**Zeitschrift:** Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

**Band:** 12 (1939-1940)

**Artikel:** Théorie de la réduction des formes quadratiques définies positives dans

un corps algébrique K fini.

Autor: Humbert, Pierre

**DOI:** https://doi.org/10.5169/seals-12808

#### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

# Théorie de la réduction des formes quadratiques définies positives dans un corps algébrique $oldsymbol{K}$ fini

Par Pierre Humbert, Lausanne

#### Introduction

Dans la théorie des formes quadratiques, les classes de formes équivalentes relativement à un groupe de substitutions linéaires et homogènes jouent un rôle important. Lorsque ce groupe est celui des substitutions non dégénérées à coefficients réels, on peut représenter chaque classe par la forme canonique  $\sum \pm x_i^2$ . Les seuls invariants sont alors le nombre des carrés pris positivement et celui des carrés pris négativement, c'est-à-dire la signature. Dans l'arithmétique des formes quadratiques, on envisage l'équivalence relativement au groupe des substitutions à coefficients entiers rationnels et de déterminant  $\pm 1$  (substitutions unimodulaires). La signature et le déterminant de la forme sont des invariants, mais ils sont loin de caractériser complètement chaque classe. On sait, par exemple, que pour une signature et un déterminant donnés, il peut y avoir plusieurs classes de formes à coefficients entiers (toutefois un nombre fini).

Le problème de reconnaître si deux formes quadratiques sont arithmétiquement équivalentes ou non a été résolu par Lagrange<sup>1</sup>) pour les formes binaires définies positives au moyen de la théorie de la réduction, théorie qui a été étendue par Seeber<sup>2</sup>) au cas ternaire et généralisée par Minkowski<sup>3</sup>) au cas de n variables. D'illustres mathématiciens, entre autres Gauss, Dirichlet, Hermite, se sont aussi occupés de cette théorie, dont l'idée est la suivante: Dans chaque classe de formes quadratiques définis positives on détermine, par certaines conditions de minimum, une forme réduite. L'ensemble de toutes les réduites constitue, dans l'espace des formes, un domaine fondamental R relativement au groupe des transformations unimodulaires. L'équivalence de deux formes revient à l'identité de leurs réduites, exception faite pour la frontière de R, où il peut exister plusieurs formes réduites équivalentes.

<sup>1)</sup> Lagrange, Oeuvres, t. III, p. 723-728 (Paris, 1869).

<sup>&</sup>lt;sup>2</sup>) Seeber, Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen, (Freiburg i. B. 1831).

<sup>8)</sup> Minkowski, Gesammelte Abhandlungen, Bd. 2, S. 53 (Leipzig und Berlin, 1911).

C'est à Minkowski que l'on doit les résultats essentiels de cette théorie: le domaine R est l'intérieur d'un angle solide convexe limité par un nombre fini d'hyperplans, et touche à un nombre fini seulement de domaines équivalents (transformés de R par des substitutions unimodulaires). Ces résultats, outre leur intérêt pour la théorie des formes quadratiques, interviennent avec fruit dans l'étude des représentations rationnelles des groupes d'ordre fini.

L'objet du présent travail est d'étendre la théorie de la réduction des formes quadratiques définies positives, au cas où le groupe unimodulaire rationnel est remplacé par le groupe des substitutions à coefficients entiers dans un corps algébrique K fini de degré g et dont le déterminant est une unité de K (groupe unimodulaire dans K). Mais ce groupe n'est pas proprement discontinu dans l'espace des formes quadratiques, aussi est-on conduit à considérer des systèmes de g formes, transformées respectivement par g substitutions unimodulaires conjuguées. A chacun des corps conjugués réels  $K^{(i)}$  de K correspond dans un de ces systèmes une forme définie positive, et à deux corps  $K^{(l)}$ ,  $\overline{K}^{(l)}$  imaginaires conjugués correspondent deux formes hermitiennes définies positives et imaginaires conjuguées. Le groupe envisagé est proprement discontinu dans l'espace de ces systèmes, et les résultats de Minkowski subsistent: Il existe un domaine fondamental formé par la réunion d'un ou de plusieurs angles solides convexes  $R_\mu$  limités par un nombre fini d'hyperplans; chacun des  $R_{\mu}$  n'est en contact qu'avec un nombre fini de domaines équivalents à des  $R_{\nu}$ . Il s'ensuit par exemple que le groupe unimodulaire de degré n dans Kpossède un nombre fini d'éléments générateurs.

La méthode que j'ai employée diffère peu dans ses grandes lignes de celle que Minkowski utilisa pour le groupe unimodulaire rationnel; les idées directrices sont les mêmes. Au lieu du principe des "tiroirs" de Dirichlet, j'ai fait usage du théorème plus profond de Minkowski sur les formes linéaires, théorème qui a de si belles applications en théorie des nombres. En outre le passage d'un système de formes donné au système réduit équivalent se fait en deux étapes, ce qui permet de tourner la difficulté due au nombre des classes de K et à l'introduction simultanée de tous les conjugués de K. C'est la deuxième étape qui donne lieu aux différents domaines  $R_u$  dont se compose le domaine fondamental.

Encouragé, orienté par M. C. L. Siegel, qui m'a mis sur la voie de ce travail, je suis heureux de lui exprimer ici ma profonde reconnaissance pour ses conseils et pour l'intérêt qu'il m'a témoigné lors de mon séjour à Göttingue.

## § 1. Enoncé du problème et méthode

Soit K un corps algébrique fini donné, de degré g. Si  $g_1$  désigne le nombre des conjugués réels et  $2g_2$  celui des conjugués imaginaires de K, on a

$$g = g_1 + 2g_2 \ .$$
 On pose 
$$\gamma = g_1 + g_2 \ .$$

Les conjugués sont numérotés de telle manière que les corps  $K^{(1)}, \ldots, K^{(g_1)}$  soient réels, et les corps  $K^{(g_1+\varrho)}$  et  $K^{(g_1+g_2+\varrho)}$  imaginaires conjugués  $(\varrho = 1, \ldots, g_2)$ .

Par substitution unimodulaire dans K nous entendrons une substitution linéaire et homogène dont les coefficients sont des entiers de K et le déterminant une unité de K.  $\mathfrak U$  désignant la matrice d'une pareille substitution, on aura

$$\mathfrak U$$
 entière dans  $K$ ;  $|\mathfrak U| = \varepsilon = \text{unit\'e de } K$ .

Les substitutions unimodulaires dans K d'un même degré n forment un groupe, le groupe unimodulaire de degré n dans K.

Par système S nous entendrons un ensemble de  $\gamma$  formes quadratiques à n variables, constitué par

- $g_1$  formes définies positives, de matrices symétriques réelles  $\mathfrak{S}^{(1)}, \ldots, \mathfrak{S}^{(g_1)}$
- $g_2$  formes hermitiennes définies positives, de matrices complexes  $\mathfrak{H}^{(1)}, \ldots, \mathfrak{H}^{(g_2)}$ .

Si l'accent désigne la matrice transposée, on a

$$\mathfrak{S}^{(k)'} = \mathfrak{S}^{(k)}$$
.

 $\overline{\mathfrak{H}}$  désignant la matrice dont les éléments sont conjugués complexes de ceux de  $\mathfrak{H}$ , on a  $\overline{\mathfrak{H}}^{(k)} = \mathfrak{H}^{(k)'}$ .

Deux systèmes  $S_1$  et  $S_2$  sont dits équivalents,  $S_1 \sim S_2$ , s'il existe une matrice  $\mathfrak U$  unimodulaire dans K, telle que l'on ait

et 
$$\begin{array}{ccc} \mathfrak{U}^{(k)}{'}\,\mathfrak{S}_1^{(k)}\mathfrak{U}^{(k)}=\mathfrak{S}_2^{(k)} & k=1\;,\;2\;,\ldots,g_1\\ & \mathfrak{U}^{(g_1+k)'}\,\mathfrak{S}_1^{(k)}\overline{\mathfrak{U}}^{(g_1+k)}=\mathfrak{S}_2^{(k)} & k=1\;,\;2\;,\ldots,g_2\;\;. \end{array}$$

La notation  $\mathfrak{U}^{(k)}$  désigne la matrice formée des  $k^{\text{ièmes}}$  conjugués des éléments de  $\mathfrak{U}$ .

La relation  $S_1 \sim S_2$  est réflexive, symétrique, transitive, puisque les substitutions unimodulaires  $\mathfrak U$  forment un groupe. Les systèmes S sont ainsi partagés en classes de systèmes équivalents. Le problème qui se pose est le suivant:

Deux systèmes  $S_1$  et  $S_2$  étant donnés, reconnaître s'ils sont équivalents ou non. On le résoudra ici en généralisant la théorie de la réduction des formes quadratiques définies positives de Minkowski<sup>4</sup>). Il s'agira de construire un domaine fondamental pour les systèmes S relativement au groupe unimodulaire dans K, ces systèmes se transformant comme il a été indiqué.

Dans ses grandes lignes la méthode est la suivante: soit un système S formé des  $\gamma$  matrices  $\mathfrak{S}^{(k)} = (s_{ij}^{(k)}), k = 1, \ldots, g_1, \mathfrak{H}^{(\varrho)} = (h_{ij}^{(\varrho)}), \varrho = 1, \ldots, g_1, \varrho = 1, \ldots, g$  $g_2$ . Appelons pour un instant famille de S l'ensemble de tous les systèmes obtenus à partir de S par transformation avec des substitutions entières dans K et non dégénérées, c'est-à-dire l'ensemble des systèmes de  $\gamma$ matrices  $\mathfrak{A}^{(k)'}\mathfrak{S}^{(k)}\mathfrak{A}^{(k)}$ ,  $k=1,\ldots,g_1$ ,  $\mathfrak{A}^{(g_1+\varrho)'}\mathfrak{F}^{(\varrho)}\overline{\mathfrak{A}}^{(g_1+\varrho)}$ ,  $\varrho=1,\ldots,g_2$ ,  ${\mathfrak A}$  parcourant toutes les matrices à éléments entiers de K et telles que  $|\mathfrak{A}| \neq 0$ . Parmi les systèmes de la famille de S, extrayons tous ceux pour lesquels la somme  $t_{11}=\sum\limits_{k=1}^{g_1}s_{11}^{(k)}+\sum\limits_{k=1}^{g_2}h_{11}^{(k)}$  est minimum. Puis parmi ces derniers systèmes, ayant tous la même valeur minimum pour la somme  $t_{11}$ , extrayons ceux pour lesquels la somme  $t_{22} = \sum_{k=1}^{g_1} s_{22}^{(k)} + \sum_{k=1}^{g_2} h_{22}^{(k)}$  est minimum. Continuant ainsi jusqu'à la somme  $t_{nn}$ , on obtient finalement un (ou éventuellement plusieurs) système  $\dot{S}$  de la famille de S.  $\dot{S}$  est le transformé de S par une substitution entière dans K, non dégénérée, de matrice  $\mathfrak{A}_0$  (première transformation). On démontre (théorème 1) que cette matrice  $\mathfrak{A}_0$ , si elle n'est pas unimodulaire, a néanmoins un déterminant de norme bornée, la borne étant indépendante du système initial S. Il en résulte (théorème 2) que  $\mathfrak{A}_0 = \mathfrak{U}\mathfrak{A}_{\nu}$ , où  $\mathfrak{A}_{\nu}$  appartient à un ensemble fini de matrices entières non dégénérées  $\mathfrak{A}_1, \ldots, \mathfrak{A}_N$ , et où  ${\mathfrak U}$  est unimodulaire dans K. En transformant le système  $\dot S$  par l'inverse  $\mathfrak{A}_{\nu}^{-1}$  de  $\mathfrak{A}_{\nu}$ , on obtient un système  $\dot{S}$  équivalent à S et qui est le système réduit de S (deuxième transformation).

