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Die Wertverteilung und das Verhalten
von Betrag und Argument einer speziellen
Klasse analytischer Funktionen. ll.*}

Von A. Pflttger, Solothurn

Zweiter Abschnitt
Ober Kurven ohne Wendepunkte

16. Der Zusammenhang zwischen den beiden Funktionen h (cp) und
N*(qp), wie er durch die Gleichung (1.61) festgelegt ist, lâBt sich in ein-
fâcher Weise an speziellen ebenen Kurven veranschaulichen. Wir be-
trachten zu diesem Zwecke die Hullkurve der Geradenschar

x cos Q(p + y sin qcp— h((p) 0 oc<(p<(3, (2.1)

wobei g irgend eine positive réelle Zahl ist und die Stiitzfunktion h (y?)

den folgenden Voraussetzungen genugt:

1. h((p) ist stetig und je von reehts und links difïerenzierbar.
2. Dièse Reehts- und Linksableitungen h+((p) und hi_((p) sind von be-

schrânkter totaler Schwankung und geniigen den Bedingungen

V+v—o) Mto—o) hUv),

h'+(<p+o) hUv+o) h'+(<p).

Demnach besitzt die Funktion
*»)+«an (2.3)

nur abzâhlbar viele Unstetigkeiten und es gilt fur aile <p

{2.4)

17. Die Tatsache, da6 die Stiitzfunktion h(cp) nicht uberall difïerenzierbar

ist, sondern an abzâhlbar vielen Stellen nur die Reehts- und Links-
ableitung zu existieren braucht, bietet der Définition der Hullkurve der

*) Vgl. dazu den 1. Abschnitt der vorliegenden Arbeit: Comm. Math. Helv., vol. 11,

p. 180—213. Aile Hinweise auf Formeln mit Nummern der Form (1, n) beziehen sich auf
diesen ersten Abschnitt.
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Geradenschar (2.1) gewisse Schwierigkeiten. Denn wollen wir bei festem y
und 0->ç? die Grenzlage des Schnittpunktes der beiden Geraden

x cos q(p + y sin qtp — h(<p) 0

x cos qO + y sin qO — h(0) 0

bestimmen, so ist zu unterseheiden, ob 6 von rechts oder von links gegen <p

strebt, und die Durehfïihrung des Grenziiberganges liefert zwei Grenz-

punkte, P+(<p) und P-(<p), die fur abzàhlbar viele Werte von cp verschieden

sein kônnen. Die Koordinaten dieser Punkte sind

x+(<p) h(<p) cos Q<p h+(<p) sin Q(p

y+(<p) h(<p) sin Q(p H h+{(p) cos qtp

bzw. 2
ic_(ç?) h(cp) cos çç? ^L(çO sin ^ç?

2/_(ç?) h(q>) sin çç> H Ai.(cp) cos ^çj

Durch dièse Gleichungen sind jedem <p ein oder zwei Punkte der Ebene

zugeordnet. Sie definieren eine Punktmenge und jedem abgeschlossenen
Intervall in (oc, /?) entspricht wegen (2.2) ein abgeschlossenes Stuck dieser

Menge. Dièses Sttick braucht aber nicht zusammenhângend zu sein.

In der Tat sind h+(q>) und hf_((p) verschieden, so ist die Punktmenge
zwischen P+(<p) und P-(<p) unterbrochen und die beiden Punkte kônnen
nicht durch eine in diesem Stuck gelegene Kurve miteinander verbunden
werden. Ergânzen wir aber die Menge in der Weise, da8 wir jedes nicht
zusammenfallende Punktepaar P_(ç?), P+(<p) durch eine Strecke ver-
binden, so entsteht eine stetige Kurve, die Hîillkurve § der Geradenschar

(2.1).
Um die Unterscheidung zwischen Rechts- und Linksableitung in der

Schreibweise zu vermeiden, setzen wir (vgl. (2.3))

x(q>) h(<p) cos £<p hf((p) sin Qtp y((p) h((p) sin Q(p-\ h1(<p)cosQ<p.

Hiedurch wird jedem <p eindeutig ein Punkt P(<p) zugeordnet. In jeder
Stetigkeitsstelle von h'((p) gilt P(<p—0) P(<p) P(<p + 0). In den

Unstetigkeitsstellen ist P(cp) Mittelpunkt der Strecke 8(<p), welche

P(cp—0) P-((p) mit P(cp + 0) P+(<p) verbindet und deren Lange

— | K'(<p + 0) — h\(p—0) | betrâgt.
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18. Wir legen die Richtung q<p oder die Richtung des Vektors
{cosqç), sin qcp} als die positive Normalenrichtung der Stûtzgeraden
x cos qcp -f y sin qtp — h (cp) 0 fest und sagen kurz: Die Stiitzgerade
besitze die Normalenrichtung qcp. Dièse Normalenrichtung ist demnach
eine stetige und monoton wachsende Funktion des Parameters <p und
daher ihre Hullkurve ohne Wendepunkte. Denn die Wendepunkte einer
Hullkurve entsprechen jenen Parameterwerten, fur welche die Normalenrichtung

der erzeugenden Geraden als Funktion des Parameters ein
relatives Maximum oder Minimum besitzt31).

Legen wir weiter die Richtung des Vektors {— sin q<p, cos q<p} als die
positive Richtung der Stûtzgeraden x cos qcp -\- y sin qcp — h(<p) 0

fest, so dreht sich dièse orientierte Stûtzgerade mit wachsendem 9? stets
im positiven Sinne. Denken wir uns also, bei einem festen Winkel cpx im
Intervall (oc, /?) anfangend, die Ausgangsgerade x cos q(px + y sin qq>x —
h (9^) 0 an der Hullkurve § im positiven Sinne rollend, so daB sie
sukzessive nach wachsendem cp geordnet die Lagen sàmtlicher Geraden
x cos qcp + y sin qcp — h(<p) 0, <p>q>1, einnimmt, so kommt jeder
Punkt P((p) bzw. dessen zugehôrige Strecke 8 (y) auf einen Punkt P(cp)

bzw. auf eine Strecke S (y) der rollenden Geraden zu liegen, wir sagen:
Die Hullkurve wird auf die rollende Gerade abgewickelt. Dabei kann sich
der Punkt P((p) (bei wachsendem <p) im positiven oder negativen Sinne
auf der rollenden Geraden bewegen und daher gewisse Stellen der
Geraden mehrfach uberdecken. Die Entfernung des Punktes P(tp) von
P^i), welche ab- oder zunehmen kann, miBt nicht die absolute Lange
des abgewickelten Kurvenstuckes ; denn sie zàhlt gewisse Bogen positiv
und andere wieder negativ. Auf jeden Fall aber hat der Punkt P(cp) eine

nach Betrag und Vorzeichen bestimmte Entfernung von Ptyx). Wir
nennen sie im Gegensatz zur absoluten die relative Lange des zwischen
P((Px) und P((p) gelegenen Stucks der Hullkurve und bezeichnen sie mit
£(99,9^). Die Gleichung £(<p,<Pi) £(9?) — £(<Pi) definiert dann — bis auf
eine additive Konstante — eine Funktion £(9?). Wir nennen sie die zur
Hullkurve § gehôrige Bogenfunktion und stellen uns die Aufgabe, dièse

Bogenfunktion aus der Stiitzfunktion zu berechnen.

19. Die GrôBe des relativen Bogenelementes ^£(9?) nach Betrag und
Vorzeichen ergibt sich aus der Tatsache, daB es gleich der Lange der

Normalprojektion des Vektors P(cp—\d<p)P((p-\-\d(p) {dx((p), dy{<p)}

31 Kurven ohne Wendepunkte wurden erstmals von H. Brunn [1] untersucht. Doeh
werden die dortigen Ergebnisse hier nicht gebraucht.
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auf die positive Richtung der Stutzgeraden von Normalenrichtung qcp ist.
Wir bilden also das skalare Produkt der beiden Vektoren {dx(<p), dy(<p)}
und {— sin q<py cos Q(p} und erhalten

— dx{cp) - sin Q(p + dy(q)) • cos g<p 32)

Nun ist aber

dx((p) — ((>h(<p)d<p-\ dh'(<p)) sin g<p

1 (2-5)
dy(cp) (gh(<p)d(p-\ dh'((p)) cos gcp

und daher das Differential der Bogenfunktion

d2(<p) Qh(cp)d(p+— dhr(<p) (2.6)

Durch Intégration von (2.6) folgt

£(<p)-2(<p1) (>]h(d)d0 + -±-
[h\<p) — h\9l)} (2.7)

womit unsere Aufgabe gelôst ist. Aus (2.7) ergibt sich unmittelbar, daB
sich £(ç?) beziiglich Stetigkeit gleich wie h\q>) verhâlt. Denn es existieren
die Grenzwerte fi (cp — 0) und £ (<p + 0) und es gilt

(y)
Q) (2.8)

und

fi^ + 0) — 2(cp—0) — (h'(<p + O) — K'{<p—0)) (2.9)

In (2.6) haben wir zugleich ein Kriterium dafur, ob durch 2(<p) ein Bogen
positiv oder negativ gezâhlt wird. Dièses analytische Kriterium làfit sich
wie folgt durch ein rein geometrisches ersetzen.

20. Die orientierte Stûtzgerade von Normalenrichtung q<p im positiven
Sinne durchlaufend, kommen wir iiberein, die Seite rechter Hand als
rechte Seite und jene linker Hand als linke Seite zu bezeichnen und
definieren: Ist die Hûllkurve $ in der Umgebung des Punhtes x((p)/y((p)
auf der linlcen bzw. rechten Seite ihrer Stutzgeraden von Normalenrichtung

82) Differential der Funktion J(x) an der Stelle x nennen wir hier eine Funktion von h,

fur die in der Umgebung von h — 0 df(x) — I / | x + -J — flx — - JI o (h) ist.
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gcp gelegen, so heiflt sie in der Umgebung dièses Punktes bezilglich der

Richtung Q<p konvex bzw. konkav.33)

Ist die Kurve in der Umgebung jedes Punktes im obigen Sinne konvex
(konkav), so heiBt die ganze Kurve konvex (konkav).

Wir zeigen nun, daB ,,konvexer Bogen" und ,,durch (2.6) positiv gezàhlter
Bogen" identische Begrifïe sind. Zu diesem Zwecke betrachten wir zwei
benachbarte Winkel cp und <pr mit q>r>(p und die zugehôrigen Punkte
P(cp) und P(<pr), fur deren Koordinaten

x(<p) cos Q<p + y{cp) sin qç? — h(<p) — 0
(2.10)

x(<pr) cos Q<pf+ y(<p') sin gcpf— h((pf) 0

gilt. Ist nun der Bogen in der Umgebung von P(cp) konvex, so liegen
P(<pf) bzw. P(<p) auf der linken Seite der Stutzgeraden von Normalen-
richtung gcp bzw. q<pr. Es ist also

x(<pf) cos Q(p + y(<pf) sin qcp — h((p) < 0
und (2.11)

x(<p) cos Q(pr + y{<p) sin Q<pf — h(<pf) < 0

Werden die Gleichungen (2.10) addiert und davon die Ungleichungen
(2.11) subtrahiert, so folgt

(x{cpf) — x(<p)) (cos çq>f — cos £9?) + (y(y') — y(<p)) (sin Q(pf — sin gcp) > 0.

