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Ûber die allgemeine
lineare Differentialgleichung
Von Ta li, Lantien, China

Anmerkung der Redaktion. Herr Fréchet (Pans) schreibt uns zu der vorhegenden
Arbeit. ,,L'intégration d'une équation linéaire d'ordre n (1) est, comme on sait
équivalente à celle d'un système canonique linéaire S de n équations du premier
ordre à n inconnues. Or le problème consistant à donner une expression formelle
(et rigoureuse) de la solution générale de S (quand par exemple les coefficients de S
sont continus1)), a été résolu par plusieurs auteurs. Chacune des solutions se trouve
exprimée, comme dans l'expression (2) de M. Ta Li, par une série d'intégrales
multiples d'ordre croissant portant sur des polynômes de degrés croissants par
rapport aux coefficients (fonctions de x) de S. C'est le résultat obtenu d'abord par
Peano, Math. Ann. vol. 32, 1888, p. 459, puis indépendamment par Baker dans le
cas de coefficients analytiques au moyen de la théorie des matrices (Proceedings
London Math. Soc, vol. 34, 1902, p. 354 et 356, \ol. 35, 1903, p. 333—378; vol. 2,
sér. 2, 1904, p. 293—296; Phil. Trans. Royal Soc, A. Vol. 216, 1915—16, p. 129 à

186). Ce résultat s'obtient pour ainsi dire sans calcul comme Fa signalé M. Hostinsky
(Le problème de Cauchy pour les équations différentielles linéaires,
Publ. Fac. Se Univ. Masaryk, Brno, Nr. 230, 1936) par une simple application
de la méthode des approximations successives. Il en résulte immédiatement la
formule correspondante pour l'intégrale générale de l'équation générale linéaire
d'ordre n (voir par exemple: Leçons sur les équations différentielles, par
M. Fréchet, p. 126—129, [voir aussi p. 109—111], chez Tourmer et Constant, Paris,
1938). Mais dans l'expression obtenue, il y a des simplifications à faire. La formule
(2) de M. Ta Li a le grand intérêt de se présenter toutes simplifications faites."

Einleitung
Trotzdem das Studmm der linearen Differentialgleichung sehr weit

zuruckreieht, ist es uns nur in einzelnen Fallen gelungen, Losungen in
geschlossener Form anzugeben, wenn die Ordnung der Gleichung hoher
als eins ist. Der Beweis von Liouville dafur, daB die allgemeine
Differentialgleichung zweiter Ordnung nicht elementar integrierbar ist, konnte
uns leicht zu der Vermutung fuhren, daB die linearen Differentialglei-
chungen zum Teil keine geschlossenen Losungen besaBen, so daB auch
die nicht geschlossenen Losungen ihre Berechtigung fanden.

Dem genialen Gedanken zur Losung der linearen Integralgleichung
analog gab es zur Intégration der allgemeinen Differentialgleichung erster
Ordnung die Méthode der sukzessiven Approximation von Picard. Sie

kann auf die binomische lineare Differentialgleichung w-ter Ordnung uber-
tragen werden, wahrend die Ûbertragung auf die beliebige lineare
Differentialgleichung w-ter Ordnung nicht ohne weiteres moglich ist,

x) Pour le cas des coefficients discontinus, voir Sur l'intégration d'un système
canonique d'équation différentielles linéaires à coefficients discontinus,
par M. Fréchet, Proceed. Benares Math Math. Soc (sous presse)

1 Commentant Mathematici Helvetici *



wovon wir uns leicht ûberzeugen kônnen, wenn wir die Auflôsungs-
methode der binomischen algebraischen Gleichung auf eine beliebige
algebraische Gleichung auszudehnen versuchen.