A chacune des matrices  $\mathfrak{A}_{\nu}$  correspond un certain domaine  $R_{\nu}$  de l'espace des S, domaine défini par les inégalités exprimant les conditions de minimum auxquelles le système  $\dot{S}$  est assujetti. La réunion de ces  $R_{\nu}$ ,  $\nu = 1, ..., N$ , constitue un domaine fondamental R pour les systèmes S

<sup>4)</sup> H. Minkowski, Diskontinuitätsbereich für arithmetische Äquivalenz, Journal de Crelle, 129, p. 220; ou Gesammelte Abhandlungen von H. Minkowski, Bd. 2, S. 53.

relativement au groupe unimodulaire dans K (théorème 3). On démontre (théorème 6) que les substitutions unimodulaires transformant les uns dans les autres les systèmes frontières du domaine R sont en nombre fini. Il s'ensuit immédiatement que le domaine fondamental touche un nombre fini seulement de domaines équivalents, c'est-à-dire transformés de R par des substitutions unimodulaires. On voit enfin (théorème 7), que chacun des domaines  $R_{\nu}$  est l'intérieur d'un angle solide convexe limité par un nombre fini d'hyperplans passant par l'origine de l'espace des S.

#### § 2. Préliminaires. – Notations

Dans la mesure du possible, on se servira de matrices dans les calculs. Les majuscules allemandes désignent des matrices quadratiques, parfois rectangulaires. Les minuscules allemandes désignent toujours des colonnes, ou vecteurs, matrices d'un type particulier.  $\mathfrak{E}_k$  est la matrice unité de degré k, et  $\mathfrak{E}$  la matrice unité de degré convenable (pour autant que l'omission du degré ne nuise pas à la clarté).  $\mathfrak{D}(a_1, \ldots, a_n)$  désigne la matrice diagonale d'éléments diagonaux  $a_1, \ldots, a_n$ , c'est-à-dire la matrice ayant  $a_1, \ldots, a_n$  dans sa diagonale principale et partout ailleurs des zéros. Ainsi  $\mathfrak{E} = \mathfrak{D}(1, \ldots, 1)$ .

 $\mathfrak A$  étant une matrice quelconque,  $\mathfrak A'$  désigne sa transposée, c'est-à-dire la matrice ayant pour lignes les colonnes de  $\mathfrak A$  et vice-versa. Si une matrice  $\mathfrak A=(\alpha_{ij})$  a tous ses éléments  $\alpha_{ij}$  dans le corps K, on représente par  $\mathfrak A^{(k)}$  la matrice formée par les  $k^{\text{lèmes}}$  conjugués des éléments de  $\mathfrak A$ , soit

$$\mathfrak{A}^{(k)}=(\alpha_{ij}^{(k)}).$$

On dit qu'une matrice est bornée, si tous ses éléments le sont. Pour une

colonne 
$$x=\left(\begin{array}{c} \xi_1 \\ \vdots \\ \xi_n \end{array}\right)$$
 la notation  $|x|\leqslant c$  est une abréviation pour  $|\xi_i|\leqslant c\;,\quad i=1,\ldots,n\;.$ 

Il y aura parfois avantage à se servir de la matrice:

$$S = \begin{pmatrix} \mathfrak{S}^{(1)} & 0 \\ \ddots & & \\ \mathfrak{S}^{(g_1)} & & \\ \mathfrak{S}^{(1)} & \ddots & \\ 0 & & \mathfrak{S}^{(g_2)} \end{pmatrix}$$

ayant les  $\mathfrak S$  et les  $\mathfrak S$  d'un système S dans sa diagonale principale et partout ailleurs des zéros. Il n'y a pas de confusion à craindre si l'on désigne

cette matrice par la même lettre S que le système S. S est une matrice hermitienne définie positive d'un type particulier, de degré  $n\gamma$ . Si U désigne d'une façon analogue la matrice

$$U = \begin{pmatrix} \mathfrak{U}^{(1)} & 0 \\ \vdots \\ 0 & \mathfrak{U}^{(\gamma)} \end{pmatrix}$$

on peut écrire  $U'S_1\overline{U}=S_2$  pour l'équivalence de deux systèmes  $S_1$  et  $S_2$ . Cette notation abrégée sera quelquefois employée par la suite. Une majuscule allemande désignant une matrice à coefficients dans K, la majuscule latine correspondante représentera la matrice formée comme U l'aide de U.

On dira qu'une matrice symétrique ou hermitienne  $\mathfrak{S}$  est positive si la forme correspondante est définie positive, et l'on écrira:  $\mathfrak{S} > 0$ . On appellera matrices semi-positives les matrices de formes semi-définies positives, et l'on écrira pour elles  $\mathfrak{S} \geqslant 0$ . On a  $|\mathfrak{S}| > 0$  pour les premières et  $|\mathfrak{S}| = 0$  pour les secondes.

On peut simplifier les notations en désignant les matrices réelles  $\mathfrak{S}^{(k)}$  et les matrices hermitiennes  $\mathfrak{S}^{(k)}$  d'un système S par un même symbole  $\mathfrak{S}^{(k)}$ , k variant alors de 1 à  $\gamma$ . Une matrice positive réelle étant un cas particulier de matrice hermitienne positive, on pourra considérer l'ensemble des  $\mathfrak{S}^{(k)}$  comme un système S de  $\gamma$  matrices hermitiennes positives, avec la convention que les  $g_1$  premières d'entre elles soient réelles:

$$\mathfrak{S}^{(k)} = \overline{\mathfrak{S}}^{(k)} \text{ pour } k = 1, \ldots, g_1.$$

On calcule alors avec les  $\mathfrak{S}^{(k)}$  comme avec des matrices hermitiennes. Par exemple, la valeur de la forme de matrice  $\mathfrak{S}^{(k)}$  pour la valeur  $\mathfrak{x} = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix}$  de la colonne  $\mathfrak{x}$  des variables est  $\mathfrak{x}' \mathfrak{S}^{(k)} \overline{\mathfrak{x}}$ .

Pour abréger, on emploiera la notation de M. Siegel:  $\mathfrak{S}[\mathfrak{A}] = \mathfrak{A}' \mathfrak{S} \overline{\mathfrak{A}}$ ,  $\mathfrak{A}$  étant une matrice à n lignes et pouvant avoir un nombre quelconque de colonnes, pour la matrice transformée de  $\mathfrak{S}$  par  $\mathfrak{A}$ .

# Unités générales

Les matrices unimodulaires  $\mathfrak F$  transformant tous les systèmes S en eux-mêmes forment un sous-groupe invariant du groupe multiplicatif des matrices unimodulaires  $\mathfrak U$  de K. Ces  $\mathfrak F$  sont définies par les conditions:

$$\mathfrak{S}[\mathfrak{F}^{(k)}] = \mathfrak{F}'^{(k)} \, \mathfrak{S}\overline{\mathfrak{F}}^{(k)} = \mathfrak{S} \qquad k = 1, \ldots, g$$

pour toute  $\mathfrak{S} > 0$ .

Nous allons déterminer ces  $\mathfrak{F}$ , que nous appellerons unités générales. Pour simplifier les notations, supprimons dans  $\mathfrak{F}^{(k)}$  l'indice de conjugaison k.

Montrons d'abord que  $\mathfrak{S}[\mathfrak{F}] = \mathfrak{S}$  a lieu identiquement en  $\mathfrak{S}$ . Soit donc  $\mathfrak{S}$  une matrice hermitienne quelconque, définie ou indéfinie, de déterminant nul ou non, assujettie à la seule condition d'être réelle si le corps conjugué de K auquel appartiennent les éléments de  $\mathfrak{F}$  est réel. Soit,

comme précédemment,  $\mathfrak{x}=\left(\begin{array}{c} \xi_1\\ \vdots\\ \xi_n \end{array}\right)$  la colonne des variables de la forme

hermitienne  $\mathfrak{S}[\mathfrak{x}]$ . Considérons toutes les valeurs des  $\xi_i$  telles que  $\mathfrak{x}'\bar{\mathfrak{x}}=1$ , c'est-à-dire que  $|\xi_1|^2+\cdots+|\xi_n|^2=1$ . Pour toutes ces valeurs la forme hermitienne  $\mathfrak{S}[\mathfrak{x}]$  est bornée en valeur absolue; il existe un nombre positif  $\mu$  tel que

$$\mu > |\mathfrak{S}[\mathfrak{x}]|$$
 si  $\mathfrak{x}'\bar{\mathfrak{x}} = 1$ .

A cause de l'homogénéité de S[x] on a alors:

$$(\mu \mathfrak{E} - \mathfrak{S}) [\xi] > 0$$
 pour tout  $\mathfrak{x} \neq 0$ .

La matrice hermitienne  $\mu \mathfrak{E} - \mathfrak{S}$  est donc positive,  $\mathfrak{F}$  la transforme en elle-même:  $(\mu \mathfrak{E} - \mathfrak{S}) [\mathfrak{F}] = \mu \mathfrak{E} - \mathfrak{S}$ . Mais  $\mathfrak{F}' \overline{\mathfrak{F}} = \mathfrak{E}[\mathfrak{F}] = \mathfrak{E}$ , car  $\mathfrak{E}$  est positive, donc  $\mathfrak{S}[\mathfrak{F}] = \mathfrak{S}$  c. q. f. d.

En prenant pour  $\mathfrak{S}$  des matrices particulièrement simples, on arrive aisément en utilisant ce résultat à déterminer la forme générale de  $\mathfrak{F}$ . Soient  $\mathfrak{S} = (s_{ij})$ ,  $\mathfrak{F} = (\alpha_{ij})$ . Prenons pour  $\mathfrak{S}$  la matrice dont les éléments sont

$$s_{kk} = 1$$
, k fixe;  $s_{ij} = 0$  si  $i, j \neq k$ .

On obtient:

$$\alpha_{ki} \ \overline{\alpha}_{kj} = \left\{ egin{array}{ll} 0 \ \mathrm{si} \ i,j 
eq k \ , \\ 1 \ \mathrm{si} \ i = j = k \ . \end{array} \right.$$

On a donc  $|\alpha_{kk}|^2 = 1$ , ce qui implique  $\alpha_{kk} \neq 0$ . Pour j = k l'égalité précédente donne alors:

$$\alpha_{ik} = 0 \text{ si } i \neq k$$
.

On voit ainsi que § est une matrice diagonale:

$$\mathfrak{F} = \mathfrak{D}(\alpha_1, \ldots, \alpha_n)$$
 avec  $|\alpha_k| = 1$ .

Particularisons ensuite S en prenant:

$$egin{aligned} s_{kl} &= 1 \; ; \quad k, \, l \; ext{fixes,} \; k < l \; . \ s_{ij} &= 0 \; ext{si} \; (i,j) 
eq (k, \, l) \; ext{ou} \; (l, \, k) \; . \end{aligned}$$

On obtient

$$\alpha_k \bar{\alpha}_l = 1$$
.

Multipliant cette égalité par  $\alpha_i$  on trouve, à cause de  $|\alpha_i|=1$ ,

$$\alpha_k = \alpha_l$$
.

La matrice & a donc la forme suivante:

$$\mathfrak{F} = \alpha \mathfrak{E}$$
 avec  $|\alpha| = 1$ .

Cela devant avoir lieu pour toutes les conjuguées de la matrice  $\mathfrak{F}$ ,  $\alpha$  est une racine de l'unité. Désignant les racines de l'unité du corps K par  $\omega$ , on aura:

$$\mathfrak{F} = \omega \mathfrak{E}$$
.

Réciproquement, on vérifie immédiatement que toute matrice de la forme  $\mathfrak{F} = \omega \mathfrak{E}$  transforme un système S en lui-même. On peut donc formuler le résultat suivant:

Le groupe des unités générales  $\mathfrak{F}$  est un groupe multiplicatif d'ordre w (w = nombre des racines de l'unité de K) constitué par les matrices  $\omega \mathfrak{E}$  ( $\omega = racine$  de l'unité de K).

C'est un groupe cyclique, comme on le sait.

Si  $g_1 > 0$ , K ne contient pas d'autres racines de l'unité que  $\pm 1$ , et les seules matrices  $\mathfrak{F}$  sont  $\pm \mathfrak{E}$ .

