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Die Wertverteilung und das Verhalten
von Betrag und Argument einer speziellen
Klasse analytischer Funktionen. IL.”

Von A. PFLUGER, Solothurn

Zweiter Abschnitt
Uber Kurven ohne Wendepunkte

16. Der Zusammenhang zwischen den beiden Funktionen A (p) und
N*(p), wie er durch die Gleichung (1.61) festgelegt ist, 1a8t sich in ein-
facher Weise an speziellen ebenen Kurven veranschaulichen. Wir be-
trachten zu diesem Zwecke die Hiillkurve der Geradenschar

xcos gp+ysinpp —h(p) =0 , a<op<fB, (2.1)

wobel p irgend eine positive reelle Zahl ist und die Stiitzfunktion % (p)
den folgenden Voraussetzungen geniigt:

1. h(p) ist stetig und je von rechts und links differenzierbar.

2. Diese Rechts- und Linksableitungen A/ (p) und % () sind von be-
schrankter totaler Schwankung und geniigen den Bedingungen

b (p—0) = h_(p—0) = kL (9)

(2.2)
P (@+0) =hl(p40) = b (p) .
Demnach besitzt die Funktion
W) — R (p) —lf; (@) (2.3)
nur abzahlbar viele Unstetigkeiten und es gilt fiir alle ¢
Wi — K@ 0+ Wig—0) 2.4)

2

17. Die Tatsache, dafl die Stiitzfunktion % (¢) nicht iiberall differenzier-
bar ist, sondern an abzahlbar vielen Stellen nur die Rechts- und Links-
ableitung zu existieren braucht, bietet der Definition der Hiillkurve der

*) Vgl. dazu den 1. Abschnitt der vorliegenden Arbeit: Comm. Math. Helv., vol. 11,

P- 180—213. Alle Hinweise auf Formeln mit Nummern der Form (1, ») beziehen sich auf
diesen ersten Abschnitt.
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Geradenschar (2. 1) gewisse Schwierigkeiten. Denn wollen wir bei festem ¢
und §—> ¢ die Grenzlage des Schnittpunktes der beiden Geraden

x cos g@ + y sin g9 — k(@) = 0
x cos o0 + ysin o0 — h(6) = 0

bestimmen, so ist zu unterscheiden, ob 6 von rechts oder von links gegen ¢
strebt, und die Durchfilhrung des Grenziiberganges liefert zwei Grenz-
punkte, P, (p) und P_(p), die fiir abzéhlbar viele Werte von ¢ verschieden
sein konnen. Die Koordinaten dieser Punkte sind

1 .
z,(p) = h(p) cos gp — - R, (p) sin pg

. 1

¥, (@) = k(p) sin op + 9 K, (p) cos pp
bzw. 1
z_(p) = h(p) cos gp — 3 k() sin gg

. 1
y_(p) = h(p) sin op + r h._(p) cos pp .

Durch diese Gleichungen sind jedem ¢ ein oder zwei Punkte der Ebene
zugeordnet. Sie definieren eine Punktmenge und jedem abgeschlossenen
Intervall in (x, §) entspricht wegen (2.2) ein abgeschlossenes Stiick dieser
Menge. Dieses Stiick braucht aber nicht zusammenhéngend zu sein.
In der Tat sind %/ (p) und A’ (p) verschieden, so ist die Punktmenge
zwischen P_(p) und P_(p) unterbrochen und die beiden Punkte konnen
nicht durch eine in diesem Stiick gelegene Kurve miteinander verbunden
werden. Erginzen wir aber die Menge in der Weise, dafl wir jedes nicht
zusammenfallende Punktepaar P_(p), P, (p) durch eine Strecke ver-
binden, so entsteht eine stetige Kurve, die Hiillkurve § der Geraden-
schar (2.1).

Um die Unterscheidung zwischen Rechts- und Linksableitung in der
Schreibweise zu vermeiden, setzen wir (vgl. (2.3))

1 . .
x(p) = h(p) cos gp — " W (p) sin g , y(p)=h(p) sin pp +—é—h’(sv) coS 0@ .

Hiedurch wird jedem ¢ eindeutig ein Punkt P(p) zugeordnet. In jeder
Stetigkeitsstelle von A'(p) gilt P(p—0) = P(p) = P(p+0). In den
Unstetigkeitsstellen ist P(p) Mittelpunkt der Strecke S(p), welche
Pp—0) = P_(p) mit P(p+0) = P, (p) verbindet und deren Léange

—;_ | B/(p+0) — h'(p—0)| betragt.
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18. Wir legen die Richtung p¢ oder die Richtung des Vektors
{cos o, sin gp} als die positive Normalenrichtung der Stiitzgeraden
x cos pp + y sin pp — h(p) = O fest und sagen kurz: Die Stiitzgerade
besitze die Normalenrichtung p¢. Diese Normalenrichtung ist demnach
eine stetige und monoton wachsende Funktion des Parameters ¢ und
daher ihre Hiillkurve ohne Wendepunkte. Denn die Wendepunkte einer
Hiillkurve entsprechen jenen Parameterwerten, fiir welche die Normalen-
richtung der erzeugenden Geraden als Funktion des Parameters ein
relatives Maximum oder Minimum besitzt3?).

Legen wir weiter die Richtung des Vektors {— sin pg, cos p¢} als die
positive Richtung der Stiitzgeraden x cos pp + ysin gp — k(p) = 0
fest, so dreht sich diese orientierte Stiitzgerade mit wachsendem ¢ stets
im positiven Sinne. Denken wir uns also, bei einem festen Winkel ¢, im
Intervall (x, ) anfangend, die Ausgangsgerade z cos pp,+ y sin pp, —
h(p,) = 0 an der Hiillkurve § im positiven Sinne rollend, so daB sie
sukzessive nach wachsendem ¢ geordnet die Lagen samtlicher Geraden
x cos pp + ysin gp — h(p) = 0, p>¢@,, einnimmt, so kommt jeder
Punkt P(p) bzw. dessen zugehorige Strecke S(p) auf einen Punkt P(p)

bzw. auf eine Strecke S(p) der rollenden Geraden zu liegen, wir sagen:
Die Hullkurve wird auf die rollende Gerade abgewickelt. Dabei kann sich
der Punkt P(p) (bei wachsendem @) im positiven oder negativen Sinne
auf der rollenden Geraden bewegen und daher gewisse Stellen der

Geraden mehrfach iiberdecken. Die Entfernung des Punktes P(p) von

ﬁ((pl), welche ab- oder zunehmen kann, mif3t nicht die absolute Lange
des abgewickelten Kurvenstiickes; denn sie zahlt gewisse Bogen positiv

und andere wieder negativ. Auf jeden Fall aber hat der Punkt P(p) eine

nach Betrag und Vorzeichen bestimmte Entfernung von P(p,). Wir
nennen sie im Gegensatz zur absoluten die relative Lénge des zwischen
P(p,) und P(p) gelegenen Stiicks der Hiillkurve und bezeichnen sie mit
L (p,p;). Die Gleichung £ (p,p,) = £(p) — L(¢,) definiert dann — bis auf
eine additive Konstante — eine Funktion £(p). Wir nennen sie die zur
Hiillkurve § gehorige Bogenfunktion und stellen uns die Aufgabe, diese
Bogenfunktion aus der Stiitzfunktion zu berechnen.

19. Die GroBe des relativen Bogenelementes dg(p) nach Betrag und
Vorzeichen ergibt sich aus der Tatsache, daB es gleich der Lange der

_liormalprojektion des Vektors P(p—3dp)Plp+4de) = {dz(p), dy(p)}

81) Kurven ohne Wendepunkte wurden erstmals von H. Brunn [1] untersucht. Doch
werden die dortigen Ergebnisse hier nicht gebraucht.
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auf die positive Richtung der Stiitzgeraden von Normalenrichtung o ist.
Wir bilden also das skalare Produkt der beiden Vektoren {dx(p), dy(¢)}
und {— sin g@, cos g¢} und erhalten

de(p) = — dx(p) - sin o+ dy(p) - cos op ).
Nun ist aber
1 .
dz(p) = — (eh(p)dp+ —-dh'(p)) sin op
(2.5)
1
dylp) = (ehlp)dp+ —-dh'lg)) cos op
und daher das Differential der Bogenfunktion
1
d8(p) = oh(p)dp + 3 dh'(p) . (2.6)
Durch Integration von (2.6) folgt
L 1
Lp)—L@)=o¢f k(0)49+—5- [2/(p) — R'(g1)] (2.7)
%1

womit unsere Aufgabe gelost ist. Aus (2.7) ergibt sich unmittelbar, da@3
sich € () beziiglich Stetigkeit gleich wie &/(p) verhilt. Denn es existieren
die Grenzwerte £(p — 0) und £(p -+ 0) und es gilt

2(p) = 2(¢+0);ﬁ(¢——0) (2.8)
und
Lp+0)—Lp—0) = - (Wp+ 0 —hp—0). (2.9

In (2. 6) haben wir zugleich ein Kriterium dafiir, ob durch £ (p) ein Bogen
positiv oder negativ gezahlt wird. Dieses analytische Kriterium 148t sich
wie folgt durch ein rein geometrisches ersetzen.

20. Die orientierte Stiitzgerade von Normalenrichtung g¢ im positiven
Sinne durchlaufend, kommen wir iiberein, die Seite rechter Hand als
rechte Seite und jene linker Hand als linke Seite zu bezeichnen und
definieren: Ist die Hillkurve $ in der Umgebung des Punktes x(p)[y(p)
auf der linken bzw. rechten Seite threr Stitzgeraden von Normalenrichtung

32) Differential der Funktion f(z) an der Stelle # nennen wir hier eine Funktion von A,

fir die in der Umgebung von 2 = 0 df(x) — [f (a: - g) —f(w—g)] = o (h) ist.
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op gelegen, so heifit sie in der Umgebung dieses Punktes beziiglich der
Richtung op konvex bzw. konkav.33)

Ist die Kurve in der Umgebung jedes Punktes im obigen Sinne konvex
(konkav), so heit die ganze Kurve konvex (konkav).

Wir zeigen nun, daB ,,konvexer Bogen‘‘ und ,,durch (2. 6) positiv gezihlter
Bogen‘‘ identische Begriffe sind. Zu diesem Zwecke betrachten wir zwei

benachbarte Winkel ¢ und ¢’ mit ¢’>¢ und die zugehorigen Punkte
P(p) und P(¢p’), fiir deren Koordinaten

z(p) cos gp + y(p) singp —h(p) =0

_ (2.10)
x(p’) cos o'+ y(p’) sin g’ — h(p') =0

gilt. Ist nun der Bogen in der Umgebung von P(p) konvex, so liegen
P(p’) bzw. P(p) auf der linken Seite der Stiitzgeraden von Normalen-
richtung pp bzw. o¢’. Es ist also

z(p’) cos pp + y(@') sin gp — h(p) <O
und (2.11)
z(p) cos ¢’ + y(p)sin gp’ — h(g') < 0.

Werden die Gleichungen (2.10) addiert und davon die Ungleichungen
(2.11) subtrahiert, so folgt

(z(@”) — (@)) (cos op’ — cos pp) + (¥(®') — y(p)) (sin pp’ — sin gp) > 0.

Durch Ubergang zum Differential unter Beriicksichtigung von dg > 0,
wegen @'> @, ergibt sich (— sin p) dz(p) + cos gp - dy(p) > 0

und wegen (2.5) o h(p)dy —{——g—dh'((p) >0.