Durch Ûbergang zum Differential unter Beriicksichtigung von dcp > 0,

wegen ç/> cp, ergibt sich (— sin Q<p) dx(q?) + cos q<p • dy{q>) > 0

und wegen (2.5) o h{cp) dcp H dhr((p) > 0
Q

Dièse Rechnung lâBt sich umkehren und entsprechend fur eine konkave
Umgebung durchfuhren. Daraus folgt dann :

83) Gemâfi dieser Définition kann ein Kurvenstûck konkav oder konvex sein, je nachdem
wie die Stùtzgerade oder das Kurvenstûck selbst orientiert wird. Wird die Kurve mittels
der Stûtzfunktion definiert, so ist auch ihre Orientierung festgelegt und damit entschieden,
weîche Bogen konvex und welche konkav sind. Ist aber die Kurve gegeben, so besitzt sie

im wesentlichen zwei Stûtzfunktionen. Ist hx(cp) die eine, so h2(cp) — htlcp-\ J die

andere. Sie bewirken entgegengesetzte Orientierung der Kurve. Obige Définition von
konkav und konvex besitzt also nur hinsichtlich einer Stûtzfunktion einen Sinn.
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Die Hiillkurve der Geradenschar (2.1) ist in der Umgebung des Punktes
xi(f) > y(<P) dann und nur dann konvex (konkav), wenn d£((p)

gh(<p) d(p+ — dh\<p) > 0 (< 0) istM)
Q

Insbesondere folgt: Es ist dann und nur dann die ganze Hiïllkurve
konvex (konkav), wenn 2(<p) eine monoton wachsende (abnehmende)
Funktion des Winkels <p ist.

Die Eigenschaft der Hûllkurve, an einer bestimmten Stelle konvex
(konkav) zu sein, ist gegenûber der Transformation 0 Xcp, A > 0,

invariant, m. a. W. ist die Hûllkurve der Schar

x cos Q(p + y sin qcp — h((p) — 0

an der Stelle <pQ konvex (konkav), so ist die Hiillkurve der transformierten
Schar

x cos I — <P I + y sin l-~ Q> I — & (Q>) U

an der Stelle 0O Aç>0 konvex (konkav). Berûcksichtigt man nàmlich,

da8 H(0) h(<p), d& Xdq>, dH'(0) -r- dW((p), so folgt
A

-—- H(0O) d0 H dH/(0Q) =qh(<p0) d<p -\ dh'(q?Q)

woraus in Verbindung mit dem vorigen Ergebnis die Behauptung folgt.

21. Aus dem Vorangehenden (insbesondere Nr. 19) sehen wir, da8
jedem h(<p), das den eingangs gemachten Voraussetzungen genûgt, mittels
(2.7) eine Funktion fi (<p) zugeordnet ist, die von beschrànkter totaler
Schwankung ist und der Bedingung (2.8) genûgt. Dièse Zuordnung ist
umkehrbar, d. h. zu jeder Funktion fi(ç?) mit beschrànkter totaler
Schwankung, die (2.8) erfullt, existiert eine Funktion h(<p), welche den
in Nr. 16 gemachten Voraussetzungen genûgt und die Gleichung (2.7)
erfullt. Geometrisch gesprochen heiBt dies: Jede solche Funktion fi(ç?)
kann Bogenfunktion einer Hûllkurve der Schar (2.1) sein; dièse
Hûllkurve ist bis auf Translationen eindeutig bestimmt.

Satz 6. Sei £ (ç>) eine Funktion, die im Intervall oc < cp < j8 von 6e-

schrânkter totaler Schwankung ist und der Bedingung

M) Vgl. hierau auch R. Heine [1].
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genUgt. Zu irgend zwei reéllen Zahlen a und b, zu einem Winkel q>0 in [oc, fi)
und zu g> 0 existiert dann eine und nur eineStïïtzfunktion h{cp), welche die
Voraussetzungen von Nr. 16 erfûllt, eine Hûllkurve mit der Bogenfunktion
£ (99) erzeugt und den Lagebedingungen

a, h'(<po) b (2.13)

genûgt. Dièse Stûtzfunktion besitzt die Darstellung
I (Y)

h(cp) a cos £(9? — <p0) -\ sin g(q>—q>0) -f j sin g(<p—0) df&(0). (2.14)

22. Beweis von Satz 6.

Es ist zu zeigen,
1. daB h((p) die Voraussetzungen in Nr. 16 erfûllt,

2. daB ph(w)d(p ~| dh\w) d£,(œ) ist und
Q

3. daB die Lagebedingungen (2.13) erfullt sind und die Funktion h(9?)

eindeutig bestimmen.

Zum Beweis von (1) und (2) geniigt es h^cp) J sin g(9? — 6) d&(6)

— £ («Po) • sin g (<p — <p0) + g J cos g (99 — 0) £ (0) dd zu betraehten.

1. Fur jedes beliebig kleine rj gilt

+ M) sin
rj rj

f COS Q (ç?

[

^ L 9Po

9

V

und durch Grenzûbergang, rj~> + 0, folgt
1 f~~~"h+1((p) £(9?+0) — [2((p0) cos q((p—9P0)+^J sin q((p—0)£(0)d0] (2.15)

entsprechend bei ri -> — 0
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— h_[{<p)=2(<p—0)—[£(?„) cos e(ç>—<po)+QJamQ(<p—0)2(6)dd] (2.16)

Aus (2.15), (2.16) und (2.12) folgt dann (vgl. (2.3))

-0)fi(0)d0

] cos Q(cp — 0)d2{0). (2.17)

Da die eckigen Klammern auf der rechten Seite von (2.15) und (2.16)
stetig sind, folgt wegen der Voraussetzungen uber £(<p), da8 die Ab-
leitungen hf+1(<p) und h>Li((p) und daher auch hr^(cp) und hf_((p) von be-
schrânkter totaler Schwankung sind und der Bedingung (2.2) genugen;
damit ist (1) bewiesen.

2. Zum Beweis von (2) gehen wir von (2.17) aus und bilden

— dhrx((p) J cos q ((p + jjrdcp — 0)d2(0)— J cos q((p—~\d(p—6)d2(0)

J [cos g((p + \d(p — 6) — cos q (y —\dy — 0)] d&(0)
<Po

d2((p) — qd<p - J sin q(<p — 6) d£{6)

— Qh^cp) d<p

Damit ist (2) bewiesen.

3. Da h^yo) 0 und Ji'^q) 0, so ist nach (2.14) die Bedingung
(2.13) erfullt. Es bleibt zu zeigen, dafi h(<p) durch die Bedingung (2.13)
eindeutig bestimmt ist. Sei litp noch eine zweite Funktion, die (2.6)
und (2.13) geniigt. Dann ist

h(<p) a cos ç(<p — (p0) H sine(ç? — <p0) +

+ J 8ÏnQ(<p — 6) [Qh*(d)d0 + —dh*'(O) ]

und es folgt durch partielle Intégration
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i v 1
— f sin p(w — 0) dh*\B) — sin

+ J h*'(6)cosQ(<p — 0). dd

<

und wegen (2.13)
% 1

f sin Q(<p—6) \Qh*(O)dd -\ dh*f(O) ]
w Q

b
sin ç (œ — w0) — a cos p (œ — w0) -\~ h*(œ)

Q

und daraus h (y) h*(y). Damit ist auch die Eindeutigkeit bewiesen.

23. Spielte bei den vorigen Betrachtungen die Periodizitàt der Funk-
tionen h(cp) und d2(cp) keine Rolle, so soll jetzt, um den AnschluB an den
ersten Abschnitt*) zu gewinnen, untersucht werden, unter welchen
Bedingungen die Stutzfunktion h (<p) und das Differential der
Bogenfunktion £(ç>) gleichzeitig die Période 2n besitzen kônnen. Setzen wir
voraus, h(<p) besitze die Période 2n\ dann hat nach (2.6) d£,((p) dieselbe
Période oder, was dasselbe bedeutet, die Bogenfunktion fl(ç?) besitzt die
Eigenschaft

(2.18)

Jeder Stutzfunktion mit der Période 2n ist also eine Bogenfunktion mit der

Eigenschaft (2.18) zugeordnet.

Gilt auch die Umkehrung: Jeder Bogenfunktion mit der Eigenschaft
(2.18) ist eine Stutzfunktion mit der Période 2tt zugeordnet?

Fur ganzzahlige q, g 1, 2, 3, làfit sich dièse Frage leicht mit
der Formel (2.14) entscheiden. Ersetzen wir nàmlich dort q durch n,
n 1, 2, 3, und cp durch q)-\-2jt so folgt

a cos n(cp — cp0) -\ sin n((p — cp0) +n

- J sin

oder

h{<p-\- 2n) h(<p) + J sinw(9? — 0)

_ y
*) Comm. Math. Helv., vol. 11, p. 180—213.
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Demnach besitzt die Funktion h(<p) dann und nur dann die Période 2n,
wenn die Funktion

7T 27T 2?r

sin n(q)—6)d2(6) 8inn<p • Jcos nO-d2(8)— cosnç? • JsinnO •dîfi(0)
Ç 0 0

identisch versehwindet oder wenn
Zn 27T

J cos » 0 • d&(6) 0 und J sin n 0 • <Zfi(0) 0
0 0

ist. Unter diesen Bedingungen besitzt also jede zu fi(<p) gehôrige Stiitz-
funktion die Période In und die einzelnen Funktionen unterscheiden sich

um eine additive Funktion von der Form A cos n<p + B sin n<p.
Anders jedoch fur nicht ganzzahlige q, q ^ 0, 1, 2, In diesem

Falle ist die Existenz periodischer Funktionen aus (2.14) nicht ersichtlich
und existiert eine solche, so wird durch Addition von A cos Q<p-\- B sin qçp

die Periodizitât wieder zerstôrt. Wie nun im folgenden genauer formuliert
und bewiesen werden soll, gibt es zu jedem £(ç>) mit der Eigenschaft
(2.18) eine und nur eine Stiitzfunktion von der Période 2jt.

Dièse Tatsachen legen einen tiefgehenden Unterschied zwischen ganz-
zahligem und nicht ganzzahligem q bloB und geben zugleich einen ersten
Hinweis auf die Beziehung dieser Betrachtung zu ganzen Funktionen.
Denn dort ist der Strahltypus h (y) einer ganzen Funktion vom Mittel-
typus einer ganzzahligen Ordnung q durch die Nullstellen nur bis auf eine
additive Funktion von der Form A cos qcp -\- B sin qy bestimmt, wâhrend-
dem der Strahltypus bei nicht ganzzahliger Ordnung durch die Null-
stellenverteilung vollstàndig bestimmt ist.