 $\mathfrak{U}$  étant une matrice unimodulaire quelconque, on a  $\mathfrak{S}[\mathfrak{U}] = \mathfrak{S}[\mathfrak{U}\mathfrak{F}]$ . En outre, si  $\mathfrak{U} \neq \mathfrak{F}$ , il existe au moins un système S de  $\gamma$  matrices hermitiennes positives  $\mathfrak{S}^{(k)}$  tel que

$$\mathfrak{S}^{(k)}[\mathfrak{U}^{(k)}] \neq \mathfrak{S}^{(k)} \qquad k = 1, ..., \gamma.$$

Le problème posé est donc d'une façon plus précise celui de la détermination d'un domaine fondamental pour les systèmes S, relativement aux transformations du groupe quotient  $\mathfrak{U}|\mathfrak{F}$ .

#### Un lemme

Soit  $\mathfrak{x}$  un vecteur de composantes  $\xi_i$ ,  $i=1,\ldots,n$ , c'est-à-dire une matrice formée de la seule colonne des  $\xi_i$ . Les  $\xi_i$  étant des entiers algébriques de K, on désignera par x la colonne formée par les  $\gamma$  colonnes conjuguées  $\mathfrak{x}^{(k)}$  superposées. Enfin on emploiera le signe  $\tau$ , qu'on lira trace, pour indiquer la sommation de k=1 à  $k=\gamma$  sur un indice supérieur k omis dans l'expression sous le signe  $\tau$ . Ces notations permettent d'écrire:

$$x' \, S \, \overline{x} = S[x] = \sum_{k=1}^{\gamma} \mathfrak{S}^{(k)}[\mathfrak{x}^{(k)}] = \tau \left(\mathfrak{S}[\mathfrak{x}]\right).$$

Lemme. Pour un système S donné, il existe un nombre fini seulement de vecteurs  $\mathbf{x}$  entiers de K tels que

$$\tau(\mathfrak{S}[x]) = S[x] < c.$$

Cela résulte d'une inégalité connue relative aux formes définies positives. Si  $\mu > 0$  désigne le minimum de S[x] pour toutes les valeurs complexes de x telles que

$$x' \; \overline{x} = 1 \; , \;\;\; \mathfrak{x}^{(k)} \; ext{r\'eel si} \; k \leqslant g_1 \; ,$$

on a

$$S[x] \geqslant \mu x' \bar{x}$$
.

Par conséquent  $S[x] \leq c$  entraîne:

$$\mu x' \bar{x} \leqslant c \text{ ou } \mu \tau (\bar{x}' \bar{\bar{x}}) \leqslant c$$

ou encore

$$\sum_{k=1}^{\gamma} \sum_{i=1}^{n} |\xi_{i}^{(k)}|^{2} \leqslant \frac{c}{\mu} \cdot$$

Toutes les composantes  $\xi_i^{(k)}$  de x sont donc en valeur absolue inférieures à  $\sqrt{\frac{c}{\mu}}$ , donc tous les conjugués de  $\xi_i$  sont bornés, et par conséquent  $\xi_i$  n'est susceptible que d'un nombre fini de valeurs entières de K.

# § 3. Première transformation du système S

Dans ce paragraphe,  $\mathfrak{a}, \mathfrak{b}, \ldots, \mathfrak{x}$  désigneront, à moins de mention expresse du contraire, des colonnes ou *vecteurs* dont les n composantes sont des *entiers* du corps K:

$$\mathfrak{a} = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$
 ,  $\mathfrak{b} = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$  ,...,  $\mathfrak{x} = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix}$  ,

 $\alpha_i, \beta_i, \ldots, \xi_i = \text{entiers de } K.$ 

Soit un système S. Nous allons lui faire subir la première transformation. Comme on l'a vu au § 1, il s'agit de trouver un système  $\dot{S}$  transformé de S par une matrice  $\mathfrak{A}$  entière dans K, non dégénérée, de sorte que les quantités  $\tau$   $(\dot{s}_{ii}) = \sum\limits_{k=1}^{\gamma} \dot{s}_{ii}^{(k)}$  soient minima, à commencer par i=1 jusqu'à i=n.

D'une façon générale, considérons une matrice hermitienne  $\mathfrak{H}=(h_{ij})$  et transformons-la par la matrice  $\mathfrak{X}$  de même degré n que  $\mathfrak{H}$ . Soient  $\mathfrak{X}_1, \ldots, \mathfrak{X}_n$  les colonnes de  $\mathfrak{X}=(\mathfrak{X}_1, \ldots, \mathfrak{X}_n)$ . La transformée  $\mathfrak{T}$  de  $\mathfrak{H}$  par  $\mathfrak{X}$  est  $\mathfrak{T}=\mathfrak{X}'\mathfrak{H}$ ; les éléments  $t_{ij}$  de  $\mathfrak{T}$  se calculent par les formules

$$t_{ij} = \mathfrak{x}_i' \, \mathfrak{H} \, \bar{\mathfrak{x}}_j \, .$$

En particulier les éléments diagonaux de X sont

$$t_{ii} = \mathfrak{x}_i' \, \mathfrak{H} \, \bar{\mathfrak{x}}_i = \mathfrak{H}[\mathfrak{x}_i] \, .$$

Reprenons notre système S et appliquons ce qui précède en prenant  $\mathfrak{H} = \mathfrak{S}^{(k)}$ ,  $\mathfrak{X} = \mathfrak{A}^{(k)}$ . Le système  $\dot{S}$  transformé de S par  $\mathfrak{A}$  est formé par les matrices  $\dot{\mathfrak{S}}^{(k)} = \mathfrak{S}^{(k)}[\mathfrak{A}^{(k)}]$ . Si  $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$  sont les colonnes de  $\mathfrak{A} = (\mathfrak{a}_1, \ldots, \mathfrak{a}_n)$ , les éléments diagonaux des  $\dot{\mathfrak{S}}^{(k)}$  sont  $\dot{s}_{ii}^{(k)} = \mathfrak{S}^{(k)}[\mathfrak{a}_i^{(k)}]$ . Les quantités à rendre minima sont par conséquent  $\tau(\mathfrak{S}[\mathfrak{a}_i])$ ,  $i = 1, \ldots, n$ .

Nous commençons donc par déterminer un vecteur entier  $a_1 \neq 0$  de K tel que l'on ait

$$au(\mathfrak{S}[\mathfrak{a}_1]) \leqslant au(\mathfrak{S}[\mathfrak{x}])$$

pour tout x entier de K et  $\neq 0$ . Un tel vecteur  $a_1$  existe certainement, en vertu du lemme précédent. Car si  $x_0$  est un vecteur entier non nul arbitrairement choisi, on a

$$\tau(\mathfrak{S}[\mathfrak{x}]) \leqslant \tau(\mathfrak{S}[\mathfrak{x}_0])$$

pour un nombre fini seulement de  $\mathfrak{x}$ , et parmi ces  $\mathfrak{x}$  en nombre fini, il y en a un ou plusieurs qui rendent  $\tau(\mathfrak{S}[\mathfrak{x}])$  minimum, et qui peuvent être pris pour vecteur  $\mathfrak{a}_1$ . On a là un moyen permettant de déterminer effectivement le vecteur  $\mathfrak{a}_1$ . Ce vecteur  $\mathfrak{a}_1$  n'est pas unique, par exemple  $\omega \mathfrak{a}_1$  convient également,  $\omega$  étant une racine de l'unité de K. Parmi tous les vecteurs  $\mathfrak{a}_1$  convenables, en nombre fini, prenons en un arbitrairement.

Puis déterminons d'une façon analogue un vecteur  $\mathfrak{a}_2$  entier de K, linéairement indépendant de  $\mathfrak{a}_1$ : rang  $(\mathfrak{a}_1,\mathfrak{a}_2)=2$ , et tel que l'on ait

$$\tau(\mathfrak{S}[\mathfrak{a}_2]) \leqslant \tau(\mathfrak{S}[\mathfrak{x}])$$

pour tout  $\mathfrak{x}$  entier de K et linéairement indépendant de  $\mathfrak{a}_1$ : rang  $(\mathfrak{a}_1, \mathfrak{x}) = 2$ . Comme tout à l'heure, on voit que  $\mathfrak{a}_2$  existe. Il n'est pas non plus déterminé d'une façon unique; dans tous les cas  $\omega \mathfrak{a}_2$  convient également. Ici on ne choisira pas  $\mathfrak{a}_2$  au hasard parmi ses déterminations possibles, bien au contraire. Voici comment se fait le choix de  $\mathfrak{a}_2$ :

1er cas.

 $g_1 > 0$ . Les seuls  $\omega$  sont  $\pm 1$ , on peut donc choisir entre  $\pm \mathfrak{a}_2$ . On détermine le signe de sorte que:

$$a_1^{\prime (1)} \mathfrak{S}^{(1)} \bar{a}_2^{(1)} \geqslant 0$$
.

2me cas.

 $g_1 = 0$ . Il se peut que w > 2. Considérons la quantité

$$\dot{s}_{12}^{(1)} = \mathfrak{a}_1^{\prime(1)} \mathfrak{S}^{(1)} \bar{\mathfrak{a}}_2^{(1)}$$
.

Si l'on remplace  $\mathfrak{a}_2$  par  $\omega \mathfrak{a}_2$ , cette quantité  $\overset{\bullet}{s}_{12}^{(1)}$  devient  $\overline{\omega}^{(1)} \overset{\bullet}{s}_{12}^{(1)}$ . Or, un nombre complexe  $s \neq 0$  étant donné, il existe une racine de l'unité  $\omega$  de K et une seule telle que

$$-\frac{\pi}{w} < \arg \omega s \leqslant \frac{\pi}{w}$$
.

Le secteur  $-\frac{\pi}{w} < \arg s \leqslant \frac{\pi}{w}$  du plan des s complexes est un domaine fondamental relativement à la multiplication des s par les racines de l'unité  $\omega$  de K. Si s=0, on peut prendre  $\omega$  arbitraire, il y a w possibilités. On peut donc choisir le vecteur  $\mathfrak{a}_2$  de façon que

$$-\frac{\pi}{w} < \arg \dot{s}_{12}^{(1)} \leqslant \frac{\pi}{w}$$
.

Pour des raisons qui seront claires par la suite, nous nous contenterons de

$$-rac{\pi}{w}\leqslant rg \dot{s}_{\scriptscriptstyle 12}^{\scriptscriptstyle (1)}\leqslant rac{\pi}{w}$$
 ,

ce qui donnera lieu, dans certains cas, à une ambiguité pour le choix de a2.

Si w=2, les seuls  $\omega$  sont  $\pm 1$ , et la condition précédente s'écrit:

$$-\frac{\pi}{2} \leqslant \arg \dot{s}_{12}^{(1)} \leqslant \frac{\pi}{2}$$

ou aussi  $\Re s_{12}^{(1)} \geqslant 0$ , ce qui montre que l'on peut faire rentrer le 1<sup>er</sup> cas dans le 2<sup>me</sup>.

Le vecteur  $a_2$  étant ainsi fixé, on détermine  $a_3$  par les trois conditions:

rang 
$$(\mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_3) = 3$$
,  $\tau(\mathfrak{S}[\mathfrak{a}_3) \leqslant \tau(\mathfrak{S}[\mathfrak{x}])$ 

pour tout x tel que rang  $(a_1, a_2, x) = 3$ , et

$$-\frac{\pi}{w}\leqslant \mathrm{arg}\ \mathfrak{a}_{1}^{\prime(1)}\ \mathfrak{S}^{(1)}\ \overline{\mathfrak{a}}_{3}^{(1)}\leqslant \frac{\pi}{w}$$
 .

Il est inutile de distinguer les cas  $g_1 > 0$  et  $g_1 = 0$ ; cela n'a été fait précédemment que pour plus de clarté.