Die Ûbertragung wird dann erst môglich, wenn man den Differential-
operator als eine GrôBe auffaBt und die allgemeine lineare Gleichung als
eine binomische behandelt. Fugen wir noch eine Potenz der unabhângigen
Verànderlichen hinzu, so kônnen wir durch Variation des Exponenten n
fonnale Lôsungen erhalten. Wir werden zeigen, da8 sie unter den von
Picard gemachten Voraussetzungen aile gleichmàBig konvergieren und
ein Fundamentalsystem bilden. Fur den Fall der konstanten Koeffizienten
besteht zwischen den neuen Lôsungen und den bekannten Exponentialen
eine sehr einfache Beziehung, ebenso bei der Cauchyschen oder homo-

genen Differentialgleichung. Wegen ihrer raschen Konvergenz, linearen
Unabhângigkeit und einfachen Beziehung zu den klassischen Lôsungen
scheint es mir nicht iiberflussig, dièse Arbeit zur VerôjBEentlichung zu
bringen, zumal da sie in allen Fàllen brauchbare Lôsungen liefert, auch
da, wo man bis jetzt auBer Potenzreihenentwicklung keine Auflôsungs-
methode besitzt. Ferner ist zu bemerken, daB wir in dieser Arbeit durch-
aus nur von reduzierten oder homogenen Differentialgleichungen spre-
chen, da die vollstàndigen durch die Méthode der Variation der Konstanten

leicht erledigt werden kônnen, falls ein Fundamentalsystem der
reduzierten bekannt ist. In § 3 wird eine neue Définition derlrreduzibilitât
eingefûhrt, wodurch die Frage, ein geschlossenes Intégral einer linearen
algebraischen Differentialgleichung zu gewinnen, auf diejenige zurlick-
gefuhrt wird, zu untersuchen, ob sie nach unserer Définition reduzibel ist.
Die Lôsung einer irreduziblen algebraischen Differentialgleichung n-ter
Ordnung wird von uns als Differentialtranszendenz n-ter Ordnung be-
zeichnet. Im 2. Kapitel werden die binomischen Differentialgleichungen
behandelt, da sie durch ihre Eigenschaften sich auszeichnen.

Kapitel I
Die allgemeine lineare Differentialgleichung

§ 1. Lôsungen und ihre gleichmâBige Konvergenz.

Es sei n eine positive ganze Zahl, y eine noch zu bestimmende Funktion
von x und yf, y", y{n) ihre Ableitungen in bezug auf x, dann heiBt:

n-2) —...—• fn(x) y 0 mit



eine lineare Differentialgleichung n-ter Ordnung mit den bekannten
Funktionen fo(x), fx(x), fn(x) als Koeffizienten, die wir in einem
gewissen Intervall etwa a ^ x ^b als beschrânkt voraussetzen wollen.
Der Einfachheit halber wollen wir fo(x) 1 annehmen und y{v) Dvy
setzen. Hiernach kann die obige Differentialgleichung in der binomisehen
Form: n_l

yin) _ (2; /n.x (x)D*) y 0 (1)
x=o

n—l
geschrieben werden, wobei £ fn-\(x) DX vorlâufig als eine bekannte

x=o
GrôBe zu betrachten ist.

Zur Lôsung der Gleichung setzen wir an :

V 9(x) +h"$nZ
c^ c X=0

n

J • • • J ïc c

n

]¦¦¦] nZ fn-iS*)&*]¦¦¦] ï L-h{x)&>} $
e c X2=0 c c ix^O c_ c X—0

n n n

wobei g(x) eine noch zu bestimmende Funktion von x, c eine in Betraeht
kommende und zwischen a und b gelegene Stelle ist. Durch Einsetzen des
Ansatzes in die Gleichung (1) ergibt sich als Bedingung fur g(x):*)

g{n)(x) 0,
n—l

also muB g(x) die Form: Za^ix — c)A haben. Zur Abkurzung wollen wir:
x=o

L (X)+ (2)

c c Ax=O e e X=0
n n

oo x x n—l x x fi y
--J> E \u L /«-AW^

n n—X

fi= 0,1, 2,. ..n—l
setzen. Angenommen die Reihen (2) seien gleichmâfiig konvergent und
n-mal differenzierbar in dem Intervall <a,b>, was wir bald beweisen

*) Anm. der Redaktion : Siehe zu dem Beweise die Bemerkungen von Herrn
Kienast, dièses Heft, S. 20.



werden, dann sind (2) n partikulàre Lôsungen von (1), welche, wie wir
spàter einsehen werden, voneinander linear unabhàngig sind.