Satz 7. 8ei fi(ç?) eine fur aile q> definierte Funktion, welche die Voraus-

setzungen von Satz 6 und die Bedingung

± 2n) &(<p) ± (fi(2*) —fl(0)) (2.18)
erfûllt.

(I) Zu einem nicht ganzzahligen positiven g gibt es dann eine und nur eine

Stiitzfunktion h((p) mit der Période 2n, welche die Voraussetzung in Nr. 16

erfûllt und eine Hûllkurve mit der Bogenfunktion fi (cp) erzeugt. Dièse
Stiitzfunktion besitzt die Darstellung

2sin^^- h(<p) J cos(#0 — qti) -dQ(<p + 6) (2.19)

welcher nach Satz 6 noch die folgende an die Seite gestellt werden kann :

cos q(<p—<Po) -\—^-sin q(<p—<Po) + Jsin q(<p —
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(II) Zu jedem ganzzahligen q, q 1, 2, 3, gibt es dann und nur dann
eine Stûtzfunktion h (cp) von der obigen Eigenschaft, wenn die Bogenfunktion
£,(q>) ilberdies den Bedingungen

2.71 27T

J cos Q6.d£(0) 0 und J sin qO - d2,(6) 0
0 0

geniigt. Dièse Funktion h(cp) ist dann von der Form (2.14).

Aus diesem Satz folgt nun unmittelbar die im ersten Absehnitt an-
geklindigte geometrische Deutung der Beziehung (1.61). Denn setzen
wir in (2.19) 2(cp) 2n • N*(<p), so folgt35) (1.61). Der durch N*(q>) be-
stimmte Strahltypus h (cp) erzeugt daher als Stutzfunktion eine Hiillkurve,
deren Bogenfunktion £(<p) 2n N*(q>) ist. Es folgt

Satz 8. Sei f (z) eine meromorphe Funktion von der prâzisen Wachstums-

ordnung Q(r), g(r)->Q9 g^O, 1, 2, Ist ihre Nullstellen- und Polstellen-
verteilung mefibar bezûglich dieser Ordnung und sind NQ(<p) und N^qt)
ihre entsprechenden Mafifunktionen, so geniigt ihr Strahltypus h(<p) den

Voraussetzungen von Nr. 16 und erzeugt als Stûtzfunktion eine Kurve ohne

Wendepunkte, deren Bogenfunktion

ist. Im entsprechenden Fall ganzer Funktionen erzeugt der Strahltypus als
Stûtzfunktion eine konvexe Kurve mit der Bogenfunktion 2jiN((p).

24. Beweis von Satz 7. Es bleibt (I) zu beweisen. Wir zeigen,
1. daB h{(p) die Voraussetzungen in Nr. 16 erfullt und die Période 2n

besitzt,

2. daB eh(<p) dq> + — dh\<p) d2(cp) ist,

3. daB h (y) durch dièse Eigenschaften falls £^0,1,2,... eindeutig
bestimmt ist.

1. Da nach (2.18) d2,(d) die Période 2n besitzt, so gilt nach (2.19)
dasselbe fur h ((p). Durch partielle Intégration folgt weiter aus (2.19)

2sinQ7i-h(<p)= (£(2ti) — £(0))cosq7i+q J £(<p + 0) sin (q6—Qn)dQ
o

oder
9P+27T

7i'h{<p)={Z{27i)—£(0))cos^jr+^ J fî(0) sin Q(d-cp—7t)de .(2.20)
2L_

85) Die Funktion 2;r N*(cp) geniigt wegen (1.43) den Voraussetzungen von Satz 7.
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Fur jedes beliebig kleine r) gilt dann

h(<p+r))—h(<p)2 sin qti •

V

-£- |£(0) sin Q(6—<p—r) — 7z)dO £. ffi(0) sin q(O — tp — n) dO=

5P+27T

Q fm ^Q(e-<p-rj-n)-8mQ(0-<p-n) ^

V

Beriicksichtigen wir (2.18), so folgt durch Grenzûbergang rj

2 sin Q7t
— • h\((p)

^ +V^; (2.21)
9P+27T

=£(^+ 0) • 2 sin Q7Z+ (fi(2jr) —£(0)) sin ^jr— q J fi(fl) cos ç(0—(p—7z) dd
<p

und entsprechend bei rj -> — 0

2 sin ^tt
(222)

2sin Q7t+{2(2n) — £(0))sin Qn—Q $ £(0) cos Q(O—(p—n) dd

Aus (2.21) und (2.22) ergibt sich

Q
W)

(2.23)

2((p) • 2 sin q7z+($,(2ti)—fi(0)) sin ^tt—^ J £(0) cos Q(6—(p—n) d6

Da die Intégrale auf den rechten Seiten von (2.21) und (2.22) stetig
sind, so folgt wegen der Voraussetzungen ûber &(cp), da8 die Ableitungen
7h'+{(p) und hr__{<p) von beschrânkter Schwankung sind und die Bedingung
(2.2) erfullen. Damit ist (1) bewiesen.
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2. Zum Beweis von (2) bilden wir aus (2.23)

2 sin gît
• dh'((p)

Q

— Q S fi(0)cos e(0 — tp —\d<p — n)dO

cos q(6 — cp+ldcp — n)dd

2 sin e^-dfi(<?) — £ J fi(9) cos Q{d—<p—\d<p—7i)dd +

cos e(0—

— Q J £(0)[cosg(0—<p—\d(p — n) — cos ^(0 — y-\-\d(p—7i)]dd=

2 sin Q7t • d£(q)) — q • dç>[(£(2:rc) — fi(0)) cos qn +
9P+27T

+ q J £(0) sin e(0 — cp — n) dd]

Daraus folgt aber in Verbindung mit (2.20) die Gleichung (2.6).

3. Es bleibt zu zeigen, da8 h (<p) durch £(99) und die Periodizitât-
eigenschaft bei q ^ 0, 1, 2, eindeutig bestimmt ist. Wir nehmen an,
es gâbe eine zweite Funktion A*(cp) mit der Période 2n, fur die Qh*(q))d(p +
~dh*'((p) d£(<p) ist. Dann ist wegen (2.19)

2 sin Qn • h(<p) \ cos ^(0 — n) (Qh*(q)-\-0) dd-\ dk*r((p-\-6))
0 Q

Durch partielle Intégration folgt

j 2n j 27T

— f cos p (0 — n) dh* '(w -(- 0) — cos p (0 — :

£o Q

Zn 2tt

+ Jsing(0 — n) h*'((p + O) dd fsing(0
0 0

2?r 2k
cos p(0 — n) h*lw + 6) • ddI — ^ f

0 0
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Berûcksichtigen wir die Periodizitât von h*(q>), so folgt

2 sin qui • h((p)

J cos £(0 — n) (Qh*(q> + 6)dd-] dh*'((p-\-6))=2 sin qtt • A*(ç?)

A (9?) und A*(ç?) sind also identisch. Damit ist der ganze Satz bewiesen.

25. In Satz 3*) haben wir eine Klasse von Funktionen kennen gelernt,
deren Strahltypus h(<p) die Darstellung (1.46) besitzt, wo N(<p) eine
monoton wachsende Funktion ist; nach Satz 8 umhiillt dieser Strahltypus

als Stutzfunktion eine konvexe Kurve. Anderseits weiB man, dafi
jeder Strahltypus einer Funktion von der Ordnung g der Funktional-
ungleichung (1.17) genugt. In welchem Verhàltnis dièse drei Eigen-
schaften zueinander stehen, gibt der folgende Satz AufschluB :

Satz 9. Die folgenden drei Bedingungen fur die FunJction h (y) sind
équivalent :

A) Es gibt eine monoton wachsende Funktion 2(q>), so dafl fur geeignete
Konstanten a, b und <p0

<p

h((p) a cos q{<p — (Pol + b sin g((p — ç>0)+ J sin ^(^ — ^) d2(0)

ist.
B) Die Funktion h(<p) erzeugt bei gegebenem q>0 mittels (2.1) eine

konvexe Hilllkurveu).

C) Fur jedes Wertetripel q>lf <p2, ç?3 mit

<Pi<<P2<<Ps » n — <Pi<Y > <Ps—<P2<^ (2.24)

genugt h(<p) der Funktionalungleichung

sin e(ç>3 — ç>2)+ h((p2) sin e(ç?i—<p3)+ H<Pz) sin Q(<P2—<Pi) >®- (2.25)

DaB die Bedingungen A) und B) àquivalent sind, ergibt sich aus Nr. 20

und Nr. 21. Es bleibt die Âquivalenz der Bedingungen A) und C) zu
beweisen.

26. Ails Bedingung A) folgt C).

Da die trigonometrisehen Funktionen cos qcp und sin qcp die Funktional-

86) Die Funktion h(cp) soll natûrlich auch den Voraussetzungen von Nr. 16 genûgen.
Betrefïend die Stutzfunktion konvexer Bereiche vgl. auch G. Pôlya [1], S. 571—578.

Vgl. 1. Abschnitt, Comm. Math. Helv., vol. 11, p. 206.
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gleichung erfullen, die aus (2.25) durch Ersetzen von ^ durch erhalten

wird, so genugt es, hx(q)) J sin g(cp — 0) d£,(0) zu betrachten.

Setzen wir in der linken Seite von (2.25) ein, so folgt

J* sin g {(p1 — 0) sin g (cp3—q>2) dfi (0) + J sin g (9?2—0) sin q (<p1 — <

+ J sin q (ç?3 — 6) sin q (cp2 — 9^) d£ (8)

J { sin q {(p1 — 0) sin q (cps — <p2) -\- sin q (ç?2 — 6) si

-f- sin g (<pz — 6) sin q (q?2— (pt) } d£ (6) + J [sin q (ç?2 — 6) sin q (<p± —

+ sin q (993 — 6) sin q (q>2—(p±) ] rffi (0) + J sin g(ç?3 — 6) sin g (<p2—9^) • 1

Nun ist die geschweifte Klammer { } identisch null und die eckige
Klammer [ ] gleich sin q(0—cpx) sin Q(<pz—<p2). Also wird aus der linken
Seite der Funktionalungleichung (2.25)

J sin giO—cpj) sin Q{(p3—(p2) • d£(0)+ J sin Q((pz—6) sin Q^—cpx) • dfi(fl),

woraus wegen df&(0) ^ 0 und (2.24) folgt, daB dièse linke Seite stets
ist.

