \sigma_{CD}^{-1} = \Sigma_k$, Σ_k , il résulte que la symétrie Σ_k , par rapport à k' change le cercle k en lui-même.

Toute transformation de G' change deux cercles perpendiculaires en deux cercles perpendiculaires. Soient en effet k et k' deux cercles perpendiculaires aux points communs C et D, et soient $k_1 = T(k)$, $k'_1 = T(k')$ leurs images obtenues par la transformation T de G'. $\sum_{k_1} = T^{-1} \sum_k T$, et $\sum_{k'_1} = T^{-1} \sum_{k'} T$ sont les symétries par rapport à k_1 et k'_1 ; de la relation $\sum_k \cdot \sum_k = \sigma_{CD}$ découle: $T^{-1} \sum_k T \cdot T^{-1} \sum_k T = T^{-1} \sigma_{CD} T$; cette relation signifie que $\sum_{k_1} \cdot \sum_{k'_1} = \sigma_{C' D'}$ c'est-à-dire que le produit des symétries par rapport à k_1 et à k'_1 est la demi-rotation autour des points communs C' = T(C) et D' = T(D) des cercles k_1 et k'_1 ; par suite les cercles k_1 et k'_1 sont perpendiculaires.

- 5. Soit O un point quelconque différent de U, et soient A et A' deux points qui se correspondent par la demi-rotation σ_{OU} ; désignons par l la droite passant par les points O et A; elle passe aussi par le point A'. Il y a un cercle k et un seul perpendiculaire sur l aux points A et A'. Nous allons démontrer que k est perpendiculaire sur toute droite passant par le point O. Considérons d'abord la droite l' perpendiculaire sur lpassant par O. Comme la symétrie $\Sigma_{l'}$ par rapport à l' échange entre eux les points A et A', elle transforme le cercle k en lui-même. Il résulte de là que la demi-rotation $\sigma_{ov} = \Sigma_l \cdot \Sigma_{l'}$ change le cercle k en lui-même. — Soient ensuite l_1 et l_1' deux droites perpendiculaires quelconques passant par O; désignons par A_1, A'_1, B_1, B'_1 les points communs de k avec ces droites. Comme la demi-rotation σ_{OU} transforme chacun des cercles k, l_1, l'_1 en lui-même, les points A_1 et A'_1 , d'une part, et les points B_1 et B_1' , d'autre part, sont échangés entre eux par σ_{ov} . Le produit des symétries Σ_{l_1} et $\Sigma_{l_1'}$ par rapport aux droites l_1 et l_1' est la demi-rotation σ_{ov} . Il en résulte que la symétrie Σ_{l_1} échange entre eux les points B_1 et B_1' , elle laisse invariants les points A_1 et A'_1 . Le cercle k passant par ces 4 points est donc invariant par la symétrie Σ_{l_1} , c'est-à-dire que k est perpendiculaire sur la droite l_1 .
- 6. Désignons par (l) le faisceau des droites passant par O, et par (k) le faisceau des cercles k perpendiculaires sur le faisceau (l). Par tout point du plan, sauf O, passe une et une seule droite l, et un et un seul cercle k appartenant à ces faisceaux.

Les transformations de G qui laissent les points O et U invariants forment un sous-groupe G_{OU} qui est simplement transitif sur la sphère privée des points O et U; à deux points quelconques P et P' différents de O et de U correspond donc une transformation de G_{OU} et une seule qui change P en P'. Les transformations de G_{OU} transforment le faisceau des droites (l) en lui-même; d'après § 4 elles changent aussi le faisceau des cercles (k) perpendiculaires sur (l) en lui-même.

