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Uber die allgemeine
lineare Differentialgleichung

Von Ta r1, Lantien, China

Anmerkung der Redaktion. Herr Fréchet (Paris) schreibt uns zu der vorliegenden
Arbeit: ,,L’intégration d’une équation linéaire d’ordre n (1) est, comme on sait
équivalente & celle d’un systéme canonique linéaire S de n équations du premier
ordre & n inconnues. Or le probléme consistant & donner une expression formelle
(et rigoureuse) de la solution générale de S (quand par exemple les coefficients de S
sont continus!)), a été résolu par plusieurs auteurs. Chacune des solutions se trouve
exprimée, comme dans l'’expression (2) de M. Ta Li, par une série d’intégrales
multiples d’ordre croissant portant sur des polynomes de degrés croissants par
rapport aux coefficients (fonctions de x) de S. C’est le résultat obtenu d’abord par
Peano, Math. Ann. vol. 32, 1888, p. 459, puis indépendamment par Baker dans le
cas de coefficients analytiques au moyen de la théorie des matrices (Proceedings
London Math. Soc., vol. 34, 1902, p. 354 et 356, vol. 35, 1903, p. 333—378; vol. 2,
sér. 2, 1904, p. 293—296; Phil. Trans. Royal Soc., A. Vol. 216, 1915—16, p. 129 &

186). Ce résultat s’obtient pour ainsi dire sans calcul comme 1'a signalé M. Hostinsky
(Le probléme de Cauchy pour les équations différentielles linéaires,
Publ. Fac. Se. Univ. Masaryk, Brno, Nr. 230, 1936) par une simple application
de la méthode des approximations successives. Il en résulte immédiatement la
formule correspondante pour l'intégrale générale de I’équation générale linéaire
d’ordre n (voir par exemple: Lecons sur les équations différentielles, par
M. Fréchet, p. 126—129; [voir aussi p. 109—111], chez Tournier et Constant, Paris,
1938). Mais dans 'expression obtenue, il y a des simplifications & faire. La formule
(2) de M. Ta Ls a le grand intérét de se présenter toutes simplifications faites.*

Einleitung

Trotzdem das Studium der linearen Differentialgleichung sehr weit
zuriickreicht, ist es uns nur in einzelnen Fallen gelungen, Lésungen in
geschlossener Form anzugeben, wenn die Ordnung der Gleichung hoher
als eins ist. Der Beweis von Liouville dafiir, dal die allgemeine Differen-
tialgleichung zweiter Ordnung nicht elementar integrierbar ist, konnte
uns leicht zu der Vermutung fiihren, dafl die linearen Differentialglei-
chungen zum Teil keine geschlossenen Losungen besdflen, so dall auch
die nicht geschlossenen Losungen ihre Berechtigung fanden.

Dem genialen Gedanken zur Losung der linearen Integralgleichung
analog gab es zur Integration der allgemeinen Differentialgleichung erster
Ordnung die Methode der sukzessiven Approximation von Picard. Sie
kann auf die binomische lineare Differentialgleichung »-ter Ordnung iiber-
tragen werden, wahrend die Ubertragung auf die beliebige lineare
Differentialgleichung n-ter Ordnung nicht ohne weiteres moglich ist,

1) Pour le cas des coefficients discontinus, voir: Sur 1’intégration d’un systéme
canonique d’équation différentielles linéaires & coéfficients discontinus,
par M. Fréchet, Proceed. Benares Math. Math. Soc. (sous presse).
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wovon wir uns leicht iiberzeugen koénnen, wenn wir die Auflésungs-
methode der binomischen algebraischen Gleichung auf eine beliebige
algebraische Gleichung auszudehnen versuchen.

Die Ubertragung wird dann erst moglich, wenn man den Differential-
operator als eine Grofle auffaflt und die allgemeine lineare Gleichung als
eine binomische behandelt. Fiigen wir noch eine Potenz der unabhéngigen
Veranderlichen hinzu, so kénnen wir durch Variation des Exponenten n
formale Losungen erhalten. Wir werden zeigen, dafl sie unter den von
Picard gemachten Voraussetzungen alle gleichméaBig konvergieren und
ein Fundamentalsystem bilden. Fiir den Fall der konstanten Koeffizienten
besteht zwischen den neuen Losungen und den bekannten Exponentialen
eine sehr einfache Beziehung, ebenso bei der Cauchyschen oder homo-
genen Differentialgleichung. Wegen ihrer raschen Konvergenz, linearen
Unabhingigkeit und einfachen Beziehung zu den klassischen Losungen
scheint es mir nicht iberflissig, diese Arbeit zur Versffentlichung zu
bringen, zumal da sie in allen Fallen brauchbare Losungen liefert, auch
da, wo man bis jetzt auBer Potenzreihenentwicklung keine Auflésungs-
methode besitzt. Ferner ist zu bemerken, daB3 wir in dieser Arbeit durch-
aus nur von reduzierten oder homogenen Differentialgleichungen spre-
chen, da die vollstindigen durch die Methode der Variation der Konstan-
ten leicht erledigt werden konnen, falls ein Fundamentalsystem der re-
duzierten bekannt ist. In § 3 wird eine neue Definition der Irreduzibilitat
eingefiihrt, wodurch die Frage, ein geschlossenes Integral einer linearen
algebraischen Differentialgleichung zu gewinnen, auf diejenige zuriick-
gefiihrt wird, zu untersuchen, ob sie nach unserer Definition reduzibel ist.
Die Losung einer irreduziblen algebraischen Differentialgleichung n-ter
Ordnung wird von uns als Differentialtranszendenz n-ter Ordnung be-
zeichnet. Im 2. Kapitel werden die binomischen Differentialgleichungen
behandelt, da sie durch ihre Eigenschaften sich auszeichnen.