Um zu zeigen, daB die Reihen (2) gleichmàBig konvergieren, setzen wir
voraus, daB in < a, b > :

el*-«l<iV und | fn^(x) \ < M A 0, 1, 2, n — 1 (3)

bleiben; dann bilden offensichtlich :

n—X

Majoranten von (2). Bezeichnen wir nun:

n—l x x

X=0 c c

mit aJx), so ist n~~x

\e()\^
0, 1 triflft es offenbar zu, dann folgt aber unter Annahme der

Gûltigkeit fur q, daB :

n—l xx n I r ie+v

n—X

Also (4) gilt auch fur q + 1. Daher gilt es ganz allgemein. Hiernach sind die
Glieder der Majoranten kleiner als die von :

mat f {MN\x — c\)e „ A1Oh -M^ <£ J ••• J — —dxn, ^ 0,1,2,...,n—l,
0 ^

-i r

n

deren Suminen offenbar:

sind und unterhalb
I x — c |**

I /v iu jly ¦



liegen. Hiernach sind die Reihen (2) aile in < a, b > gleichmàBig konver-
gent. Sie konvergieren noch rascher als die der Exponentialfunktion.

DaB sie unter den Voraussetzungen (3) n-mal differenzierbar sind,
ergibt sich aus (2), da die Reihen:

n—1

Z tu-Xi*)
G=o x=o

x p /„ r\u—X

_ _n—X

bereits gleichmâBig konvergieren.

§ 2. Lineare Unabhângigkeit.

Betrachten wir nun die Wronskische Déterminante der n durch (2)
gegebenen Funktionen: yo(x), y^x), yn-Ax):

A(x)
y[(x),

(5)

dann erhalten wir nach der Définition der bestimmten Intégrale fur
v, p 0,1,2, ...n— 1,

und

oo x x n-1
2 J • • • J {S L-
=0 c c X=0

oo a: a; n—1

21 J • ¦ • J Z /
ç=0 cc X=0

{x — c)^-v

x x [*.

SS
c c X=0

n—X

i—X

falls v ^ ju

(6)

7
n—X

falls

0 fur v^/(
1 fiir v /u

(7)

so da6 an der Stelle c die Wronskische Déterminante gleich 1 wird.
Hiernach ist: A(x) ^é 0. Die Funktionen yo(%), yi(%), yn-i(x) &^



also voneinander linear unabhângig. Sie bilden daher ein Fundament&l-
system der Differentialgleichung (1). Die allgemeine Lôsung von (\)
lautet daim: n-1

y(x)= X c^y^x) (8)

wobei cQ, c1} cn_x beliebige Konstante bedeuten. Mittels (8) kônnen wir
das sogenannte CauchyscheProblem leicht erledigen, wenn man cv y{v)(c)

(v 0, 1, 2, ...,n— 1) als die vorgeschriebenen Anfangswerte wâhlt.

§ 3. Differentialtranszendenz hôherer Ordnung.

Es seien i\(#)> i 1, 2, p teilfremde Polynôme von x und XiQ,

g 0, 1, 2, n positive ganze Zahlen. Wir wollen eine Summe von
Gliedern der Form:

betrachten und von ihnen diejenigen Glieder herausgreifen, welche die
hôchste Ableitung in hôchster Potenz enthalten, und von diesen heraus-

gegriffenen diejenigen, welche die zweithôchste Ableitung in hôchster
Potenz enthalten usw. SchlieBlich kommen wir zu einem wohlbestimmten
Glied, welches wir als ,,Hauptglied" bezeichnen wollen. Dièses wollen wir
an die Spitze stellen. Von den iibriggebliebenen Gliedern wird ein zweites

Hauptglied abgesondert, welches wir an die zweite Stelle setzen. In dieser
Weise werden aile Glieder geordnet. Setzen wir nun dièse so geordnete
Summe gleich Null, so bekommen wir eine algebraische Dififerential-
gleichung, welche wir als ,,geordnet" bezeichnen wollen. Es ist leicht ein-
zusehen, da8 es fur jede algebraische Differentialgleichung nur eine solche

Darstellung gibt. Eine geordnete algebraische Differentialgleichung heiBt
von 7i-ter Ordnung, wenn darin die Ableitung yin) wirklich vorkommt.