Les transformations de G_{OU} qui changent un cercle k du faisceau (k) en lui-même forment un sous-groupe simplement transitif sur k; c'est donc un groupe cyclique continu 3) d'ordre 1 que nous désignons par Γ_{OU} . Les transformations du faisceau (k) en lui-même engendrées par le groupe Γ_{OU} forment un groupe cyclique isomorphe à Γ_{OU} . Comme le faisceau (k) est un ensemble ouvert, ce groupe cyclique doit se réduire à l'élément identique. Par suite, toute transformation de Γ_{OU} change chacun des cercles perpendiculaires sur le faisceau (k) en lui-même.

Nous appellerons les transformations contenues dans le groupe Γ_{OU} rotations autour des points O et U. Nous désignerons les cercles du faisceau (k) par k_{OU} et les appellerons cercles de centres O, U.

7. Les éléments du groupe Γ_{OU} sont échangeables avec tous les éléments du groupe G_{OU} . Soit en effet μ un élément quelconque de G_{OU} , et ϱ^{α} un élément de Γ_{OU} , où α désigne le paramètre canonique du groupe cyclique Γ_{OU} ($0 \le \alpha < 1$) tel que le produit des transformations ϱ^{α} et $\varrho^{\alpha'}$ est $\varrho^{\alpha+\alpha'}$. La transformation $\mu^{-1}\varrho^{\alpha}\mu$ change tout cercle k_{OU} en lui-même, elle appartient donc au groupe Γ_{OU} , c'est-à-dire:

$$\mu^{-1}\varrho^{\alpha}\mu=\varrho^{\alpha'}$$

où $\alpha' = f(\alpha)$ est déterminé de telle façon qu'on ait f(0) = 0, et par suite f(1) = 1. Posons dans la relation

$$\varrho^{f(\alpha)} = \mu^{-1} \varrho^{\alpha} \mu$$

 $\alpha = \alpha_1 + \alpha_2 + \cdots + \alpha_n$, nous obtenons:

 $\varrho^{f(\alpha_1+\alpha_2+\cdots+\alpha_n)} = \mu^{-1} \varrho^{\alpha_1} \mu \cdot \mu^{-1} \varrho^{\alpha_2} \mu \cdot \cdots \cdot \mu^{-1} \varrho^{\alpha_n} \mu = \varrho^{f(\alpha_1)+f(\alpha_2)+\cdots+f(\alpha_n)}$ d'où

$$f(\alpha_1 + \alpha_2 + \cdots + \alpha_n) = f(\alpha_1) + f(\alpha_2) + \cdots + f(\alpha_n).$$

³⁾ Concernant la continuité des groupes transitifs de la droite, voir: B. de Kerékjártó: Sur les groupes transitifs de la droite, Acta Scient. Mathem., t. X. (1940).

En posant $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 1/n$, on obtient de là f(1/n) = 1/n et f(m/n) = m/n pour tous entiers $m, n \ (n \neq 0)$. Comme $f(\alpha)$ est continu, il résulte donc $f(\alpha) = \alpha$ pour toute valeur réelle de α . La relation obtenue

$$\varrho^{\alpha} = \mu^{-1} \varrho^{\alpha} \mu$$

signifie que μ et ϱ^{α} sont échangeables.

8. Les transformations du groupe G_{OU} qui changent une demi-droite l_1 issue de O en elle-même forment un sous-groupe g_{OU} simplement transitif sur l_1 ; désignons par β un paramètre canonique du groupe g_{OU} , et par μ^{β} un élément quelconque de ce groupe.

Les transformations de g_{OU} changent toute demi-droite l_1' issue de O en elle-même. Soit en effet ϱ^{α} la transformation du groupe Γ_{OU} qui change la demi-droite l_1 en l_1' , et soit μ^{β} un élément quelconque du groupe g_{OU} . Comme μ^{β} et ϱ^{α} sont échangeables, il résulte de la relation $\mu^{\beta} = \varrho^{-\alpha} \mu^{\beta} \varrho^{\alpha}$ que la transformation μ^{β} change la demi-droite l_1' en elle-même.

Nous appellerons les transformations du groupe g_{ov} homothéties de centres O, U.