Kapitel I
Die allgemeine lineare Differentialgleichung

§ 1. Losungen und ihre gleichmifBige Konvergenz.

Es sei n eine positive ganze Zahl, y eine noch zu bestimmende Funktion
von z und y’, y”, ..., y™ ihre Ableitungen in bezug auf z, dann heilt:

fo(x) y‘“’ _vé;. f,,(x) y('n—-v) —_
= fo(@) Y™ — f,(2) g1 — fo(2) gD —+ o . f (%) y = 0 mit fy(2)=£0
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eine lineare Differentialgleichung n-ter Ordnung mit den bekannten
Funktionen f,(x), f,(), ..., f,(x) als Koeffizienten, die wir in einem
gewissen Intervall etwa a < x < b als beschriankt voraussetzen wollen.
Der Einfachheit halber wollen wir f,(x) = 1 annehmen und y‘¥) = D"y

setzen. Hiernach kann die obige Differentialgleichung in der binomischen
Form:

y™ —( 2 frar (®) DY) y =0 (1)

n—1
geschrieben werden, wobei X f,_j(z) D* vorliufig als eine bekannte

Kol
GrofBe zu betrachten ist.

Zur Losung der Gleichung setzen wir an:

x

B+ f o f "E fur(@) DA g (@) da”

z z n—1 z n—1
+ §---f 120 fn—hl(x)th oo f 3}0 foa(x) DA g (x) dz?" +
z n—1 z z n—1 x n—1
[ 7 Z @D f o f T fuy (@) DR f 2 fua(2) DAg(@) datn -,

wobei g(z) eine noch zu bestimmende Funktion von z, ¢ eine in Betracht
kommende und zwischen a und b gelegene Stelle ist. Durch Einsetzen des
Ansatzes in die Gleichung (1) ergibt sich als Bedingung fiir g(xz):*)

g (x) =0,

n—1
also muB g(z) die Form: X'a) (2 — c)* haben. Zur Abkiirzung wollen wir:

A=0

x —c)H
Yu(2) = *(——‘Z‘T)— +
© 2z z n—1 7 z © x )y—)\ en—Nn

Zfo (2@ )0 E g fa(@) do ., (2)
=0 c__ ¢ 7\=0 [ c A=0 ( ) ’

,u=0,1,2,...n——-1

setzen. Angenommen die Reihen (2) seien gleichméaBig konvergent und
n-mal differenzierbar in dem Intervall < a, b >, was wir bald beweisen

*) Anm. der Redaktion: Siehe zu dem Beweise die Bemerkungen von Herrn
Kienast, dieses Heft, S. 20.



werden, dann sind (2) n partikulare Losungen von (1), welche, wie wir
spater einsehen werden, voneinander linear unabhingig sind.

Um zu zeigen, daf} die Reihen (2) gleichméfig konvergieren, setzen wir
voraus, daB in < a, b >:

elz=¢l < N und |[fea(x)|<M, 2=0,1,2,...,n—1, (3)
bleiben; dann bilden offensichtlich:

|$———G|"" =) z z n—1 =z z

+2Mej‘...j'(2 j'--'.f)QMNdx‘-’(““xH",
e=0 c c A=0 ¢ c
R Tasx

u=0,1,2,...n—1

Majoranten von (2). Bezeichnen wir nun:

n—1

(Z j‘ j‘)edxg(n—l)
A=0 ¢ ¢
mit a,(x), so ist n=A
@) <NelZ2 @)

Fiir p = 0, 1 trifft es offenbar zu, dann folgt aber unter Annahme der
Giiltigkeit fur o, dal3: ‘

n—1 =z x n |.’E——-C‘Q+”
| @gi1(®) | a,(x)da™A| <N Y
¢+l 'A—.-ozf ! oA y=1 (@-+7!
Tn—x
lx___cie‘i"

ele—el < Ne+1 |2 —c |2V

(0 + I)! e+ 1!