Diese Rechnung 148t sich umkehren und entsprechend fiir eine konkave
Umgebung durchfiihren. Daraus folgt dann:

33) GemaB dieser Definition kann ein Kurvenstiick konkav oder konvex sein, je nachdem
wie die Stiitzgerade oder das Kurvenstiick selbst orientiert wird. Wird die Kurve mittels
der Stiitzfunktion definiert, so ist auch ihre Orientierung festgelegt und damit entschieden,
welche Bogen konvex und welche konkav sind. Ist aber die Kurve gegeben, so besitzt sie

im wesentlichen zwei Stiitzfunktionen. Ist hy(p) die eine, so hy(p) = — by (@ + f—) die

andere. Sie bewirken entgegengesetzte Orientierung der Kurve. Obige Definition von
konkav und konvex besitzt also nur hinsichtlich einer Stiitzfunktion einen Sinn.
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Dre Hiillkurve der Qeradenschar (2.1) ist in der Umgebung des Punktes
z(p), y(p) dann wund nur dann konvex (konkav), wenn df(p) =

oh () dop+ —3— dh'(g) > 0 (< 0) ist3) .

Insbesondere folgt: Es ist dann und nur dann die ganze Hiillkurve
konvex (konkav), wenn £(¢) eine monoton wachsende (abnehmende)
Funktion des Winkels ¢ ist.

Die Eigenschaft der Hiillkurve, an einer bestimmten Stelle konvex
(konkav) zu sein, ist gegeniiber der Transformation @ = i, 1> 0,
invariant, m. a. W. ist die Hiillkurve der Schar

x cos pp + ysin pp — h(p) = 0

an der Stelle ¢, konvex (konkav), so ist die Hiillkurve der transformierten
Schar
()]

xcos(—%—@) -+ y sin (—%—(D)—-—H(@)::O , H(¢)=h(7):h(¢),

an der Stelle &, = A¢, konvex (konkav). Beriicksichtigt man namlich,

daB H(®) = h(p), d® = Adg, dH'(®) = % d' (@), so folgt

) 1
$ H(@) A% + = dH'(@)) = eh(po) dp + —- AW (go)

woraus in Verbindung mit dem vorigen Ergebnis die Behauptung folgt.

21. Aus dem Vorangehenden (insbesondere Nr.19) sehen wir, daf(}
jedem A (p), das den eingangs gemachten Voraussetzungen geniigt, mittels
(2.7) eine Funktion L(p) zugeordnet ist, die von beschréankter totaler
Schwankung ist und der Bedingung (2.8) geniigt. Diese Zuordnung ist
umkehrbar, d.h. zu jeder Funktion £(p) mit beschrinkter totaler
Schwankung, die (2.8) erfiillt, existiert eine Funktion % (¢), welche den
in Nr. 16 gemachten Voraussetzungen geniigt und die Gleichung (2.7)
erfiillt. Geometrisch gesprochen hei3t dies: Jede solche Funktion £(g)
kann Bogenfunktion einer Hiillkurve der Schar (2.1) sein; diese Hiill-
kurve ist bis auf Translationen eindeutig bestimmt.

Satz 6. Sei L(p) etne Funktion, die tm Intervall « <@ < f von be-
schrimkter totaler Schwankung ist und der Bedingung

o =20 +t0+Le—0 (2.1

%) Vgl. hierzu auch R. Heine [1].
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gentigt. Zu irgend zwet reellen Zahlen a und b, zu einem Winkel @, in (x, B)
und zu o > 0 existiert dann eine und nur eine Stitzfunktion h(p), welche die
Voraussetzungen von Nr. 16 erfillt, eine Hullkurve mit der Bogenfunktion
L (p) erzeugt und den Lagebedingungen

hpe) =a, h'lpe) =10 (2.13)
geniigt. Diese Stitzfunktion besitzt die Darstellung

¥
1(@) = a cos olp — o) + —Q’lsin o (p—go) -+ [sin o(p—6) dR(6). (2.14)
Po

22. Beweis von Satz 6.

Es ist zu zeigen,
1. daBl h(p) die Voraussetzungen in Nr. 16 erfillt,

9. daB oh(¢)dp + %dh’(qp) — d2(p) ist und

3. daB die Lagebedingungen (2.13) erfiillt sind und die Funktion % (p)
eindeutig bestimmen.

@
Zum Beweis von (1) und (2) geniigt es h,(p) =§sin olp—0)d(0) =
Fo

®
— 2(po) * sin o(p — @o) + o | cos (@ — 0) £(6) df zu betrachten.
Fo

1. Fiir jedes beliebig kleine % gilt

hi(p + 1) — by (9) — — () - 8in o(¢ + 7 — o) —sine(p—@d)
n n
P+
—}——%[ § cos g((p—}—n——(ﬁ)ﬁ(ﬂ)d@-—-—fcos Q(gp——-@)ﬂ(ﬂ)dﬂ]:
Po Po
Asinp Voo
1 ——a
= —2(p) LI 4 £ foon g(p+7—0) 2(6)d6 +
P
P
+9f cos o(p + n-——ﬂg——cos elp—0) 2(6) do
Yo
und durch Grenziibergang, n— -+ 0, folgt

1
—hyJ() =2(p+0) — [2(po) 08 elp—g0)-+o sin o (p—0)2()d8] (2.15)
Po

und entsprechend bei - — 0
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-bl—h_{ ()=2L(p—0)— [ (o) cos 9(¢—%)+9f sin ¢ (p—0) 2(6)d6] . (2.16)
Po

Aus (2.15), (2.16) und (2.12) folgt dann (vgl. (2.3))

L4
% hy(p) = L (p) — L(po) cos o(p — o) — ¢ § sing(p—0) L(0) db=
Po

®
= | cos o(p — 0)dL(0). (2.17)

Po
Da die eckigen Klammern auf der rechten Seite von (2.15) und (2.16)
stetig sind, folgt wegen der Voraussetzungen iiber {(p), dafl die Ab-
leitungen A/ ,(p) und A’ ,(p) und daher auch %/ (p) und A (p) von be-

schrankter totaler Schwankung sind und der Bedmgung (2.2) geniigen;
damit ist (1) bewiesen.

2. Zum Beweis von (2) gehen wir von (2.17) aus und bilden

g+3dy p—3dy
—-dh’ 1(p) = j cos o (p+4dp — 0) dg(0) — f cos o(p—Fdp—0)dL(0) =

p+3dy
j' cos o(lp—3dp—0)de(6) + [ cos olp+Ldp—0)dR(6) 4
90—-%@ @

14
+ [ [cos o(p + Ldp—6) — cos o (p —3dp —0)]dL(0)
Po

— d2(g) — ody - | sin o(p— 6) AL (6)
Po

= d8(p) — oh(p) do .

Damit ist (2) bewiesen.

3. Da hy(p,) = 0 und Aj(p,) = 0, so ist nach (2.14) die Bedingung
(2.13) erfiillt. Es bleibt zu zeigen, dafl 2 (p) durch die Bedingung (2.13)
eindeutig bestimmt ist. Sei hA'p noch eine zweite Funktion, die (2.86)
und (2.13) geniigt. Dann ist

b .
Mp) = acos ¢lp— o) + —-sinelp—go) +
% d * 1 L V4
+ | sin o(p—0) [oh"(6) d6 + "E'dh 6) ]
Po
und es folgt durch partielle Integration
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1 % . , ) ®
— § sino(p —0) dr*'(6) = — sin o(p —0) - A*'(0) | +
Q Po Q Po
L4
+ | h*'(6) cosg(p — 6)- dO
Yo
L4 @ ['4
J7*'(6) cos g(p — 0) d6 = h*(p) cos g(p —6) | —o [ h*(0) sin o (p—0)-db
Po

Po Po

und wegen (2.13)

J sinolp—0) [oh*@ 0 +L anv'0)] =
Po

b . '
= — — sin 0 (@ —@o) — @ cos g (@ — @o) + A¥(p)

und daraus h(p) = h*(p). Damit ist auch die Eindeutigkeit bewiesen.

23. Spielte bei den vorigen Betrachtungen die Periodizitit der Funk-
tionen £ (@) und d2 (¢) keine Rolle, so soll jetzt, um den Anschlufl an den
ersten Abschnitt*) zu gewinnen, untersucht werden, unter welchen
Bedingungen die Stiitzfunktion %(p) und das Differential der Bogen-
funktion g (p) gleichzeitig die Periode 2z besitzen kénnen. Setzen wir
voraus, h(p) besitze die Periode 2x; dann hat nach (2.6) d2(p) dieselbe
Periode oder, was dasselbe bedeutet, die Bogenfunktion £(p) besitzt die
Eigenschaft

2(p 4 27) = 2(p) + (2(27) — 2(0)) - (2.18)

Jeder Stiitzfunktion mit der Periode 27 ist also eine Bogenfunktion mit der
Eigenschaft (2.18) zugeordnet.

Gilt auch die Umkehrung: Jeder Bogenfunktion mit der Eigenschaft
(2.18) ist eine Stiitzfunktion mit der Periode 27 zugeordnet?

Fiir ganzzahlige o, o = 1, 2, 3, ... 1laflt sich diese Frage leicht mit
der Formel (2.14) entscheiden. Ersetzen wir nimlich dort ¢ durch =,
n=1,23,... und ¢ durch ¢ + 27 so folgt

b .
h(p+27) = a cos nlp — o) + - sin n (@ —@o) +

+27

» @
+(f+ [ ) sin n(p+22—0)de(0)
oder o !
p+27w .
hip+27m) =h(p)+ [ sinn(p — 0) d2(6).
¥
*) Comm. Math. Helv., vol. 11, p. 180—213.
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Demnach besitzt die Funktion A(p) dann und nur dann die Periode 2=,
wenn die Funktion

P+27T 27 27
f sin n(p—0) d2(0) =sin ng - | cos nh-dL(6)—cosny - [sinnd - dL(6)
¥ 0 0

identisch verschwindet oder wenn

27 27T
f cosn6-d2(6) =0 und f sinn6-deO) =0
0 0

ist. Unter diesen Bedingungen besitzt also jede zu £(p) gehorige Stiitz-
funktion die Periode 2z und die einzelnen Funktionen unterscheiden sich
um eine additive Funktion von der Form A cos np -+ B sin ng.

Anders jedoch fiir nicht ganzzahlige g,0 % 0,1,2,.... In diesem
Falle ist die Existenz periodischer Funktionen aus (2.14) nicht ersichtlich
und existiert eine solche, so wird durch Addition von 4 cos pp + B sin g¢
die Periodizitat wieder zerstért. Wie nun im folgenden genauer formuliert
und bewiesen werden soll, gibt es zu jedem L(p) mit der Eigenschaft
(2.18) eine und nur eine Stiitzfunktion von der Periode 2x.

Diese Tatsachen legen einen tiefgehenden Unterschied zwischen ganz-
zahligem und nicht ganzzahligem ¢ blo8 und geben zugleich einen ersten
Hinweis auf die Beziehung dieser Betrachtung zu ganzen Funktionen.
Denn dort ist der Strahltypus k(@) einer ganzen Funktion vom Mittel-
typus einer ganzzahligen Ordnung ¢ durch die Nullstellen nur bis auf eine
additive Funktion von der Form 4 cos g¢ -+ B sin g bestimmt, wahrend-
dem der Strahltypus bei nicht ganzzahliger Ordnung durch die Null-
stellenverteilung vollstdndig bestimmt ist.

Satz 7. Sei L(p) eine fiir alle ¢ definierte Funktion, welche die Voraus-
setzungen von Salz 6 und die Bedingung

L(p £ 27) = L(p) £ (2(27) — £(0)) (2.18)
erfillt.