Toute transformation T du groupe G_{OU} est le produit d'un élément μ^{β} de g_{OU} et d'un élément ϱ^{α} de Γ_{OU} ; la représentation $T=\mu^{\beta}\varrho^{\alpha}$ par un tel produit est unique. Soit en effet P un point quelconque différent de O et de U, et soit P'=T(P) son image obtenue par T. Désignons par Q le point commun de la demi-droite OP avec le cercle k_{OU} passant par P'. Soit μ^{β} la transformation du groupe g_{OU} qui change P en Q, et soit ϱ^{α} la transformation de Γ_{OU} qui change Q en P'. Le produit $\mu^{\beta}\varrho^{\alpha}$ transforme le point P en P' et laisse les points P0 et P1 invariants de même que la transformation P2. Il résulte de là que P3 est le produit P4 est laisse les points P5 et P6 est laisse les points P7. Il résulte de là que P9 est laisse les points P9 est laisse les points P9 et laisse les points P9 en P9 et laisse les points P9 et laisse P9 et laisse

Comme les éléments de g_{ov} sont échangeables avec les éléments de Γ_{ov} , il s'ensuit que le groupe G_{ov} est commutatif.

9. Nous appellerons plan la sphère privée du point à l'infini U. Soit $G_{\overline{v}}$ le sous-groupe de G formé par les transformations qui admettent le point invariant U.

Toute transformation T du groupe G_U transforme le système des droites en lui-même, c'est-à-dire qu'elle transforme le système des cercles passant par le point U en lui-même.

Si les points A et B sont changés par une transformation T de $G_{\overline{U}}$ en les points A' et B', le milieu C du segment AB est changé en le milieu C' du segment A'B'. En effet, si $\sigma_{C\overline{U}}$ échange A et B, sa transformée par T,

c'est-à-dire $T^{-1}\sigma_{CU}T$ échange A' = T(A) et B' = T(B) entre eux; $T^{-1}\sigma_{CU}T$ est la demi-rotation autour des points C' = T(C) et U, le point C' est donc le milieu du segment A'B'.

10. Si l est une droite et A un point quelconque, il y a une droite perpendiculaire sur l et une seule passant par A. Si A appartient à l, le produit de la demi-rotation σ_{AU} et de la symétrie Σ_l par rapport à l est une symétrie $\Sigma_{l'}$; son axe l' est la droite perpendiculaire sur l au point A (voir § 2). — Si A n'appartient pas à l, soit $A' = \Sigma_l(A)$ son symétrique par rapport à l; la droite AA' est perpendiculaire sur l, et elle est la seule perpendiculaire sur l passant par le point A.

Si les droites l_1 et l_2 sont perpendiculaires sur la droite l, elles n'ont aucun point commun. C'est une autre forme d'énoncer le résultat que nous venons d'obtenir.

Si les droites l_1 et l sont perpendiculaires et si la droite l_2 passant par le point O de l n'est pas perpendiculaire sur l, les droites l_1 et l_2 ont un point commun. Soit en effet A un point de l_2 , $A' = \sum_l (A)$ son symétrique par rapport à l, et soit B le point commun de la droite AA' avec l. Désignons par C le point commun de l_1 avec l. Nous pouvons supposer que, sur la droite l, les points l et l ne sont pas séparés par l ; autrement, nous employons la demi-rotation l qui change l et l en elles-mêmes, et le point l en un point appartenant à la demi-droite l en l es demi-droites l et l sont changées en elles-mêmes. A la droite l correspond d'après l la droite perpendiculaire sur l passant par l correspond donc l et l an point l correspond donc un point commun des droites l et l et l en l e

Des deux dernières propositions il s'ensuit que le système des droites vérifie l'axiome d'EUCLIDE sur les parallèles, en appelant deux droites parallèles si elles n'ont pas de point commun.