On continue de la sorte. D'une façon générale,  $a_1, \ldots, a_{l-1}$  étant fixés, on détermine  $a_l$  par les trois conditions:

rang 
$$(a_1, \ldots, a_l) = l$$
; (1)

$$\tau(\mathfrak{S}[\mathfrak{a}_l]) \leqslant \tau(\mathfrak{S}[\mathfrak{x}]) \text{ pour tout } \mathfrak{x} \text{ tel que rang } (\mathfrak{a}_1, \ldots, \mathfrak{a}_{l-1}, \mathfrak{x}) = l;$$
 (2)

$$-\frac{\pi}{w} \leqslant \arg \alpha'_{1}^{(1)} \mathfrak{S}^{(1)} \overline{\mathfrak{a}}_{l}^{(1)} \leqslant \frac{\pi}{w} \text{ si } l \geqslant 2 ; \qquad (3)$$

cela pour  $l=1, 2, \ldots, n$ .

Les *n* vecteurs  $a_1, \ldots, a_n$  ainsi obtenus forment une matrice  $\mathfrak{A} = (a_1, \ldots, a_n)$  entière dans K de déterminant  $|\mathfrak{A}| \neq 0$ . On l'appellera la matrixe auxiliaire du système S.

On transforme alors chacune des matrices  $\mathfrak{S}^{(k)}$  par la  $k^{\text{lème}}$  conjuguée  $\mathfrak{A}^{(k)}$  de  $\mathfrak{A}$ . Les matrices obtenues par cette première transformation seront désignées par  $\dot{\mathfrak{S}}^{(k)}$ . Elle sont donc définies par:

$$\dot{\mathfrak{S}}^{(k)} = \mathfrak{S}^{(k)}[\mathfrak{A}^{(k)}] \qquad k = 1, \ldots, \gamma.$$

Elles forment un nouveau système  $\dot{S}$ . En introduisant conformément aux conventions du § 2 la matrice

$$A = \begin{pmatrix} \mathfrak{A}^{\scriptscriptstyle (1)} & 0 \\ \ddots \\ 0 & \mathfrak{A}^{\scriptscriptstyle (\gamma)} \end{pmatrix}$$

on aura

$$\dot{S} = S[A]$$
.

Cherchons les inégalités que vérifient les  $\dot{\mathfrak{S}}^{(k)}$ . Pour les  $\mathfrak{S}^{(k)}$ , on a:

$$\tau(\mathfrak{S}[\mathfrak{a}_l]) \leqslant \tau(\mathfrak{S}[\mathfrak{X}]) \tag{I}$$

pour tout x entier dans K tel que

rang 
$$(a_1, ..., a_{l-1}, x) = l$$
  $l = 1, 2, ..., n$ .

$$-\frac{\pi}{w} \leqslant \arg \, \mathfrak{a}_{1}^{\prime(1)} \, \mathfrak{S}^{(1)} \, \bar{\mathfrak{a}}_{l}^{(1)} \leqslant \frac{\pi}{w} \qquad l = 2, ..., n .$$
 (II)

D'après la manière dont les formes quadratiques se transforment, ces relations s'écrivent d'une facon très simple au moyen des  $\dot{\mathfrak{S}}^{(k)} = (\dot{s}^{(k)}_{ij})$ . On a en effet

$$\dot{s}_{l\,l}^{(k)} = \mathfrak{S}^{(k)}\left[\mathfrak{a}_{l}^{(k)}
ight]$$
 .

Donc

$$\tau(\mathfrak{S}[\mathfrak{a}_l]) = \tau(s_l).$$

(Pour alléger l'écriture, on contracte deux indices égaux en un seul.) Soit  $\mathfrak{A}^{-1}\mathfrak{x}=\mathfrak{y}$ . Le vecteur  $\mathfrak{y}$  n'est pas nécessairement entier, mais il est caractérisé par la condition que  $\mathfrak{A}\mathfrak{y}$  soit entier. On a

$$\mathfrak{S}[\mathfrak{X}] = \mathfrak{S}[\mathfrak{A}\mathfrak{y}] = \dot{\mathfrak{S}}[\mathfrak{y}]$$
.

La condition rang  $(a_1, \ldots, a_{l-1}, x) = l$  s'écrit, en multipliant à gauche par  $\mathfrak{A}^{-1}$ , ce qui conserve le rang:

$$\operatorname{rang}\left(\mathfrak{E}_{l-1,\,\mathfrak{y}}\right)=l$$
 .

Cela signifie que le vecteur  $\mathfrak n$  doit avoir ses dernières composantes à partir de la  $l^{\text{lème}}$  non toutes nulles :

Soit

$$\eta = \begin{pmatrix} \eta_1 \\ \vdots \\ \eta_n \end{pmatrix}$$
, on aura  $(\eta_1, \ldots, \eta_n) \neq 0$ .

Les conditions (I) et (II) deviennent ainsi:

$$\tau(\dot{s}_l) \leqslant \tau(\dot{\mathfrak{S}}[\mathfrak{y}])$$
(I)

pour tout  $\mathfrak{g}$  de K tel que  $\mathfrak{A}\mathfrak{g}$  = entier ,  $(\eta_1, \ldots, \eta_n) \neq 0$ ;

$$l=1,\ldots,n$$
. 
$$-\frac{\pi}{w}\leqslant\arg\ \dot{s}_{1l}^{(1)}\leqslant\frac{\pi}{w}\ ; \ l=2,\ldots,n \ . \ (II)$$

# § 4. La matrice auxiliaire

Si la matrice auxiliaire  $\mathfrak{A}$  du système S était unimodulaire, c'est-à-dire si  $|\mathfrak{A}| = \varepsilon =$  unité de K, les 2 systèmes  $\dot{S}$  et S seraient équivalents. Mais ce n'est pas nécessairement le cas. Nous allons voir néanmoins que pour tous les systèmes S, la norme du déterminant de  $\mathfrak{A}$  est bornée. C'est ce qui fait l'objet du

Théorème 1. La norme du déterminant de la matrice auxiliaire  $\mathfrak{A}$  est bornée:  $|N(|\mathfrak{A}|)| \leq c$ , c étant une constante ne dépendant pas de S, mais seulement de n et de K, c = c (n, K).

La démonstration repose sur un théorème connu de Minkowski relatif aux formes linéaires, théorème que l'on peut énoncer ainsi:

Soient  $\mathfrak C$  une matrice donnée de degré r, de déterminant  $|\mathfrak C| \neq 0$ , dont les lignes complexes sont 2 à 2 conjuguées, et  $z = \begin{pmatrix} z_1 \\ \vdots \\ z_r \end{pmatrix}$  une colonne de variables indépendantes. Il existe alors de valeurs entières rationnelles non toutes nulles de  $z_1, \ldots, z_r$  telles que :

$$|\mathfrak{C}_{\mathfrak{F}}| \leqslant \mathring{V} ||\mathfrak{C}||$$
.

On va en déduire le théorème:

Soient  $\mathfrak{B}_1, \ldots, \mathfrak{B}_g$  g matrices non dégénérées de degré n, les  $g_1$  premières étant réelles, les 2  $g_2$  suivantes complexes, telles que  $\mathfrak{B}_{g_1+g_2+k} = \overline{\mathfrak{B}}_{g_1+k}$  pour  $k = 1, \ldots, g_2$ , et soit B la valeur absolue du produit de leurs déterminants. K étant un corps algébrique de degré g, ayant  $g_1$  conjugués réels et 2  $g_2$  imaginaires, il existe un vecteur entier  $\mathfrak{x}$  non nul du corps K, tel que l'on ait pour tous les conjugués  $\mathfrak{x}^{(k)}$  de  $\mathfrak{x}$ :

$$\mid \mathfrak{B}_{k}\mathfrak{X}^{(k)} \mid \leqslant \overset{gn}{V}\overline{B} \cdot \overset{^{2g}}{V}\overline{D}$$
.

D = |d| est la valeur absolue du discriminant du corps K.

Pour cela, soit  $(\omega_1, \ldots, \omega_g)$  une base des entiers de K. Une colonne d'entiers du corps K est donnée par

$$\mathfrak{x} = \omega_1 \mathfrak{v}_1 + \cdots + \omega_g \mathfrak{v}_g$$
,

les colonnes  $v_i = \begin{pmatrix} v_{i1} \\ \vdots \\ v_{in} \end{pmatrix}$  étant entières rationnelles. Nous numérotons les

conjugés de K comme il a été indiqué au début du § 1.

Appliquons le théorème de Minkowski rappelé tout à l'heure en prenant:

$$\mathfrak{C} = \begin{pmatrix} \omega_1^{(1)} \mathfrak{B}_1 & \omega_2^{(1)} \mathfrak{B}_1 \dots \omega_g^{(1)} \mathfrak{B}_1 \\ \dots & \dots & \dots \\ \omega_1^{(g)} \mathfrak{B}_g & \omega_2^{(g)} \mathfrak{B}_g \dots \omega_g^{(g)} \mathfrak{B}_g \end{pmatrix} =$$

$$= \left(egin{array}{ccc} \mathfrak{B}_1 & 0 \ \ddots & \ 0 & \mathfrak{B}_q \end{array}
ight) \ \cdot \ (arOmega imes \mathfrak{E}_n)$$

où  $\Omega$  est la matrice  $\Omega = (\omega_k^{(i)})$ , i étant l'indice de ligne, k l'indice de colonne, et où  $\Omega \times \mathfrak{E}_n$  désigne le produit de Kronecker:

$$\Omega \times \mathfrak{E}_n = (\omega_k^{(i)} \mathfrak{E}_n)$$
.

Il est clair que  $\mathfrak C$  satisfait aux conditions du théorème: les  $g_1n$  premières lignes de  $\mathfrak C$  sont réelles, et les n lignes ( $\omega_1^{(g_1+k)} \, \mathfrak B_{g_1+k}, \ldots, \, \omega_g^{(g_1+k)} \, \mathfrak B_{g_1+k}$ ) sont respectivement conjugées complexes des n lignes

$$(\omega_1^{(g_1+g_2+k)} \, \mathfrak{B}_{g_1+g_2+k} \,, \ldots, \, \omega_g^{(g_1+g_2+k)} \, \mathfrak{B}_{g_1+g_2+k})$$
.

Le déterminant de  $\mathfrak{C}$  vaut  $|\mathfrak{C}| = |\mathfrak{B}_1| \cdots |\mathfrak{B}_g| \cdot |\Omega|^n$ . En valeur absolue il est égal à  $|\mathfrak{C}| = B \cdot \sqrt{D^n} \neq 0$ . Il existe donc une colonne entière rationnelle  $\mathfrak{w}$  non nulle de gn éléments, que l'on décomposera ainsi:

$$\mathbf{w} = \begin{pmatrix} \mathbf{v_1} \\ \vdots \\ \mathbf{v_g} \end{pmatrix}$$
 avec  $\mathbf{v_i} = \begin{pmatrix} v_{i\,1} \\ \vdots \\ v_{in} \end{pmatrix}$ 

 $v_{ik}$  = entiers rationnels et telle que l'on ait:

$$|\mathfrak{C}\mathfrak{w}| \leqslant V |\mathfrak{C}|$$
.

Or
$$\mathfrak{C} \mathfrak{w} = \begin{pmatrix} \mathfrak{B}_{1} & 0 \\ \vdots & \vdots \\ 0 & \mathfrak{B}_{g} \end{pmatrix} \begin{pmatrix} \omega_{1}^{(1)} \mathfrak{E}_{n} \dots \omega_{g}^{(1)} \mathfrak{E}_{n} \\ \vdots & \vdots \\ \omega_{1}^{(g)} \mathfrak{E}_{n} \dots \omega_{g}^{(g)} \mathfrak{E}_{n} \end{pmatrix} \begin{pmatrix} \mathfrak{v}_{1} \\ \vdots \\ \mathfrak{v}_{g} \end{pmatrix} = \\
= \begin{pmatrix} \mathfrak{B}_{1} & 0 \\ \vdots & \vdots \\ 0 & \mathfrak{B}_{g} \end{pmatrix} \begin{pmatrix} \omega_{1}^{(1)} \mathfrak{v}_{1} + \dots + \omega_{g}^{(1)} \mathfrak{v}_{g} \\ \vdots & \vdots \\ \omega_{1}^{(g)} \mathfrak{v}_{1} + \dots + \omega_{g}^{(g)} \mathfrak{v}_{g} \end{pmatrix} = \\
= \begin{pmatrix} \mathfrak{B}_{1} & 0 \\ \vdots & \vdots \\ 0 & \mathfrak{B}_{g} \end{pmatrix} \begin{pmatrix} \mathfrak{x}^{(1)} \\ \vdots \\ \mathfrak{x}^{(g)} \end{pmatrix} = \begin{pmatrix} \mathfrak{B}_{1} & \mathfrak{x}^{(1)} \\ \vdots \\ \mathfrak{B}_{g} & \mathfrak{x}^{(g)} \end{pmatrix} .$$

 $x = \omega_1 v_1 + \cdots + \omega_g v_g \neq 0$  est une colonne d'entiers de K.