27. ^^s 0) folgt A).
Wir zeigen zunâchst, daB h (99) den Voraussetzungen von Nr. 16 genugt

und betrachten hierzu eine Stelle <p0 in der

h((po)<O (2.26)
gilt. Es sei

Indem man

9?o — £ 9^o —

ersetzt, erhâlt

sin (—ge')

e, ç)0 bz

man

sin

in (2.25)

w. n-
e)-h«p0)
(—e«)

durch

>o

«PoH-

+ 8,

sin

•

a bzw. <p0,

| —h(q)0) ^ h(q

6s

(2

Po + e, <p0

'o + e')—'
singe'

.27)

+ e'

»( 0)

(2.28)

39



Fur das zuerst betrachtete Wertetripel ergibt nâmlich (2.25)

h((pQ — e') sin qe — h(<p0 — fi) sin qe' ^ — h(<Po) s^n Q(€' — £) >

woraus weiter
(h((pQ — e') — h((p0)) sin qe — (h(<p0 — e) — h((p0)) sin qe'

^ h(<Po) [sin Q8' — sin Q8 — gîn (?(fi/ — 8)]

— 2h(<p0) sin-|- Er • sin -f- e • sin -|- W — e)> 0
z z z

folgt, unter Beachtung von (2.26) und (2.27); d. h.

[h((p0 — Er) — h((p0)] sin qe > [h(<p0 — e) — h(<p0)] sin qe!

was mit der ersten der Ungleichungen (2.28) gleichbedeutend ist.
Nun bedeutet aber (2.28), da8 die (fur x — 0 nicht definierte) Funktion

vv^o "T / vW ^ ejner orewissen Umgebung des Punktes x 0 stets

zunehmend ist. Daher strebt sie gegen einen Grenzwert, sowohl dann,
wenn x von rechts, als auch dann, wenn x von links in den Nullpunkt
hineinrûckt ; d. h. es existieren die rechts- und linksseitigen Differential-
quotienten h+((p0) und hr_(<p0) und es ist

hU<Po)<h'+{<po). (2.29)

Zugleich folgt, daB h(q?) in der Umgebung von (p0 stetig und daher fur
einen benachbarten Winkel cp > <p0 noch negativ ist. Daher ist auch
Ji(<p-\- x) — h (w)

in der Umgebung des Punktes x 0 stets zunehmend.

Setzen wir x cp — ç?0, so folgt

n+Wo)<Q =g r <h{)+wo/->.tf sin ça; ^ sm (—qx) ^ vr/

und daraus in Verbindung mit (2.29)

h'+(n) < hUv) < h'+(/P) (2-30)

sofern <pXp0 und cp — ç?0 genûgend klein ist. Demnach ist bei kleinem
positiven rj

— 2 g® 2 sin g ?7 sin ^ rj
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Bei r}-+0 strebt die letzte Seite dieser Ungleichung gegen A^(9?o). Ent-
sprechendes gilt bei kleinem negativen rj und 17->0. Daraus folgt

h+(<Po + 0) hL(<p0 + 0) h'+(<p0) (2.31)

h+(<pQ — 0) hU<P — 0) hU<Po)

Nun wollen wir uns von der Beschrânkung (2.26) befreien. Die
Ungleichung (2.25) bleibt richtig, wenn darin h(99) durch

h (q?) — A cos g (<p — (pQ) h-iHy) (2.32)

ersetzt wird, A als konstant vorausgesetzt. Bei passender Wahl von A
ist die Funktion (2.32) fur q> y0 negativ und besitzt daher fur cp <pQ

einen rechts- und linksseitigen Differentialquotienten, der je (2.29),
(2.30) und (2.31) geniigt. DieFunktionen hf+(q>) und h!_((p) erfullen daher
die Bedingung (2.2), sind stuckweise monoton und somit von beschrànk-
ter totaler Schwankung. h(<p) geniigt also denVoraussetzungen in Nr. 1637).

Wir setzen nun d£(<p) gh((p)d(p-\ dh'(<p). Dièses Differential er-
Q

fiillt die Voraussetzungen von Satz 6. Also ist

h(<p) a cos g (cp — ç?0) -) sin g (<p — y>0) + J sin g {9 — 6) d£, (0)
g <p0

und es bleibt zu zeigen, dafi d2(0) stets positiv ist. Durch Anwendung der
Punktionalungleichung (2.25) mit cpx cp2 — e, <p2, ç?3 cp2 + e, folgt
fur jedes e > 0 (vgl. Nr. 26)

^2+
e) sin Qe-d2(6)-i- J sin g((p2 + e — 0) sin ge • d£(0) ^ 0

oder mit 6 — <p2 df

0 e

jsin q(0'+ e) sin qs • dZ(df+<p2)+ Jsin e(—6;+ e) sin ge
0

Dièse Beziehung kann aber nur dann fur jedes e > 0 gelten, wenn 2(0)
in der Umgebung von <p ç?2 und daher iiberhaupt monoton ist. Damit
ist ailes bewiesen.

87) In dieser Nr. folgten wir bis hieher zum Teil wôrtlich der Beweisfûhrung von
G. Pôlya [1], S. 574—575.
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28, V. Bernstein hat gezeigt, daB zu jeder Funktion h (q>), die der
Funktionalungleichung (2.25) genugt, eine ganze Funktion vom Mittel-
typus der Ordnung q existiert, die dièse Funktion als Strahltypus besitzt,
daB also die Funktionalungleichung (2.25) die Klasse der Strahltypen
vollstàndig charakterisiert38). Satz 9 und Satz 4 und 3 des ersten Ab-
schnittes ergeben folgende Ergànzung dièses Résultâtes:

Satz 10. Zu jeder Wachstumsordnung q{r), q(v)->q^O, 1, 2, und zu
jeder Funktion h(<p), welche der Ungleichung (2.25) genûgt, gibt es eine

ganze Funktion von der prâzisen Wachstumsordnung q (r) und der Eigen-
schaft (1.45).

Nr. 19 und Nr. 15 ergeben in Verbindung mit Satz 8 ein entsprechendes
Résultat fur meromorphe Funktionen:

Satz 11. Zu jeder Wachstumsordnung o(r), o(r)->Q^O, 1, 2, und zu
jeder Funktion h(cp), die den Voraussetzungen in Nr. 16 genûgt, gibt es eine

meromorphe Funktion von der Eigenschaft (1.60).

Dritter Abschnitt
Die Variation des Argumentes und die Nullstellenverteilung

ganzer Funktionen mit regulàrem asymptotischen Verhalten

29. Im ersten Abschnitt lôsten wir die Aufgabe, das asymptotische
Verhalten ganzer Funktionen mit meBbarer Nullstellenverteilung zu
bestimmen. Dabei stellte sich heraus, daB solchen Nullstellenverteilungen
ein weitgehend regulàres Verhalten des Betrages \f(z)\ entspricht (vgl.
Satz 3). Das Ziel dièses Abschnittes ist die Lôsung der umgekehrten
Aufgabe: Aus dem regulâren asymptotischen Verhalten ganzer
Funktionen ist ihre Nullstellenverteilung, allgemein ihre Wertverteilung zu
bestimmen. Hierzu erledigen wir zuerst die Hilfsaufgabe, aus dem
asymptotischen Verhalten des absoluten Betrages dasjenige des Argumentes
zu bestimmen. Aus dem Verhalten beider, des Betrages und des Argumentes,

schlieBen wir dann auf die Wertverteilung.
In den nun folgenden Betrachtungen kônnen wir uns von der Vor-

aussetzung, daB es sich um ganze Funktionen handle, befreien und allgemein

solche Funktionen zugrunde legen, die in einem Winkelraum
regulàr sind. f(z) bedeute also bis auf weiteres eine Funktion, die im

88) F. Bernstein [4]. Fur ganze Funktionen vom Exponentialtypus ist dieser Satz
zuerst in G. Pàlya [1], S. 595, formuliert und bewiesen worden.
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Winkelraum oc < arg z < /} sich regulâr verhâlt. Bezeichnen wir mit
M(r) ihren maximalen Betrag auf dem Kreisbogen \z\ r, oc<a,Tgz<(5,
so lassen sich die in Nr. 2 gegebenen Définitionen fur Ordnung q, pràzise
Wachstumsordnung q(t) und Strahltypus h (cp) von f(z) wôrtlich auf
unsere allgemeinere Funktionsklasse ubertragen. Dagegen kann jetzt die
Ordnung q auch negativ werden. Wir lassen diesen Fall auBer Betracht
und beschrânken uns auf solche Funktionen, die in einem Winkelraum
regulâr und von positiver Ordnung39) sind. Hievon beschàftigt uns haupt-
sàchlich jene Klasse, deren asymptotisches Verhalten regulâr ist. Letzteres
wird durch folgende Définition genauer formuliert:

Das asymptotische Verhalten einer ganzen Funktion, die im Winkelraum
(X < arg z < /?, regulâr und von prâziser Wachstumsordnung q (r) ist, heifit
regulâr, wenn fur jedes y im Intervall (oc, /?)

lim* log
r->oo

ist.
Zur Définition dieser Regularitât wurde lediglich der absolute Betrag

der Funktion zu Hilfe genommen. Es ist also genauer genommen eine

Regularitât des Betrages. Unser Ziel ist zu zeigen, daB eine solche
Funktion sich auch hinsichtlich des Argumentes und der Wertverteilung
regulâr verhâlt, was nachtrâglich eine Rechtfertigung unseres Regula-
ritâtsbegrifïes bedeutet.

30. Vergleichen wir zunâchst das Verhalten des Betrages und des

Argumentes von f(z). Ein weitgehender Unterschied ist offensichtlich :

Der absolute Betrag \f(z)\ ist eine eindeutige Funktion, das Argument
arg / (z) dagegen unendlich vieldeutig und in den Nullstellen von / (z)

sogar vôllig unbestimmt. Um arg/(z) korrekt zu definieren, wâhlen wir
in einem festen Punkt z0, der keine Nullstelle ist, einen bestimmten
Zweig des Argumentes und setzen diesen von z0 aus lângs eines Weges,
der die Nullstellen von f(z) vermeidet, bis nach z stetig fort. Der so er-
haltene Wert arg f(z) ist eine eindeutige Funktion des gewâhlten Weges,
also eineWegfunktion. Setzen wir arg /(£) lângs eines zweiten ,,erlaubten",
d. h. die Nullstellen meidenden Weges von z0 nach z fort, so stimmen die
beiden Endwerte dann und nur dann uberein, wenn die Anzahl der von
beiden Wegen im positiven Sinne umschlossenen Nullstellen gleich
Null ist.

39) Ob solche Funktionen immer auch eine prâzise Wachstumsordnung ç(r) im Sinne
von Nr. 2 besitzen ist m. E. noch nicht sichergestellt. Wir betrachten deshalb von vorn-
herein nur solche Funktionen mit einer pràzisen Wachstumsordnung Q(r).
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Betrachten wir nun arg/(«) speziell auf der Halbgeraden arg 3 q>.