Es sei nun: p
E Pi(x) yXi>°(y')Xi* (y<»>)X.n 0, (9)

eine geordnete algebraische Differentialgleichung n-ter Ordnung. Wir
nennen sie irreduzibel, wenn sie mit keiner algebraischen Differentialgleichung

niedrigerer Ordnung eine Lôsung gemeinsam hat, sonst redu-
zibel. Unsere Erklârung der Irreduzibilitàt ist zwar eine ganz andere als
die gewôhnliche2), welche sich bloB auf reduzierte lineare algebraische

2) Gewôhnlich wird eine rëduzierte lineare Differentialgleichung w-ter Ordnung mit
polynomen Koeffizienten als irreduzibel bezeichnet, wenn sie mit keiner solchen Gleichung
niedrigerer Ordnung eine Lôsung gemeinsam hat, sonst heiÛt sie reduzibel.
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Differentialgleichungen bezieht, doch werden wir auf die letztere ver-
zichten.

Nun fuhren wir die folgende Définition ein:

Définition: Eine einer algebraischen Differentialgleichung genûgende
Funktion heifit eine Differentialtranszendenz n-ter Ordnung, wenn die
niedrigste Ordnung ihrer algebraischen Differentialgleichungen n ist.

Zum Beispiel die Funktionen e° e1 genugen keiner
algebraischen Differentialgleichung nullter und erster Ordnung. Die
einfachste Differentialgleichung, die sie erfûllen, ist:

trotzdem dièse Gleichung die weitere Lôsung y x besitzt, also eigent-
lich reduzibel ist. Die Funktionen sind dann Differentialtranszendenzen
zweiter Ordnung.

Ferner genugt die Funktion y eeX erst der algebraischen Differentialgleichung

welche offenbar die Lôsung y c besitzt, also reduzibel ist. Daher ist eeX

eine Differentialtranszendenz zweiter Ordnung.
Bei der Gamma-Funktion haben wir dagegen kennengelernt, daB sie

tiberhaupt keiner algebraischen Differentialgleichung genugt.
Um zu zeigen, daB es wirklich irreduzible algebraische Differentialgleichungen

hôherer Ordnung gibt, betrachten wir das folgende Beispiel

y"—xy O (10)

Die Gleichung geht nàmlich durch die Transformation

y' yz (H)
iiber in

z'=x — z* (12)

Nach dem Existenzsatz im komplexen Gebiet hat die Differentialgleichung
(12) eine iiberall regulâre Lôsung z <p (x) durch jeden Punkt. Dièse
in Potenzreihe darstellbare Lôsung kann nicht abbrechen, da die
Gleichung (12) offenbar keine polynôme Lôsung besitzt. Die einzige Singu-



laritât von 9^ I ~^~
1 ^ dann die wesentliche singulàre Stelle f 0. Dies

besagt, da8 die Gleichung (12) keine algebraische Lôsung besitzt. Denn
wâre

ZP\(x) zx=0

wobei P\{x) Polynôme vom hôchstens &-ten Grade sind, so haben wir

wobei Q\(Ç) Polynôme von £ bedeuten. Hiernaeh ist z(-r) wiederum

eine algebraische Funktion von |. Dann kann sie hôchstens Verzweigungs-
punkte und Pôle haben, so dafi | 0 sicherlich keine wesentliche

Singularitât von 21 — 1 sein kann. Daraus folgt, da8 z cp (x) keine

algebraische Funktion ist. Aus (11) ergibt sich als Lôsung von (10)

Dièse ist sicherhch keine algebraische Funktion, da §z(x)dx erst
Logarithmus von algebraischer Funktion sein kann, wenn z selbst es ist.
Wegen

und (11) kann weder y noch yfjy einer algebraischen Gleichung genugen.
Hiernaeh ist die Gleichung (10) auch in unserem Sinne irreduzibel. Eben-
falls kann die Irreduzibilitàt der allgemeinen Besselschen Differential-
gleichung

X2 yn + xyi + {Z2 _n2)y==0
leicht bestâtigt werden.