On obtient bien le résultat annoncé:

$$|\mathfrak{B}_{k}\mathfrak{X}^{(k)}| \leqslant \sqrt[q]{B} \cdot \sqrt[2q]{D}, \quad \mathfrak{X} \neq 0.$$
 c.q.f.d.

Appliquons ce théorème en prenant  $\mathfrak{B}_k = \mathfrak{A}^{(k)-1}$ , les  $\mathfrak{A}^{(k)}$  étant les conjuguées de la matrice auxiliaire  $\mathfrak{A}$  obtenue lors de la première transformation du système S. Il est clair que ces  $\mathfrak{B}_k$  remplissent les conditions énoncées dans l'hypothèse du théorème. La quantité désignée par B vaut  $B = |N(|\mathfrak{A}|)|^{-1}$ . Il existe donc un vecteur  $\mathfrak{x} \neq 0$  du corps K tel que

$$\mid \mathfrak{A}^{(k)-1} \mathfrak{x}^{(k)} \mid \leqslant rac{\sqrt[2g]{D}}{\sqrt[g]{\mid N(\mid \mathfrak{A}\mid)\mid}} = G \ .$$

Soit, comme précédemment,  $\eta = \mathfrak{A}^{-1}\mathfrak{x}$ ; on a

$$|\mathfrak{y}^{(k)}| \leqslant G$$
;  $k = 1, ..., g$ .

 $\mathfrak{x}$  n'étant pas nul,  $\mathfrak{y}=\begin{pmatrix} \eta_1 \\ \vdots \\ \eta_n \end{pmatrix}$  ne l'est pas non plus; supposons que  $\eta_{l+1}=\cdots=\eta_n=0$ , mais que  $\eta_l\neq 0$ . On applique alors les inégalités (I) de la fin du § 3 à cet  $\mathfrak{y}$ . Supprimons les points sur les s. On obtient, en tenant compte de  $|\mathfrak{y}^{(k)}|\leqslant G$ :

$$\tau(s_l) \leqslant \tau(\mathfrak{S}[\mathfrak{y}]) = \sum_{k=1}^{\gamma} \sum_{i,j=1}^{l} s_{ij}^{(k)} \, \eta_i^{(k)} \overline{\eta}_j^{(k)} \leqslant G^2 \sum_{k=1}^{\gamma} \sum_{i,j=1}^{l} |s_{ij}^{(k)}| .$$

Or les  $\mathfrak{S}^{(k)}$  sont des matrices positives, donc  $\mathfrak{S}^{(k)}[\mathfrak{x}] \geqslant 0$  pour toutes valeurs complexes (réelles si  $k \leqslant g_1$ ) des composantes  $\xi_i$  du vecteur  $\mathfrak{x}$ ; en particulier pour les valeurs suivantes:

$$\xi_{i} = 1$$
 ,  $\xi_{j} = -e^{i \arg s_{ij}^{(k)}} = -\frac{s_{ij}^{(k)}}{|s_{ij}^{(k)}|}$  ,  $i$  ,  $j$  fixes ,

$$\xi_m = 0$$
 si  $m \neq i$ ,  $m \neq j$ ,

on trouve:

$$2|s_{ij}^{(k)}| \leqslant s_{i}^{(k)} + s_{j}^{(k)} . \tag{1}$$

On en déduit:

$$\sum_{i,j=1}^{l} |s_{ij}^{(k)}| \leq l \sum_{i=1}^{l} s_{i}^{(k)}.$$
 (2)

A cause de (2) on obtient alors

$$au(s_l) \leqslant G^2 \sum_{k=1}^{\gamma} l \sum_{i=1}^{l} s_i^{(k)} = l G^2 \sum_{i=1}^{l} \tau(s_i)$$
.

Or les inégalités (I) appliquées à n avec

$$\eta_h = 1$$
 ,  $\eta_i = 0$  si  $i \neq h$  ,  $h \geqslant l$  ,

donnent:

$$au(s_l) \leqslant au(s_h)$$
 si  $l \leqslant h$ .

On a donc:

$$\tau(s_1) \leqslant \tau(s_2) \leqslant \cdots \leqslant \tau(s_n)$$
. (3)

inégalités qui seront plus d'une fois appliquées par la suite.

On renforce l'inégalité obtenue en remplaçant  $\tau(s_i)$  par  $\tau(s_i)$  ce qui donne

$$\tau(s_i) \leqslant l^2 G^2 \tau(s_i) .$$

Or  $\tau(s_l) > 0$ , car les matrices  $\mathfrak{S}^{(k)}$  sont positives. Comme  $l \leqslant n$ , on en déduit:

$$G^{-1}\leqslant n$$
 .

Reprenant la valeur de G qui est  $G = D^{\frac{1}{2g}} \cdot |N(|\mathfrak{A}|)|^{-\frac{1}{g^n}}$  on trouve finalement:

$$|N(|\mathfrak{A}|)| \leqslant D^{\frac{n}{2}} \cdot n^{gn}$$
,

ce qui démontre le théorème 1.

Théorème 2. Une matrice  $\mathfrak{A}$  de degré n, d'éléments entiers algébriques dans un corps K, de déterminant  $|\mathfrak{A}| = \alpha \neq 0$ , se met sous la forme  $\mathfrak{A}\mathfrak{A}_{\nu}$ , où  $\mathfrak{A}_{\nu}$  appartient à un ensemble fini de matrices entières ne dépendant que de  $\alpha$ , n et K, et où  $\mathfrak{A}$  est unimodulaire dans K.

La démonstration repose sur un

Lemme. Si deux matrices entières  $\mathfrak{A}$ ,  $\mathfrak{A}_1$  de déterminants associés:  $\varepsilon |\mathfrak{A}| = \varepsilon_1 |\mathfrak{A}_1| = \alpha$ , sont congrues mod  $(\alpha)$ :  $\mathfrak{A} \equiv \mathfrak{A}_1$   $((\alpha))$ , la matrice  $\mathfrak{A}\mathfrak{A}_1^{-1} = \mathfrak{A}$  est unimodulaire.

Comme  $|\mathfrak{A}\mathfrak{A}_1^{-1}| = \varepsilon_1 \varepsilon^{-1} = \text{unit\'e de } K$ , il suffit pour démontrer ce lemme de faire voir que  $\mathfrak{A}\mathfrak{A}_1^{-1}$  a ses éléments entiers. Pour cela multiplions la congruence  $\mathfrak{A} \equiv \mathfrak{A}_1((\alpha))$  à droite par  $\alpha \mathfrak{A}_1^{-1}$ , matrice entière; on trouve ainsi

$$\alpha \mathfrak{A} \mathfrak{A}_1^{-1} \equiv \alpha \mathfrak{E}(\alpha)$$
, d'où  $\mathfrak{A} \mathfrak{A}_1^{-1} \equiv \mathfrak{E}(\alpha)$ 

c'est-à-dire que  $\mathfrak{AA}_1^{-1}$  est entière.

Considérons alors un ensemble complet de matrices ayant leurs déterminants associés à  $\alpha$ , et incongrues mod  $(\alpha)$ . Il y en a au plus  $N((\alpha))^{n^2}$ . Soient  $\mathfrak{A}_1, \ldots, \mathfrak{A}_M$  ces matrices. Le nombre M dépend uniquement de  $\alpha$ , du corps K et de n.

Soit maintenant  $\mathfrak A$  une matrice quelconque de déterminant associé à  $\alpha$ :  $|\mathfrak A| = \alpha \varepsilon$ . La matrice  $\mathfrak A$  est nécessairement congrue à l'une des  $\mathfrak A_{\mathfrak p}$  mod  $(\alpha)$ :

$$\mathfrak{A} \equiv \mathfrak{A}_{\nu}((\alpha))$$
.

D'après le lemme on a  $\mathfrak{AA}^{-1}_{\nu} = \mathfrak{U}$ ,  $\mathfrak{U}$  étant unimodulaire, d'où  $\mathfrak{A} = \mathfrak{UA}_{\nu}$ . c. q. f. d.

Conséquences et définitions.

Il résulte immédiatement des théorèmes 1 et 2 que la matrice auxiliaire A se met sous la forme

$$\mathfrak{A}=\mathfrak{U}\mathfrak{A}_{\nu}$$

où  ${\mathfrak U}$  est unimodulaire dans K et  ${\mathfrak A}_{\nu}$  appartient à un ensemble fini de matrices

$$\mathfrak{A}_1, \ldots, \mathfrak{A}_N$$
.

Ces matrices  $\mathfrak{A}_{\nu}$  ne sont pas déterminées d'une façon unique, on peut les multiplier à gauche par des matrices unimodulaires arbitraires. Deux matrices  $\mathfrak{A}$  et  $\mathfrak{B}$  qui diffèrent à gauche par un facteur unimodulaire  $\mathfrak{A}$ , c'est-à-dire telles que  $\mathfrak{A} = \mathfrak{A}\mathfrak{B}$ , sont dites associées à gauche. La relation d'associativité à gauche est réflexive, symétrique, transitive; on peut donc parler des classes de matrices associées à gauche. Et les résultats obtenus au sujet de la matrice  $\mathfrak{A}$  peuvent se résumer ainsi: Il existe un

nombre fini seulement N de classes d'associées à gauche possibles pour la matrice auxiliaire  $\mathfrak{A}$ , quel que soit le système S dont on est parti. Ces classes sont représentées par les matrices  $\mathfrak{A}_1, \ldots, \mathfrak{A}_N$ .

Désignons par R ( $\mathfrak{A}$ ) le domaine de l'espace des  $s_{ij}^{(k)}$  défini par les inégalités (I) et (II) du § 3 (les points sur les s étant supprimés), et soit  $R_0$  le domaine  $R_0 = R$  ( $\mathfrak{E}$ ). On voit aisément que le domaine R ( $\mathfrak{A}$ ) est contenu dans  $R_0$  quelle que soit la matrice  $\mathfrak{A}$  entière de K et non dégénérée:

$$R(\mathfrak{A})$$
 dans  $R_0$ .

 $R(\mathfrak{A})$  est convexe, car si les systèmes S et T vérifient (I) et (II), il en est de même du système  $\lambda S + \mu T$  avec  $\lambda + \mu = 1$ ,  $\lambda \geqslant 0$ ,  $\mu \geqslant 0$ .

 $R(\mathfrak{A})$  est un domaine fermé, ce qui provient du fait qu'il est défini par des inégalités où se trouve toujours le signe  $\leq$ .

 $R(\mathfrak{A})$  ne dépend que de la classe d'associées à gauche de la matrice  $\mathfrak{A}$ :

 $R(\mathfrak{A}) = R(\mathfrak{A}\mathfrak{A})$  si  $\mathfrak{A}$  est unimodulaire, car dans les inégalités (I) les  $\mathfrak{g}$  pour lesquels  $\mathfrak{A}\mathfrak{g}$  est entier sont les mêmes que les  $\mathfrak{g}$  pour lesquels  $\mathfrak{A}\mathfrak{g}$  est entier.

Remarquons encore que les inégalités (I) et (II) sont linéaires et homogènes en les coordonnées de S, c'est-à-dire en les quantités  $Rs_{ij}^{(k)}$  et  $Js_{ij}^{(k)}$ . Cela est clair pour (I). Quant aux inégalités (II), on peut les écrire sous la forme

$$Rs_{1l}^{(1)}\geqslant 0 \quad {
m et} \quad \pm Js_{1l}^{(1)}\leqslant {
m tg} \,\,rac{\pi}{w}\,\,Rs_{1l}^{(1)} \quad l=2\;,\ldots,n\;\;, \qquad {
m (II')}$$

forme qui met en évidence leur linéarité.