11. Soit O un point différent de U et soit l une droite passant par le point O. Nous choisissons un point A_1 sur l et formons la suite suivante appelée chaîne OA_1 :

$$A_0 = O, A_1, A_2 = \sigma_{A_1 U}(A_0), \dots, A_n = \sigma_{A_{n-1} U}(A_{n-2}), \dots$$

Désignons par $A_{-1} = \sigma_{OU}(A_1)$ l'image de A_1 obtenue par la demirotation σ_{OU} , et par $A_0, A_{-1}, A_{-2}, \ldots$ les éléments de la chaîne OA_{-1} . Pour tout entier n, le point A_n est le milieu du segment $A_{n-1}A_{n+1}$.

La demi-rotation σ_{OU} change le point A_1 en A_{-1} , et O en lui-même;

d'après § 9 elle change le point A_2 en un point A'_2 tel que A_{-1} est le milieu du segment OA'_2 ; il résulte de là que A'_2 est identique à A_{-2} . Par une induction de n à n+1, on vérifie de la même façon que la demi-rotation σ_{OU} change le point A_n en A_{-n} , pour tout n. Similairement on conclut que pour tous entiers n et k, le point A_n est le milieu du segment $A_{n-k}A_{n+k}$.

Désignons par T l'homothétie du groupe g_{OU} qui change le point A_1 en A_2 . Comme A_1 est le milieu du segment OA_2 , il résulte du § 9 que $A_2 = T(A_1)$ est le milieu du segment déterminé par O et $T(A_2)$, par suite $T(A_2) = A_4$. Par le même raisonnement, on vérifie que la transformation T change le point A_{2^n} en $A_{2^{n+1}}$, pour tout entier n > 0.

Désignons par $A_{\frac{1}{2}}$ le milieu du segment OA_1 , par $A_{\frac{1}{2}}$ le milieu du segment $OA_{\frac{1}{2}}$, et ainsi de suite. D'après le § 9 on voit que l'inverse de la transformation T change le point A_1 en $A_{\frac{1}{2}}$, celui en $A_{\frac{1}{2}}$, ...

La suite des points A_1, A_2, A_4, \ldots tend vers le point U, et la suite des points $A_{1/2}, A_{1/4}, \ldots$ vers le point O. En effet la suite $A_0, A_1, A_2, A_4, \ldots$ est monotone, elle est changée par la transformation T en la suite A_0, A_2, A_4, \ldots ; le point limite de la suite est donc un point invariant de T; celui-ci doit coïncider avec le point U. La deuxième partie de l'énoncé découle des mêmes raisons.

Nous introduisons sur la droite l la coordonnée x par la prescription suivante. A tout point A_n nous attribuons la coordonnée x=n $(n=0,\pm 1,\pm 2,\ldots)$; au milieu du segment A_nA_{n+1} , que nous désignons par $A_{(2n+1)/2}$ nous attribuons la coordonnée $x=\frac{2n+1}{2}$; au milieu du segment $A_{n/2}A_{(n+1)/2}$, que nous désignons par $A_{(2n+1)/4}$, nous attribuons la coordonnée $x=\frac{2n+1}{4}$, et ainsi de suite.

Les points A_x se succèdent sur la droite l dans le même ordre que les nombres dyadiques x leur correspondants. De la proposition ci-dessus nous concluons que, pour tout nombre dyadique x, la suite des points $A_{x+\frac{1}{2}}, A_{x+\frac{1}{4}}, \ldots$ converge vers le point A_x , et plus généralement: si la suite de nombres dyadiques x_1, x_2, \ldots converge vers le nombre dyadique x, la suite des points A_{x_1}, A_{x_2}, \ldots converge vers le point A_x . Nous pouvons donc étendre l'attribution de la coordonnée x continuement à tous les points de la droite.