(I) Zu einem nicht ganzzahligen positiven o gibt es dann eine und nur eine
Stiitzfunktion h(p) mit der Periode 27, welche die Voraussetzung in Nr. 16
erfullt und etme Hullkurve mit der Bogenfunktion L (p) erzeugt. Diese Stiitz-
funktion besitzt die Darstellung

2n
2 sin o7 - h(p) = | cos (00 — ox) - dL(p+0) , (2.19)
0
welcher nach Satz 6 noch die folgende an die Seite gestellt werden kann:
k' . 2.
) = hpo) cos elp—go) + 22 sin g (p— po) + Jsin ¢(p—0) - 42(0).

Po
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(I1) Zu jedem ganzzahligen o, o = 1, 2, 3, ... gibt es dann und nur dann
etne Stiitzfunktion h(p) von der obigen Eigenschaft, wenn die Bogenfunktion
L () tberdies den Bedingungen

2 2
§ cos 0-d8(0) = 0 und J sin g0 -d2(0) =0
0 0

geniigt. Diese Funktion h(p) tst dann von der Form (2.14).

Aus diesem Satz folgt nun unmittelbar die im ersten Abschnitt an-
gekiindigte geometrische Deutung der Beziehung (1.61). Denn setzen
wir in (2.19) L(p) = 2x - N*(p), so folgt?®%) (1.61). Der durch N*(p) be-
stimmte Strahltypus % (p) erzeugt daher als Stiitzfunktion eine Hiillkurve,
deren Bogenfunktion (p) = 25n N*(p) ist. Es folgt

Satz 8. Se: f(z) eine meromorphe Funktion von der prizisen Wachstums-
ordnung o(r), o(r)—>p, 0 %0, 1, 2, .... Ist thre Nullstellen- und Polstellen-
verteilung mefbar beziiglich dieser Ordnung und sind N,(p) und N ()
thre entsprechenden Maffunktionen, so geniigt thr Strahltypus h(p) den
Voraussetzungen von Nr. 16 und erzeugt als Stitzfunktion eine Kurve ohne
Wendepunkte, deren Bogenfunktion

L(p) = 27 (No(@) — N (9))

ist. Im entsprechenden Fall ganzer Funktionen erzeugt der Strahltypus als
Stiitzfunktion eine konvexe Kurve mit der Bogenfunktion 2nN(p).

24. Bewers von Satz 7. Es bleibt (I) zu beweisen. Wir zeigen,

1. daB3 h(p) die Voraussetzungen in Nr. 16 erfiillt und die Periode 2x
besitzt,

2. daB oh(p)dg + -;— dh'(p) = d2(p) ist,

3. daBl h(p) durch diese Eigenschaften falls p £ 0,1, 2, ... eindeutig
bestimmt ist.

1. Da nach (2.18) d{(0) die Periode 2z besitzt, so gilt nach (2.19)
dasselbe fiir & (p). Durch partielle Integration folgt weiter aus (2.19)

2sin g+ h(p) = (2(27) — L(0)) cos o+ o 2f L (@ -+ 6) sin (p0—px) db

oder
o+21T

2sin o7t - b (p)=(L(27)—L(0)) cos o+ ¢ | £(0) sin o(6—gp—n)db .(2.20)
'

3) Die Funktion 27 N*(¢p) geniigt wegen (1.43) den Voraussetzungen von Satz 7.
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Fiir jedes beliebig kleine # gilt dann

h(p+n) —h(p) _

28In px - 7
r+n+2n p+2n
_—__;)Q.fs(e) sin g(G——tp——n~n)d0——%fﬂ(0)sing(G——(p———ﬂ)dO:
»+n ¥
p+2mw . .
=Qf53(9) sin ¢ (0 —@—n—mn) — 8in o (0 — @ —n) d6 1
P+ L
p+n+2m P+
+—f;— fﬁ(e) sin o (0— ¢ — 5 —) do——f;—fﬁ(e) sin 0 (0 —p—m) d .
pt+2mw P?

Beriicksichtigen wir (2.18), éo folgt durch Grenziibergang 7—> 40

2 sin o7

o M) =

=L(p+ 0) - 2 sin pn+ (L(27) — £(0)) sin gyz-—g?z’?l(O) cos o(0—ep—m) db
P

(2.21)

und entsprechend bei —— 0

28inox
____Q__.hi_((p):

p+27

8 (p—0) - 2sin pn+(L(27) — L(0)) sin pw—p f 2(0) cos p(0—q@—m) db .
@

(2.22)

Aus (2.21) und (2.22) ergibt sich

2 Sin Qn !
S ———————————— h S
2 (2.23)

+27

= L(p) - 2 sin o+ (L(27) —L(0)) sin gaz———g j‘ L2(0) cos o(0 —p—m) db .
@

Da die Integrale auf den rechten Seiten von (2.21) und (2.22) stetig
sind, so folgt wegen der Voraussetzungen iiber £ (p), daf die Ableitungen
! (p) und 2’ (p) von beschrinkter Schwankung sind und die Bedingung
(2.2) erfiillen. Damit ist (1) bewiesen.
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2. Zum Beweis von (2) bilden wir aus (2.23)

28in g () =
p+2m +4dyp
=2sin gz - d L(p)— o j' L2(0) cos o(0 —p—Ldp—m)do +
p+4dy
p+2n—Ldy
+of L(0)cos (0 —9p+3dp—m)db =
p—%dp
9o+2n+%d<p
=2sinpw-d8(p)—o [ L(0) cos p(0 —p—Ldp—m)do +
go+2n———%dq>
o+ % dy
+ o _f L) cos o(0 —p +1dp—m) d0—
g— % dp

(p+27t—-%d¢
—eo | 8(0)[cos (0 —p—3}dp—m)—-cos (0 — ¢ + } dp—n) ] d6=
P+ % dyp
= 2 8in px * dQ(p) — o - dp[(L(27) — L(0)) cos o7 +

p+2mT

+ gj‘ £(6) sin o(6 — ¢ — x) db] .

Daraus folgt aber in Verbindung mit (2.20) die Gleichung (2.6).

3. Es bleibt zu zeigen, dafl A(p) durch L(p) und die Periodizitat-
eigenschaft bei p 7% 0, 1, 2, ... eindeutig bestimmt ist. Wir nehmen an,
es gibe eine zweite Funktion h*(p) mit der Periode 27, fir die ph*(p)dp +

_;_dh*/(qg) = d{ () ist. Dann ist wegen (2.19)

2 sin o7 - h(p j' cos (0 — ) (o h*(cp—l—@)d@—}-%dh*’(gv—}—@)) .
Durch partielle Integration folgt
1 2 / 1 /
—Q-j cos o (0 — m) dh*'(p 4 6) = 008 0(0 — m) h*'(p + 0) | +
0

2xn 21
+ f sing(6 —m) A* (p+6)d6 { sin (6 — =) B*'(p+6) d6 =
0 0

27

27
= sin g (0 — ) h*(pp + 0) L—g é‘ cos (0 — =) h*(@+6) - df .
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Beriicksichtigen wir die Periodizitat von A*(p), so folgt
2sin oz - h(p) =
2n
{ cos (6 —m) (eh*(@+0)dO+ —Ll;—dh*’(tp-{— 0)) = 2 sin px - h¥(p) .
0

k(@) und A*(p) sind also identisch. Damit ist der ganze Satz bewiesen.

2b. In Satz 3*) haben wir eine Klasse von Funktionen kennen gelernt,
deren Strahltypus h(p) die Darstellung (1.46) besitzt, wo N (p) eine
monoton wachsende Funktion ist; nach Satz 8 umhiillt dieser Strahl-
typus als Stiitzfunktion eine konvexe Kurve. Anderseits wei3 man, daf3
jeder Strahltypus einer Funktion von der Ordnung ¢ der Funktional-
ungleichung (1.17) geniigt. In welchem Verhaltnis diese drei Eigen-
schaften zueinander stehen, gibt der folgende Satz Aufschluf:

Satz 9. Die folgenden drei Bedingungen fiir die Funktion h(p) sind
dquivalent :

A) Es gibt eine monoton wachsende Funktion L(p), so dap fir geeignete
Konstanten a, b und ¢,

®
h(p) = a cos o(p — @o) + b sin g(p — @o) + | sin o (p — 0) dL(0)
Yo
18t.
B) Die Funktion h(p) erzeugt bei gegebemem o > 0 mattels (2.1) eine
konvexe Hillkurve3®) .

C) Fur jedes Wertetripel @,, s, ps mil

7 7T
P < @< @3 , ‘Pz—?’1<‘e— ) ‘Pa“‘%<‘z)‘ (2.24)

geniigt h(p) der Funktionalungleichung

b (p,) sin @ (@3 — @,)+ b (p.) sin o (¢;—@s)+ A (gp;) sin o(p,—,) =0. (2.25)

Daf} die Bedingungen A) und B) dquivalent sind, ergibt sich aus Nr. 20
und Nr. 21. Es bleibt die Aquivalenz der Bedingungen A) und C) zu
beweisen.

26. Aus Bedingung A) folgt C).

Da die trigonometrischen Funktionen cos pp und sin p¢ die Funktional-

38) Die Funktion A(¢p) soll natiirlich auch den Voraussetzungen von Nr. 16 geniigen.
Betreffend die Stitzfunktion konvexer Bereiche vgl. auch G. Pdlya [1], S. 571—578.
*) Vgl. 1. Abschnitt, Comm. Math. Helv., vol. 11, p. 206.
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gleichung erfiillen, die aus (2. 25) durch Ersetzen von > durch = erhalten

wird, so geniigt es, h,(p) = j‘ sin g (p — 0) d2(6) zu betrachten.
Po

Setzen wir in der linken Seite von (2.25) ein, so folgt

jsme ,— 0) sin g (p;— ¢2)d53(9)+j81ne »—0) sin o (p; — @) dL(0) +
+f sin g (s — 6) sin g (@, — @y) 42 (6) =

— | { sin o(p, — 0) sin o(ps — gz) + sin 0 (p, — ) sin p(py —y) +

+ sin o (g3 — 0) sin g (p,— @,) } d2(6) +f [sin ¢ (@, — 0) sin g (@, — @5)+
-+ sin g (p;—0) sin g (p,—¢,) | dL(6 +I sin o(@; —0) sin o (p,—g;) - dL(0).
P2

Nun ist die geschweifte Klammer { } identisch null und die eckige

Klammer [ ] gleich sin g (0 —¢,) sin g (p;—¢,). Also wird aus der linken
Seite der Funktionalungleichung (2.25)

jsme (0—y) sin o(p,—gp,) - 42(0) +f sin o (@, —0) sin o(py—gy) - 42(0) ,

woraus wegen d(6) > 0 und (2.24) folgt, dal diese linke Seite stets >0
ist.

27. Aus O) folgt A).

Wir zeigen zunéchst, dal} 2 (p) den Voraussetzungen von Nr. 16 geniigt
und betrachten hierzu eine Stelle ¢, in der

h(po) <O (2.26)
gilt. Es sei

%>8,>6>0. (2.27)

Indem man ¢,, ¢,, ¢; in (2.25) durch
Yo—2¢', po—¢€, @, bZW. @y —e, @y, o+ bzw. @4, pot+e&, go+ €
ersetzt, erhalt man

Po—e')—hlgo) _ hlpy—e) —hlpy) _h(go+ &) —hip) _h(go+e)—h(py)

sin (—pé&’) sin (—p¢) sin gé& sin g &’
(2.28)
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Fiir das zuerst betrachtete Wertetripel ergibt namlich (2.25)
h(po— ¢’) sin ge — h(po— &) sin p&’ > — h(p,) sin o (¢' —¢) ,
woraus weiter
(7 (po— &') — R (o)) sin g& — (h(po— &) — h(p,)) sin &’
= h(p,) [sin p&’ — sin pe — sin p(¢/ — &)]

_ n 2 o sin e sin L (o —
= 2h(cp0)smzs sin - ¢ - sin 5 (e e)>0

folgt, unter Beachtung von (2.26) und (2.27); d. h.