Il s'ensuit que le domaine  $R(\mathfrak{A})$  est limité par des hyperplans passant par l'origine des coordonnées. Les inégalités (I) étant en nombre infini, on pourrait s'attendre à ce que ces hyperplans soient aussi en nombre infini. Nous verrons cependant plus loin qu'il n'en est pas ainsi, c'est-à-dire que toutes les inégalités (I) découlent d'un nombre *fini* d'entre elles.

## § 5. Deuxième transformation. Le domaine réduit $m{R}$

Le système  $\dot{S}$ , obtenu à partir de S par transformation avec la matrice auxiliaire  $\mathfrak{A}$ , n'est équivalent à S que si  $\mathfrak{A}$  est unimodulaire, ce qui n'a en général pas lieu. Mais on sait que

$$\mathfrak{A} = \mathfrak{U} \mathfrak{A}_{\nu}$$
.

Considérons alors le système  $\dot{S}$  transformé de  $\dot{S}$  par  $\mathfrak{A}_{\nu}^{-1}$ , c'est-à-dire le système des matrices

$$\ddot{\mathfrak{S}}^{(k)}=\dot{\mathfrak{S}}^{(k)}[\mathfrak{A}^{(k)-1}]=\mathfrak{S}^{(k)}[\mathfrak{A}^{(k)}] \qquad k=1\ ,\ldots,\gamma\ .$$

Ce système  $\ddot{S}$  est équivalent au système primitif S. On l'appellera le système réduit de S. Pour un S donné,  $\ddot{S}$  dépend de la manière dont les  $\mathfrak{A}_1, \ldots, \mathfrak{A}_N$  ont été choisies dans leur classes d'associées.

Les coordonnées de  $\dot{S}$  vérifient une infinité d'inégalités que l'on obtient en remplaçant  $\dot{\mathfrak{S}}^{(k)}$  par  $\dot{\mathfrak{S}}^{(k)}[\mathfrak{A}_{\nu}^{(k)}]$  dans (I) et (II). Il est inutile de les écrire; elles sont, d'après la remarque faite à la fin du  $\S$  précédent, linéaires et homogènes en les parties réelles et imaginaires des  $\dot{s}_{ij}^{(k)}$ . Pour chaque  $\mathfrak{A}_{\nu}$  on obtient ainsi un domaine que nous désignerons par  $R_{\nu}$ , et qui sera le  $v^{\text{lème}}$  domaine réduit, relatif à la matrice  $\mathfrak{A}_{\nu}$ , défini comme le lieu des systèmes de matrices  $\dot{\mathfrak{S}}^{(k)} = \dot{\mathfrak{S}}^{(k)}[\mathfrak{A}_{\nu}^{(k)-1}]$  lorsque le système des  $\dot{\mathfrak{S}}^{(k)}$  parcourt tout le domaine  $R(\mathfrak{A}_{\nu})$ .

Comme on l'a vu à la fin du § 4,  $R(\mathfrak{A}_{\nu})$  ne dépend pas des représentantes choisies pour les  $\mathfrak{A}_{\nu}$ ; mais  $R_{\nu}$  en dépend, à une équivalence près. De même que  $R(\mathfrak{A}_{\nu})$ ,  $R_{\nu}$  est convexe, fermé, limité par des hyperplans.

Soit P l'espace des systèmes S. Comme il est facile de le voir, P est un domaine ouvert dans l'espace cartésien dont les coordonnées sont les parties réelles et imaginaires des  $s_{ij}^{(k)}$ .

Désignons par R la portion située dans P de la réunion des domaines  $R_{\nu} : R = P \cap \sum_{\nu=1}^{N} R_{\nu}$  (le signe  $\cap$  signifie intersection). R est par définition le domaine réduit des systèmes S.

Théorème 3. Le domaine R précédemment défini constitue un domaine fondamental pour les systèmes S relativement aux transformations unimodulaires dans K.

Il s'agit de démontrer 2 choses:

1° A tout système S de matrices positives  $\mathfrak{S}^{(k)}$  correspond un système  $S_1$  équivalent dans R :

$$S_1 \sim S$$
 ,  $S_1$  dans  $R$  .

C'est évident par définition de R. Reprenons la notation abrégée introduite au § 2. En transformant le système S par sa matrice auxiliaire  $\mathfrak{A}$ , on obtient le système  $\dot{S}$  défini par  $\dot{S} = S[A]$ . On sait que la matrice  $\mathfrak{A}$  se met sous la forme  $\mathfrak{A} = \mathfrak{U}\mathfrak{A}_{\nu}$ ,  $\mathfrak{U}$  unimodulaire dans K. Alors  $\dot{S} = \dot{S}[A_{\nu}^{-1}] = S[U]$  est le système réduit équivalent à S;  $\dot{S}$  est dans  $R_{\nu}$  puisque S est dans  $R(\mathfrak{A}_{\nu})$ . Donc  $\dot{S}$  est bien situé dans R.

 $2^{\circ}$  Deux systèmes S et T de R ne peuvent être équivalents que s'ils sont situés sur la frontière de R.

Soient S et T deux systèmes réduits et équivalents:

S et T dans R; 
$$S = T[U]$$
;  $\mathfrak{U} \neq \omega \mathfrak{E}$ .

On a pour certains indices  $\mu$  et  $\nu$ :

$$egin{aligned} S &= \dot{S}[A_{\mu}^{-1}] & \dot{S} ext{ dans } R(\mathfrak{A}_{\mu}) \ T &= \dot{T}[A_{
u}^{-1}] & \dot{T} ext{ dans } R(\mathfrak{A}_{
u}) \end{aligned}$$

Par conséquent  $\dot{S} = \dot{T}[A_{\nu}^{-1}U A_{\mu}] = \dot{T}[V]$  avec  $V = A_{\nu}^{-1}U A_{\mu}$ . Les matrices  $\mathfrak{A}_{\nu}\mathfrak{B} = \mathfrak{U}\mathfrak{A}_{\mu}$  et  $\mathfrak{A}_{\mu}\mathfrak{B}^{-1} = \mathfrak{U}^{-1}\mathfrak{A}_{\nu}$  sont entières dans K. Montrons que  $\dot{S}$  et  $\dot{T}$  sont sur la frontière des domaines respectifs  $R(\mathfrak{A}_{\mu})$  et  $R(\mathfrak{A}_{\nu})$ ; alors S et T seront évidemment systèmes frontières de  $R_{\mu}$  et  $R_{\nu}$ , puisque le passage de  $R(\mathfrak{A}_{\nu})$  à  $R_{\nu}$  se fait par la transformation  $\dot{\mathfrak{S}} = \mathfrak{S}[\mathfrak{A}_{\nu}]$  qui est topologique. Distinguons 2 cas, selon que  $\mathfrak{B}$  est diagonale ou non.

1er cas.  $\mathfrak{V}$  est diagonale:  $\mathfrak{V} = \mathfrak{D}(v_1, \ldots, v_n)$ .

Alors  $\mathfrak{B} \neq \omega \mathfrak{E}$ , car  $\mathfrak{U} \neq \omega \mathfrak{E}$  et  $\mathfrak{A}_{\nu} \mathfrak{B} = \mathfrak{U} \mathfrak{A}_{\mu}$ . Les éléments de  $\dot{\mathfrak{S}}^{(k)} = (\dot{s}_{ij}^{(k)})$  et de  $\dot{\mathfrak{T}}^{(k)} = (\dot{t}_{ij}^{(k)})$  sont liés par les relations  $\dot{\mathfrak{S}}^{(k)} = \dot{\mathfrak{T}}^{(k)} [\mathfrak{B}^{(k)}]$ , c.-à-d.:  $\dot{s}_{ij}^{(k)} = \dot{t}_{ij}^{(k)} v_i^{(k)} \bar{v}_j^{(k)}$ . Considérons les colonnes  $\mathfrak{v}_i = \begin{pmatrix} 0 \\ v_i \\ 0 \end{pmatrix}$  de  $\mathfrak{B} = (\mathfrak{v}_1, \ldots, \mathfrak{v}_n)$ . Comme  $\mathfrak{A}_{\nu} \mathfrak{B}$  est entière, la colonne  $\mathfrak{A}_{\nu} \mathfrak{v}_i$  est entière, et l'on peut appliquer (I) aux matrices  $\dot{\mathfrak{T}}^{(k)}$  avec  $\mathfrak{y} = \mathfrak{v}_i$ , l = i:

$$\tau(s_i) = \tau(\dot{\mathfrak{T}}[\mathfrak{v}_i]) \geqslant \tau(t_i)$$

La matrice  $\mathfrak{A}_{\mu}\mathfrak{B}^{-1}$  est aussi entière; si  $\mathfrak{B}^{-1}=(\mathfrak{v}_1^*,\ldots,\mathfrak{v}_n^*)$ , la colonne  $\mathfrak{A}_{\mu}\mathfrak{v}_i^*$  est entière, et l'on peut appliquer (I) à  $\mathring{S}$  avec  $\mathfrak{y}=\mathfrak{v}_i^*$ , l=i:

$$au(\dot{t}_i) = au(\dot{\mathfrak{S}}[\mathfrak{v}_i^{ullet}]) \geqslant au(\dot{s}_i)$$
 .

On voit donc que  $\tau(s_i) = \tau(t_i)$ , et le système T vérifie la relation

$$au(\dot{\mathfrak{T}}[\mathfrak{v}_i]) = au(\dot{t}_i)$$
.

Si tous les  $v_i$ , i = 1, ..., n, ne sont pas des racines de l'unité, soit  $v_i \neq \omega$ , on en déduit que T est bien sur la frontière de  $R(\mathfrak{A})$  puisque T est dans  $R(\mathfrak{A})$  et vérifie:

$$au(\dot{\mathfrak{T}}[\mathfrak{v}_l]) = au(\dot{t}_l)$$

relation non identiquement satisfaite, car  $v_l \neq \omega$ , obtenue en prenant le signe = dans l'une des inégalités définissant  $R(\mathfrak{A}_{\nu})$ . Il en est de même de  $\dot{S}$ .

Si tous les  $v_i$  sont des racines de l'unité, ils ne peuvent être tous égaux. Soit donc  $v_i = \omega_i$ ; il existe un l pour lequel  $\omega_1 \neq \omega_l$ . Alors  $\dot{\mathfrak{T}}^{(k)}[\mathfrak{B}^{(k)}] = \dot{\mathfrak{S}}^{(k)}$  montre que:

$$\dot{s_{1l}^{(k)}}=\dot{t_{1l}^{(k)}}\,\omega_1^{(k)}\,\overline{\omega}_l^{(k)}$$
 ,  $\omega_1\overline{\omega}_l=\omega
eq 1$  .

En particulier pour l'indice supérieur k=1 on a

$$\dot{s}_{1l}^{(1)} = \dot{t}_{1l}^{(1)} \, \omega^{(1)}$$
 ,  $\omega^{(1)} 
eq 1$  ,  $\omega^w = 1$  .

On peut supposer  $\dot{s}_{1l}^{(1)} \neq 0$ , car si  $\dot{s}_{1l}^{(1)} = 0$  il est clair d'après (II') (§ 4) que  $\dot{S}$  et  $\dot{T}$  sont frontières.

 $\dot{S}$  et  $\dot{T}$  sont dans  $R(\mathfrak{A}_{\pmb{u}})$  et  $R(\mathfrak{A}_{\pmb{\nu}})$  , donc d'après (II) :

$$\begin{split} &-\frac{\pi}{w} \leqslant \arg \dot{s}_{1l}^{(1)} \leqslant \frac{\pi}{w} \\ &-\frac{\pi}{w} \leqslant \arg \dot{t}_{1l}^{(1)} \leqslant \frac{\pi}{w} \end{split} \tag{II}$$

En faisant la différence:

$$-\frac{2\pi}{w} \leqslant \arg \frac{|\dot{s}_{1l}^{(1)}|}{\dot{t}_{1l}^{(1)}} \leqslant \frac{2\pi}{w}$$

c'est-à-dire

$$-\frac{2\pi}{w} \leqslant \arg \ \omega^{(1)} \leqslant \frac{2\pi}{w}$$
.