Nach unserer Définition ist die Lôsung einer irreduziblen algebraischen
Differentialgleichung n-ter Ordnung sicherlich eine Differentialtrans-
zendenz n-ter Ordnung. Die algebraischen Funktionen sind dann solche

militer Ordnung, wàhrend die Exponentialfunktion, die trigonometri-
schen und Hyperbel-Funktionen DifiEerentialtranszendenzen erster
Ordnung sind. Beispielsweise geniigt sin x der Differentialgleichung y'2 +
y2 1, die Umkehrung der Hyperbelfunktion In (x + ]/x2 + 1 der
Gleichung (x2 + 1) y'2 1, wàhrend die Funktionen eV«~, e-Vï" die
Differentialgleichung 4:xy/2—y2 0 und die Funktionen e8*08111 <2a;~1),

c-arcsin(2s-i) ^ Gleichung x (1 _ x) y'* y2 erfullen.

8



Die Besselschen Funktionen

bilden dagegen Beispiele von Differentialtranszendenzen zweiter Ord-

nung. Nach dieser Auseinandersetzung gibt es dann unendlich viele Werte
von x etwa x0> fur welche die Zahlen Jn(x0) weder einer algebraischen
Gleichung noch einer algebraischen Differentialgleichung erster Ordnung
genugen, so daB sie im Gegensatz zu e und n als Transzendenzen zweiter
Ordnung zu betrachten sind.

Hiernach liegt die Vermutung nahe, daB die Zahlen k2[JL+1, welche
durch die harmonische Reihe

(16)

gegeben sind, Transzendenzen hôherer Ordnung sein kônnen. Aus

folgt nâmlich:

Z C0SnnX -Iog (2sin^-*) (H)
n=l ^

n o o

(2 8in T*)-ï- 2" -5 $ $ log 2 sin Ta; da;^ + K, (18)
7i n \ ^ /

zwar durch einen leicht zu bestàtigenden Grenziibergang und eine weitere
Intégration. Die Difîerentialgleichung fur (17) ist offenbar

also ist sie eine algebraische Transzendenz vierter Ordnung. Dies zeigt
uns ganz deutlich, warum die Darstellung der Zahlen K2fJL+1 durch die
Zahlen e und n nicht geht.

Dièse Einteilung der Funktionen nach der niedrigsten Ordnung
ihrer algebraischen Differentialgleichung ermôglicht uns die Théorie
der algebraischen Funktionen auf Differentialtranszendenzen zu ûber-
tragen. Doch wollen wir hierauf nicht eingehen.



§ 4. Differentialgleichung mit konstanten Koeffizienten.

Betrachten wir nun die lineare Differentialgleichung mit konstanten
Koeffizienten :

-* 0, (20)

dann sind nach (2), wenn wir c 0 wàhlen:

~u oo n—l x x (A

n-x
xf1
—i+8li(z), /t 0,l,2,...,n—l (21)

n lineare unabhângige partikulâre Lôsungen von (20). Wâhrend die
klassische Méthode uns als Lôsungen die Exponentialfunktionen
eriX, er**,..., ernX, liefert, wobei rl9 r2, rn die Wurzeln der charak-
teristischen Gleichung:

n

rn — E ax rn~x 0

sind, welche wir zunâchst als voneinander verschieden voraussetzen wollen.
Multiplizieren wir y^ mit r$ (/x 0, 1, 2, 3, n — 1) und zàhlen die
Produkte zusammen, so erhalten wir:

***= nÊ r^y^ (22)

eine Beziehung zwischen unseren Lôsungen und den klassischen. Die
Relation (22) ist sehr leicht zu bestâtigen, da sowohl y^/bt 0,1,... w- — 1),
als auch ernx {(x 0, 1, 2, n — 1) ein Fundamentalsystem bilden und

xn
Spix) mit -y beginnt.