Enthâlt sie keine Nullstellen der Funktion, so hat man nur in einem ihrer
Punkte, etwa im Nullpunkt, einen Zweig des Argumentes festzulegen und
diesen dann làngs der ganzen Halbgeraden stetig fortzusetzen. Enthâlt
sie Nullstellen, so ist festzulegen, auf welchem erlaubten Wege irgend ein
Punkt des Strahles erreicht werden soll. Seien Qnei(p, n 1, 2, 3, die
Nullstellen auf arg z cp; sn die dazwischen liegende offene Strecke
tei<p, Qn<t< £n+i> w 1, 2, Zwei benachbarte Strecken kônnen im
wesentlichen auf zwei Arten durch einen genûgend kleinen Halbkreis40)
miteinander verbunden werden, entweder rechts oder links um die
trennende Nullstelle herum, wenn die Gerade von z 0 ins Unendliche
durchlaufen wird. Verbinden wir willkurlich auf die eine oder andere Art
je zwei benachbarte dieser Strecken, so entsteht eine zusammenhângende
Punktmenge. Irgend zwei Punkte r1c<9? und r2ei(p, die keine Nullstellen
sind, kônnen dann auf einem erlaubten Weg in dieser Punktmenge
verbunden werden, und zwar im wesentlichen auf nur eine Art. Setzen wir
also einen Zweig des Argumentes in einem Punkt roei(p, der keine Nullstelle

ist, làngs der festgesetzten Wege in die Punkte der Strecken sn stetig
fort und definieren wir arg f (gnei<p) lim arg f(tei<p), so ist arg f(z) auf

der ganzen Halbgeraden arg z <p eine eindeutige Funktion von z oder
SbTgf(rei<p) als eindeutige Funktion von r erklârt. Sie erleidet bei einer
fc-fachen Nullstelle den Sprung -^zkjt. Bei verschiedener Wahl des Aus-
gangszweiges unterscheiden sich die erhaltenen Funktionen nur um ein
Vielfaches von 2tz. Wenn im folgenden irgendwie von arg f(rei(p) als

eindeutig definierter Funktion von r die Rede ist, so ist dies immer auf
eine der eben beschriebenen Môglichkeiten geschehen.

Wir betrachten ein Beispiel: Sei f(z) 2 cos nz ei7TZ + ë~ilTe. Dann
ist

wobei ip(r, <p)->0, wenn r-> cx5 und y ^ 0, n ist. Daher gilt fur cp ^ 0, n

g|/(^) |->jr|sin^| h{cp)

und
— a,rgf(rei(p) -> — (sign (p)n cos w — h'(<p)
r

Dièse Limesbeziehung des Argumentes gilt nicht mehr fur <p 0. Dahin

40),,Genûgend klein" heiôt hier, der Halbkreis kann auf seinen Mittelpunkt zusammen-
gezogen werden, ohne dabei Nullstellen der Funktion zu ûberstreichen.
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deutet schon die Tatsache, daB die beiden Grenzwerte —A'(+ 0) —n
und —h\—0) -\- n verschieden sind. Durch genaueres Hinsehen er-
kennt man auch, daB immer

lim sup— arg /(r) ^ n und lim inf— arg f(r) > — n

ist, wie auch arg / (r) als eindeutige Funktion erklârt worden sei, und
daB durch besondere Wahl der Définition je eine der beiden Grenzen er-
reicht werden kann. Dièse Stôrung der Limesbeziehung fur arg f{reiq>)
bei <p 0 trifft in diesem Beispiel mit zwei andern Tatsachen zusammen :

Einerseits mit dem Auftreten ,,vieler" Nullstellen auf der positiven reellen
Achse, anderseits mit der Unstetigkeit von hf((p) bei <p 0. Unsere nach-
folgende Untersuchung zeigt, daB dièse drei Momente immer gleiehzeitig
auftreten, vorausgesetzt natûrlich, daB es sich um Funktionen von
regulârem asymptotischen Verhalten handelt.

31. Die Feststellungen beim soeben betrachteten Beispiel veranlassen

uns, die Untersuchung von &Tgf(rei(p) zunàchst auf solche Richtungen
zu beschrànken, fur welche h\<p) stetig ist. Der Kern dieser Untersuchung
besteht im Beweis des folgenden Hilfssatzes:

Hilfssatz 5. Die im Winkelraum |argz|<<% regulâre Funktion f(z) von
der pràzisen Wachstumsordnung g(r) geniige den Bedingungen

h(0) 0, lim h'(0) A'(0) 0 (3.2)

und
lim* -=i- log | f(r) | A(0) 0 (3.3)

Dann gilt, wie immer auch arg /(r) auf der positiven reellen Achse als
eindeutige Funktion erklàrt worden sei,

Beweis: Wegen (3.2) gibt es eine nicht négative Funktion B(<p), die
mit cp gegen Null strebt41), so daB

B(<p)BhiQ<p9 \0\^<p, (3.5)

fur jedes positive <p(<oc) und daher wegen (1.16) bei genugend groBem r
41 Dies kann z. B. aus (2.14) geschlossen werden.
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log \f(z)\<(B(v) an ev+o(l)) (l + fànv)' • V(r)

fur z in 12 — r | ^ r sin ç> und wegen (3.3)

fur ein z0 in \z —r\ ^ — sin 95. Durch Anwendung von Hilfssatz 2 b

(Abschnitt 1) auf die Funktion f(z) im Kreis \z —r\ < r sin 9? mit k ^
folgt dann

<H(B{(p) sin Q(p +

Setze nun r(l-\-^sin.(p) R und wàhle r so groÔ, dafi |o(l) <
sin Q(p. Dann ist r(l —^sinç?) (1 —^sinç?) (1 + ^sin^)-1-R
<r}<\) und

(1 — rf>)V(r)

fur jedes positive <p <— bzw. rj zwischen ~ und 1. Setzen wir

1 R

(jB)
J ^ {arg f(t)} A(R), so folgt aus

und (3.6)
(3.7)

Wir zeigen zunâchst: |^4(i2)| ist beschrânkt. Dazu wàhlen wir ein

festes rj zwischen 1 und ~ und dann R so groB (R>R0), daB | o (1) | < •

(und <B(tp) sin çcp) wird. Letzteres ist môglich, da o(l) in (3.7) nur von
V(R) abhàngt. Wâre nun |^4 (-/S) | unbeschrànkt, so gâbe es unendlich
viele R>R0 mit \A(R)\>2H'B(<p) und unter diesen ein solches R*, daB

\A(r)\<\A(R*)\ fur r< R*. Dies ergibt aber
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A(B*) 1 1^(1 + ^jjlr) • 1 M**) \ + (i - n9)

was der Ungleichung (3.7) widerspricht. Da mm lim sup |-4(jB)| endlich

ist, so folgt aus (3.7)

lim sup \A(R)\ < ^-limsup |4(2?')| + (I — VQ)H'B((p) und daher

lim sup |4(2Î)| < HfB((p).

Da aber hier die linke Seite von <p unabhângig ist und zugleich (p

beliebig klein gewàhlt werden kann, folgt aus jB(ç?)-> 0 mit <p-+0

lim =^Jd{arg/(*)} 0
R+oo r \-Llf o

und schlieBlieh wegen J d{arg/(£) } arg/(i?) — c die Behauptung.
o

Aus dem soeben bewiesenen Hilfssatz ergibt sich

Satz 12. Sei die im Winkelraum oc < arg z < /? regulare Funktion f(z)
von der prâzisen Wachstumsordnung q (r) und von regulàrem asymptotischen
Verhalten. Dann gilt fiir jede Stetigkeitsstelle der Funktion h\<p)

v) 1

— h'((p) (3.8)

voie auch arg f(rei(p) dis eindeutige Funktion von r definiert worden seiA2).

Bemerkung : Der Ausdruck hr{<p) hat eine einfache geometrische
Q

Bedeutung (vgl. Abschnitt II). Hat P(<p) dieselbe Bedeutung wie in
Nr. 17 und bezeichnet F((p) den FuBpunkt des Lotes von O aus auf die
Stiitzgerade von Normalenrichtung Q(p, so ist die nach Betrag und Vor-

zeichen bestimmte Strecke P{(p)F(cp) gleich A%>)43)

Beweis: Sei (p eine Stetigkeitsstelle von h\0). Setzen wir

so gilt
42) Vgl. A. Pfluger [2], Mit der Funktion h(cp) ist natùrlich auch die Beziehung (3.8)

invariant gegenûber Translationen der z-Ebene.
43) Ûber Fuûpunktkurven konvexer Kurven vgl. O. Doetsch [1] und [2], S. 80—86.
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log | f(re*°) | — [h(<p) cos Q(6 — <p)+j h'(<p)8inQ(e- <p)]V(r)+0(V{r))

Werden axg f(rei0) und arg F(reie) in gleicher Weise als eindeutige
Funktionen erklârt, d. h. wird je ein fester Funktionszweig auf gleichen
erlaubten Wegen in die Punkte der Halbgeraden arg z 6 stetig fort-
gesetzt, so gilt ferner

arg#(r^)= (3 g)

arg f(ré*) — [h(<p) sin q(6 — <p) — — h\<p) cos q(0—V)] V(r) + o (V(r))

Bezeichnet H (6) den Strahltypus von F(z), so folgt

H(0) h(B)— [h((p)co8Q(0—(p) + — h'((p)8inQ(6 — <p)]

und daraus
H(<p) 0 Km H'(0) H\<p) 0

F(z) erfullt also die Voraussetzungen des Hilfssatzes 5 mit 6 q> an Stelle
von 0 0. Es folgt arg F(rei<p) o (V(r)) und hieraus in Verbindung
mit (3.9) die Behauptung (3.8).

32. Untersuchen wir nun das Verhalten von arg f(rei<p) làngs jener
Richtungen, fur welche h'(<p) unstetig ist. Wie das am Schlufi von Nr. 30

angefuhrte Beispiel zeigt, kann hier nicht die Existenz eines Limes im
Sinne von Satz 12 erwartet werden. Anderseits hângen im allgemeinen
die stets existierenden Zahlen

Um sup^^- 2«p) und lim inf <*SJ<p. Œ A{<p) (3.10)

von der gewàhlten Définition von arg f(reiq>) ab. Damit ergibt sich die
Aufgabe, eine obère bzw. untere Schranke der Zahlen A(cp) bzw. A{q>)

zu suchen, die unabhângig sind von der Définition des Ausdruckes

g/(re^).
Pur aile Stetigkeitsstellen von hr(6) gilt nach Satz 12

h'{0){)
Beachten wir ferner, daB ~h'(d + O)^ ~h'(d — 0) (vgl.(2.9))
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und da6 die Stetigkeitsstellen von hr(0) uberall dicht liegen, so fiihrt eine
etwas voreilige Ûberlegung zum SchluB, da8 allgemein gilt

-h'(<p — O) und A(<p)°^ — —
Q ~ Q

Wir wollen dies als Satz formulieren und dann den voreiligen SchluB
nachtràglich rechtfertigen.