Cette inégalité entraı̂ne, puisque  $\omega^{(1)} = e^{\frac{2\pi mi}{w}} \neq 1$ , arg  $\omega^{(1)} = \pm \frac{2\pi}{w}$ .

Cela n'est possible que si

$$\left\{\begin{array}{ll} \text{arg} \quad \dot{s}_{1l}^{(1)} = \quad \frac{\pi}{w} \\ \text{arg} \quad \dot{t}_{1l}^{(1)} = -\frac{\pi}{w} \end{array}\right. \quad \text{ou bien si} \quad \left\{\begin{array}{ll} \text{arg} \quad \dot{s}_{1l}^{(1)} = -\frac{\pi}{w} \\ \text{arg} \quad \dot{t}_{1l}^{(1)} = \quad \frac{\pi}{w} \end{array}\right.$$

Ce qui montre que  $\dot{S}$  et  $\dot{T}$  sont systèmes frontières de  $R(\mathfrak{A}_{\mu})$  et  $R(\mathfrak{A}_{\nu})$  respectivement.

2ème cas. V n'est pas diagonale.

Soit de nouveau  $\mathfrak{B}=(\mathfrak{v}_1,\ldots,\mathfrak{v}_n)$ , et soit  $\mathfrak{v}_l$  la première colonne différente d'une colonne de matrice diagonale; alors, si  $\mathfrak{v}_l=\begin{pmatrix} v_{l\,1}\\ \vdots\\ v_{l\,n} \end{pmatrix}$ , on a nécessairement  $(v_{ll},\ldots,v_{ln})\neq 0$ , puisque  $|\mathfrak{B}|\neq 0$ .

 $\mathfrak{B}^{-1}$  a la même forme que  $\mathfrak{B}$ , sa  $l^e$  colonne est  $\mathfrak{v}_l^* = \begin{pmatrix} v_{l1}^* \\ \vdots \\ v_{ln}^* \end{pmatrix}$  avec

 $(v_{ll}^{\bullet}, \ldots, v_{ln}^{\bullet}) \neq 0$ . Comme  $\mathfrak{A}_{\nu} \mathfrak{v}_{l}$  est entière, on peut appliquer (I) à  $\dot{T}$  pour le vecteur  $\mathfrak{v}_{l}$ , et l'on trouve:

$$\tau(\dot{s_l}) = \tau(\mathfrak{T}[\mathfrak{v}_l]) \geqslant \tau(\dot{t_l}).$$

De même, en appliquant (I) à  $\dot{S}$  pour  $\mathfrak{v}_{l}^{\bullet}$ , on trouve:

$$\tau(\dot{t}_i) = \tau(\mathfrak{S}[\mathfrak{v}_i^{\star}]) \geqslant \tau(\dot{s}_i)$$

On en déduit  $\tau(t_i) = \tau(s_i)$ , et l'on voit comme précédemment que  $\dot{S}$  et T sont frontières de  $R(\mathfrak{A}_{\mu})$  et  $R(\mathfrak{A}_{\nu})$ , étant respectivement dans ces domaines et vérifiant les égalités non identiques

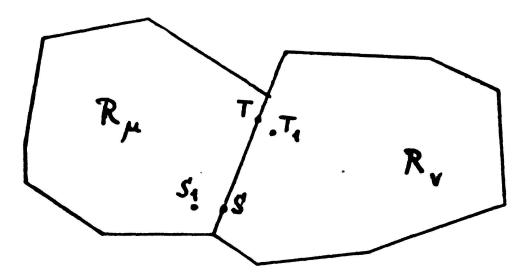
$$au(\dot{s_l}) = au(\dot{\mathfrak{S}}[\mathfrak{v}_l^*]) \quad ext{ et } \quad au(\dot{t_l}) = au(\dot{\mathfrak{T}}[\mathfrak{v}_l]) \ .$$

En résumé, les systèmes  $\dot{S}$  et  $\dot{T}$  sont frontières de  $R(\mathfrak{A}_{\mu})$  et de  $R(\mathfrak{A}_{\nu})$ , si les systèmes  $S = \dot{S}[A_{\mu}^{-1}]$  et  $T = \dot{T}[A_{\nu}^{-1}]$  sont équivalents. Il s'ensuit que S et T sont frontières de  $R_{\mu}$  et  $R_{\nu}$  respectivement. Pour en déduire que S et T sont frontières de R, il faudrait être sûr que  $R_{\mu}$  et  $R_{\nu}$  n'aient pas de région commune. Or il est aisé de voir que si un système S appartient à la fois à  $R_{\mu}$  et à  $R_{\nu}$ , il est frontière de ces 2 domaines; en effet soit  $\mathfrak{U}$  une substitution unimodulaire transformant S en un système T différent de S:  $T = S[U] \neq S$ . S appartient à  $R_{\mu}$  et T appartient au domaine  $R_{\nu}^{*}$  transformé de  $R_{\nu}$  par  $\mathfrak{U}$ . Ce domaine  $R_{\nu}^{*}$  peut remplacer  $R_{\nu}$ ; on l'obtient comme  $R_{\nu}$  en partant de  $R(\mathfrak{U}_{\nu})$ , mais en transformant ce dernier domaine par  $\mathfrak{U}^{-1}\mathfrak{U}$  au lieu de  $\mathfrak{U}^{-1}$ ; cela revient à prendre  $\mathfrak{U}^{-1}\mathfrak{U}_{\nu}$  au lieu de  $\mathfrak{U}_{\nu}$  comme représentante de la classe gauche d'associées de  $\mathfrak{U}_{\nu}$ .

Le résultat obtenu, à savoir que S et T sont respectivement frontières de  $R_{\mu}$  et  $R_{\nu}$  s'ils sont équivalents, est valable quels que soient les représentants  $\mathfrak{A}_{\mu}$  et  $\mathfrak{A}_{\nu}$  choisies dans leurs classes d'associées, on peut donc appliquer ce résultat aux systèmes S et T=S[U] équivalents, l'un S situé dans  $R_{\mu}$ , l'autre T dans  $R_{\nu}^{\bullet}$ . Il en résulte que les systèmes S et T sont frontières, l'un de  $R_{\mu}$ , l'autre de  $R_{\nu}^{\bullet}$ , et notre assertion est démontrée.

D'après cela la région commune à  $R_{\mu}$  et à  $R_{\nu}$  ne peut être qu'une portion de la frontière d'un de ces domaines.

Pour achever la démonstration du théorème 3, il reste à faire voir que les deux systèmes S et T ne peuvent se trouver sur une portion de frontière commune à  $R_{\mu}$  et  $R_{\nu}$ , comme le montre schématiquement la figure. En effet, supposons par absurde qu'il en soit ainsi. Considérons un système  $S_1$  voisin de S, à l'intérieur de  $R_{\mu}$ . La transformation T = S[U] étant topologique,  $S_1$  est transformé par  $\mathfrak U$  en un système  $T_1$  voisin de T.



Si  $S_1$  est suffisamment près de S,  $T_1$  sera soit dans  $R_{\mu}$ , soit dans  $R_{\nu}$ . Or cela est impossible, car il a été démontré que deux systèmes  $S_1$  et  $T_1$  situés tous deux dans R et équivalents, sont frontières, l'un de  $R_{\mu'}$ , l'autre de  $R_{\nu'}$ .

Il s'agit maintenant de déterminer la nature du domaine R, intersection de P avec la réunion des  $R_{\nu}$ . Notre but est de montrer que chacun des domaines  $R_{\nu}$  est limité par un nombre fini d'hyperplans. C'est la démonstration de ce fait qui présente le plus de difficultés.

## § 6. Théorème préliminaire

Dans le cas où la matrice A est égale à la matrice unité E, les inégalités (I) du § 3 s'écrivent

$$\tau(\mathfrak{S}[\mathfrak{X}]) \geqslant \tau(s_l) \qquad l = 1, \ldots, n \qquad (I_0)$$

avec  $\mathfrak{x}$  entier de K tel que  $(\xi_1, \ldots, \xi_n) \neq 0$ . Ce sont ces inégalités qui, avec (II), définissent le domaine  $R_0$  contenant tous les domaines  $R(\mathfrak{A})$ .

Théorème 4. Si un système de  $\gamma$  matrices  $\mathfrak{S}^{(k)}$ , dont les  $g_1$  premières sont réelles et symétriques, les  $g_2$  suivantes hermitiennes, vérifie les inégalités  $(I_0)$ , on a pour  $k=1,2,\ldots,\gamma$ :

$$\mid \mathfrak{S}^{(k)} \mid \leqslant s_1^{(k)} s_2^{(k)} \dots s_n^{(k)} \leqslant C \mid \mathfrak{S}^{(k)} \mid$$

où C est une constante ne dépendant que de n et du corps K: C = C (n, K).

Montrons d'abord que les inégalités ( $I_0$ ) à elles seules entraînent qu'aucune des formes de matrices  $\mathfrak{S}^{(k)}$  n'est indéfinie; c.-à-d. que l'on a toujours:

 $\mathfrak{S}^{(k)}[\mathfrak{x}]\geqslant 0$ 

quel que soit le vecteur x (réel si  $k \leqslant g_1$ ).

Supposons par absurde que pour un certain indice  $\varrho$  on ait:

$$a_0 = \mathfrak{S}^{(\varrho)}[\mathfrak{x}_0] < 0$$
,  $(\mathfrak{x}_0 \text{ r\'eel si } \varrho \leqslant g_1)$ .

 $x_0$  n'est pas nécessairement un vecteur entier du corps  $K^{(\varrho)}$ . Mais la fonction  $\mathfrak{S}^{(\varrho)}[x]$  des  $\xi_1, \ldots, \xi_n$  étant continue, on peut déterminer un nombre réel r > 0 tel que, pour tout x satisfaisant à  $|x - x_0| \leq r$ , on ait:

$$\mid \mathfrak{S}^{(\varrho)}\left[\mathfrak{x}\right] - a_{\mathfrak{0}} \mid \leqslant \frac{\mid a_{\mathfrak{0}} \mid}{2}$$

donc aussi

$$\mathfrak{S}^{(\varrho)}[\mathfrak{x}] \leqslant \frac{a_{\mathbf{0}}}{2}$$
 .

Or il existe une infinité de vecteurs  $\mathbf{x}$  du corps  $K^{(q)}$  tels que  $|\mathbf{x}^{(q)} - \mathbf{x}_0| \leq r$ ; prenons-en un quelconque, et soit  $q \neq 0$  un entier rationnel tel que  $q\mathbf{x} = \text{entier}$ . Désignant ce vecteur entier  $q\mathbf{x}$  par  $\mathbf{x}$ , on aura

$$\mathfrak{S}^{(\varrho)}[\mathfrak{x}^{(k)}]\leqslant rac{q^2\,a_0}{2}=b_0<0$$
 .

Il existe donc un vecteur entier x de K pour lequel la forme hermitienne de matrice  $\mathfrak{S}^{(\varrho)}$  prend une valeur négative.

Supposons alors  $\gamma > 1$ . Pour les autres conjugués de cet  $\mathfrak{x}$ , soient  $a_k = \mathfrak{S}^{(k)}[\mathfrak{x}^{(k)}]$  les valeurs des autres formes,  $k \neq \varrho$ . Soit  $a = \max |a_k|$ . Il existe une unité  $\varepsilon$  du corps K pour laquelle

$$|\varepsilon^{(\varrho)}| > 1$$
,  $|\varepsilon^{(k)}| < 1$  si  $k \neq \varrho$ .

