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Les systéemes imprimitifs danslesquels se répar-
tissent les combinaisons ¢ a ¢ de m éléments par
les substitutions du groupe cyclique de degré m

Par S. Bays et CrHuiN-CuE Hsia, Fribourg

1. Le nombre des combinaisons des m éléments 0,1,2, ... m — 1,
% & 1, est C°,. Si nous appliquons & 'une de ces combinaisons les n! substi-
tutions du groupe symétrique des m éléments, nous engendrons succes-
sivement toutes les autres. Si nous appliquons a 1'une de ces combinaisons
un sous-groupe seulement du groupe symétrique, dans notre cas le groupe
cycliqgue des m éléments, nous engendrons une partie seulement des C%,
combinaisons.

Dans un travail antérieur?), j’attachais de I’'importance a résoudre cette
question: En combien de parties différentes se répartit I’ensemble des C?,
combinaisons ¢ & ¢ par le groupe cyclique des m éléments? Cette réponse
a toujours son intérét; elle servirait grandement dans I’établissement de
systéemes cycliques de n-uples supérieurs, a diverses propriétés, analogues
aux systémes cycliques de triples de Steiner, si ’on ne se butait pas dans
la construction de ces systémes combinatoires & des difficultés considé-
rables. Elle s’exprime en tout cas par des formules dont la simplicité et
I’élégance nous paraissent justifier cette publication.

La répartition cherchée est évidemment indépendante du groupe
cyclique des m éléments que nous choisissons. Nous prenons la sub-
stitution immédiate s = (0,1, 2,..., m — 1) et le groupe cyclique {s}.
Si nous appelons, comme dans le mémoire cité, colonne cyclique 1’en-
semble des combinaisons ¢ & 4 issu de I’une d’entre elles par les substitu-
tions du groupe {s} et i-uple une combinaison ¢ a ¢, la question posée
s’énonce: En combien de colonnes cycliques différentes se répartissent les
v-uples des m éléments par les substitutions du groupe {s}? Dans un langage
plus conforme & la théorie des groupes de substitutions, on a I’énoncé du
titre ci-dessus.

La voie pour obtenir la répartition cherchée aurait pu étre la constitu-
tion méme des substitutions du groupe {s}. Pour qu’une substitution du
groupe {s} autre que l'identité, change un ¢-uple en lui-méme, il faut et il

1) 8. Bays. — Sur les systémes cycliques de triples de Steiner différents
pour N premier de la forme 6n 4 1. Commentarii math. helvetici, vol. 4, pages
187—189.
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suffit que ce i-uple soit constitué exclusivement des éléments de un ou
plusieurs cycles de cette substitution (1. c. p. 189). Mais un essai fait sur
cette base conduit a des complications extrémes. Mr. Ch. Hsia a cherché
une voie plus élémentaire et plus simple; c¢’est celle que nous allons suivre.

2. Soit les m éléments 0,1,2, ..., m — 1 dans 'ordre de la substi-
tution s. Nous appellerons déplacement le passage de chaque élément au
suivant et du dernier au premier. Tout ensemble de 7 de ces éléments,
1= 1 = m, se retrouve en tout cas identique a lui-méme aprés m déplace-
ments. Il peut se faire qu’il se retrouve identique a lui-méme avec moins
de m déplacements; m étant fixé, cela dépendra de ¢ et pour un méme 7,
de la nature de ’ensemble.

Théoréme 1. Le nombre « minimum des déplacements nécessaires pour
reproduire un ensemble initial E, est diviseur de m. Nous appellerons x
le caractére de E,.

Preuve: Désignons par K, K, , E,,....E,, ,,E,, E,,... la suite des
ensembles obtenus de l’ensemble initial £, par 1,2,3,... déplace-
ments successifs. Si « < m n’était pas diviseur de m, on aurait m =
xg+r,03r<a;E,,H,y,..., B, reproduisent E,. Donc E, repro-
duirait E,, ce qui est en contradiction avec ’hypothése faite sur «.
Done c. q.1. d.