Also (4) gilt auch fiir o+ 1. Daher gilt es ganz allgemein. Hiernach sind die
Glieder der Majoranten kleiner als die von:

< Ne

‘ r—C IP + MN 2 “ (MN lx—"‘C‘ dw”, ,11120:1:2, ,’n'——l,
ﬂ' 0=0 ¢ Q'

n

deren Summen offenbar:

sind und unterhalb




liegen. Hiernach sind die Reihen (2) alle in < a, b > gleichmafig konver-
gent. Sie konvergieren noch rascher als die der Exponentialfunktion.
Daf} sie unter den Voraussetzungen (3) n-mal differenzierbar sind,

ergibt sich aus (2), da die Reihen:

© n-—1 z z 7 . —
20 (F foa(@) [+ )° x20 %:%’;-rfnq(w) da @)
o= =0 ¢ c = :

n—A>A

bereits gleichmaflig konvergieren.

§ 2. Lineare Unabhingigkeit.
Betrachten wir nun die Wronskische Determinante der n durch (2)

gegebenen Funktionen: y,(x), y,(2), ..., ¥,—1(2):

Yo() , Yi(x) 5 ovennnt Yn_1(2)
a | BT B e
YoV (x), ¥ (@), ... ... Yo (%)

dann erhalten wir nach der Definition der bestimmten Integrale fiir

vwu=20,1,2,...n—1,
(x —c)p—v

(e —)! i
© z z n—1 x z ©w  _p\M—A
2 j ‘e j‘ (Z’ fn—A(x) ‘f . "')Q X (? ___C)A ' /n-—-)\(x) dage(m—N+n—v
e=0 ¢ ¢ A=0 ¢ ¢ a=0 WU )!
n—vy n—Ai
y(;)(x) = falls v < u ,
1 (6)
© =z z n— z z . Y
2 j‘j'( 2 foa(x) f ‘f 2 (= c); —fr(@) dap@(n—N+n—v
e=0c¢ ¢ A= e e A=0 :“ )
l falls v>u ,
und
0 fi
WO=17 ol " (™)

so daB an der Stelle ¢ die Wronskische Determinante gleich 1 wird.
Hiernach ist: 4 (x) = 0. Die Funktionen y, (%), y,(%), ..., ¥,— (2) sind
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also voneinander linear unabhéngig. Sie bilden daher ein Fundamental-
system der Differentialgleichung (1). Die allgemeine Losung von (1)
lautet dann:

n—1
y@) = X cuyu(a) , (8)
p=0
wobei ¢y, ¢;, ..., ¢,—; beliebige Konstante bedeuten. Mittels (8) konnen wir

das sogenannte Cauchysche Problem leicht erledigen, wenn man ¢, = y*(c)
(»=0,1,2,...,n—1) als die vorgeschriebenen Anfangswerte wéahlt.

§ 3. Differentialtranszendenz hioherer Ordnung.

Es seien P;(z),2 =1, 2, ..., p teilfremde Polynome von z und 4, ,,
e=0,1,2, ..., n positive ganze Zahlen. Wir wollen eine Summe von
Gliedern der Form:

Py(@) 950 (y/ ) ... (y)on

betrachten und von ihnen diejenigen Glieder herausgreifen, welche die
hochste Ableitung in hochster Potenz enthalten, und von diesen heraus-
gegriffenen diejenigen, welche die zweithochste Ableitung in hochster
Potenz enthalten usw. Schlieflich kommen wir zu einem wohlbestimmten
Glied, welches wir als ,,Hauptglied‘‘ bezeichnen wollen. Dieses wollen wir
an die Spitze stellen. Von den iibriggebliebenen Gliedern wird ein zweites
Hauptglied abgesondert, welches wir an die zweite Stelle setzen. In dieser
Weise werden alle Glieder geordnet. Setzen wir nun diese so geordnete
Summe gleich Null, so bekommen wir eine algebraische Differential-
gleichung, welche wir als ,,geordnet‘ bezeichnen wollen. Es ist leicht ein-
zusehen, daf es fiir jede algebraische Differentialgleichung nur eine solche
Darstellung gibt. Eine geordnete algebraische Differentialgleichung heillt
von n-ter Ordnung, wenn darin die Ableitung y™ wirklich vorkommt.