[2(po— &') — h(po)] sin g& > [A(po — &) — k()] sin pe’

was mit der ersten der Ungleichungen (2.28) gleichbedeutend ist.

Nun bedeutet aber (2.28), daf3 die (fiir x = 0 nicht definierte) Funktion
h{w, —:i:)gzk(%) in einer gewissen Umgebung des Punktes x = 0 stets
zunehmend ist. Daher strebt sie gegen einen Grenzwert, sowohl dann,
wenn z von rechts, als auch dann, wenn « von links in den Nullpunkt
hineinriickt; d. h. es existieren die rechts- und linksseitigen Differential-
quotienten &/ (p,) und &’ (p,) und es ist

h_(®o) < Bl(po) - (2.29)

Zugleich folgt, daB % (p) in der Umgebung von ¢, stetig und daher fiir
einen benachbarten Winkel ¢ > ¢, noch negativ ist. Daher ist auch

h —h
(p+2) @) in der Umgebung des Punktes z = 0 stets zunehmend.

sin p
Setzen wir £ = ¢ — @,, so folgt
o) = o PPt @) —h(gy) _  hlpg—a)—h(g) ,
hy(po) < @ Sino® = sn—en) < -(@)

und daraus in Verbindung mit (2.29)

B, (po) € hL(p) <€ Bl (), (2.30)

sofern ¢ > ¢, und ¢ — ¢, geniigend klein ist. Demnach ist bei kleinem
positiven 7

h 2n) —h
Bipd) < Wyl + )< g m e E 2R Bk )

h (o + 27) — k(o) .
28ingy

h(@o + 1) — b (@)

= 2e sin g7

e

40



Bei 7—0 strebt die letzte Seite dieser Ungleichung gegen k' (g,). Ent-
sprechendes gilt bei kleinem negativen % und n—0. Daraus folgt

By (@ + 0) = B (o + 0) = I, (go) (2.31)
hy(po— 0) = B_(p — 0) = h.(p,) -

Nun wollen wir uns von der Beschrankung (2.26) befreien. Die Un-
gleichung (2.25) bleibt richtig, wenn darin A (¢) durch

h(p) — A cos o (p — @o) = hy(p) (2.32)

ersetzt wird, 4 als konstant vorausgesetzt. Bei passender Wahl von 4
ist die Funktion (2.32) fiir ¢ = @, negativ und besitzt daher fiir ¢ = ¢,
einen rechts- und linksseitigen Differentialquotienten, der je (2.29),
(2.30) und (2.31) geniigt. Die Funktionen &/, (p) und A’ (p) erfiillen daher
die Bedingung (2.2), sind stiickweise monoton und somit von beschrink-
ter totaler Schwankung. k() geniigt also den Voraussetzungen in Nr. 1637).

Wir setzen nun d (p) = oh(p)dp + —lé-dh’ (p) . Dieses Differential er-

fullt die Voraussetzungen von Satz 6. Also ist

h(g) = a cos o(p — o) +-%— sin o(p —go) - | sin o(p — 6) d2(6)

Po

und es bleibt zu zeigen, dal d{(0) stets positiv ist. Durch Anwendung der
Funktionalungleichung (2.25) mit ¢, = @, — ¢, @,, p; = @, + ¢, folgt
fir jedes ¢ > 0 (vgl. Nr. 26)

LY Pot¢€
| sin g(0—@,+¢) sin pe-d2(0) + | sin g(p,+ & — 0) sin pe - dL(0) = 0
Po—¢& P2

oder mit 6 — ¢, = 6’

0 €

fsin g (6’4 &) sin pe - dR(0'+p,)+ [ sin p(—6'+ &) sin pe - dL (' ;) >0.
—£ 0

Diese Beziehung kann aber nur dann fiir jedes ¢ > 0 gelten, wenn £(0)

in der Umgebung von ¢ = ¢, und daher iiberhaupt monoton ist. Damit
ist alles bewiesen.

87) In dieser Nr. folgten wir bis hieher zum Teil wortlich der Beweisfithrung von
G. Pélya [1], S. 574—5175.
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28. V. Bernstein hat gezeigt, daB zu jeder Funktion A(p), die der
Funktionalungleichung (2.25) geniigt, eine ganze Funktion vom Mittel-
typus der Ordnung ¢ existiert, die diese Funktion als Strahltypus besitzt,
daf} also die Funktionalungleichung (2.25) die Klasse der Strahltypen
vollstandig charakterisiert3). Satz 9 und Satz 4 und 3 des ersten Ab-
schnittes ergeben folgende Erganzung dieses Resultates:

Satz 10. Zu jeder Wachstumsordnung o (r), o(r)—>p0 #0, 1, 2, ... und zu
jeder Funktion h(p), welche der Ungleichung (2.25) geniigt, gibt es eine
ganze Funktion von der prdizisen Wachstumsordnung o(r) und der Eigen-
schaft (1.45).

Nr. 19 und Nr. 15 ergeben in Verbindung mit Satz 8 ein entsprechendes
Resultat fiir meromorphe Funktionen:

Satz 11. Zu jeder Wachstumsordnung o(r), o(r)—>p0 #0, 1, 2, ... und 2u
jeder Funktion h(p), die den Voraussetzungen in Nr. 16 geniigt, gibt es eine
meromorphe Funktion von der Higenschaft (1.60).

Dritter Abschnitt

Die Variation des Argumentes und die Nullstellenverteilung
ganzer Funktionen mit regulirem asymptotischen Verhalten

29. Im ersten Abschnitt losten wir die Aufgabe, das asymptotische
Verhalten ganzer Funktionen mit mefbarer Nullstellenverteilung zu
bestimmen. Dabei stellte sich heraus, dafl solchen Nullstellenverteilungen
ein weitgehend reguliares Verhalten des Betrages |f(z)| entspricht (vgl.
Satz 3). Das Ziel dieses Abschnittes ist die Losung der umgekehrten
Aufgabe: Aus dem reguliren asymptotischen Verhalten ganzer Funk-
tionen ist ihre Nullstellenverteilung, allgemein ihre Wertverteilung zu
bestimmen. Hierzu erledigen wir zuerst die Hilfsaufgabe, aus dem asymp-
totischen Verhalten des absoluten Betrages dasjenige des Argumentes
zu bestimmen. Aus dem Verhalten beider, des Betrages und des Argumen-
tes, schlielen wir dann auf die Wertverteilung.

In den nun folgenden Betrachtungen konnen wir uns von der Vor-
aussetzung, daf3 es sich um ganze Funktionen handle, befreien und allge-
mein solche Funktionen zugrunde legen, die in einem Winkelraum
reguliar sind. f(z) bedeute also bis auf weiteres eine Funktion, die im

38) V. Bernstein [4]. Fir ganze Funktionen vom Exponentialtypus ist dieser Satz
zuerst in G. Pdlya [1], 8. 595, formuliert und bewiesen worden.
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Winkelraum « < argz < f sich reguliar verhilt. Bezeichnen wir mit
M (r) ihren maximalen Betrag auf dem Kreisbogen |z| = r, a<argz<g,
so lassen sich die in Nr. 2 gegebenen Definitionen fiir Ordnung p, prizise
Wachstumsordnung ¢(r) und Strahltypus A(p) von f(2) wortlich auf
unsere allgemeinere Funktionsklasse iibertragen. Dagegen kann jetzt die
Ordnung ¢ auch negativ werden. Wir lassen diesen Fall auler Betracht
und beschrinken uns auf solche Funktionen, die in einem Winkelraum
reguldr und von positiver Ordnung?®) sind. Hievon beschéaftigt uns haupt-
sdchlich jene Klasse, deren asymptotisches Verhalten regulir ist. Letzteres
wird durch folgende Definition genauer formuliert:

Das asymptotische Verhalten einer ganzen Funktion, die tm Winkelraum
o < arg z < f3, requldr und von prdziser Wachstumsordnung o(r) ist, heif3t
reguldr, wenn fiir jedes ¢ im Intervall (x, B)

(3,1)
18t.

Zur Definition dieser Regularitat wurde lediglich der absolute Betrag
der Funktion zu Hilfe genommen. Es ist also genauer genommen eine
Regularitat des Betrages. Unser Ziel ist zu zeigen, daB3 eine solche
Funktion sich auch hinsichtlich des Argumentes und der Wertverteilung

regular verhalt, was nachtraglich eine Rechtfertigung unseres Regula-
ritatsbegriffes bedeutet.

30. Vergleichen wir zunéchst das Verhalten des Betrages und des
Argumentes von f(z). Ein weitgehender Unterschied ist offensichtlich:
Der absolute Betrag |f(z)| ist eine eindeutige Funktion, das Argument
arg f(z) dagegen unendlich vieldeutig und in den Nullstellen von f(z)
sogar vollig unbestimmt. Um arg f(z) korrekt zu definieren, wéhlen wir
in einem festen Punkt z,, der keine Nullstelle ist, einen bestimmten
Zweig des Argumentes und setzen diesen von z, aus langs eines Weges,
der die Nullstellen von f(z) vermeidet, bis nach z stetig fort. Der so er-
haltene Wert arg f(z) ist eine eindeutige Funktion des gewahlten Weges,
also eine Wegfunktion. Setzen wir arg f({) langs eines zweiten ,,erlaubten®’,
d. h. die Nullstellen meidenden Weges von 2, nach z fort, so stimmen die
beiden Endwerte dann und nur dann iiberein, wenn die Anzahl der von

beiden Wegen im positiven Sinne umschlossenen Nullstellen gleich
Null ist.

39) Ob solche Funktionen immer auch eine prazise Wachstumsordnung ¢(r) im Sinne
von Nr. 2 besitzen ist m. E. noch nicht sichergestellt. Wir betrachten deshalb von vorn-
herein nur solche Funktionen mit einer praézisen Wachstumsordnung g (7).
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Betrachten wir nun arg f(z) speziell auf der Halbgeraden arg z = ¢.
Enthilt sie keine Nullstellen der Funktion, so hat man nur in einem ihrer
Punkte, etwa im Nullpunkt, einen Zweig des Argumentes festzulegen und
diesen dann lings der ganzen Halbgeraden stetig fortzusetzen. Enthalt
sie Nullstellen, so ist festzulegen, auf welchem erlaubten Wege irgend ein
Punkt des Strahles erreicht werden soll. Seien g,et?, n =1, 2, 3, ... die
Nullstellen auf argz = ¢; s, die dazwischen liegende offene Strecke
tei?, 0, <t < @n1,n=1,2,.... Zwei benachbarte Strecken kénnen im
wesentlichen auf zwei Arten durch einen geniigend kleinen Halbkreis4?)
miteinander verbunden werden, entweder rechts oder links um die
trennende Nullstelle herum, wenn die Gerade von z = 0 ins Unendliche
durchlaufen wird. Verbinden wir willkiirlich auf die eine oder andere Art
je zwei benachbarte dieser Strecken, so entsteht eine zusammenhéngende
Punktmenge. Irgend zwei Punkte r,e!? und r,e!?, die keine Nullstellen
sind, kénnen dann auf einem erlaubten Weg in dieser Punktmenge ver-
bunden werden, und zwar im wesentlichen auf nur eine Art. Setzen wir
also einen Zweig des Argumentes in einem Punkt r,e!?, der keine Null-
stelle ist, langs der festgesetzten Wege in die Punkte der Strecken s, stetig

fort und definieren wir arg f(p,€e*?) = lim arg f(¢e’?), so ist arg f(z) auf
t->0p—0
der ganzen Halbgeraden arg z = ¢ eine eindeutige Funktion von z oder

arg f(re*?) als eindeutige Funktion von r erklart. Sie erleidet bei einer
k-fachen Nullstelle den Sprung -+ kx. Bei verschiedener Wahl des Aus-
gangszweiges unterscheiden sich die erhaltenen Funktionen nur um ein
Vielfaches von 2z. Wenn im folgenden irgendwie von arg f(re?) als
eindeutig definierter Funktion von r die Rede ist, so ist dies immer auf
eine der eben beschriebenen Moglichkeiten geschehen.