3. Soit d un diviseur de m. Nous disposons les éléments 0,1,2,...,
m — 1, relativement a d, en tableau rectangulaire de la fagon suivante:

0 1 2 ..._d__.l
m m m 2m
a a 1! g Tl
...................................................... (1)
(d—1)m (d—1)m (d—1)m
3 3 + 1 3 -+ 2 m —1

Nous appellerons ce schéma la division d de m. Les d éléments d’une méme

colonne de la division seront dits correspondants. Chaque colonne de la
m
d

par %z_ déplacements, est toujours transformé dans le correspondant qui

le suit. Il en résulte sans autre la proposition suivante et son inverse:

division est reproduite par —- déplacements et un élément quelconque,
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Théoréme 2. Tout ensemble qui contient tous les correspondants de

chacun de ses éléments dans la division d de m est reproduit par —7—3—-

déplacements. Inversement tout ensemble qui est reproduit par %—L——

déplacements, doit contenir pour chacun de ses éléments tous les cor-
respondants dans la division d de m.

Remarque: Les deux propositions du théoréme 2 sont valables aussi

pour les cas extrémes d = 1 et d = m.

Pour d=1, %?'— = m; la division (1) n’a qu’une ligne; chaque élément

est son unique correspondant et les deux propositions sont évidentes.
Pour d=m , %"— =13 l?, division (1) n’a qu’une colonne; les m éléments

sont tous correspondants entre eux et les deux propositions sont encore
évidentes.

4. Il résulte immédiatement du théoréme 2, les corollaires suivants:

Corollaire 1. Le nombre des ensembles & ¢ éléments (nous dirons pour

abréger ensembles i-uples) qui se reproduisent pa,r——"i déplacements est

2 d
a

0 -_,2’ .
a

En effet puisquun tel ensemble doit contenir pour chaque élément la

colonne entiére de la division (1) qui le contient, d doit étre diviseur de ¢

et le nombre de ces ensembles est le nombre des combinaisons des 13—
éléments d’une ligne quelconque fixée de (1), —S’l— a —:l— .

Dans le cas d =1, C° = C¢ ; le nombre des ensembles ¢-uples qui se

a3 Re

reproduisent par m déplacements est bien Cj,.
'
Dans le cas d = m, d étant diviseur de ¢, 1 =m ; C:‘ = C} = 1; le seul

d
ensemble qui se reproduise par 1 déplacement est bien ’ensemble méme

des m éléments.

Corollaire 2. Les diviseurs d qui peuvent intervenir dans la constitution
m

d’ensembles ¢-uples reproduits par 7

déplacements sont donc uniquement
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les diviseurs communs & ¢ et m; si 6 est le p.g.c.d. de ¢ et m, ces divi-
seurs communs sont les diviseurs de §.
Nous appellerons les ensembles :-uples constitués d’apres le corollaire 1,

z 712 & m 21 2
ri éléments pris dans les i éléments d’une

ligne fixée de (1), les ensembles ¢-uples fournis par la division d de m, ou

par chaque combinaison de

qui appartiennent a la division d de m. Leur ensemble est identique a celui
m

7 déplacements. Il y en a

des ensembles ¢-uples qui se reproduisent par

L3
d
donc C -
d
Nous appellerons les ensembles ¢-uples pour lesquels le caractere

o = —73—, les ensembles :-uples propres a la division d de m. Ils sont donc

m

reproduits pour la premiére fois par v déplacements. Ceux qui sont

reproduits pour la premiére fois par un nombre moindre de déplacements
et qui appartiennent cependant a la division d de m, seront dits tmpropres
a la division d de m.

5. Théoréme 3. Soit d, et d, deux diviseurs de . Si d, est multiple de
d,, les ensembles ¢-uples propres et impropres fournis par la division d,
de m, appartiennent & ceux fournis par la division d, de m.

En effet: d,—kd, , k=1

m_o_ o m g, m

d2 dl dl
k

Donc les ensembles ¢-uples reproduits par 7?— déplacements, le seront

) m ., 1

aussi par —— déplacements, c. q. f. d.
2

La conséquence de cette proposition est donc la suivante: les ensembles
t-uples fournis par une division fixée d de m, d diviseur de J, contiennent
tous les ensembles s-uples propres et impropres fournis par les divisions d’
de m dans lesquelles d’, diviseur de §, est multiple de d.