Es sei nun: "

X Pyx)yto(y ). .. (ym)en =0, (9)
i=1
eine geordnete algebraische Differentialgleichung n-ter Ordnung. Wir
nennen sie irreduzibel, wenn sie mit keiner algebraischen Differential-
gleichung niedrigerer Ordnung eine Losung gemeinsam hat, sonst redu-
zibel. Unsere Erklarung der Irreduzibilitét ist zwar eine ganz andere als
die gewohnliche?), welche sich blo8 auf reduzierte lineare algebraische

?) Gewohnlich wird eine reduzierte lineare Differentialgleichung n-ter Ordnung mit
polynomen Koeffizienten als irreduzibel bezeichnet, wenn sie mit keiner solchen Gleichung
niedrigerer Ordnung eine Lisung gemeinsam hat, sonst heiBt sie reduzibel.
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Differentialgleichungen bezieht, doch werden wir auf die letztere ver-
zichten.

Nun fiithren wir die folgende Definition ein:

Detinition: EHine einer algebraischen Differentialgleichung geniigende
Funktion heiflt eine Differentialiranszendenz n-ter Ordnung, wenn die
niedrigste Ordnung threr algebraischen Differentialgleichungen n 1st.

sin z cos

x z
f dz f dz
Zum Beispiel die Funktionen ¢ * , e 7 geniigen keiner
algebraischen Differentialgleichung nullter und erster Ordnung. Die
einfachste Differentialgleichung, die sie erfiillen, ist:

)t (L)
(xy) +xy ’

trotzdem diese Gleichung die weitere Losung y = z besitzt, also eigent-
lich reduzibel ist. Die Funktionen sind dann Differentialtranszendenzen
zweiter Ordnung.

Ferner geniigt die Funktion y = e®” erst der algebraischen Differential-
gleichung

welche offenbar die Losung y = ¢ besitzt, also reduzibel ist. Daher ist e**
eine Differentialtranszendenz zweiter Ordnung.

Bei der Gamma-Funktion haben wir dagegen kennengelernt, daf sie
iiberhaupt keiner algebraischen Differentialgleichung geniigt.

Um zu zeigen, daBl es wirklich irreduzible algebraische Differential-
gleichungen hoherer Ordnung gibt, betrachten wir das folgende Beispiel

y'—azy=0 (10)
Die Gleichung geht namlich durch die Transformation

y' = yz (11)
iiber in

) — g — 22 (12)

Nach dem Existenzsatz im komplexen Gebiet hat die Differentialgleichung
(12) eine iiberall reguliare Losung z = ¢ (x) durch jeden Punkt. Diese
in Potenzreihe darstellbare Losung kann nicht abbrechen, da die Glei-
chung (12) offenbar keine polynome Losung besitzt. Die einzige Singu-

7



laritdt von ¢ (—%—) ist dann die wesentliche singuldre Stelle &= 0. Dies

besagt, dal die Gleichung (12) keine algebraische Losung besitzt. Denn
ware

f’ Py(x) 22=0 ,
A=0

wobei P,(x) Polynome vom hochstens k-ten Grade sind, so haben wir

é:’) g PA(-;.-) 2 (—;—) zé; @ (&) 2* (—;—) =0,

wobeil Q;\( &) Polynome von & bedeuten. Hiernach ist z (—2_—) wiederum

eine algebraische Funktion von . Dann kann sie héchstens Verzweigungs-
punkte und Pole haben, so dafl & = O sicherlich keine wesentliche

Singularitdt von z (%) sein kann. Daraus folgt, daBl z = @ (x) keine

algebraische Funktion ist. Aus (11) ergibt sich als Losung von (10)

y = Cej‘z(:c)-dz .
Diese ist sicherlich keine algebraische Funktion, da j' z (x) dx erst
Logarithmus von algebraischer Funktion sein kann, wenn z selbst es ist.
Wegen J = Crel*®
und (11) kann weder y noch y’/y einer algebraischen Gleichung geniigen.
Hiernach ist die Gleichung (10) auch in unserem Sinne irreduzibel. Eben-
falls kann die Irreduzibilitit der allgemeinen Besselschen Differential-
gleichung

a?y” + xy’ 4 (22 —n?) y =0 (14)
leicht bestétigt werden.

Nach unserer Definition ist die Losung einer irreduziblen algebraischen
Differentialgleichung n-ter Ordnung sicherlich eine Differentialtrans-
zendenz n-ter Ordnung. Die algebraischen Funktionen sind dann solche
nullter Ordnung, wahrend die Exponentialfunktion, die trigonometri-
schen und Hyperbel-Funktionen Differentialtranszendenzen erster Ord-
nung sind. Beispielsweise geniigt sin @ der Differentialgleichung 3’2 4+
y? = 1, die Umkehrung der Hyperbelfunktion In (x 4+ }/2? 4 1) der
Gleichung (z% + 1) 2 = 1, wahrend die Funktionen eVz , e-Vz die
Differentialgleichung 4xy’2— y? = 0 und die Funktionen e*°®® ¢=—1
e~oresin @2—1) die Gleichung x (1 — z) y2 = y? erfiillen.

b

8



Die Besselschen Funktionen

. —o(E)™

Jol@) =2 T a1

(15)

bilden dagegen Beispiele von Differentialtranszendenzen zweiter Ord-
nung. Nach dieser Auseinandersetzung gibt es dann unendlich viele Werte
von z etwa z,, fiir welche die Zahlen J,(x,) weder einer algebraischen
Gleichung noch einer algebraischen Differentialgleichung erster Ordnung
geniigen, so daf} sie im Gegensatz zu e und = als Transzendenzen zweiter
Ordnung zu betrachten sind.