Wir betrachten ein Beispiel: Sei f(z) = 2 cos wz =™ 4 ¢*"?, Dann
p
ist
f(re‘iq)) — err|singo | — ¢ (sign @) wr cos @ (1 + 1[)(9’,99)) ,

wobei ¢ (r, ) =0, wenn r— oo und ¢ # 0, = ist. Daher gilt fiir ¢ 40, =

—log | f(ré”) | > x|sing| = h(p)

. arg f(re'?) — — (sign @)z cos ¢ = — h'(p) .

Diese Limesbeziehung des Argumentes gilt nicht mehr fiir ¢ = 0. Dahin

40) ,,Geniigend klein* heiBt hier, der Halbkreis kann auf seinen Mittelpunkt zusammen-
gezogen werden, ohne dabei Nullstellen der Funktion zu iiberstreichen.
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deutet schon die Tatsache, dal die beiden Grenzwerte — A'(4 0) =—xn
und — A’(—0) = + n verschieden sind. Durch genaueres Hinsehen er-
kennt man auch, dafl immer

lim asupl arg f(r)€ x# und lim mf—l— arg f(r) > — =
r>00 r r>o0 r

ist, wie auch arg f(r) als eindeutige Funktion erkliart worden sei, und
daf durch besondere Wahl der Definition je eine der beiden Grenzen er-
reicht werden kann. Diese Stérung der Limesbeziehung fiir arg f(ret?)
bei ¢ = 0 trifft in diesem Beispiel mit zwei andern Tatsachen zusammen:
Einerseits mit dem Auftreten ,,vieler’* Nullstellen auf der positiven reellen
Achse, anderseits mit der Unstetigkeit von h/(p) bei ¢ = 0. Unsere nach-
folgende Untersuchung zeigt, daB diese drei Momente immer gleichzeitig
auftreten, vorausgesetzt natiirlich, daB es sich um Funktionen von
reguldrem asymptotischen Verhalten handelt.

31. Die Feststellungen beim soeben betrachteten Beispiel veranlassen
uns, die Untersuchung von arg f(ref?) zunichst auf solche Richtungen
zu beschranken, fiir welche 4/(p) stetig ist. Der Kern dieser Untersuchung
besteht im Beweis des folgenden Hilfssatzes:

Hilfssatz 6. Die im Winkelraum |arg z| <o regulire Funktion f(z) von
der prizisen Wachstumsordnung o(r) geniige den Bedingungen

h(0) = 0, lim A/() = A'(0) = 0 (3.2)
6->0
und 1
lim* o log | f(r) | =h(0) =0 . (3.3)

Dann gilt, wie immer auch arg f(r) auf der positiven reellen Achse als ein-
deutige Funktion erklirt worden set,

) arg f(r)

Beweis: Wegen (3.2) gibt es eine nicht negative Funktion B(yp), die
mit p gegen Null strebt4?), so dafl

h(0) £ B(p)sinop, [0]|Z @, (3.5)

fiir jedes positive ¢ (<«) und daher wegen (1.16) bei geniigend groSem r

41) Dies kann z. B. aus (2.14) geschlossen werden.
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log |f(2)| < (B(g) sin gp+0(1)) (1 +sing)e- V(r)
fiir z in |2 —r| £ 7 sin ¢ und wegen (3.3)
log |f(2e)|> —o(1) -V (r)

fir ein 2y in |z —7r| <& —g- sin ¢. Durch Anwendung von Hilfssatz 2b

(Abschnitt 1) auf die Funktion f(z) im Kreis |z — r| < rsin @ mit k=1
folgt dann

r(1 +12tsin ?)

f  d{argf(t)}| <H(B(p) sin gp +o(1)) (1+sin g)e-V(r).

r(1 —% sin @)

Setze nun r(1+41sing) = R und wihle r so groB, daB |o(1l) <
B(p) sin gp. Dann ist r(1—3sing) = (1 —3sing) (1+ $sing) - R =
nR(; <7 <1) und

1 sin @ ) ,
(1—ne)V(r) _fd{arg f(®)} | <2HB(g) 1_(1——%sinq) q(l+s1n<p)9<H B(g)
1+ 3sing (3.6)
fiir jedes positive ¢ < —723 bzw. 5 zwischen L und 1. Setzen wir
1 R

VR § d{argf(t)} = A(R), so folgt aus

1 R
)of d{arg f(t) } =
p— jd{argf 0} + (1) - [ d{arg f(5)
AV 4 =7 E &
und (3.6)
|A(R)| € ne (140 (1))|A(7R)|+ (1 — n)H'B(p) . (3.7)

Wir zeigen zunéchst: |4 (R)| ist beschrinkt. Dazu wihlen wir ein
1—ne
2 e

festes # zwischen 1 und

(und < B(p) sin pp) wird. Letzteres ist moglich, da o(1) in (3.7) nur von
V(R) abhangt. Wire nun |4 (R)| unbeschrinkt, so gdbe es unendlich
viele R> R, mit |4 (R)|>2H'B(p) und unter diesen ein solches R*, da8
|4 (r)| <|A(R*)| fir r < RB*. Dies ergibt aber
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Ay |
2

AR | = 1+ T530) - 1AE) |+ (10—

>ne(1+0(1)) | A(nR*)|+ (1 —9¢) -H" B(p) ,
was der Ungleichung (3.7) widerspricht. Da nun lim sup |4 (R)| endlich
R>o0
ist, so folgt aus (3.7)

lim sup |4 (R)| € #n° limsup |[A(R")| + (1 — #9)H'B(p) und daher
R>o0 R/>x

lim sup |[A(R)| <€ H'B(p).

R>» o

Da aber hier die linke Seite von ¢ unabhingig ist und zugleich ¢
beliebig klein gewahlt werden kann, folgt aus B(p)— 0 mit ¢—0

R
lim -—v,—(lﬁ)—‘gd{arg f&)}=0

R>o0

R
und schliellich wegen _f d{arg f(t) } = arg f(R) — ¢ die Behauptung.
0

Aus dem soeben bewiesenen Hilfssatz ergibt sich

Satz 12. Set die tm Winkelraum « < arg z < f8 reguldre Funktion f(z)
von der prizisen Wachstumsordnung o (r) und von reguldrem asymptotischen
Verhalten. Dann gilt fiir jede Stetigkeitsstelle der Funktion h'(p)

arg f(re'?)

. 1,
lim —E 0 =— W) , (3.8)

r-> o0

wie auch arg f(ret?) als eindeutige Funktion von r definiert worden sei*?).

Bemerkung : Der Ausdruck ——91—- h'(p) hat eine einfache geometrische

Bedeutung (vgl. Abschnitt II). Hat P(¢) dieselbe Bedeutung wie in
Nr. 17 und bezeichnet F(p) den Fullpunkt des Lotes von O aus auf die

Stiitzgerade von Normalenrichtung p¢, so ist die nach Betrag und Vor-
—

zeichen bestimmte Strecke P(p) F(p) gleich —-—19— k(@) 18) .

Beweis : Sei ¢ eine Stetigkeitsstelle von &’(0). Setzen wir

— @)= @) 1 7Ee ')

F(z) =1(2) - e :
so gilt

42) Vgl. A. Pfluger [2]. Mit der Funktion k() ist natiirlich auch die Beziehung (3.8)
invariant gegeniiber Translationen der z-Ebene.

13) Uber FuBpunktkurven konvexer Kurven vgl. G. Doetsch [1] und [2], S. 80—86.
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log | F(re'®) | =

log | f(ret®) |— [k (p) cos o(0 — @)+ % /(@) sin g (e —@) ]V (r)+ 0 (V(r)) .

Werden arg f(re'®) und arg F(re*®) in gleicher Weise als eindeutige
Funktionen erklart, d. h. wird je ein fester Funktionszweig auf gleichen
erlaubten Wegen in die Punkte der Halbgeraden argz = 0 stetig fort-
gesetzt, so gilt ferner

i6) —
arg F(re9) (3.9)

. 1
arg f(re*®) — [A(p) sin o(6 — ¢) — h'(p) cos o (0—@)] V(r)+o (V(r)) .
Bezeichnet H () den Strahltypus von F(z), so folgt

H(0) = h(0) — [h(p) cos ¢(0 —¢) + — g) sin ¢ (0 —p)]

und daraus
H@)=0 , lim H'())=H'lp)=0.
6->9
F(z) erfiillt also die Voraussetzungen des Hilfssatzes 5 mit § =¢ an Stelle
von 0 = 0. Es folgt arg F(ret?) = o (V(r)) und hieraus in Verbindung
mit (3.9) die Behauptung (3.8).

32. Untersuchen wir nun das Verhalten von arg f(ret?) langs jener
Richtungen, fiir welche %/(p) unstetig ist. Wie das am Schlu8 von Nr. 30
angefiihrte Beispiel zeigt, kann hier nicht die Existenz eines Limes im
Sinne von Satz 12 erwartet werden. Anderseits hingen im allgemeinen
die stets existierenden Zahlen

. arg f(re®?) - . . o arg f(re*?)
o]irl::lo sup 7 = A(p) und rklf inf 7o) = A(p) (3.10)
von der gewahlten Definition von arg f(re!?) ab. Damit ergibt sich die
Aufgabe, eine obere bzw. untere Schranke der Zahlen 4 (p) bzw. A (p)
zu suchen, die unabhingig sind von der Definition des Ausdruckes
arg f(ret®) .

Fiir alle Stetigkeitsstellen von A'(6) gilt nach Satz 12

Z(e)=4(0)=-—--;-h'(o).

Beachten wir ferner, dafl —%h’(@-{—O){ —-——;—h’(ﬂ—-—O) (vgl.(2.9))
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und daf die Stetigkeitsstellen von %’(6) iiberall dicht liegen, so fiihrt eine
etwas voreilige Uberlegung zum SchluB, daB allgemein gilt

Ap)< ~—§-h’<<p——0) und  A(p) > — ;—h’<¢+0) .

Wir wollen dies als Satz formulieren und dann den voreiligen SchluB3
nachtraglich rechtfertigen.

Satz 13. Ist die Funktion f(z) im Winkelraum x < arg z < B regquliir, von
der prizisen Wachstumsordnung o(r) und von regqulirem asymptotischen

Verhalten, so gilt, wie auch arg f(re*®) als eindeutige Funktion von r erklirt
worden sei

o r>00 V(r) >0 V(r) (3.11)

Bemerkung : Satz 13 enthalt als Spezialfall Satz 12.