En particulier les ensembles ¢-uples fournis par la division d = 1 de m
dont le nombre est C%, et qui sont tous reproduits par m déplacements,
contiennent tous les ensembles i-uples propres et impropres fournis par
les divisions d’ de m dans lesquelles d’, diviseur de 8, est multiple de 1,
ce qui est une proposition évidente.

310



En particulier aussi, les ensembles ¢-uples fournis par la division d = ¢
i

de m dont le nombre est O’E et qui se trouvent reproduits parle nombre

B
minimum absolu de déplacements —%”— , sont tous propres a cette division,
puisqu’ils n’en contiennent aucun qui se reproduise par un nombre de
déplacements plus petit (corollaire 2, § 4).
La proposition réciproque du théoréme 3 n’existe pas d’une fagon
exactement inverse. Elle revient en définitive a la suivante qui est le

complément ou la généralisation du théoréme 1:

Théoréme 4. Les nombres de déplacements qui reproduisent un en-
semble i-uple donné E, sont les multiples du caractére « de E, et unique-
ment ces multiples.

En effet chaque nombre de déplacements multiple de « reproduit E,.
D’autre part un nombre de déplacements B qui n’est pas multiple de «,
B > «, peut se mettre sous la forme f = xq + 7,0 <r < «, et pour la
méme raison qu’au théoréme 1, ne peut pas reproduire £ .

Ce théoréme permet maintenant I’énoncé partiellement inverse com-
plétant le théoréme 3 et qui fixe avec lui quelles sont les divisions et les
seules qui contiennent un ensemble :-uple donné.

Théoréme 5. Soit un ensemble ¢-uple £ fourni par la division d de m.
S’il est propre a cette division, c¢’est-a-dire 8’il est reproduit pour la

[N . m ’ 3 . . » L
premiére fois par T déplacements, il appartient uniquement aux divisions

d’ de m, dans lesquelles d’ est diviseur de d.

En effet —7—2— est le caractére de £,. L’ensemble appartient donc unique-
. .« g d
ment aux divisions d’ pour lesquelles ??7 = d, %, c’est-a-dire d'= 7
k
d, comme — parcourant les diviseurs de d.

dk
S’il est empropre & cette division, ¢’est-a-dire §’il est reproduit pour la

premiére fois par un nombre de déplacements moindre que — , le carac-

tere « de B, est un diviseur de % , o < —75— . E, est donc propre & une

division d, de m ou d, = %:'— est multiple (propre) de d. Dans ce cas K,

appartiendra, en plus de la division d de m, uniquement aux divisions
d’ pour lesquelles d’ est diviseur de d,.

Evidemment les deux propositions ci-dessus pourraient étre formulées
en une seule.
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6. La réponse a la question posée au § 1 ne fait maintenant aucune
difficulté.

Soit d le p. g. c. d. de m et 4; soit d diviseur de 4. Notons le nombre des

ensembles i-uples fournis par la division d de m, 03: , sSimplement par

d
C(d), le nombre des ensembles z-uples propres & la division d de m, par

P(d).

D’apreés la conséquence du théoréme 3, les ensembles s-uples fournis
par la division d de m contiennent tous ceux fournis par les divisions d’
de m, dans lesquelles d’ est multiple de d. D’autre part d’apres la premiére
proposition du théoréme 5, la division d de m ne peut pas contenir d’autres
ensembles s-uples que ceux qui appartiennent & une telle division d’, d’
multiple de d. En effet chaque ensemble i-uple est propre & une certaine

division d’ = %z_ de m, « étant le caractére de I’ensemble. D’apreés la

proposition indiquée, si ’'ensemble est propre & une division d’, il appar-
tient uniquement aux divisions d dans lesquelles d est diviseur de d’,
c’est-a-dire d’ multiple de d, c. q. {. d.