Le milieu du segment $A_xA_{x'}$ a la coordonnée $\frac{1}{2}(x+x')$. Soient d'abord x et x' des nombres dyadiques; nous les mettons sous les formes $x=m/2^k$ et $x'=m'/2^k$ et désignons par A_1' le point de coordonnée $1/2^{k+1}$. Dans la chaîne OA_1' , les points A_x et $A_{x'}$ sont respectivement le 2m-ième et le

2m'-ième élément; le milieu du segment $A'_{2m}A'_{2m'}=A_xA_{x'}$ est donc l'élément d'indice (m+m') de cette chaîne dont la coordonnée est $(m+m')/2^{k+1}=\frac{1}{2}(x+x')$. De la continuité de la coordonnée on obtient la même proposition pour des nombres réels x et x' quelconques.

12. Nous introduisons un système de coordonnées rectangulaires (x, y) dans le plan. Soient l et l' deux droites perpendiculaires passant par le point O; nous les appelons axes. Nous définissons la coordonnée x sur la droite l par la méthode décrite dans le § 11. Soit k_{OU} un cercle quelconque de centres O, U; désignons par A, A' et B, B' ses points de rencontre avec les droites l et l'. Si x=a est la coordonnée du point A, celle de A' est x=a, car le point A de coordonnée A est le milieu du segment A constant A in ous attribuons aux points A et A' de A' les coordonnées A et A' de telle façon qu'à l'une des demi-droites de A' déterminées par le point A correspondent les valeurs positives, à l'autre les valeurs négatives de la coordonnée A.

Si P est un point quelconque du plan, menons par P les perpendiculaires sur l et sur l', et désignons par A_x et par B_y leurs points de rencontre avec ces droites. Soient x et y les coordonnées respectives des points A_x et B_y . Nous attribuons au point P le couple des nombres réels (x, y) comme ses coordonnées.

Il résulte de la définition immédiatement que les droites parallèles aux axes sont représentées par les équations y = const. et x = const.

13. Avec les coordonnées (x, y) les symétries Σ_i et Σ_i , par rapport aux axes s'expriment par les formules suivantes:

$$\Sigma_{l}$$
: $x'=x$, $y'=-y$; $\Sigma_{l'}$: $x'=-x$, $y'=y$.

En effet, la symétrie Σ_l change tout point de la droite l en lui-même et toute perpendiculaire sur l, c'est-à-dire toute droite x= const. en ellemême; par conséquent: x'=x. — Si deux points P et P' de la droite l' se correspondent par la symétrie Σ_l , le point P0 est le milieu du segment PP', par suite les coordonnées de P1 et de P'1 ont les valeurs P2 et P3 et P4 et P5 et P7 et par P7 se correspondent par P8, d'où P9 et P9. — Par le même raisonnement on déduit l'expression de P1.

Comme les droites y = c et x = c' sont perpendiculaires d'après § 10, on obtient par le même raisonnement que la symétrie par rapport à la droite y = c s'exprime par les formules:

$$x'=x$$
, $y'=2c-y$,

et la symétrie par rapport à la droite x=c' par les formules:

$$x'=2c'-x\;,\quad y'=y\;.$$

Soient (x_1, y_1) et (x_2, y_2) deux points quelconques. Le produit des symétries par rapport aux droites $y = \frac{y_1 + y_2}{2}$ et $x = \frac{x_1 + x_2}{2}$ s'exprime par la formule:

$$x' = (x_1 + x_2) - x$$
, $y' = (y_1 + y_2) - y$;

d'après § 2 ce produit est la demi-rotation autour des points U et $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$. Comme cette demi-rotation échange entre eux les points (x_1, y_1) et (x_2, y_2) , d'après les formules que nous venons d'établir, il résulte que le point de coordonnées $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$ est le milieu du segment limité par les points (x_1, y_1) et (x_2, y_2) .