Falls die charakteristische Gleichung mehrfache Wurzeln hat, etwa
rm rm+1 ••• rn, geht (22) in:

(23)

ûber, eine einfache Beziehung, welche leicht bewiesen werden kann.

10



§ 5. Cauchysche oder homogène Difîerentialgleichung.

Die Differentialgleichung

\y(n-\) q (24)

wird gewôhnlich als Cauchysche oder homogène Differentialgleichung
bezeichnet. Sie hat nach (2), falls c 1 gewâhlt wird, n linear unabhàn-
eige Lôsungen:

oo x x n—1 n x xoo x x n1 n x x P n -> (r IV**- (25)

n—X

wâhrend uns der Ansatz xr die Lôsungen:

xTl xr2

liefert, falls rx, r2, r3, rn die Wurzeln der algebraischen Gleichung :

O (26)

sind, welche wir zuerst als voneinander verschieden voraussetzen wollen.
Da die Lôsungen (25) ein Fundamentalsystem bilden, kônnen wir setzen:

(27)

Daraus folgt durch Diflferentiation :

^"^1 w ^=1,2 »_1 (28)

Fur x 1 ergibt sich dann :

/* 0, 1, 2,...,n—1, (29)

so dafi zwischen den neuen Lôsungen und den klassischen die einfache

Beziehung :

& Zli '• (M 2/m (30)

besteht. Falls die Gleichung (6) mehrfache Wurzeln hat, etwa

11



rm rm+l * ' " rn

wollen wir fur die positive ganze Zahl p :

(31)
setzen, dann wird:

xf'(z, p) rf(x, p) + pf(x, p—1)

Daraus durch wiederholte Differentiation :

p) {r — v) /<"> (x, p) + pfM (x + fl—i)9 (32)

v 0,1,2,...

was durch vollstândige Induktion zu beweisen ist.

Flir p 1 und x 1 erhalten wir :

/(l, 1) 0 f'(\9 1) 1 /(«(l, 1) 2 r — 1

1) 3r2 — 6r + 2 usw.

Mittels (32) kônnen dann /(v> (1, 2),/(v) (1, 3) leicht ausgerechnet
werden, da /(l, ^) 0 fur ^ ^ 1. Hiernach, wenn man:

n—1

A=0

ansetzt, kann man cw+/x
Es sind dann :

=1,2, ...9n — m

..,w— 1) leicht ausrechnen.

0 fur A < p
p fur A p
/<*>(!, ^) fur A>/i

Die einfache Beziehung (30) geht dann in:

<A (* l,2,3,...m)

X*»l

p= 1,2,3, n— m

liber, was ebenfalls einfach ist.

(33)

12



DaB die Formel (25) auch im Fall einer Cauchyschen Differential-
gleichung erster Ordnung die richtige Lôsung liefert, môge am Beispiel:

xyr — ay 0

gezeigt werden. In diesem Falle liefert (25), falls c — 1 gewâhlt wird:

0 1 + -^ (alnz)1 + ±r (alnx)* + ±: (alnx)* + £ ±-(alnx)e

als Lôsung der gegebenen Differentialgleichung. Sie stimmt ofïenbar
uberein mit der klassischen bekannten Lôsung.

Kapitel II
Binomische Differentialgleichung

Die allgemeine Formel (2) kann unter Umstànden betrâchtlieh ver-
einfacht werden, besonders wenn die Gleichung (1) nur 2 Glieder enthàlt.
In diesem Fall geht (1) in:

y{n)—f(x)y O (34)

ùber. Die Untersuchung dieser Gleichung gibt uns eine viel genauere
Auskunft iiber die Natur der linearen Differentialgleichung. Wegen der
auBerordentlich raschen Konvergenz unter ganz milder Beschrànkung
iiber die Funktion f(x) môge die binomische Differentialgleichung (34)
einen besonderen Platz einnehmen.