Les ensembles ¢-uples fournis par la division d de m étant propres
chacun & une division d’, ot d’ est multiple de d, d et d’ diviseurs de 4,
on a ainsi la formule:

C(d) = X P(dd,) (2)
dg i
dans laquelle la sommation s’étend & tous les multiples dd,, de d, diviseurs
de 4, c’est-a-dire a tous les diviseurs d, de -%

La formule connue, dite d’inversion de Mobius?) permet alors d’inverser
le résultat et de donner P (d) en fonction des C(dd,). La formule donne:

2) Le théoréme de Mdbius est généralement donné sous la forme, F(a) étant une
fonction quelconque de valeurs entiéres et @ (a), la sommation indiquée :

de 6a)= ZF(@) , il suit F(a) = 2 u(d) @ (%) .

Dans notre cas nous écrirons pour faciliter I'inversion :

c(d) = C, (73') , P@d) =P, (-g-) .

La formule directe (2) devient, dj et 7‘;—-—— parcourant les mémes nombres, si dj
k
parcourt les diviseurs de -—g—:
0 d
Cil5)= 2 P, = X Pydy) .
dx ! 7 dx l i
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P(d) = Eél‘(dk) C(dd,) (3)

ou u (d,) est la fonction dite de Mobius dont le sens est le suivant:

pi(dy) =1 pour d, = 1

p(dy) = (— 1)y si d, est le produit de r (r = 1) facteurs premiers
différents

u(d,)=0 si d,, est divisible au moins par un facteur premier au
carré.

En particulier pour les deux cas extrémes on a:

Cas d = 4. La formule directe et la formule inverse donnent le méme
résultat: ;
0(d) = P@) =02
6
conformément a ce qui a déja été trouvé comme conséquence du
théoréme 3.
Cas d = 1. C(l) = 3 P,
dx|d ( 4)
P(l)= X u(d,) Cldy) -
|3

I1 ne reste maintenant plus qu’a fixer en combien de colonnes cycliques
différentes (§ 1) se répartissent les P(d) ensembles ¢-uples propres a la
division d de m. Chacun de ces ensembles i-uples est reproduit pour la
m
d

issue de 'un quelconque d’entre eux par les substitutions du groupe
féme
{(0,1,2,...,m—1)} contient —75- t-uples; le (% + 1) t-uple repro-

premiére fois par déplacements. Autrement dit la colonne cyclique

duit le premier. Le nombre des colonnes cycliques en lesquelles se répar-

tissent ces P(d) i-uples propres a la division d est done N(d) = d',f; @

Le nombre total des colonnes cycliques différentes en lesquélles se
répartissent les C%, i-uples des m éléments est donc:

La formule &’inversion ci-dessus donne alors :

0 0

P1 —)= 2 (d ) 01 573
(d ) dkl—z-lu * (ddk)
o done Pd)y= X up(d,) C(dd,) ec.q.f.d.

dki—ds—-
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S N@) = > d-Pd) . (5)
d|s m g6
7. Nous calculerons comme application le cas m = 96, 1 = 12, § = 12.
Les diviseurs de 12 sont 1, 2, 3, 4, 6, 12. Le nombre des colonnes cycliques
différentes en lesquelles se répartissent les P(d) ensembles 12-uples
propres a chacun de ces diviseurs et par suite le nombre total des colonnes
cycliques dans lesquelles se répartissent les combinaisons 12 & 12 de
96 éléments par les substitutions du groupe {(0,1,2,..., 95)} s’établis-
sent donc de la maniére suivante:

d=06=12,d, =1 P(12)=C(12) =C: =8 N@12)=1
d==6 ,dy=1,2 P(6) = C(6) — C(12) = C%, — C} = 112
N(@) =17
d=4 ,d=1,3  P4)=0C4)—C(12)=C}—C; =
2.016 N(4) = 84
d=3 ,dy=1,2,4 P33)=C(3)—C(6) = C3, — C3s =
35 . 840 N(3) = 1120
d=2 ,d,=1,2,3,6 P(2)=0C((2)—C(4)—C(6)+ C(12) =
12. 269 - 376 N(2) = 255 . 612

d=1,d,=1,2,3,4,6,12 P(l)=C()—C(2) —C(3) + C(6) =
624 . 668 . 642 . 224 . 128
N(1) = 6.506.965. 023 . 168