14. Pour déterminer l'expression des transformations du groupe G_{v} avec les coordonnées (x, y), nous rappelons que, d'après § 9, toute transformation de G_{v} change le milieu d'un segment quelconque en le milieu du segment correspondant. Soit

$$x' = u(x, y), \qquad y' = v(x, y)$$

l'expression d'une transformation de $G_{\overline{v}}$. Les fonctions u(x, y), v(x, y) satisfont donc aux équations fonctionnelles suivantes:

$$u\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right) = \frac{1}{2}\left[u(x_1, y_1) + u(x_2, y_2)\right],$$
 (1)

$$v\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right) = \frac{1}{2}\left[v(x_1, y_1) + v(x_2, y_2)\right].$$
 (1')

Il est connu que les seules solutions continues de ces équations sont les fonctions linéaires entières 4). Pour le montrer retranchons u(0, 0) de l'équation (1) à gauche et à droite, et posons

$$u'(x, y) = u(x, y) - u(0, 0);$$

nous obtenons ainsi l'équation de même forme:

⁴⁾ Voir W. Sierpiński: Sur les fonctions convexes mesurables, Fundamenta Mathematicae, t. 1. (1920), p. 125—129; en particulier, Note 1) de la page 129.

$$u'\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right) = \frac{1}{2}[u'(x_1, y_1) + u'(x_2, y_2)] \text{ avec: } u'(0, 0) = 0.$$
(2)

En remplaçant x_1 et y_1 par 2x et par 2y, et en posant $x_2 = y_2 = 0$, nous obtenons:

$$u'(x, y) = \frac{1}{2} [u'(2x, 2y)]. \tag{3}$$

En remplaçant dans (2) x_1 , y_1 , x_2 , y_2 par $2x_1$, $2y_1$, $2x_2$, $2y_2$ nous obtenors de (2) et (3) l'équation suivante:

$$u'(x_1 + x_2, y_1 + y_2) = u'(x_1, y_1) + u'(x_2, y_2).$$
 (4)

En posant $x_2 = y_1 = 0$ et $x_1 = x$, $y_2 = y$, nous aurons:

$$u'(x, y) = u'(x, 0) + u'(0, y). (5)$$

En posant dans (4) $y_1 = y_2 = 0$, nous obtenons

$$u'(x_1 + x_2, 0) = u'(x_1, 0) + u'(x_2, 0)$$

d'où nous concluons, vu la continuité de la fonction u'(x, 0) de x:

$$u'(x,0) = ax. (6)$$

Similairement

$$u'(0, y_1 + y_2) = u'(0, y_1) + u'(0, y_2)$$

d'où

$$u'(0, y) = b y. (7)$$

En substituant les expressions obtenues (6) et (7) dans l'équation (5), nous avons:

$$u'(x, y) = ax + by.$$

Désignons par c la constante u(0, 0), nous obtenons finalement:

$$u(x, y) = ax + by + c.$$

Similairement, nous obtenons l'expression:

$$v(x, y) = a'x + b'y + c'.$$

Notre résultat préliminaire est que toute transformation du groupe $G_{\overline{U}}$ s'exprime par une transformation linéaire entière des coordonnées (x, y) de la forme :

$$x' = ax + by + c$$
, $y' = a'x + b'y + c'$. (8)

15. Pour les transformations du groupe G_{ov} , les constantes c et c' dans les équations (8) ont la valeur 0, d'où:

$$x' = ax + by$$
, $y' = a'x + b'y$. (9)

Considérons la rotation $\varrho^{\frac{1}{4}}$ de période 4 contenue dans le groupe Γ_{ov} . Elle change le point de coordonnées (1,0) en (0,1) et celui-ci en (-1,0). En remplaçant ces valeurs de coordonnées dans les équations (9), nous obtenons les valeurs suivantes des coefficients: a=b'=0, -b=a'=1. La rotation $\varrho^{\frac{1}{4}}$ de période 4 s'exprime donc par les formules

$$x' = -y , \quad y' = x . \tag{10}$$

Le groupe G_{OU} est commutatif (§ 7), par suite les transformations de G_{OU} représentées par les formules (9) et (10) sont échangeables; il résulte de là

$$-ay+bx=-a'x-b'y,$$

par conséquent a = b' et b = -a'. Par le même raisonnement on montre que ces relations sont aussi valables entre les coefficients des équations (8). Nous avons ainsi obtenu le résultat suivant:

Toute transformation du groupe $G_{\mathbf{U}}$ s'exprime par les formules

$$x' = ax + by + c$$
, $y' = -bx + ay + c'$. (11)

16. Introduisons dans le plan la coordonnée complexe

$$z = x + iy$$

et posons dans les formules (11)

$$a-ib=A$$
, $c+ic'=B$,

nous obtenons l'expression suivante des transformations du groupe G_U :

$$z' = Az + B.$$

Le groupe G_U ainsi que le groupe des transformations z' = Az + B sont doublement transitifs dans le plan; c'est-à-dire qu'à deux couples de points quelconques du plan (P,Q) et (P',Q') correspond une et une seule transformation de chacun de ces groupes transformant P en P' et Q en Q'. Il résulte de là que, pour toutes valeurs complexes $A \ (\neq 0)$ et B, la transformation z' = Az + B appartient au groupe G_U .

Le groupe $G_{\overline{u}}$ est donc identique au groupe des transformations linéaires entières z'=Az+B, où $A(\neq 0)$ et B sont des nombres complexes quelconques.

17. Pour approcher l'expression des transformations du groupe G avec la coordonnée z, nous établirons les relations de la coordonnée z avec les paramètres canoniques des sous-groupes g_{OU} et Γ_{OU} de G_{OU} (voir § 6 et 8).

L'expression des transformations du groupe G_{0U} avec la coordonnée complexe z est: z'=Az; posons $A=re^{i\varphi}\,(r>0)$. Le sous-groupe g_{0U} des homothéties de centres $O,\,U$ correspond à $\varphi=0$. Les transformations de la demi-droite $y=0\,,\,x>0$ engendrées par les transformations de g_{0U} s'expriment donc par la formule x'=rx, ou, ce qui est le même, par

$$\log x' = \log x + \log r.$$

Il résulte de là que $\log r$ est un paramètre canonique du groupe g_{OU} ; il est uniquement déterminé par la propriété de prendre la valeur 0 au point A_1 et la valeur $\log 2$ au point $A_2 = \sigma_{A_1 U}(O)$.

Le groupe Γ_{ov} des rotations autour des points O et U correspond à $r=1,\ 0 \le \varphi < 2\ \pi$. φ est un paramètre canonique dans le groupe Γ_{ov} ; il est lié au paramètre α , introduit dans le § 7, par la relation $\varphi=\pm 2\pi\alpha$.

De ces observations nous tirons la conclusion suivante:

Soit β le paramètre canonique du groupe g_{OU} déterminé de telle façon qu'à un point A_1 correspond la valeur $\beta=0$, et au point $A_2=\sigma_{A_1\,U}$ (0) la valeur $\log 2$. Soit α ($0 \le \alpha < 1$) le paramètre canonique du groupe cyclique Γ_{OU} . En désignant par μ^{β} et ϱ^{α} les éléments des sous-groupes g_{OU} et Γ_{OU} de G_{OU} , tout élément du groupe G_{OU} peut être exprimé dans la forme $\mu^{\beta}\varrho^{\alpha}$ (voir § 8). Nous introduisons la coordonnée complexe z en attribuant au point A_1 la valeur z=1, et à tout point $P=\mu^{\beta}\varrho^{\alpha}(A_1)$ la valeur $z=e^{\beta+2\pi i\alpha}$. Avec la coordonnée z déterminée de cette façon, les transformations du groupe G_{OU} s'expriment par la formule z'=Az, et celles du groupe G_U par la formule z'=Az+B.