§ 6. Losungen, ihre Konvergenz und Differenzierbarkeit.

Es sei A eine positive ganze Zahl, welche hôchstens gleich n ist, und
f(x) eine Funktion, fur die das Intégral:

X X

J §f(x)dxx fur a^x^b
c

A,

existiert. Wir wollen eine solche Funktion als in < a, 6, > A-integrierbar
bezeichnen. Fur sie gibt es dann mindestens eine positive Zahl M derart,
daB: x x

| f... jjf(x)dxx\< M fur a^x^b. (35)

13



Auf Grand dieser Ungleichung kônnen wir zeigen, da8 die Reihen:

gleiehmâfiig konvergieren, falls f(x) A-integrierbar und A kleiner als n ist.
Sie konvergieren auch dann noch gleichmàfiig, wenn f(x) w-integrierbar

ist und M kleiner als — bleibt.

Beweis : Wir zeigen zunâchst, da6 fur jede positive ganze Zahl ju die
Beziehung : x x

(37)

besteht. Sie gilt offenbar fur A 0, 1, 2, 3. Angenommen, sie sei fur

A k gûltig, dann folgt wegen *) + t\) (^+1)J daB sie auch

fur A k + 1 gilt. Hieraus ergibt sich die Ungleichung :

ç=0 S- (38)
x /

— M Y1 l A \ It /• |#* ¥OA|« -la— iKtZ^ II*— cr — Jyi ^ \x — cr

Daraus erhalten wir:

c c /* * c

n ^ n—X

folghch:

—^— ^— (39)

14



was dureh vollstândige Induktion leicht zu beweisen ist, da die Un-
gleichung offenbar fur q 0 gilt. Hiernach sind :

x

Majoranten von (36), so daB fur A < n die Reihen (36) uberall gleichmàBig
konvergieren, wo (35) gilt. Falls A n ist, geht (40) in:

ub&r. Die Reihen (36) sind dann sicher gleichmàfiig konvergent, wenn

M < — bleibt. Damit haben wir unsere Behauptung vollstàndig be-

wiesen.
Um zu zeigen, daB (36) auch dann noch Lôsungen von (34) sind, wenn

f(x) A-integrierbar ist, mussen wir zunàchst die Dififerenzierbarkeit der
Reihen (36) untersuchen. Dazu benôtigen wir den

Hilfssatz: Es seien fv(x)(v—0,1,2,3...) stetig, f(x) k-integrierbar und
00

E fv{x) F(x) gleichmaliig konvergent in dem geschlossenen Intervall
V=0 oo

<a,b>, dann ist die Beihe £f(x)fv{x) gliedweise k-integrierbar in

demselben Intervall.
00

Beweis : Da £ fv(x) F(x) gleichmâBig konvergiert, gibt es fur jede

positive kleine GrôBe s eine positive ganze Zahl p derart, daB fur n^
die Ungleichung:

| Z fv{x) \ \F{x)— Zfv{x) \<e fiir a^x^v=n+l v—0

gilt. Mit Rûcksicht auf (35) ergibt sich :

/ -$. ¦ ¦ ff(z)
v=0

|J---J/(*) S fv{x)dx*\<s\)---)Kx)dx*\<eM<e'
c c v=n+l c c

wobei er wiederum eine kleine GrôBe ist. Hiernach erhalten wir:
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was zu beweisen war.
Fassen wir die Intégration als das Umkehrungsverfahren der Differen-

tiation auf, so kann der obige Satz aueh folgendermaBen ausgedruckt
werden :

00

Es sei U fv(x) gleichmâfiig konvergent, f(x) X-integrierbar in < a, b >,
dann kann die offenbar in <a,b> gleichmâfiig konvergente Reihe

OO X X

^ S ' ' ' S /(x) fv(x) ^x>i ^~mal gliedweise differenziert werden.
v=0 c c

Auf Grund dieser Tatsache kônnen wir jede der gleichmâBig konver-
genten Reihen (36) n-mal diflferenzieren und das Résultat in (34) ein-
setzen. Daraus folgt dann der folgende Satz:

Ist X < n und f(x) eine X-integrierbare Funktion in < a, b >, dann sind
(36) n linear unabhàngige Lôsungen von (34). Sie sind nicht nur stetig,
sondern auch (n — X)~mal stetig differenzierbar in <a, b >.