Hiernach liegt die Vermutung nahe, dafl die Zahlen «,,,,, "welche
durch die harmonische Reihe

© ]
Koppy = ——s , m=1,2,3,4,... (16)

gegeben sind, Transzendenzen hoherer Ordnung sein kénnen. Aus

Eﬂﬂi:“@@miﬂ (17)
n=1 n 2
folgt némlich:

1 = cosnnx ra . T

— n§1 ~ :_{!’ ‘! log(z sin ?x) dx? 4+ k, (18)

zwar durch einen leicht zu bestitigenden Grenziibergang und eine weitere
Integration. Die Differentialgleichung fiir (17) ist offenbar

9 2 ) 2
(7‘5— y(4)) =1+ (_; yta)) : (19)

also ist sie eine algebraische Transzendenz vierter Ordnung. Dies zeigt
uns ganz deutlich, warum die Darstellung der Zahlen «,,,;, durch die
Zahlen e und 7 nicht geht.

Diese Einteilung der Funktionen nach der niedrigsten Ordnung
ihrer algebraischen Differentialgleichung ermoglicht uns die Theorie
der algebraischen Funktionen auf Differentialtranszendenzen zu iiber-
tragen. Doch wollen wir hierauf nicht eingehen.



§ 4. Differentialgleichung mit konstanten Koeffizienten.

Betrachten wir nun die lineare Differentialgleichung mit konstanten
Koeffizienten:

n—1

y(‘n) __)‘2 a y(‘n“"A) = 0 , (20)
=1

dann sind nach (2), wenn wir ¢ = 0 wéhlen:

Tk o0 n~1 z z antp—Xi
=t ¥ Zan_ . e yq, dxe P —
Yo w! e=0 (A=0 ’\’(')‘ ‘g) — A(n'*‘o“"“l)!
n—A
N
=%+S}L(x)’ ﬂ=0,1s2:°3n—"l (21)

n lineare unabhangige partikulire Losungen von (20). Wahrend die
klassische Methode uns als Losungen die Exponentialfunktionen
en®, en®,. .., em?, liefert, wobei r,, 7,,...,7, die Wurzeln der charak-
teristischen Gleichung:

n

" — 2 ayrA =0

A=0
sind, welche wir zunichst als voneinander verschieden voraussetzen wollen.
Multiplizieren wir y, mit r§ (1 =0,1,2,3,...,n— 1) und zéblen die
Produkte zusammen, so erhalten wir:

n—1

¢t = X rh Yu (22)
pr=0

eine Beziehung zwischen unseren Losungen und den klassischen. Die
Relation (22) ist sehr leicht zu bestatigen, da sowohl Yu(e=0,1,...n—1),

als auch e¢'»®(u =20, 1,2, ..., n — 1) ein Fundamentalsystem bilden und
Iz y
., B ;
S, (x) mit ol beginnt.

Falls die charakteristische Gleichung mehrfache Wurzeln hat, etwa
P = Tty = *** = 7, geht (22) in:

n—1
ek =27;:yp. k=1,2,...,m
p=0
(23)
n—1
stgmt = o1 T (g, 0= 1,2, .., nm
w=e

iiber, eine einfache Beziehung, welche leicht bewiesen werden kann.

10



§ 6. Cauchysche oder homogene Differentialgleichung.
Die Differentialgleichung

" y(n) . 2’ ann—-A y(n—A) = 0 (24)
A=1
wird gewohnlich als Cauchysche oder homogene Differentialgleichung
bezeichnet. Sie hat nach (2), falls ¢ = 1 gewahlt wird, n linear unabhan-
ige Losungen:
gig g (2 — 1)

u'+

yy.(x) =

n—1 z 1) “w—A

z Ay L apa(x o (n—A)+n 25
“1‘(20 n~“‘ ‘!)Q;\é'o T Azt =N+ (25)

zf-

0=0

l--'-—’aa

n n—>A

wahrend uns der Ansatz 2" die Losungen:

liefert, falls r,, 7y, 75, ..., 7, die Wurzeln der algebraischen Gleichung:

n!(;)-—f‘(n——),)!m(n_r_l)zo (26)

A=1

sind, welche wir zuerst als voneinander verschieden voraussetzen wollen.
Da die Losungen (25) ein Fundamentalsystem bilden, kénnen wir setzen:

n—1
¥ = Zocveye . (27)
o=

Daraus folgt durch Differentiation:

Ty
,u!('u)x""""'— )_7 cvgy("') u=1,2,...,n—1. (28)

Fir « = 1 ergibt sich dann:

cwz,u!(;”) p=0,1,2,...,n—1, (29)

8o dafl zwischen den neuen Losungen und den klassischen die einfache
Beziehung :

n—1
V=3 u! (T") Yu (30)
p=0 u
besteht. Falls die Gleichung (6) mehrfache Wurzeln hat, etwa

11



Tm = Tmt1 = " =Ty

wollen wir fiir die positive ganze Zahl u:

2’ (Inzp = f(z, p) (31)
setzen, dann wird :

xf'(x, p) = rf(z, ) + pflz, u—1) .

Daraus durch wiederholte Differentiation:

ZfO (2, 1) = (r— ) f (@, ) + WP @+ p— 1),  (32)
v=20,1,2,...

was durch vollstandige Induktion zu beweisen ist.

Fir 4 = 1 und = 1 erhalten wir:

L) =0, f(L,)=1, foLl)=2r—1,
f1,1)=3r—6r+2 , usw.

Mittels (32) konnen dann f® (1, 2), f0) (1, 3)... leicht ausgerechnet
werden, da f(1, ) = 0 fiir x = 1. Hiernach, wenn man:

n—1
ZemiprYa=am(lnx)* , u=1,2,...,n—m
A=0

ansetzt, kann man c, ey A (A=0,1,2,...,m — 1) leicht ausrechnen.
Es sind dann:
0 fir A< p
Crtpp= | H! fir A=u -

FN, p) fir 2> p

Die einfache Beziehung (30) geht dann in:

n—1 r
x’VEZ,u!(M”)y” (»=1,2,3,...m)
fr=st (33)

n—p—1

arm(ln )t = p!ly, + 7\21 fER (1,0) Yura

p=1,2,3,..., n—m,

iiber, was ebenfalls einfach ist.
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Dafl die Formel (25) auch im Fall einer Cauchyschen Differential-
gleichung erster Ordnung die richtige Losung liefert, mége am Beispiel:

xy' —ay =0

gezeigt werden. In diesem Falle liefert (25), falls ¢ = 1 gewéahlt wird:

Yo=1 —l——ll—!(alnx)l +2i!(alnx)2 —!———l—(alnx)3 drene= E’ 1

(@lnz)e=a*
3! e=0 Q!

als Losung der gegebenen Differentialgleichung. Sie stimmt offenbar
iiberein mit der klassischen bekannten Losung.

Kapitel I1

Binomische Differentialgleichung

Die allgemeine Formel (2) kann unter Umstédnden betrachtlich ver-
einfacht werden, besonders wenn die Gleichung (1) nur 2 Glieder enthéalt.
In diesem Fall geht (1) in:

y" —f(@)y =0 (34)

iiber. Die Untersuchung dieser Gleichung gibt uns eine viel genauere
Auskunft iiber die Natur der linearen Differentialgleichung. Wegen der
aullerordentlich raschen Konvergenz unter ganz milder Beschrinkung
iiber die Funktion f(x) moge die binomische Differentialgleichung (34)
einen besonderen Platz einnehmen.

§ 6. Losungen, ihre Konvergenz und Differenzierbarkeit.

Es sei A eine positive ganze Zahl, welche hochstens gleich » ist, und
f(x) eine Funktion, fiir die das Integral:

?---xf(x)dx’\ fir a

¢ (4

7
existiert. Wir wollen eine solche Funktion als in < a, b, > A-integrierbar

bezeichnen. Fiir sie gibt es dann mindestens eine positive Zahl M derart,
daf3:

IA
1A

b

x

O ey

o ff@)dar| <M fir a2z =<b. (35)

Sa— ettt

A

13



Auf Grund dieser Ungleichung konnen wir zeigen, dafl die Reihen:

(x———c)f‘ © =z x x z (.’L‘-—--C)“

i T oo U@ D) fla daferon, (36)

n n

p=012 ..., n—1,

Yu(x) =

gleichmaBig konvergieren, falls f(x) A-integrierbar und A kleiner als » ist.
Sie konvergieren auch dann noch gleichméflig, wenn f(x) n-integrierbar

ist und M kleiner als —211; bleibt.

Bewets : Wir zeigen zunéchst, daf fir jede positive ganze Zahl u die
Beziehung:

QQ—-:a

f(x—-—c)l*f (x) dx? =
T 37)

= J (_1)991(1) (/g) f...f(xmc)u—e(j. ff( x)dx )dx"

o

besteht. Sie gilt offenbar fiir A = 0, 1, 2, 3. Angenommen, sie sei fiir
A = k giiltig, dann folgt wegen (l;) + (g-lfl) = (k_: 1), daB sie auch
fir A =k + 1 gilt. Hieraus ergibt sich die Ungleichung:

- Je—ori@ dw*|<M29 ( )( )|T fo—op—tdae| =
T \ g (38)
A
- Mgo(e) |z —c|r=M2 |z —cl|t.