Beweis : Es geniigt, den Fall f(0) £ 0 zu betrachten; denn Satz 13 gilt
fir die beiden Funktionen f(z) und 2" - f(z) gleichzeitig. Wir diirfen
weiterhin ohne Einschrankung der Allgemeinheit annehmen, daf3 die
Funktionen arg f(re?) bei r = 0 fiir alle ¢ im Intervall («, 8) denselben
Zweig des Argumentes besitzen. Denn der allgemeine Fall entsteht hier-
aus durch Addition je eines Vielfachen von 2z (zu den Funktionen
arg f(ref?)), was die Beziehung (3.11) wiederum nicht zu stdren vermag.
Unter diesen Voraussetzungen zeigen wir, daf3

A(@) € liminf A(p — ) und A(p) > limsup 4 (p+ 1), >0, (3.12)
%>+0 - %->—0 -

ist, wovon (3.11) dann eine einfache Folgerung ist. Denn fiir unendlich
viele, gegen ¢ strebende 0 gilt (3.8) und daher

lim inf 2 (p—n) < ——4/(p—0) und lim sup A(p-+) >——h'(p-+0),
7>+0 e n>+0 @

woraus in Verbindung mit (3.12) die Behauptung (3.11) folgt.

Zum Beweis von (3.12) betrachten wir arg f(z) auf einer Kurve I, die
im wesentlichen mit dem Rande des Sektors |z| £ r, ¢, £ argz < ¢,
iibereinstimmt, eventuell Nullstellen auf diesem Rande aber auf folgende
Weise durch kleine Kreisbogen umgeht: Wird arg f(z) von einem Punkt
ret?, g, Z€ ¢ £ g, im positiven Umlaufsinne lings dieser Kurve I" stetig
fortgesetzt, so soll diese Funktion auf den Grenzradien des Sektors je mit
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arg f(re**') und arg f(re'*?) iibereinstimmen 44). Bezeichnet n(r) die
Anzahl der Nullstellen, die von I" umschlossen werden, so gilt

ﬁdargf(z) = 27 - n(r).
Da

[ darg f(ee™) + [ darg f16m) = arg f(re™) — arg fr6*),
80 folgt
arg f(re***) — arg f(re**2) = 2 - n(r) —-? d arg f(re?®)  (3.13)
und schlieBlich "

@
arg f(re®') > arg f(re®?) — f d arg f(re®) .
Setzt man 1

= J((pl ’ 992) ’ (3 14)

r->00

so folgt bei Verwendung der Bezeichnung (3.10) weiter

A(p) = A(py) — I (91, 9s)
é(‘Pl)?é( o) — J (1, @s) .

Wir untersuchen das Verhalten von J (¢,, ¢,), wenn ¢, — ¢, — 0. Hierzu
setzen wir

(3.15)

F(2) = f(2) e—"(")'V(z';W), x<p<p. (3.16)
Es gilt dann
1 .
1m * ) —_
}fg 7o) log | Fo(re*) | =0 (x<g@<f)
und
3 16 £
Im sup V() log | Fy(re*®) | < /2

in jedem Teilintervall (x <)a’ < ¢ £ B'(< B) von (x, ) und fir jedes
>0, sobald |p —0|<268(s,a’, B’) = 26 . Daher ist

log |[F, (z)|<eV(r) fir |z —ref?| £ rsin 246 und

log |Fy(20)| > — eV(r) fiir ein 2, in |z — ref?|<rsinéd,

44) Auf welchen kleinen Halbkreisen der Weg I" die Nullstellen auf dem Bogen |z| =
7, < BT 22y umgeht, ist an und fir sich gleichgiiltig. Doch setzen wir fest, da8 sie

immer im positiven Sinne umgangen werden sollen, wenn nichts anderes ausdriicklich
bemerkt wird.
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sobald r geniigend groB ist. Durch Anwendung von Hilfssatz 2b (Ab-
schnitt 1) auf die Funktion F,(2) im Kreis |z — ref?| < rsin 24 mit
sin

& = =93 folgt dann

?+

,p'_f_:d { arg F (ret9) } | < ¢HV(r)

und wegen (3.16)
?+3

J d{arg fré)} l < (Hs+ 2| h(p)|sin 6+ o(1)) V(r)

fiir r geniigend grof3, d geniigend klein und fiir alle ¢ im Intervall (&, 87).

@1 + @2

Fir ¢ = 5

und @, — @, = 0 ergibt letzteres

€'9) } l <He+ 2| h(p)]| sind .

r->00

Da die rechte Seite mit & beliebig klein wird, so folgt

Iim J(p,9,) =0, (3.17)

Po—@1->0

wo auch das Wertepaar ¢,, ¢, im Intervall (x/, 8’) gewihlt werde. Aus
(3.17) und (3.15) folgt (3.12), womit unser Satz bewiesen ist.

33. Die Untersuchung der vorigen Nummer, insbesondere die Gleichung
(3.13) ergibt auch sofort ein erstes Resultat iiber die Verteilung der Null-
stellen. Denn zu jeder Stelle g im Intervall (x, 8) gibt es beliebig nahe bei ¢
gelegene Zahlen 0’ und 6” mit 6’ << 6”, fiir welche k’(6) stetig ist. Aus
(3.13) und Satz 12 ergibt sich dann

/ /4

~—;—h’l(e’) n —;—h’(()”) = 2alim inf&(%;%’-)-‘?—z—— lim me( 7 j'd{ arg f(re'®) }
I A7

——anl_l}zg sup (TI’/,B( ’)8 )——-Eglosupv( 7 3 j'd{arg f(ret®)},

wenn n(r,6’, 0”) die Anzahlfunktion der Nullstellen im Winkelraum
6’ < arg z < 0” bezeichnet. Daraus folgt in Verbindung mit (3.17) und

(3.14): Der obere und der untere Limes des Ausdruckes 27~ n(r,e V(:) , ¢1-€)

lcommen bei gemiigend kleinem &> 0 je belicbig nahe an die Zahl

ry [h'(QD + 0) —h'(p — 0)] heran. Insbesondere kommen sie bei ]eder

651



Stetigkeitsstelle von A/(p) der Null beliebig nahe, wihrenddem sie bei
jeder Unstetigkeitsstelle sich einer positiven Zahl beliebig nahern. Wie
am Schlufl von Nr. 30 zunichst an einem Beispiel gezeigt wurde, ist
jetzt das Zusammentreffen der folgenden drei Umsténde allgemein 45)
bewiesen:

1. h'(p) ist an der Stelle ¢, unstetig,

2. der Grenzwert (3.8) existiert fiir ¢ = ¢, nicht mehr,

3. die untere Dichte der Nullstellen in jedem noch so kleinen Winkelraum
um ¢, kann eine positive Zahl nicht unterschreiten.

Der eben besprochene Zusammenhang zwischen dem Verhalten des
Betrages, des Argumentes und der Nullstellen einer reguliaren Funktion
188t sich in quantitativer Hinsicht noch erheblich verschirfen. Dazu fiihrt
wieder die Gleichung (3.13) und eine genauere Untersuchung des Integrals
auf der rechten Seite.

34. Wir beweisen zunichst

Satz 14. Es ser die Funktion f(z) im Winkelraum o < arg z < f reguldr,
von priziser Wachstumsordnung o(r) und von reguldrem asymptotischen
Verhalten. Dann g¢ilt fir irgend zwei Stellen ¢’ und ¢” im Intervall
x<@p<p

lﬂ V 7 . fd{argfre‘e)}— gjh 6 do . (3.18)

Beweis : Wir teilen das Intervall (¢/, ¢”) in 27 gleiche Teile von der

" o
Lénge 6 = 2——2—;—@-—, bezeichnen die Teilpunkte mit ¢/ =¢,, @,, ¢,, ...,

Panr1= @” und setzen

—[B(Pg ) — S 41 (g1 PzeF P2V)
F (2) = f(z)e 2y) = o 4 Fay (»=1,2,3,...,n).

Bezeichnet H (p) den Strahltypus von F,(z), so folgt
1 .
H, () = h(p) — [1(p2,) cos ¢lp — g,) + - (pa,) 10 0(p — )]

und weiter nach (2.14) mit @, = @,,, @ = h(p,,) und b = h'(p,,)

H,(p) = I sin o (p — 0) - d2(6) .

Psv

45) | Alligemein* meint hier immer unter der Vorausgetzung, daB sich die Funktion
asymptotisch regular verhalte.
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Es ist also

1
lim*
e V(r)

log | Fy(re™*v) | =0,
und

lim sup V(lr) log | Fy(rei®) | < sin 208 (£ (pa + 20) — & (9 —28)) ,

Py —20Z ¢ Z @y + 20 -

Darnach gilt gleichméaflig in » =1, 2,3, ..., n bei geniigend groBlem r
log |F,(2)] < [sin 20 8 (2(pe,+2 6) — L(pa, — 2 8))+0(1)] (1+-sin 28)e-V(r)
fir |z—7re®v| = rsin 24

und
log |F, (20)] > —o (1) V(r)
fiir ein 2y in |2 — r€®2v| £ rsin §. Durch Anwendung von Hilfssatz 2b

sin ¢
sin 24

auf die Funktion F,(2) im Kreis |z —re® | £ rsin 26 mit k=
folgt

Pyp+d
J d{argF,,<z)}.=
Pap—d
Pap+d
§ d{argf(re?®)} — h(p,) 28in@d -V(r) | &
Pop—98

< H [ sin 208(L(ps, + 20) — L(ps, —26)) + 0(1) J(sin 26 + 1)eV(r),
(»=1,2,3,...,n).

Die Addition dieser Ungleichungen gibt nach Division durch V(r)

o7 .4 {omg f(re)} — Zhigy,) 2 sin g5 | <

y=1
< H[ 25in 206 (8(p” 4 8) — L(¢' —8) ) + o(1) ] (1 + sin 20)e =

= K s8in 29d + o(1)
oder

2 h(gp,,) 28in p6—Ksin2p6—o(l) £

y=1

n

< V(lr) 3' d {arg f(ret®)} £ X h(p,,) 2 sin ¢4 + Ksin 29 -4 o(1).
q)l

y=1
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Beachten wir nun, da bei 6— 0 die Summe 2% (p,,) 2 sin ¢ § gegen das
v=1

¢ll

Integral o _f h(6)db strebt, so folgt aus der letzten Ungleichung bei 6— 0
w’

und r— oo die Behauptung (3.18).

36. Kehren wir nun zur Formel (3.13) zuriick und legen wir fest, da3
die zur stetigen Fortsetzung von arg f(z) nétigen Umwege die Nullstellen
auf dem Rande des Sektors 0< |z| £ r, ¢, £ argz € ¢,, immer im
positiven Sinne umlaufen. Dann umschlieft I" (vgl. Nr. 32) die in diesem
Sektor gelegenen Nullstellen von f(z). Bezeichnen wir ihre Anzahl mit

n(r, @1, P2)*%), s0 ist

arg f(re't) — arg f(re'®®) = 2x - n(r, @, p,) — | d {arg f(ret®)} .
In Verbindung mit Satz 13 und Satz 14 folgt daraus

L [H (ps—0) — K s + O] —o(1) <

2 n(r’qu:)%) — th(e)daz%[h'(%+0)-—-h’(¢1—-0)]+o(1) - (3.19)

Fiir zwei Stetigkeitsstellen ¢, und @, von &/(p) gilt insbesondere

Pa

on lim 000 _ o h0)do - LW (p) —W(p)]. (3.20)
r-»00 V(T) P Y

Da aber diese Stetigkeitsstellen im Intervall (x, B) tiberall dicht liegen,

so ist die Nullstellenverteilung der Funktion f(z) im Winkelraum (e, )

meBbar (vgl. Nr. 11, Abschnitt 1).