2 N(d) = 6.506.965.279. 992 .
d|12

8. Nous pouvons directement de nos formules donner quelques résultats
généraux.

a) P(d) et N(d) ne dépendent que de m et 4. Donc la répartition en
colonnes cycliques pour un m fixé est la méme pour tous les ensembles de
t-uples ol 7 a avec m le p. g. c. d. §. En particulier elle est la méme pour
les ¢-uples et les (m — ¢)-uples, ¢ et m — ¢, complément 1'un de ’autre
relativement & m, ayant avec m le méme p. g. c. d. é.

b) Lorsque 8 = 1, c’est-a-dire lorsque 7 est premier avec m, le seul
diviseur d de ¢ est 1. Chaque colonne cyclique contient m i-uples et le

nombre des colonnes est N(1) 2% P(1) = «1}{ n(1) C(1) =—71'; Ct,. Lors-

(m—1) (m—2). . .(m—i+1)
il

que m et ¢ sont premiers entre eux, le nombre

est donc un nombre entier.
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¢) Lorsque & =1, c’est-a-dire lorsque ¢ est diviseur de m, on a N (d) =
0P@) o

= Cl = 1. Il n’y a qu’une colonne cyclique des ¢-uples propres
3
a la division ¢ de m. Cette colonne d’apres le tableau (1) est la suivante:
0 m 2m (z2—1)m
1 ? v
2 , — 1
1 m o1 2P G—=lm
? ? ?
................. ® @ © & ¢ © 2 ¢ 0 " 2 O 0 S T 280 s s 8 s 0 s o0 (6)
m oy 2™y 2™y w1
v T v

On voit immédiatement que les :-uples constitués par chaque ligne de ce
tableau se reproduisent chacun apres an— déplacements. Il n’y a pas
d’autre s-uple des m éléments ayant cette propriété etla colonne cyclique
constituée par les —7;1 1-uples du tableau est la seule de son espéce.

d) Lorsque 6 = 1 et ¢ est diviseur premier de m, les seuls diviseurs d de ¢
sont ¢ et 1. Il n’y a donc que la colonne cyclique (6) qui ait moins de m
v-uples. Toutes les autres colonnes ont m z'-uples et leur nombre est

N()= 5 PO = o (D) O+ () 00} =5 (Cla=Ch) =o{ G- ) -

?

Donc si + est diviseur premier de m, le nombre suivant est un nombre
entier:

(m—1) (m —2) ... (m—2+ 1) 1

2! )

e) Lorsque 1<d<t,ona:i=1'd, m=m'd avec ¢’ et m’>1 et premiers
oP(6) 1
m

entre eux. On a N(J) = =

“, . Nous retrouvons la conclu-

sion donnée déja sous b).

f) D’une maniere générale, il est intéressant de remarquer que le nombre

N(@d) = d.f;(d) = —!— d X u(d,) C(dd,) est un nombre entier.

dk\d

g) En faisant la sommation de la formule (3), étendue & tous les divi-
seurs d de 4, on obtient:

2 Pd)y= 3 X N(dk)a(d‘lk)
AR VAR dk‘%
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c’est-a-dire d’apres (4), et en remarquant d’abord que I’on peut permuter
la double sommation et ensuite qu’elle revient & une sommation simple
dans laquelle d et d, parcourent indépendamment U'un de lautre tous les
entiers positifs tels que dd, est diviseur de 4:

Cl)y= 2 2 uldy) Cdd)= 2 X u(dy) Cldd,) = X u(d,) C(dd,).

als a5 a| 2 a1 aay|3

Nous écrirons mieux dans ce cas au lieu de d et d,, d et d’, d et d’ par-
courant comme ci-dessus tous les entiers positifs tels que dd’ est diviseur
de 4, et on a évidemment par raison de symétrie:

C(l)= X p(@d)Cdd)= X u(d)C(dd)
ad’|s dad’(s

formule qui est probablement susceptible de généralisation.

h) Dans ce cas le nombre total (5) des colonnes cycliques différentes
peut aussi s’écrire, directement en fonction des C(dd’), sous les formes
suivantes:

ENd=— FdP@)=-- X X dup(d)C(d)
a3 a3 dls a'l%
1 / / ___l_ / /
=, dud) 0@ = & d) )

(Regu le 2 avril 1940.)
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