§ 7. Potenzreihenentwicklung.

Sollen die Lôsungen (36) von (34) Potenzreihenentwicklungen haben,
mlissen wir f(x) notwendig als in der Form:

oo f(v)(C)f(x)=SL^L{x-cy (41)

darstellbar voraussetzen, wobei die Potenzreihe einen von Null ver-
schiedenen Konvergenzradius besitzt. Setzt man (41) in:

e+i()f (/()f J) 7, M
n n

ein, dann erhalten wir nach wiederholter Intégration:

x (x—c^ix—c)«?+1>n ~ xe+i
aQ+i(x) —— — 27 Z • • •

li\ (ni)**1 )oÀo
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Dièse Formel gilt offenbar fur q 0. Durch vollstandige Induktion
ergibt sich dann, dafi sie allgemein gultig ist.

Setzt man (42) in (36) ein, dann erhalten wir nach Umordnung der
Glieder (was wegen der gleichmaBigen Konvergenz erlaubt ist), die

Potenzreihenentwicklungen von (36):

E

3 m 3 m / „ i 3 3 m /^+/*+Wy*"7;1/™+iw
\ ^ / v=l \ n

(f(c))k
(43)

§ 8. Gleichung erster Ordnung.

Fur n 1 hat die Gleichung:
y'~f(x)y O (44)

die bekannte Lôsung: z

y

welche ein ganz anderes Aussehen hat als:

(45)

Doch ist es nicht schwer zu zeigen, da8 die Losungen identisch gleich
sind. Denn die Beziehung:

] ± (46)

gilt ja zunachst fur q 0, 1. Angenommen, sie sei fur q gultig, dann folgt
nach Multiplikation von (46) mit f(x) und Intégration nach x von c bis x,
die Beziehung:

\Q I" *¦)

womit die allgemeine Gultigkeit von (46) bewiesen ist. Hiernach erhalten
wir die Identitat:
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(47)

Dadurch haben wir gezeigt, da8 unsere Méthode auch in dem Fall der
linearen Differentialgleichung erster Ordnung die richtige Lôsung liefert.

§ 9. Gleichung mit konstanten Koeffizienten.

Im Fall f(x) d^ 0 eine Konstante ist, betrachten wir zunàchst die
binomische algebraische Gleichung:

rn — d 0 (48)

Ihre Wurzeln môgen mit d^fi 0, 1, 2, n — 1) bezeichnet werden.

oc) Falls d > 0 ist, sind die Wurzeln gegeben durch :

wobei dp und dn-h konjugiert komplex sind.

(}) Ist dagegen d < 0, so haben wir

n I (2[i + l)n /2/i + \)n\
s i/TTT cos h * Sin ^ ^ ;
dfj,, y \d\\ n \ n J

mit dp und e^^ als konjugiert komplex.
Die Lôsungen von (49)

y(n) _dy 0 (49)
sind dann gegeben durch :

n 2n (50)

Xn

Wegen d* dvXn (v 0, 1, 2, n — 1) kônnen wir setzen:

fi 09 1, 2, n—1
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Falls d > 0, n 2m hat die Gleichung (48) zwei réelle Wurzeln dQ,

dm und m — 1 Paare imaginâre Wurzeln dl9 d2m~1} d2, d2(m-i) ••• •

Die reellen Lôsungen von (49) lauten in diesem Falle :

n
\d(z—c)

i *

— \d(x—c)

* • cos \(x — c) sin

sin \(x — c) sin

v= 1, 2,3, ...,m —1

wâhrend fur d>0, n=2m+l anstatt y*m die Lôsungen:

— *

auftreten. Der Fall d<0 kann àhnlich behandelt werden.

(Eingegangen den 7. Februar 1939.)
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