Pour exprimer les transformations du groupe G_o , laissant invariant le point O, échangeons les rôles des points O et U dans l'énoncé que nous

venons de formuler. Il faut donc introduire un paramètre canonique β' dans le groupe g_{ov} tel qu'au point A_1 correspond la valeur $\beta'=0$, et au point $A_2'=\sigma_{A_1o}(U)$ la valeur $\beta'=\log 2$. En vertu du théorème de réciprocité démontré dans le § 3, il résulte de la relation $A_2'=\sigma_{A_1o}(U)$ que $\sigma_{A_2'v}(O)=A_1$, c'est-à-dire que A_2' est le milieu du segment OA_1 , donc $A_2'=A_{1/2}$. Le paramètre β introduit ci-dessus prend au point $A_{1/2}$ la valeur — $\log 2$. Par conséquent $\beta'=-\beta$. Pour obtenir la proposition relative au groupe G_0 analogue à celle obtenue par rapport au groupe G_v , il faut donc remplacer le paramètre β du groupe g_{ov} par — β ; en remplaçant en même temps α par — α et, par suite, z par 1/z, nous obtenons le résultat suivant:

Les transformations du groupe G_o laissant le point O invariant s'expriment avec la coordonnée z par la formule :

$$rac{1}{z'}=A'rac{1}{z}+B'$$
 , c'est-à-dire: $z'=rac{z}{B'\,z+A'}$.

18. Désignons par Q le point de coordonnée z=q, et par G_Q le sousgroupe de G formé par les transformations laissant Q invariant. La transformation

$$T:z'=z+q\;,$$

appartenant au groupe $G_{\mathcal{O}}$, change le point O en Q. Le transformé du groupe $G_{\mathcal{O}}$ par T est le groupe $G_{\mathcal{Q}}$. Il résulte de là que les transformations contenues dans le groupe $G_{\mathcal{Q}}$ s'expriment par la formule:

$$z' = \frac{z-q}{B'(z-q)+A'}+q .$$

D'après un théorème de M. Brouwer⁵) toute transformation du groupe G admet au moins un point invariant; par suite toute transformation du groupe G peut être exprimée par une transformation linéaire de la coordonnée z.

Sans employer le théorème de M. Brouwer, on peut aboutir au même résultat par le raisonnement suivant. Soit T une transformation quelconque de G, et soit Q un point différent de U et de $T^{-1}(U)$. Il y a au moins une transformation T_1 dans le groupe G_U qui change Q en T(Q); la transformation $T_2 = T \cdot T_1^{-1}$ admet le point invariant Q, elle appartient donc au groupe G_Q . La transformation $T = T_2 T_1$ est le produit de deux

⁵⁾ Voir p. ex. B. von Kerékjártó: Vorlesungen über Topologie, p. 193.

transformations linéaires T_2 et T_1 , par suite T s'exprime aussi par une transformation linéaire de z.

Comme le groupe G ainsi que le groupe des transformations linéaires $z'=\frac{A\,z+B}{C\,z+D}$ sont triplement transitifs sur la sphère, il résulte que, pour toutes valeurs complexes $A,\,B,\,C,\,D$, telles que $AD-BC\neq 0$, la transformation $z'=\frac{A\,z+B}{C\,z+D}$ appartient à G. Nous avons donc démontré le théorème suivant:

Le groupe G est identique au groupe homographique

$$z' = \frac{Az + B}{Cz + D}$$

où A, B, C, D désignent des nombres complexes quelconques tels que $AD - BC \neq 0$.

Le groupe G' peut être obtenu en multipliant le groupe G par une symétrie quelconque Σ du groupe G' (voir § 1). La symétrie par rapport à l'axe x s'exprime par la formule $z' = \overline{z}$ (voir § 13). Par conséquent, toute transformation du groupe G' qui n'appartient pas à G est une antihomographie:

$$z' = rac{A\,ar{z} + B}{C\,ar{z} + D}$$
 .

En résumé, G' est le groupe des homographies et des antihomographies.

(Reçu le 10 juillet 1940.)