Satz 13. Ist die Funktion f (z) im WinJcelraum oc < arg z < fi regular, von
der prâzisen Wachstumsordnung @(r) und von regularem asymptotischen
Verhalten, so gilt, wie auch arg f(reiç>) als eindeutige Funktion von r erklart
worden sei

-L *'<„ + 0) < lim inf ^1^1 < lim sup ^^1<-Q̂
{ô. Il)

Bemerkung: Satz 13 enthàlt als Spezialfall Satz 12.

Beweis: Es genugt, den Fall /(0) ^0 zu betrachten; denn Satz 13 gilt
fur die beiden Funktionen f(z) und zn • f(z) gleichzeitig. Wir diirfen
weiterhin ohne Einschrànkung der Allgemeinheit annehmen, daB die
Punktionen arg f(rei(p) bel r 0 fur aile <p im Intervall (a, /?) denselben
Zweig des Argumentes besitzen. Denn der allgemeine Fall entsteht hier-
aus durch Addition je eines Vielfachen von 2tt (zu den Funktionen
arg f(rei<p)), was die Beziehung (3.11) wiederum nicht zu stôren vermag.
Unter diesen Voraussetzungen zeigen wir, daB

A (q>) ^ lim inf A (<p — rj) und A(y) ^ lim sup A(<p-\- rj), rj>09 (3.12)
>—0

ist, wovon (3.11) dann eine einfache Folgerung ist. Denn fur unendlich
viele, gegen q> strebende d gilt (3.8) und daher

liminfZ(ç?—r\) ^ h\<p—0) und lim sup A(<p+rj) ^ hf(<p~\-O),

woraus in Verbindung mit (3.12) die Behauptung (3.11) folgt.
Zum Beweis von (3.12) betrachten wir arg f(z) auf einer Kurve F, die

im wesentlichen mit dem Rande des Sektors | z \ ^ r, cpx ^ arg z ^ ç?2

iibereinstimmt, eventuell Nullstellen auf diesem Rande aber auf folgende
Weise durch kleine Kreisbogen umgeht: Wird arg f(z) von einem Punkt
rei<p, q>x ^ tp ^ <p2 im positiven Umlaufsinne lângs dieser Kurve F stetig
fortgesetzt, so soll dièse Funktion auf den Grenzradien des Sektors je mit
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arg/(rei9?1) und arg f(rei<p*) ûbereinstimmen44). Bezeichnet n(r) die
Anzahl der Nullstellen, die von F umschlossen werden, so gilt

U) darg/(z) 27i-n(r)
Da *%

0 r
J d arg f{tei<p*) + J d arg f(teiVl) arg f(rei<f>1) — arg f(rei<p*)
r o

so folgt
9>2

arg/(rei9?1) — arg/(reiç?2) 2n-n{r)— J d&rgf(reie) (3.13)

und schlieBlich

arg /(re**9'1) > arg /(rei9>2) — j d argf(reie)
Setzt man 9>1

1
lim sup
r->oo

(3.14)

(3.15)
A {(px) ^ A() J^

so folgt bei Verwendung der Bezeichnung (3.10) weiter

z A(<p2) — J{(px (p2)

Wir untersuchen das Verhalten von J(ç?i, ç?2)5 wenn 9?2 — ^-^O. Hierzu
setzen wir

9
'Viz'e"l<P), oc<<p<p. (3.16)

Es gilt dann

und

lim* JL log | F9(réP) | 0 (« < 9» <

lim sup «L. log | #v(re^) | < e/2
/->oo r V'j

in jedem Teilintervall (oc <) ocr ^ <p ^ /8/(< /S) von (^x, /?) und fur jedes

g> 0, sobald |ç> — 6|<2^(€,^/5 j8') 20 Daher ist

log \F(p(z)\<eV(r) ftir |« — re^| < r sin 23 und

log \Fv(z0) | > — eV(r) fur ein 2;0 in |z — reitp \ <r sin ô

44) Auf welchen kleinen Halbkreisen der Weg F die Nullstellen auf dem Bogen | z \

r, ç)2^ arg z^<^2 umgeht, ist an und fur sich gleichgùltig. Doch setzen wir fest, daû sie
immer im positiven Sinne umgangen werden sollen, wenn nichts anderes ausdrucklich
bemerkt wird.
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sobald r geniigend groB ist. Durch Anwendung von Hilfssatz 2 b (Ab-
schnitt 1) auf die Funktion Fv(z) im Kreis \z— rei(p\ < rsin2<5 mit

sin ô „le —.——r- folgt dann
sin2(S &

J

und wegen (3.16)

J à { arg

< eHV{r)

(He + 2\h(<p)\sm ô

fur r geniigend groB, ô geniigend klein und fiir aile <p im Intervall («', /?').

Fur ç> "T und ç?2 — ?>i ^ ergibt letzteres

<He-\-2\h((p)\ sin5

Da die rechte Seite mit ô beliebig klein wird, so folgt

Km J((p!,<p2) 0 (3.17)

wo auch das Wertepaar <pi,<p2 im Intervall (<xf, p') gewàhlt werde. Aus
(3.17) und (3.15) folgt (3.12), womit unser Satz bewiesen ist.

33, Die Untersuchung der vorigen Nummer, insbesondere die Gleichung
(3.13) ergibt auch sofort ein erstes Résultat liber die Verteilung der Null-
stellen. Denn zu jeder Stelle q> im Intervall (oc, /S) gibt es beliebig nahe bei ç?

gelegene Zahlen dr und 0" mit df«p<Bf\ fur welche h'(Q) stetig ist. Aus
(3.13) und Satz 12 ergibt sich dann

"\ 2 7i lim inf ', \—- — Km inf Ty/
¦ f d { are f(reie]

r->oo V(r) r^oo V(r) g,
K ° '

m /„ toi an\ i on

~hf(6f)
Q

—
Q

2jrlimsup V(r)
— hm sup V(r)

d {arg /(r

wenn n(r,d!,6rr) die Anzahlfunktion der Nullstellen im Winkelraum
0' ^ arg 2 ^ 0^ bezeichnet. Daraus folgt in Verbindung mit (3.17) und

(3.14): Der obère und der untere Limes des Ausdruclces 2tz* rrt \

kommen bei genûgend kleinem e > 0 je beliebig nahe an die Zahl

— [h'((p-{-0)—h'((p — 0)] heran. Insbesondere kommen sie bei jeder
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Stetigkeitsstelle von h'(<p) der Null beliebig nahe, wàhrenddem sie bei
jeder Unstetigkeitsstelle sich einer positiven Zahl beliebig nâhern. Wie
am SehluB von Nr. 30 zunàchst an einem Beispiel gezeigt wurde, ist
jetzt das Zusammentreffen der folgenden drei Umstânde allgemein45)
bewiesen :

1. h %>) ist an der Stelle <pQ unstetig,
2. der Grenzwert (3.8) existiert fur cp <pQ nicht mehr,
3. die untere Dichte der Nullstellen in jedem noch so kleinen Winkelraum

um (pQ kann eine positive Zahl nicht unterschreiten.

Der eben besprochene Zusammenhang zwischen dem Verhalten des

Betrages, des Argumentes und der Nullstellen einer regulàren Funktion
làBt sich in quantitativer Hinsicht noch erheblich verschàrfen. Dazu fûhrt
wieder die Gleichung (3.13) und eine genauere Untersuchung des Intégrais
auf der rechten Seite.

34. Wir beweisen zunàchst

Satz 14. Es sei die Funktion f(z) im Winkelraum oc < arg z < fi regular,
von prâziser Wachstumsordnung ç(r) und von regulârem asymptotischen
Verhalten. Dann gilt fur irgend zwei Stellen <pr und cp" im Intervaïï

oc <<p< p

lim JLj^{arg /(re*«) } eJ h(6)d6 (3.18)

Beweis : Wir teilen das Intervall (ç/, q>") in 2n gleiche Teile von der

ange <5 -l-——^-, b

<pZn+1 q>" und setzen

Lange <5 -l-——^-, bezeichnen die Teilpunkte mit (pf <pli <p2,

MU,!
Bezeichnet Hv(<p) den Strahltypus von Fv(z), so folgt

HV{<P) H<P) ~ [H<P2v) cos Q(<p — <p2v) + —h'((p2v) sin g(<p — ç?2v

und weiter nach (2.14) mit <p0 (p2v, a — h(<p2v) und b h'(<p2v)

45 „Allgemein" meint hier immer unter der Voraussetzung, daû sich die Funktion
asymptotisch regular verhalte.
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Es ist also

und

lim sup jjr-r- log

Km*^ log 0,

\- 2ô) — 2(<p2v—v(re^) | < sin

<p2v— 25 < ç?< 9?2v+2ô •

Darnach gilt gleichmâBig in v 1, 2, 3, n bei genùgend groBem r

< [sin 2e ô(Z(<p2v+2 ô) — &(<p2v — 2 e5))+o(l)](l+sin 2Ô)*-V(r)

fur |z — rei<p*v\ ^ r sin 2 5

log|*V(z0)|>-o(l)F(r)
und

fur ein zQ in \z — rei1f>2v\ ^ r sin ô. Durch Anwendung von Hilfssatz 2b
s

auf die Funktion FJz) im Kreis I z —reiq>** I ^ r sin 2 ô mit k -r
folgt

;

J

J

o(l) ](sin 2<5 + l)«

(v=l, 2, 3,...,n).

Die Addition dieser Ungleichungen gibt nach Division durch V(r)

J
q>f

— f%2v) 2 sin

sin 2Ô)«

oder
if sin 2g<5 + o(l)

n

Z h(<p2v) 2 sin qô — K gin 2qô — o(1)

7y-r- J d { arg f{fée)} ^ 27^(9^2^) ^ sin ^5 -



Beachten wir nun, da8 bei ô-> 0 die Summe Zh(cp2v) 2 sin q ô gegen das
<P" v l

Intégral g J h(O)dO strebt, so folgt aus der letzten Ungleichung bei <3->-0

und r-> oo die Behauptung (3.18).

35. Kehren wir nun zur Formel (3.13) zuriick und legen wir fest, daB
die zur stetigen Fortsetzung von arg / (z) nôtigen Umwege die Nullstellen
auf dem Rande des Sektors 0 ^ | z | ^ r, (px^ arg z ^ ç?2, immer im
positiven Sinne umlaufen. Dann umschlieBt F (vgl. Nr. 32) die in diesem
Sektor gelegenen Nullstellen von f(z). Bezeichnen wir ihre Anzahl mit
^(nÇ'i,^)4^ so ist

arg /(re^) — arg f{rei<p*) 2n • n(r, Vl, <p2) — jd { arg f(ré°)}
<Pl

In Verbindung mit Satz 13 und Satz 14 folgt daraus

[h'(0) h'( + 0)] (l) <

an _QJHe)de<l[h((p2 + 0)_h^(pi_0)] + o{l) (3.1" v) <pt Q

Fur zwei Stetigkeitsstellen q?1 und q>2 von h\<p) gilt insbesondere

2n lim ^iVî^L 6*fh(d)de+±[h'(<p2)-h'(<Pl)]. (3.20)

Da aber dièse Stetigkeitsstellen im Intervall (oc, /S) uberall dicht liegen,
sb îst die Nullstellenverteilung der Funktion / (z) im Winkelraum (<x, /?)

meBbar (vgl. Nr. 11, Abschnitt 1).