Daraus erhalten wir:

Ig f(”ﬂ,“’ f(x)dxn|<M2A|; ;@:__fzﬁ g5 —

T n—A
= M2A lx—'c |p+n—7x
= e
folglich: (n+n—2)!

z z z z (x c) . (Mz?\)e+l | P lu+(e+1) (n—2)
e Jte ] D fm e < = =Py !
. T 39)

14



was durch vollstindige Induktion leicht zu beweisen ist, da die Un-
gleichung offenbar fiir ¢ = 0 gilt. Hiernach sind :
5 (M2 |o—c|)e

e S T h T en—A T

(40)

Majoranten von (36), so daB fiir A < » die Reihen (36) iiberall gleichméaBig
konvergieren, wo (35) gilt. Falls 1 = » ist, geht (40) in

—clr =
[2=c " 5 (ar2mye
n: e=0

iiber. Die Reihen (36) sind dann sicher gleichméBig konvergent, wenn

M< —%—; bleibt. Damit haben wir unsere Behauptung vollstindig be-

wiesen.

Um zu zeigen, daf (36) auch dann noch Losungen von (34) sind, wenn
f(x) A-integrierbar ist, miissen wir zunichst die Differenzierbarkeit der
Reihen (36) untersuchen. Dazu benétigen wir den

Hz'l/ssatz Es seien f,(x)(v=0,1,2,3...) stetig, f(x) A-integrierbar und
2 fv(x) F(x) gleichmdifig konvergent in dem geschlossemen Intervall

< a,b>, dann ist die Rethe 2 f(z) f,(x) gliedweise A-integrierbar im

=0
demselben Intervall.

Beweis : Da X' f,(x) = F(x) gleichmaBig konvergiert, gibt es fiir jede

v=0
positive kleine Grofle ¢ eine positive ganze Zahl p derart, dafl fir n =p
die Ungleichung:

| 2 @ =1 F@ —Z i@ | <efir asesb

v=n+1

gilt. Mit Riicksicht auf (35) ergibt sich:

1§ ff@ F@)der—f - ff@) T f,(@)da?| =

Qh”&
Qh}a

et I =0
=] Jiw E pwas|<el | o <o <o,
e _c v=n+1

A

wobei ¢/ wiederum eine kleine GroBe ist. Hiernach erhalten wir:

15



o x x

@) X 1, () do = 2 (- [f@)f, (x)da?

y=0 y=0 ¢ c

T
jo
X N
was zu beweisen war.
Fassen wir die Integration als das Umkehrungsverfahren der Differen-
tiation auf, so kann der obige Satz auch folgendermaflen ausgedriickt

werden :

ﬁﬁ—ga

Es sei X f(x) gleichmifig konvergent, f(x) A-integrierbar in < a, b >,
y =0
dann kann die offenbar in < a,b> gleichmdifig konvergente Rethe
2 - j f(z) f,(x) dx A-mal gliedweise differenziert werden.

v=0 ¢ [
A

Auf Grund dieser Tatsache konnen wir jede der gleichméaflig konver-
genten Reihen (36) n-mal differenzieren und das Resultat in (34) ein-
setzen. Daraus folgt dann der folgende Satz:

Ist 2 < n und f(x) eine A-integrierbare Funktion in <a, b >, dann sind
(36) n linear unabhingige Losungen von (34). Sie sind nicht nur stetig,
sondern auch (n — A)-mal stetig differenzierbar in < a, b >.

§ 7. Potenzreihenentwicklung.

Sollen die Losungen (36) von (34) Potenzreihenentwicklungen haben,
miissen wir f(x) notwendig als in der Form:

o0 v)
oy =5 L0 (o —op (41)

=0 ’V'

darstellbar voraussetzen, wobei die Potenzreihe einen von Null ver-
schiedenen Konvergenzradius besitzt. Setzt man (41) in:

aQ—f—l(x) =33. .

n n

@ Cnmy i3
S
&

GQ—JR

j‘; 0 (x f(x) daletin

ein, dann erhalten wir nach wiederholter Integration:
(x—c)* (x—c)le+hn = Aot

/’L! (n !)Q+1 ;‘Q+1=0 7\Q=0

Ao+1(%) =
(42)
Ag f(7\1) (¢) f(lz—ll) f(7\9+1""7\9) (c) (x-——c)l9+1

M0 2 (g A) !ee. (Apr—Ag) 1 TT (”*”*A)