Satz 16. Es sei die Funktion f(z) im Intervall x < argz < f§ reguldr,
von priziser Wachstumsordnung o(r) und von reguldrem asymptotischen
Verhalten. Dann ist thre Nullstellenverteilung in diesem Winkelraume
mefbar beziiglich der Ordnung o (r) und es gilt fiir thre Maffunktion

27 - dN(p) = oh(p) dp+ —Z— dh'(g) = d2(p) *) ' (3.21)

36. Im AnschluB an den 2. Abschnitt lassen sich die Ergebnisse, wie sie
in Satz 12 bis Satz 15 ausgesprochen wurden, folgendermafen geometrisch
interpretieren: Wir betrachten die Hiillkurve § der Geradenschar (2.1),

48) Tm Gegensatz zu frither (Nr.11) bezeichnet jetzt n(r, ¢;, ¢,) die Anzahl der Null-
stellen im abgeschlossenen Sektor |z| =7, ¢ < argz = ¢y .
*) Vgl. A. Pfluger [2].
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wo h(gp) jetzt den Strahltypus der Funktion f(z) bedeuten soll, und ordnen

e ——
jedem Winkel ¢ gemaf3 Nr. 17 den Punkt P(p) zu. Bezeichnet P(p,) P(p,)

die Lange des zwischen P(p,) und P(p,) gelegenen Stiicks der Hiillkurve,
so folgt nach (3.19) und (2.7)

P P 2 n (7‘, P15 ‘Pz) P P 47
@) P_(py) —o (1) < n-——ﬁ—(}—)—_ < P_(g) Pi(pe) +0(1) . *)
Bezeichnen wir weiter mit F(p) den Fullpunkt des Lotes, das von O aus

auf die Stiitzgerade von Normalenrichtung p¢ errichtet wird, und mit

—

P(p)F(p) nach Betrag und Vorzeichen die Lange der Strecke P(¢p)F(p)
auf der orientierten Stiitzgeraden. Nach (3.11) und der Bemerkung zu
Satz 12 ist dann

PAn T —o(1) < ZELUE) PG 6 +0q1)

e
Bezeichnen wir schliefllich mit F(p,) F(p,) die Lange des Weges von F,
nach P, entlang der ersten Stiitzgeraden, von P, nach P, entlang der
Hillkurve und von P, nach F, entlang der zweiten Stiitzgeraden, jedes
Wegstiick nach Betrag und Vorzeichen geziahlt, setzen wir also

—— > —— >
F(p1) F(pz) = F(9,) P(p1) + Ploq) Plps) + Pl Flgps) ,  (3.22)
so folgt aus (3.18) und (2.7)

/'—\
lim po [d{arg [0} =Flp) F@) - (3.2

1 51

Speziell fiir zwei Stetigkeitsstellen von k(@) ist

27 rl_l:g n(r V(f';)’ %) P(p,) P(ps) (3.24)
und
. arg f(re® ) arg f (re* 1) 92
rlim 7o) P(p,) F(py) ; }E& V(r) F(p,) P(gy) - (3.25)

Nach (3.23), (3.24) und (3.25) erweist sich die Gleichung (3.22) als
geometrische Interpretation von (3.20). Jetzt ist auch geometrisch er-
sichtlich, dal die Grenzwerte bei (3.25) und (3.24) unstetig sein konnen,
dagegen der Grenzwert bei (3.23) stetig von ¢ abhingt.

47) Dies ist eine Verallgemeinerung bereits bekannter Resultate iiber die Nullstellen-
verteilung von Exponentialsummen. Siehe G. Pélya [3], [4]; E. Schwengeler [1].
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37. Die Sitze 12 bis 15 gelten allgemein fiir solche Funktionen, die in
einem Winkelraume reguldr, von préziser Wachstumsordnung o(7),
o(r)—>p>0, und von regulirem asymptotischen Verhalten sind. AuBer-
lich wenigstens spielt hier der Unterschied, ob p eine ganze oder nicht-
ganze Zahl sei, keine Rolle.

Um den Anschlufl an den ersten Abschnitt zu gewinnen, betrachten
wir jetzt ganze Funktionen von der Ordnung ¢ # 0, 1, 2, ... . Fiir diese
Funktionen ist Satz 15 eine Umkehrung von Satz 3: Ganze Funktionen
von der Ordnung o # 0, 1, 2, ... mit mefbarer Nullstellenverteilung ver-
halten sich asymptotisch regulir und wmgekehrt ganze Funktionen von
regulirem asymptotischen Verhalten besitzen eine mefbare Nullstellen-
verteilung. In beiden Fillen gelten (3.11), (3.18) und (3.21). Fir
0 #0,1,2,... sind also meBbare Nullstellenverteilung und regulires
asymptotisches Verhalten je charakteristische Eigenschaften einer
speziellen Klasse ganzer Funktionen, deren Verhalten beziiglich Betrag,
Argument und Nullstellenverteilung leicht erfat werden kann. Die sich
hier anschlieBende Frage, ob eine dhnliche Charakterisierung durch das
Argument moglich sei, werden wir bald im bejahenden Sinne beantworten
konnen. Letztere Charakterisierung durch das Argument sowie diejenige
durch den absoluten Betrag gelten allgemein fiir positive endliche
Ordnungen. Eine Charakterisierung der Funktionsklasse von den Null-
stellen her ist hingegen nur bei nicht ganzzahliger Ordnung mdoglich. Die
Nullstellen nehmen in diesem Rahmen bei o =1, 2,3, ... eine Aus-
nahmestellung ein, auf die wir noch naher eintreten wollen.

Aus dem ersten und zweiten Abschnitt, insbesondere aus (1.46) und
(2.6) folgt bei o # 0, 1, 2, ..., daB} die Funktionen dN(p) und % (p) immer
gleichzeitig identisch null sind, da8 also mit andern Worten die Funk-
tionen n(r, 2n) und log M (r) immer gleichzeitig vom Minimal- bzw.
Mitteltypus sind. Fiir p = 1, 2, 3,... trifft dies jedoch nicht allgemein zu.
Denn wie die Zusitze von Hilfssatz 1 und Satz 3 zeigen, kann die Grofen-
ordnung von = (r, 2x) wesentlich kleiner sein als jene von log M (r), kann
also die Funktion n(r, 2x) beziiglich einer Wachstumsordnung ¢(r) vom
Minimaltypus und ihre zugehorige Funktion log M (r) vom Mitteltypus
sein.

Um diesen Sachverhalt vom dritten Abschnitt aus zu beleuchten,
betrachten wir eine ganze Funktion von praziser Wachstumsordnung o ()
und regularem asymptotischen Verhalten und suchen die Bedingungen,
unter denen dN (p) = 0 und % (¢) == 0 sein kann. Diese Frage kommt dar-
auf hinaus, die Losungen der Funktionalgleichung

o*fh(p)dp + h'(p) = 0
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mit der Periode 27 zu bestimmen. H (¢) = j' h(p) dp gesetzt, geht letztere
iiber in die Differentialgleichung

H"(p) 4 ¢*H(p) = 0,

deren allgemeine Losung H (p) = a sinpggp -+ b cos pp ist. Daraus folgt
h(p) = pa cos pp+ pb sin gp. Fiir o 5~ 0, 1, 2, ... besitzt diese Funktion
dann und nur dann die Periode 2z, wenn a und b null sind, also A(p)
identisch verschwindet. Fiir ganzzahlige p hingegen besitzt h(p) =
A cos pp + B sin gp fiir alle Zahlen A und B die Periode 2x. Daraus
folgt:

Bei ganzen Funktionen von positiver endlicher Ordnung mit reguldrem
asymptotischen Verhalten sind n(r, 27) und log M (r) im allgemeinen zu-
gleich vom Minimaltypus einer prdzisen Ordnung. n(r, 2x) ist dann und
nur dann vom Minimaltypus ohne dafy auch log M (r) es ist, wenn

l.o=1,2,3,... und
2. h(p) = A cos pp + Bsin gp  ust.

Demnach spielen die ganzzahligen ¢ im Rahmen des dritten Ab-
schnittes nur scheinbar keine Ausnahmerolle. Sogar in einer weitern Hin-
sicht als bereits angegeben, besitzen die Nullstellenverteilung ganzer
Funktionen mit ganzzahliger Ordnung eine Sonderstellung. Koénnen
namlich bei p # 0, 1, 2, ... ganze Funktionen mit beliebig vorgeschrie-
bener, monoton wachsender MaBfunktion gefunden werden, so besitzen
jene Nullstellenverteilung, die zu ganzen Funktionen mit ganzzahliger
Ordnung und regulirem asymptotischen Verhalten gehoren, neben der
MeBbarkeit noch eine Art Gleichgewichtseigenschaft.

Aus Satz 7 folgt ndmlich: Die Mapffunktion der Nullstellenverteilung
einer ganzen Funktion von ganzzahliger Ordnung o und regulirem asymp-
totischen Verhalten, geniigt den beiden Bedingungen

2n 2m
j'cosQG-dN(O)-:——O und _fsing@-dN(O):—-_O . ¥)
0 0

38. Betrachten wir nun weiter die Klasse der Funktionen, die in einem
Winkelraum regulidr, von einer prizisen Wachstumsordnung g(r) und
von reguldrem asymptotischen Verhalten sind. Nach den Satzen 13, 14
und 15 besitzen alle diese Funktionen auch hinsichtlich des Argumentes

*) Ist z. B. eine Nullstellenverteilung me8bar beziiglich einer ganzzahligen Ordnung,
sind aber obige Bedingungen nicht erfiillt, so tritt notwendig eine Erhohung der Wachs-
tumsordnung des Betrages ein; d. h. beziiglich der Wachstumsordnung des Betrages ist

. . . 1
die Nullstellenverteilung vom Minimaltypus; vgl. hiezu die Funktion ———

I'z) *
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und der Nullstellenverteilung eine Art regulidres Verhalten. LaBt sich
also auch umgekehrt diese Funktionsklasse mittels der Nullstellen-
verteilung oder des Argumentes charakterisieren ?

DaB bei ganzen Funktionen der Ordnung ¢ # 0, 1, 2, ... diese Frage
in bejahendem Sinne zu beantworten sei, ist zum Teil schon gezeigt
worden. Allgemein ist aber die MeBbarkeit der Nullstellen keine charak-
teristische Eigenschaft unserer Funktionsklasse. Denn es lassen sich leicht
Funktionen konstruieren, die in einem Winkelraum regulir sind, aber
keine Nullstellen und kein reguliares asymptotisches Verhalten besitzen.

Damit bleibt die Frage, ob vielleicht das Argument sich zur Bildung
eines Kriteriums fiir reguldres asymptotisches Verhalten heranziehen
1a8t. In der Tat zeigt es sich, dafl Satz 14 umkehrbar ist, d. h. es gilt

Satz 16. Es genilge die Funktion f(z), die itm Winkelraum « < argz <
requldr und von prdziser Wachstumsordnung o (r) ist, der Voraussetzung

1 8 . 8
lim 1G] f d{arg f(re?®)} = o [ R (6)d0 . (3.26)

(41

Dann st f(z) im Winkelraum x < arg z < f§ von regulirem asymptotischen
Verhalten.
Da bei ganzen Funktionen die beiden Bedingungen

lim V( Jd{arg f(rei®)} = eJk
und
n(r

27 « lim = j'h(())do
0

r->00

aquivalent sind, so folgt aus Satz 16 und Satz 14.