Satz 15. Es sei die Funktion f(z) im Intervall a < arg z < /? regular,
von prâziser Wachstumsordnung g(r) und von regulctrem asymptotischen
Verhalten. Dann ist ihre Nullstellenverteilung in diesem Winkelraume
mefibar bezûglich der Ordnung q (r) und es gilt fur ihre Mafifunktion

2n-dN{<p) Qh((p) d<p+ — dh'(<p) d£((p) .*) (3.21)
Q

36. Im AnschluB an den 2. Abschnitt lassen sich die Ergebnisse, wie sie

in Satz 12 bis Satz 15 ausgesprochen wurden, folgendermaBen geometrisch
interpretieren: Wir betrachten die Hûllkurve $ der Geradenschar (2.1),

46) Im Gegensatz zu frûher (Nr. 11) bezeichnet jetzt n(r, cp±, ç>2) die Anzahl der
Nullstellen im abgeschlossenen Sektor | z \ < r, cpt < arg z < cp2 •

*) Vgl. A. Pfluger [2]
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wo h (<p) jetzt den Strahltypus der Funktion f(z) bedeuten soll, und ordnen

jedem Winkel <p gemâB Nr. 17 denPunkt P((p) zu. Bezeichnet P(<p1)P((p2)
die Lange des zwischen P(<px) und P(y2) gelegenen Stiicks der Hullkurve,
so folgt nach (3.19) und (2.7)

Bezeichnen wir weiter mit F(<p) den FuBpunkt des Lotes, das von 0 aus
auf die Stiitzgerade von Normalenrichtung qy> errichtet wird, und mit

>

P((p)F((p) nach Betrag und Vorzeichen die Lange der Strecke P(cp)F(<p)
auf der orientierten Stiitzgeraden. Nach (3.11) und der Bemerkung zu
Satz 12 ist dann

P+(cp)F(<p) -o(l) < «^ ' < P-(<p)F(<p) + o(l)

Bezeichnen wir schliefilich mit F((px) F(<p2) die Lange des Weges von Fx
nach Px entlang der ersten Stiitzgeraden, von Px nach P2 entlang der
Hullkurve und von P2 nach F2 entlang der zweiten Stiitzgeraden, jedes
Wegstiick nach Betrag und Vorzeichen gezâhlt, setzen wir also

- F(y,) P(cpx) + Pfo) P(cp2) + P(cp2 F(<p2) (3.22)

so folgt aus (3.18) und (2.7)

lim ^ fd { arg /(re™) } %)%) (3.23)

Speziell fur zwei Stetigkeitsstellen von hf(cp) ist

2^ lim ^'l;^ =-lÇJÏM (3-24)

und

Nach (3.23), (3.24) und (3.25) erweist sich die Gleichung (3.22) als

geometrische Interprétation von (3.20). Jetzt ist auch geometrisch er-
sichtlich, da8 die Grenzwerte bei (3.25) und (3.24) unstetig sein kônnen,
dagegen der Grenzwert bei (3.23) stetig von cp abhàngt.

47) Dies ist eine Verallgemeinerung bereits bekannter Resultate ùber die Nullstellen-
verteilung von Exponentialsummen. Siehe G. Pôlya [3], [4]; E. Schwengeler [1].
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37. Die Sâtze 12 bis 15 gelten allgemein fur solche Funktionen, die in
einem Winkelraume regulàr, von prâziser Wachstumsordnung g(r)>

Q(r)-**Q>Q, und von regulârem asymptotischen Verhalten sind. Àufier-
lich wenigstens spielt hier der Unterschied, ob q eine ganze oder nicht-
ganze Zahl sei, keine Rolle.

Um den AnschluB an den ersten Abschnitt zu gewinnen, betrachten
wir jetzt ganze Funktionen von der Ordnung q =fi 0, 1, 2, Fur dièse

Funktionen ist Satz 15 eine Umkehrung von Satz 3: Ganze Funktionen
von der Ordnung g ^ 0, 1, 2, mit mefibarer Nullstellenverteilung
verhalten sich asymptotisch regulâr und umgekehrt ganze Funktionen von
regulârem asymptotischen Verhalten besitzen eine mejibare Nullstellenverteilung.

In beiden Fâllen gelten (3.11), (3.18) und (3.21). Fur
q ^ 0, 1, 2, sind also meBbare Nullstellenverteilung und regulâres
asymptotisches Verhalten je charakteristisehe Eigenschaften einer
speziellen Klasse ganzer Funktionen, deren Verhalten beziiglich Betrag,
Argument und Nullstellenverteilung leicht erfaBt werden kann. Die sich
hier anschlieBende Frage, ob eine àhnliche Charakterisierung durch das

Argument môglich sei, werden wir bald im bejahenden Sinne beantworten
kônnen. Letztere Charakterisierung dureh das Argument sowie diejenige
durch den absoluten Betrag gelten allgemein fur positive endliche
Ordnungen. Eine Charakterisierung der Funktionsklasse von den Null-
stellen her ist hingegen nur bei nicht ganzzahliger Ordnung môglich. Die
Nullstellen nehmen in diesem Rahmen bei g 1, 2, 3, eine Aus-

nahmestellung ein, auf die wir noch nâher eintreten wollen.
Aus dem ersten und zweiten Abschnitt, insbesondere aus (1.46) und

(2.6) folgt bei q ^ 0, 1, 2, daB die Funktionen dN(q>) und h (<p) immer
gleichzeitig identisch null sind, daB also mit andern Worten die
Funktionen n(r, 2 7t) und log M(r) immer gleichzeitig vom Minimal- bzw.

Mitteltypus sind. Fur q 1, 2, 3,... trifft dies jedoch nicht allgemein zu.
Denn wie die Zusàtze von Hilfssatz 1 und Satz 3 zeigen, kann die GrôBen-

ordnung von n(r, 2n) wesentlich kleiner sein als jene von log M (r), kann
also die Funktion n(r, 2n) beziiglich einer Wachstumsordnung g(r) vom
Minimaltypus und ihre zugehôrige Funktion log M (r) vom Mitteltypus
sein.

Um diesen Sachverhalt vom dritten Abschnitt aus zu beleuchten,
betrachten wir eine ganze Funktion von prâziser Wachstumsordnung q (r)
und regulârem asymptotischen Verhalten und suchen die Bedingungen,
unter denen dN(q>) 0 und h(<p)^O sein kann. Dièse Frage kommt dar-
auf hinaus, die Lôsungen der Funktionalgleichung
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mit der Période 2n zu bestimmen. H(q>) §h(<p) dq> gesetzt, geht letztere
ûber in die Differentialgleichung

0

deren allgemeine Lôsung H (<tp) a &in Qy + b eos g<p ist. Daraus folgt
h(q)) qcl cos gç? + Qb sin gç?. Fur g ^ 0, 1, 2, besitzt dièse Funktion
daim und nur dann die Période 2n, wenn a und b null sind, also A(ç>)

identisch verschwindet. Fur ganzzahlige g hingegen besitzt h (y)
A cos Q<p-\- JSsin £9? fur aile Zahlen ^1 und B die Période 2tc. Daraus
folgt:

Bei ganzen Funktionen von positiver endlicher Ordnung mit regulârem
asymptotischen Verhalten sind n(r, 2tz) und logJf(r) im allgemeinen zn-
gleich vom Minimaltypus einer prâzisen Ordnung. n(r, 2n) ist dann und
nur dann vom Minimaltypus ohne dafi auch log M(r) es ist, wenn

1. q 1, 2, 3, und
2. h((p) A cos Q(p + B sin qq> ist.

Demnach spielen die ganzzahligen q im Rahmen des dritten Ab-
schnittes nur scheinbar keine Ausnahmerolle. Sogar in einer weitern Hin-
sicht als bereits angegeben, besitzen die Nullstellenverteilung ganzer
Funktionen mit ganzzahliger Ordnung eine Sonderstellung. Kônnen
nâmlich bei ^0,1,2,... ganze Funktionen mit beliebig vorgeschrie-
bener, monoton wachsender Mafifunktion gefunden werden, so besitzen
jene Nullstellenverteilung, die zu ganzen Funktionen mit ganzzahliger
Ordnung und regulârem asymptotischen Verhalten gehôren, neben der
MeBbarkeit noch eine Art Gleichgewichtseigenschaft.

Aus Satz 7 folgt nâmlich: Die Mafifunktion der Nullstellenverteilung
einer ganzen Funktion von ganzzahliger Ordnung q und regulârem
asymptotischen Verhalten, genûgt den beiden Bedingungen

2n 2tt
J cos q6 dN(0) 0 und $ sinqO -dN(d) 0 *)
0 0

2tt

0

38, Betrachten wir nun weiter die Klasse der Funktionen, die in einem
Winkelraum regulâr, von einer prâzisen Wachstumsordnung @(r) und
von regulârem asymptotischen Verhalten sind. Nach den Sâtzen 13, 14

und 15 besitzen aile dièse Funktionen auch hinsichtlich des Argumentes

*) Ist z. B. eine Nullstellenverteilung mefîbar bezûglich einer ganzzahligen Ordnung,
sind aber obige Bedingungen nicht erfûllt, so tritt notwendig eine Erhôhung der
Wachstumsordnung des Betrages ein; d. h. bezûglich der Wachstumsordnung des Betrages ist
die Nullstellenverteilung vom Minimaltypus; vgl. hiezu die Funktion
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und der Nullstellenverteilung eine Art regulâres Verhalten. LâBt sich
also auch umgekehrt dièse Funktionsklasse mittels der Nullstellenverteilung

oder des Argumentes charakterisieren
DaB bei ganzen Funktionen der Ordnung q ^ 0, 1, 2, dièse Frage

in bejahendem Sinne zu beantworten sei, ist zum Teil schon gezeigt
worden. Allgemein ist aber die MeBbarkeit der Nullstellen keine charak-
teristische Eigenschaft unserer Funktionsklasse. Denn es lassen sich leicht
Funktionen konstruieren, die in einem Winkelraum regulâr sind, aber
keine Nullstellen und kein regulàres asymptotisches Verhalten besitzen.

Damit bleibt die Frage, ob vielleicht das Argument sich zur Bildung
eines Kriteriums fur regulàres asymptotisches Verhalten heranziehen
lâBt. In der Tat zeigt es sich, daB Satz 14 umkehrbar ist, d. h. es gilt

Satz 16, Es genûge die Funktion f(z), die im Winkelraum <x^J arg
regular und von prâziser Wachstumsordnung q (r) ist, der Voraussetzung

lim =L. J d {arg /(«*")} q J h(d)d6 (3.26)
r->-oo V y) a a

Dann ist f(z) im Winkelraum oc < arg z < /? von regulàrem asymptotischen
Verhalten.