=1

16



Diese Formel gilt offenbar fiir ¢ = 0. Durch vollstindige Induktion
ergibt sich dann, daf} sie allgemein giiltig ist.
Setzt man (42) in (36) ein, dann erhalten wir nach Umordnung der

Glieder (was wegen der gleichmafligen Konvergenz erlaubt ist), die
Potenzreihenentwicklungen von (36):

(x — ) ® (gp—c)kn( *— n—1  entAk-g@ M- Ag
y”(x):_‘_')[l_]_z‘_(___r)__zz 2 2 Z ...2.
}u’ . k=1 (n ') =0 "‘Q=0 /‘Lk_g_1=0 Kk_9_2=0 )\1=0

(n1)e fO0 (¢) fPe—2D (c). . . flentrk-e—2k-0-1) (¢) (x— c)-e

Ayl (12——11) .. (Qn+}‘k~9_}~k—g_1)7 (kn+,u+,1k_ )k—]ril (""n+llf—|—}. )

+

v=1 L
(Fe)* 7. _ _
4 P J, p=0,1,2,...,n—1 . (43)
v=1( n )

§ 8. Gleichung erster Ordnung.

Fiir n = 1 hat die Gleichung:
y'—fx)y =0 (44)
die bekannte Losung:
j- J(z)dz
Yy = ’
welche ein ganz anderes Aussehen hat als:

o 4

y =2 (Jf(x)°dz? . (45)

0=0 ¢
Doch ist es nicht schwer zu zeigen, daB die Losungen identisch gleich
sind. Denn die Beziehung:

x x

j f@)° -+ | flw) dat = = ([ ) de)* (46)

Q

c
e

gilt ja zundchst fiir p = 0, 1. Angenommen, sie sei fiir g giiltig, dann folgt

nach Multiplikation von (46) mit f(x) und Integration nach x von ¢ bis z,
die Beziehung:
1

fl@) -+ [ f@) dwe = e ([ da) e,

® Cammy

e+1

womit die allgemeine Giiltigkeit von (46) bewiesen ist. Hiernach erhalten
wir die Identitat:
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2 (}f(x))"dx" =3 —},- jf )dx)¢ = c{’(z)“ ‘ (47)

e=0 ¢ e==0 c

Dadurch haben wir gezeigt, daBl unsere Methode auch in dem Fall der
linearen Differentialgleichung erster Ordnung die richtige Losung liefert.

§ 9. Gleichung mit konstanten Koeffizienten.

Im Fall f(x) = d # 0 eine Konstante ist, betrachten wir zunichst die
binomische algebraische Gleichung:

rm—d=20. (48)
Thre Wurzeln mégen mit dP (u=0,1,2,...,n —1) bezeichnet werden.
o) Falls d > 0 ist, sind die Wurzeln gegeben durch:

" 2 L. 2
dp=Vd (cos {;x—}—zsm ‘:n), (t=0,1,2,...,n—1),

wobei d, und d,, konjugiert komplex sind.

p) Ist dagegen d < 0, so haben wir

(2x + V=

- . [(2pu+ D=z
+zsm( " ),

dp=VTd] (e
mit d, und d,_,_, als konjugiert komplex.
D1e Losungen von (49)
y™ —dy =0 (49)
sind dann gegeben durch:

P z z —_— M
yp=u+d"‘ j'(x d”+d2j' j‘(xlu!c) dxn4 ... =

p! e
e in (50)
o0 2 @
_ A... fLE=OF Jan_ s gaE—oP =0,1,2,...,n—1.
Eof JUrt e - EaGTa i

Wegen d* = d M (v = 0,1, 2, ..., n — 1) konnen wir setzen:

. =T © n=l (g (@—c) Prte
=Tty =% 3 A% — =0 (51
‘ p=0 Yo A=0 p=0 (An + u)! 51)

p=0,1,2,...,n—1 .
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Falls d >0, n=2m hat die Gleichung (48) zwei reelle Wurzeln d,,
d, und m—1 Paare imaginire Wurzeln d,, d;,,—;, d2, dy(pey) ++ - «
Die reellen Lésungen von (49) lauten in diesem Falle :

n__ n_
. 1 d (z—c) N —\ d (z—c)
Yo=¢€ Yp = €
n
1 (z—c) V'd cos -2—-1-;25

S0+ v = - cos | (z—¢) sin 22|

n
? * . (—)Vt‘i— 8_2_1’_7_1' . R 2v
——z—(yv“yn—v) =e 0w . in :(x———c) e
v=1,2,3,...,m—1,
wahrend fir d >0, n=2m + 1 anstatt y, die Losungen:
?

1 * * * *
'§' (ym + ym-}-l) ’ —’—é_(ym_" ym-{-l)

auftreten. Der Fall d< 0 kann ahnlich behandelt werden.

(Eingegangen den 7. Februar 1939.)
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