Corollar: Eine ganze Funktion von positiver endlicher Ordnung ist dann
und nur dann von regulirem asymptotischen Verhalten, wenn

2

27 - lim (()) o [ h(6)do . ) (3.27)

Zum Beweis von Satz 16 benétigen wir drei Hilfssitze, die wir dem
eigentlichen Beweis voranschicken wollen.

48) Vgl. den Satz iiber Borel’sche Richtungen ganzer Funktionen, die (3.27) geniigen,
bei M. L. Cartwright [2], Theorem X, p. 440.
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39. Hilfssatz 6. Es sei die Funktion f(2) in « < arg z £ B regulir,
n(r, &, f) die Anzahlfunktion threr Nullstellen. Dann gilt

B . d .

§ d{arg f(re')} =T Jlog|f(re®®)|dO +q-dn(r,«, ), [n]| Z =,
. (3.28)
{ d log | f(re®) | = farg f(rei®) db . (3.29)

o

und

Beweis : C bezeichne einen Weg, der im wesentlichen mit dem Bogen
|2| = r,a £ arg z £ f iibereinstimmt, eventuelle Nullstellen aber irgend-
wie, im positiven oder negativen Sinne, durch kleine Halbkreise umgeht.
Langs dieses Weges gilt

_!'®

Zerlegen wir nun das Integral auf der rechten Seite in ein Integral iiber
die kleinen Halbkreise K und in ein solches iiber die Teilbogen B auf
ret® o < 6 < B, so folgt

{ d{log f(a)} = | ’"(’:z ric0dd + | ’;((z)) dz  (3.30)
und
(ri® I (rgi) ¢i0 d '
gjf—(-(g{éj)— we“"dﬁ—wj‘z——(z—e——){;— dﬁzzri-d—rlog f(rei®) d6 =

_ e % i0
= ”dr ilog f(rei®) d6

Lassen wir nun die Radien der Halbkreise gegen Null streben, so strebt
das Integral iiber einen einzelnen Halbkreis gegen + x4, je nach dem die
betreffende Nullstelle im positiven oder negativen Sinne umlaufen wird.
Der Grenzwert des zweiten Integrals auf der rechten Seite von (3.30) ist
also absolut kleiner als = - dn(r, x, B). Weiter gilt

) ];((z)) dz—> ir j'logf(re"’ )d6 _fd{log f(2)} — f d{log f (rei®)} .
B

Nach (3.30) folgt
B g
f d{log f(re'®)} = ur —g; f log f(re?®)df + in-dn(r,x,B), |n|<=

44

%) dn (r, «, B) ist gleich der Anzahl der Nullstellen auf dem Bogen |z|=7, a = arg 2= 3.
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und daraus durch Gleichsetzen der Imagindr- und Realteile5?) die
Gleichungen (3.28) und (3.29).

40. Hilfssatz 7. Ist ¢(r) in jedem Intervall (1,7), r>1, im Riemann’-
schen Sinne integrierbar und

() _
lim Zoo-=1, (3.31)
8o qult
1 di l
lim —— ) — = — . 3.32
o V(r)!(p() t e (8-32)
Beweis: Wir setzen
4 dt
o) =[o)
1
Aus
ﬂﬂ:ke . D (kr) D(r) —D(kr) 0< k<l
I 1 A (R
folgt
. D(r) _ e 1 D (k) . D(r)—D(kr)
A SUp gy <K M sup gy i eup —
daraus
. D(r) 1 . D(r) —D(kr)
S ) STk 2 ST )
und ganz entsprechend
. . e D(r) 1 . e D()— D(kr)
Ll (TR e R (TR
Nun ist
D(r) — D (kr . 1—k
(1—om) 1—ky ke < ZOZ2E 214 o) 27
und somit
(1—kyke _ D(r) | 1—%
Lassen wir & gegen 1 streben, und beachten wir, daBl dabei —1}—-_::—’%-—

gegen —Z— strebt, so folgt (3.32) .

60) 7 ist eine reelle Zahl.
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41. Hilfssatz 8. Die Funktion f(z), welche im Winkelraum « < arg z <
reguldr und von priziser Wachstumsordnung o (r) ses, geniige der folgenden
Voraussetzung :

Far jedes ¢ > 0 und & > 0 gult bei geniigend groflem r

log |f(ret®)| — R (0) V(r) > — e V(r) (3.33)

im ganzen Intervall o < 0 < B, ausgenommen hochstens eine Menge vom
Maf < &.

Dann ist die Funktion f(z) im Winkelraum « < arg z < f von regulirem
asymptotischen Verhalten.

Beweis : Es geniigt zu zeigen, dafl bei x <0<

lim* o log | £(r) | =h(0)

ist. Der Beweis dieser Tatsache ist aber schon in Nr. 8, Abschnitt 1,
erbracht, sofern nur zufolge der verschiedenen Voraussetzungen (3.33)
und (1.21) folgendes beriicksichtigt wird: Um (1.24) fiir ein ¢, im
Intervall (0, B/4) bei geniigend groBem r sicherzustellen, ist in (3.33) ¢

durch ZT:I (1 — sin B)¢ zu ersetzen und & < f/4 zu wihlen.

42, Beweis von Satz 16.

B
Setzen wir ¢(r) = [ d {arg f(re?®)}, so heiBt (3.26)

(3.34)

R Q—;m

r>o V()
Gemal (3.28) gilt dann

‘fq:(t ~—;— = f‘ log | f(re*®) | dO —-—-3‘ log | f(e*®) | 40 . (3.35)

Denn es ist
r

jrint.oph g o .
) :

Aus Hilfssatz 7 mit (3.34) an Stelle von (3.31) folgt

: 1 a8
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Aus (3.35) ergibt sich daher nach Division durch V(r) und Ubergang
zur Grenze r— oo

B 8
lim 7%)— J log | f(re'®)| 40 = [ h(6)d0 . (3. 36)

> ®©

Aus der letztern Bedingung folgt aber, dafl die Voraussetzung von Hilfs-
satz 8 erfiillt ist. Denn sonst gibe es zwei Zahlen ¢ > 0 und & > 0, so daB
fiir eine Folge {r,} mit r, »> o0

log |f(re*®)| < h(0) -V(r) — eV (r) (3.37)
auf einer Menge vom Mafl > £ im Intervall x < 6 < §.

Da ferner im ganzen Intervall («, §) fiir geniigend groBe r

log |1(r¢) | < B0) - V1) + 505

- V() (3.38)

ist, so folgt aus (3.37) und (3.38) fiir die obige Folge

8 8
[ log |f(reie)| do < V(r) | h(0)d e-—f-f- V),

was (3.36) widerspricht. Die Voraussetzung von Hilfssatz 8 ist also
erfiillt und somit die Funktion f(z) im Intervall («, 8) von regulirem
agymptotischen Verhalten.

43. Es verbleibt noch, die erhaltenen Resultate iiber die Nullstellen-
verteilung zu iibertragen auf die Verteilung der a-Stellen, also allgemein
die Wertverteilung zu untersuchen. Wir betrachten hierzu einen Winkel-
raum x == argz < f, in dem f(z) nicht nur die iiblichen Eigenschaften
der Regularitit und des reguliren asymptotischen Verhaltens, sondern
iiberdies einen positiven Strahltypus, k(@) > 0, « < ¢ < B, besitzt. Daher
kann die Subtraktion einer Konstanten a von f(z) am Strahltypus und
an der Regularitit des asymptotischen Verhaltens nichts éandern. Es
gilt also

1 .
im * 1 —
lim* o log | f(rei®) —a | = h(g)
Daraus folgt:

1. In Intervallen mit positivem Strahltypus ist fir alle Werte a die
Verteilung der a-Stellen mefbar beziglich der Wachstumsordnung o(r)
von [(z).

2. Far thre Mapfunktion N ,(p) gilt dort

9 - AN, (¢) = oh(@) dq)+%dh’(<p) .
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Es sind also dort alle Werte gleich ,,dicht‘ verteilt. Ist speziell fiir eine

ganze Funktion von regulirem asymptotischen Verhalten der Strahl-

typus stets positiv (oder nur an isolierten Stellen des Intervalles (0, 2 7)

gleich null), so gilt dN,(p) = dNy(p) und 2z (N, (27) — N,(0)) =
2T

e | h(0)do fir alle ¢ und alle a.

0

Nach diesen Ergebnissen ist jede Richtung ¢, eine Borel’sche Richtung
fiir die Funktion f(z), in deren Umgebung A (p) positiv und nicht von der
Form A cos g¢ + B sin pg ist.

Obige Betrachtungen lassen sich nicht ohne weiteres auf solche Inter-
valle iibertragen, in denen der Strahltypus null bzw. negativ ist, da dort
durch Subtraktion einer Konstanten die Regularitat des asymptotischen
Verhaltens bzw. der Strahltypus gestért werden kann.

44. Besonders iibersichtlich verhilt sich die Wertverteilung solcher
ganzer Funktionen, die einen Ausnahmewert im Sinne von Nr. 37 be-
sitzen, d.h. einen Wert ¢, fiir den dN (¢) =0 und Ak (p) 3= 0*) ist.
GemafB Nr. 37 ist dann f(z) eine ganze Funktion von ganzzahliger Ord-

nung mit h,(p) =4 cos p(p —«). Sei der Einfachheit wegen x = %,

also h,(p) = A sin pp. Dann ist auch fir jedes a 7% ¢ f(z) —a von
regulirem asymptotischen Verhalten, aber von anderem Strahltypus.
Es gilt
/ A sinpgp, wenn

1 v%<¢<v%+_}’v:
lim* i9) = h =
S 08 11(re?) —al=ha(g) —0,2,4,...20—2,

0 in den iibrigen Teilen des Intervalles
(0,27).

Es sind also ¢ = » - _’;- y=0,1,2, ..., 20— 1 die Borel’schen Rich-

tungen der Funktion f(z) und es gilt in diesen Richtungen 2z - dN ,(p) =
4,a +£c .5

Ist ¢ sogar ein Borel’scher Ausnahmewert, so konnen wir uns von der
Voraussetzung, daB die Funktion sich asymptotisch regular verhalte,
befreien. Denn dann ist die Funktion vom Mitteltypus einer ganz-
zahligen Ordnung, die Anzahlfunktion ihrer ¢-Stellen aber vom Minimal-
typus dieser Ordnung, also

*) he(p) bedeutet den Strahltypus der Funktion f(z) — a,-
81) Vgl. ahnliches bei M. L. Cartwright [1], 8. 173—175, [3], 8. 532.
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f@) —c=e""" ()
und
. 1 :
lim* Wlog |p(ret?) | =0 .

>0

f(2) verhalt sich somit regular beziiglich des Betrages und es folgt:

Satz 18. Besitzt etne ganze Funktion von positiver endlicher Ordnung
einen Borel’schen Ausnahmewert, so ist sie vom Mitteltypus einer ganz-
zahligen Ordnung n. Ihre Borel’schen Richtungen schliefen wunter sich
gleiche Winkel ein. Ist ¢ eine solche Richtung, so gult

lim 7?:(7‘,99——5,(]9—}—6) — A , 0<6<——2—z~t—~ ,
r>o0 rn 2n n

wenn A den Typus der ganzen Funktion bedeutet.

Nach diesem Satz scheint die ganze Funktion das Vorhandensein
eines Ausnahmewertes durch eine besonders regelmafige Verteilung der
iibrigen Werte ausgleichen zu wollen.

(Eingegangen den 14. April 1939.)
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