Da bei ganzen Funktionen die beiden Bedingungen

1 2îr 2tt
lim ^ J d { arg /(«*«)} e J h(d)dd

und

âquivalent sind, so folgt aus Satz 16 und Satz 14.

Corollar : Eine ganze Funktion von positiver endlicher Ordnung ist dann
und nur dann von regulàrem asymptotischen Verhalten, wenn

2^. lim ?~== Q$h{6)dd 48) (3.27)

Zum Beweis von Satz 16 benôtigen wir drei Hilfssàtze, die wir dem
eigentlichen Beweis voranschicken wollen.

48) Vgl. den Satz ùber BorePsche Richtungen ganzer Funktionen, die (3.27) genûgen,
bei M. L. Cartwright [2], Theorem X, p. 440.
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39. Hilfssatz 6. Es sei die Funktion f (z) in oc ^ arg z ^ /? regular,
n(r, oc, fi) die Anzahlfunktion ihrer Nullstellen. Dann gilt

j (3.28)und p p
v '

| d log | f(reie) | r-j-- J arg /(re^) c?0 (3.29)

Beweis : C bezeiehne einen Weg, der im wesentlichen mit dem Bogen
\z\ r, oc ^ arg z ^ p ubereinstimmt, éventuelle Nullstellen aber irgend-
wie, im positiven oder negativen Sinne, durch kleine Halbkreise umgeht.
Làngs dièses Weges gilt

c J\zt

Zerlegen wir nun das Intégral auf der rechten Seite in ein Intégral tiber
die kleinen Halbkreise K und in ein solches iiber die Teilbogen B auf
reie, oc < d < j8, so folgt

| |||^ J^^ (3.30)

und

% f(ret0) J /(re10) ^ dr 6

irA Jlog f{reie)d6

Lassen wir nun die Radien der Halbkreise gegen Null streben, so strebt
das Intégral ûber einen einzelnen Halbkreis gegen ±^ri, je naeh dem die
betreffende Nullstelle im positiven oder negativen Sinne umlaufen wird.
Der Grenzwert des zweiten Intégrais auf der rechten Seite von (3.30) ist
also absolut kleiner als n • dn(r, oc, /?). Weiter gilt

i^ dz-^irj- f log f{r^) dd f d{logf(z)}-*$ d {log j(ré<*)}
ar oc C oc

Nach (3.30) folgt
p -t p
J d{ !og f(reie)} ^ir-j-l log f(reie) dO + irj • dn(r, oc, fi) \rj\ < n

dV

49) dn{r, a, /?) ist gleich der Anzahl der Nullstellen auf dem Bogen | z \ r, a < arg z </?.
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und daraus durch Gleichsetzen der Imaginàr- und Realteile50) die
Gleichungen (3.28) und (3.29).

40. Hilfssatz 7. Ist q>(r) in jedem Intervall (l,r), r>l, im Riemann'-
schen Sinne integrierbar und

lZWf=
so gilt

Sï7f/t=t- (3-32>

Beweis: Wir setzen

*«=/y («)¦?¦ •
i l

Aus

_j &{kr) 0(r)-0(kr)+ W)
folgt

Stsup tw <k Sisup W +,^8Up
daraus

0(r) 1 0(r)—0{kr)
8up

und ganz entsprechend

Nun ist

und somit
l—Jc

1
Lassen wir k gegen 1 streben, und beachten wir, daB dabei —

gegen — strebt, so folgt (3.32)

60) 7 ist eine réelle Zahl.
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41. Hilfssatz 8. Die Funktion f(z), welche im Winkelraum oc ^ arg z ^ (î

regular und von prâziser Wachstumsordnung q(v) sei, geniige der folgenden
Vorausselzung :

Fur jedes s > 0 und f > 0 gilt bei genûgend grojiem r

log \f(reie)\ — h{B) V(r) > — eV(r) (3.33)

im ganzen Intervall oc < 6 < jff, ausgenommen hôchstens eine Menge vom
Ma/S < f.

Dann ist die Funktion f (z) im Winkelraum oc < arg z < /S von regularem
asymptotischen Verhalten.

Beweis : Es genugt zu zeigen, da8 bei oc < 0 < f}

lim* ^log |/(r)|=*(0)

ist. Der Beweis dieser Tatsache ist aber schon in Nr. 8, Abschnitt 1,

erbracht, sofern nur zufolge der verschiedenen Voraussetzungen (3.33)
und (1.21) folgendes berûcksichtigt wird: Um (1.24) fur ein <pQ im
Intervall (0, /S/4) bei genûgend groBem r sicherzustellen, ist in (3.33) e

dureh —jî (1 — sul P)Q zu ersetzen und | < /S/4 zu wâhlen.

42. Beweis von Satz 16.

p
Setzen wir <p(r) J d { arg f(reie)}, so heiBt (3.26)

(3.34)
r y) a.

GemâB (3.28) gilt dann

$ <p(t)lf-= $ log \f(re«>)\dO-$ log \f(e**) [de (3.35)
1 l aa.

Denn es ist
r, rj-dn(t,oc,p) df==0

3i *

Aus Hilfssatz 7 mit (3.34) an Stelle von (3.31) folgt
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Aus (3.35) ergibt sich daher nach Division durch V(r) und Ûbergang
zur Grenze r->oo

lim -=L_ J log | f(re*°) \ dd J A(0)<Z0 (3. 36)
r->oo * \ a a

Aus der letztern Bedingung folgt aber, da8 die Voraussetzung von Hilfs-
satz 8 erfûllt ist. Denn sonst gàbe es zwei Zahlen e > 0 und £ > 0, so dafi
fur eine Folge {rn} mit rn->oo

log \f(reie)\ < h(0) -V(r) — eV(r) (3.37)

auf einer Menge vom Ma8 ^ f im Intervall oc ^ 6 ^ p.

Da ferner im ganzen Intervall (oc, /?) fur genugend groBe r

log | / («'•) | < A (9) 7(r) + L
ist, so folgt aus (3.37) und (3.38) fiir die obige Folge

J log \f(re**)\ dO < V(r) J h(0) dd — -f- V(r)
a a

was (3.36) widerspricht. Die Voraussetzung von Hilfssatz 8 ist also

erfûllt und somit die Funktion / (z) im Intervall (oc, fi) von regulârem
asymptotischen Verhalten.

43. Es verbleibt noch, die erhaltenen Resultate liber die Nullstellen-
verteilung zu ûbertragen auf die Verteilung der a-Stellen, also allgemein
die Wertverteilung zu untersuchen. Wir betrachten hierzu einen Winkel-
raum oc ^ arg z ^ fi, in dem f(z) nicht nur die ûblichen Eigenschaften
der Regularitât und des regulâren asymptotischen Verhaltens, sondern
ûberdies einen positiven Strahltypus, h(<p) > 0, oc < <p < fi, besitzt. Daher
kann die Subtraktion einer Konstanten a von f(z) am Strahltypus und
an der Regularitât des asymptotischen Verhaltens nichts ândern. Es

gilt also
lim* inïrlog \f(rei*) — «1

Daraus folgt:
1. In Intervallen mit positivent Strahltypus ist fur aile Werte a die

Verteilung der a-Stellen me/îbar bezûglich der Wachstumsordnung q(r)
von f(z).

2. Fur ihre Maflfunktion Na(q>) gilt dort

2tz • dNa(<p) qh((p) dq>+ — dh'(<p)
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Es sind also dort aile Werte gleich ,,dicht" verteilt. Ist speziell fur eine

ganze Funktion von regulàrem asymptotischen Verhalten der Strahltypus

stets positiv (oder nur an isolierten Stellen des Intervalles (0, 2 n)
gleich null), so gilt dNa(<p) dN0(<p) und 2n(Na(27t)— Na(0))

27T

g J h (6) dO fur aile <p und aile a.

Nach diesen Ergebnissen ist jede Richtung <pQ eine BoreFsche Bichtung
fur die Funktion f(z), in deren Umgebung h (<p) positiv und nicht von der
Form A cos q<p-\- B sin qcp ist.

Obige Betrachtungen lassen sich nicht ohne weiteres auf solche Intervalle

ubertragen, in denen der Strahltypus null bzw. negativ ist, da dort
durch Subtraktion einer Konstanten die Regularitàt des asymptotischen
Verhaltens bzw. der Strahltypus gestôrt werden kann.

44. Besonders ubersichtlich verhâlt sich die Wertverteilung solcher

ganzer Funktionen, die einen Ausnahmewert im Sinne von Nr. 37 be-
sitzen, d. h. einen Wert c, fur den dNc(<p) 0 und hc{<p) =£ 0*) ist.
GemâB Nr. 37 ist dann f(z) eine ganze Funktion von ganzzahliger

Ordnung mit hc((p)=A cos g((p—oc). Sei der Einfachheit wegen oc =—,
also hc(<p) A sin gç?. Dann ist auch fur jedes a ^= c f(z) — a von
regulàrem asymptotischen Verhalten, aber von anderem Strahltypus.

Es gilt
/ A sin g (p, wenn

lim* -i- log |/(re<*) -a \ Ka(<p)
r->oo V(r) 0,2,4, ...2e — 2,

0 in den ûbrigen Teilen des Intervalles

(0,2*).

Es sind also w v v 0, 1, 2, 2^ — 1 die BorePschen Bich-
Q

tungen der Funktion f(z) und es gilt in diesen Richtungen 2n • dNa{cp)

A, a 9fe c 51)

Ist c sogar ein BorePscher Ausnahmewert, so kônnen wir uns von der

Voraussetzung, daB die Funktion sich asymptotisch regulâr verhalte,
befreien. Denn dann ist die Funktion vom Mitteltypus einer ganz-
zahligen Ordnung, die Anzahlfunktion ihrer c-Stellen aber vom Minimal-
typus dieser Ordnung, also

*) ^c(<P) bedeutet den Strahltypus der Funktion f{z) — ae.
61) Vgl. âhnliches bei M. L. Cartwright [1], S. 173—175, [3], S. 532.
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und

lim* — log | <p (reiq>) | 0
r->oo T

f(z) verhàlt sich somit regulâr bezûglich des Betrages und es folgt:

Satz 18. Besitzt eine ganze Funktion von positiver endlicher Ordnung
einen Borel'schen Ausnahmewert, so ist sie vom Mitteltypus einer ganz-
zahligen Ordnung n. Ihre BorePschen Richtungen schliefien unter sich

ghiche Winlcel ein. Ist <p eine solche Richtung, so gilt

lim ^,r^oo rn 2jr n

wenn A den Typus der ganzen Funktion bedeutet.

Nach diesem Satz scheint die ganze Funktion das Vorhandensein
eines Ausnahmewertes durch eine besonders regelmâBige Verteilung der
ubrigen Werte ausgleichen zu wollen.

(Eingegangen den 14. April 1939.)
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