Pour une certaine puissance de cette unité, puissance que nous désignerons de nouveau par  $\varepsilon$ , on aura:

$$\left| \begin{array}{c} arepsilon^{(\varrho)} \end{array} \right| \geqslant \left| \begin{array}{c} a \\ \overline{b_0} \end{array} \right| \gamma \ .$$

Il est alors visible que, si  $\eta = \varepsilon x$ , la trace  $\tau(\mathfrak{S}[\eta])$  est négative; en effet:

$$egin{aligned} au\left(\mathfrak{S}[\mathfrak{y}\,
ight) &= \mathfrak{S}^{(arrho)}[\mathfrak{y}^{(arrho)}] + \sum\limits_{k 
eq arrho} \mathfrak{S}^{(k)}[\mathfrak{y}^{(k)}] = \ &= |arepsilon^{(arrho)}|^2 \, \mathfrak{S}^{(arrho)}[\mathfrak{x}^{(arrho)}] + \sum\limits_{k 
eq arrho} |arepsilon^{(k)}|^2 \, \mathfrak{S}^{(k)}[\mathfrak{x}^{(k)}] \leqslant \ &\leqslant \left| \left| rac{a}{b_0} \right| \gamma \cdot b_0 + (\gamma - 1) \, a = - \, a < 0 \right|. \end{aligned}$$

Cette conclusion est vraie aussi avec  $\mathfrak{y} = \mathfrak{x}$  dans le cas où  $\gamma = 1$ , car alors  $\tau(\mathfrak{S}[\mathfrak{y}]) = \mathfrak{S}^{(1)}[\mathfrak{x}^{(1)}] < 0$ .

Pour un multiple entier rationnel assez grand de  $\mathfrak{y}$ , on pourrait rendre  $\tau(\mathfrak{S}[\mathfrak{y}])$  négatif et aussi grand qu'on le voudrait, ce qui est impossible, en vertu de  $(I_0)$ :

$$\tau(\mathfrak{S}[\mathfrak{x}]) \geqslant \tau(s_1)$$
 si  $\mathfrak{x}$  entier  $\neq 0$ .

Il suit de là que les inégalités:

$$|s_i^{(k)}| \ge 0$$
,  $|s_{ij}^{(k)}| \le s_i^{(k)} + s_j^{(k)}$ 

sont des conséquences de (I<sub>0</sub>) (voir § 4).

Montrons ensuite que les  $s_l^{(k)}$ ,  $k = 1, ..., \gamma$ , sont du même ordre de grandeur, c'est-à-dire que:

$$s_l^{(\lambda)} \leqslant c_1 \, s_l^{(\mu)} \qquad \text{quels que soient } \lambda, \, \mu \,,$$
 (4)

la constante  $c_1$  ne dépendant que de K. Pour la démonstration, on peut supposer  $\gamma > 1$ , car si  $\gamma = 1$ , l'affirmation (4) est évidente. Ordonnons les conjugués de K de manière à ce que l'on ait:

$$0 \leqslant s_l^{(1)} \leqslant s_l^{(2)} \leqslant \cdots \leqslant s_l^{(\gamma)}$$
.

Appliquons (I<sub>0</sub>) au vecteur  $\mathfrak{x} = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix}$  avec  $\begin{cases} \xi_i = 0 & \text{si } i \neq l \\ \xi_l = \varepsilon = \text{unit\'e de } K. \end{cases}$ 

On obtient:

$$\sum_{k=1}^{\gamma} s_i^{(k)} \leqslant \sum_{k=1}^{\gamma} s_i^{(k)} \mid \varepsilon^{(k)} \mid^2.$$

Or il existe une unité de K telle que:

$$|arepsilon^{(1)}| > 1, \quad |arepsilon^{(k)}| < 1 \quad ext{ si } \quad k 
eq 1 \ .$$

L'inégalité obtenue s'écrit:

$$s_l^{(1)}(|\varepsilon^{(1)}|^2-1)+\sum_{k=2}^{\gamma-1}s_l^{(k)}(|\varepsilon^{(k)}|^2-1)\geqslant s_l^{(\gamma)}(1-|\varepsilon^{(\gamma)}|^2)$$

d'où a fortiori, les  $s_i^{(k)}$  étant non négatifs:

$$s_l^{(1)}(\mid \varepsilon^{(1)}\mid^2-1) \geqslant s_l^{(\gamma)}(1-\mid \varepsilon^{(\gamma)}\mid^2)$$
.

Donc

$$s_l^{(\gamma)} \leqslant \frac{\mid \varepsilon^{(1)}\mid^2 - 1}{1 - \mid \varepsilon^{(\gamma)}\mid^2} \, s_l^{(1)} \leqslant c_1 \, s_l^{(1)}$$

avec

$$c_1 = \max. \ \frac{\mid \varepsilon^{(1)} \mid^2 - 1}{1 - \mid \varepsilon^{(\gamma)} \mid^2} \ \text{(max. pour toutes les ordonnances possibles des conjugués)} \ .$$

Comme  $0 \leqslant s_l^{(1)} \leqslant \cdots \leqslant s_l^{(\gamma)}$ , on voit que

$$s_l^{(\lambda)} \leqslant s_l^{(\gamma)} \leqslant c_1 s_l^{(1)} \leqslant c_1 s_l^{(\mu)}$$
 (c. q. f. d.).

Les inégalités (3) du § 4 sont des conséquences de (I<sub>0</sub>):

$$\tau(s_1) \leqslant \tau(s_2) \leqslant \cdots \leqslant \tau(s_n) . \tag{3}$$

Il en est de même des inégalités suivantes, que l'on déduit facilement de (3) et (4):

$$s_i^{(\lambda)} \leqslant c_1^2 s_j^{(\mu)} \qquad \text{si} \quad i \leqslant j \quad .$$
 (5)

Pour démontrer le théorème 4, envisageons d'abord le cas où aucune des  $\mathfrak{S}$  n'est semi-positive:  $\mathfrak{S}^{(k)} > 0$  pour tout k. On procède par induction sur n. Le théorème est vrai pour n = 1, avec C = 1. Supposons le vrai pour les systèmes S de formes quadratiques à n - 1 variables.

On se sert de l'identité:

$$\mathfrak{S} = \begin{pmatrix} \mathfrak{S}_1 & \bar{\mathfrak{s}} \\ \mathfrak{s}' & s_n \end{pmatrix} = \begin{pmatrix} \mathfrak{S}_1 & 0 \\ 0 & h \end{pmatrix} \begin{bmatrix} \mathfrak{E} & \overline{\mathfrak{S}}_1^{-1} \mathfrak{s} \\ 0 & 1 \end{bmatrix} \tag{6}$$

où  $h + \mathfrak{S}_1^{-1}[\mathfrak{s}] = s_n$ , et où  $\mathfrak{S}_1$  est la matrice obtenue en supprimant dans  $\mathfrak{S}$  la dernière ligne et la dernière colonne.  $|\mathfrak{S}_1|$  est différent de zéro, car la matrice  $\mathfrak{S}$  est positive.

Si S vérifie ( $I_0$ ), le système  $S_1$  des  $\mathfrak{S}_1^{(k)}$  vérifie aussi ( $I_0$ ) pour les vecteurs  $\mathfrak{x}$  à n-1 composantes. On le voit immédiatement en particularisant  $\mathfrak{x}$  de sorte que  $\xi_n=0$ .

Par hypothèse d'induction on a:

$$1 \leqslant \frac{s_1^{(k)} \ldots s_{n-1}^{(k)}}{|\mathfrak{S}_1^{(k)}|} \leqslant c \qquad c = C(n-1, K)$$
.

Comme  $|\mathfrak{S}^{(k)}| = |\mathfrak{S}_1^{(k)}| h^{(k)}$ , il suffira de démontrer que l'on a:

$$1\leqslant rac{s_n^{(k)}}{h^{(k)}}\leqslant c_0$$
 , avec  $c_0(n\,,\,K)$  .

La partie de gauche de ces inégalités est évidente d'après  $h + \mathfrak{S}_1^{-1}[\mathfrak{s}] = s_n$ , car la matrice  $\mathfrak{S}_1^{-1} = \mathfrak{S}_1[\overline{\mathfrak{S}}_1^{-1}]$  est comme  $\mathfrak{S}_1$  positive, donc  $h \leq s_n$ . Il reste à démontrer que

$$\frac{s_n^{(k)}}{h^{(k)}} \leqslant c_0 .$$

Posons

$$\mathfrak{x} = \begin{pmatrix} \mathfrak{x}_1 \\ \xi_n \end{pmatrix}$$
 , où  $\mathfrak{x}_1 = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_{n-1} \end{pmatrix}$  .

Au moyen de ces variables l'identité (6) s'écrit

$$\mathfrak{S}[\mathfrak{x}] = \mathfrak{S}_1[\mathfrak{x}_1 + \mathfrak{r}\,\xi_n] + h|\xi_n|^2$$

avec  $\mathfrak{r}=\overline{\mathfrak{S}}_1^{-1}\mathfrak{s}$ .

En posant 
$$\eta = \mathfrak{x}_1 + \mathfrak{r} \, \xi_n = \begin{pmatrix} \eta_1 \\ \vdots \\ \eta_{n-1} \end{pmatrix}$$
 on aura
$$\mathfrak{S}[\mathfrak{x}] = \mathfrak{S}_1[\mathfrak{y}] + h |\xi_n|^2 .$$
(6')

Nous allons appliquer  $(I_0)$  à un vecteur x particulier que nous déterminons à l'aide du théorème de Minkowski déjà utilisé. Considérons les gn formes linéaires  $\eta_i^{(k)}$  et  $\xi_n^{(k)}$  en les variables  $u_{ik}$ :

$$\eta_i^{(k)} = \sum_{\sigma=1}^g u_{i\sigma} \omega_{\sigma}^{(k)} + r_i^{(k)} \sum_{\sigma=1}^g u_{n\sigma} \omega_{\sigma}^{(k)} \quad \begin{cases} i = 1, \ldots, n-1, \\ k = 1, \ldots, \gamma, \end{cases}$$

ainsi que pour chaque i les  $g_2$  formes conjuguées de celles qui sont complexes; et

 $\xi_n^{(k)} = \sum_{\sigma=1}^y u_{n\sigma} \omega_\sigma^{(k)} \qquad k = 1, \ldots, g.$ 

Les  $r_i^{(k)}$  sont les composantes des vecteurs  $\mathbf{r}^{(k)} = \overline{\mathfrak{S}}_1^{(k)-1} \mathfrak{s}^{(k)}$ . Les  $\omega_{\sigma}$  sont les g entiers d'une base de K. Le déterminant de ce système de formes

linéaires est  $|\Omega|^n = \sqrt{d^n}$ . En outre à toute forme correspond sa conjuguée complexe. On peut donc appliquer le théorème de Minkowski sous la forme énoncée au § 4.

Mais nous allons auparavant multiplier chacune de ces formes linéaires par un facteur convenable, sans que le déterminant ne change. Nous prendrons ce facteur égal à H (nombre positif qui sera fixé plus tard), cela pour toutes les formes  $\eta$ , ainsi que pour les  $\xi_n^{(k)}$  si  $k \neq \varrho$  fixe. Quant à la forme  $\xi_n^{(\varrho)}$  (si  $\varrho \leqslant g_1$ ) ou aux deux formes conjuguées  $\xi_n^{(\varrho)}$  et  $\xi_n^{(\varrho+g_2)}$  (si  $g_1+1\leqslant \varrho\leqslant \gamma$ ), il faudra la ou les multiplier par le facteur  $H^{-\varrho}$ , avec q=gn-1 ou  $q=\frac{1}{2}gn-1$  suivant les cas.

Il existe donc des  $u_{i\sigma}$  entiers rationnels non tous nuls tels que:

$$egin{aligned} \mid \eta_i^{(k)} \mid \leqslant rac{arDelta}{H} & egin{aligned} i = 1, \ldots, n-1 \ k = 1, \ldots, g \end{aligned} \ , \ \mid \xi_n^{(k)} \mid \leqslant rac{arDelta}{H} & k = 1, \ldots, g \end{aligned} , k 
eq arrho, arrho + g_2 \end{aligned} .$$
 $\mid \xi_n^{(\varrho)} \mid \leqslant H^q \cdot \Delta \qquad \Delta = \sqrt[2g]{D} \end{aligned} .$ 

Pour  $H > \Delta$ , on a certainement  $\xi_n \neq 0$ ; car si  $\xi_n = 0$ , en vertu de  $\mathfrak{y} = \mathfrak{x}_1 + \mathfrak{r} \, \xi_n$ , les  $\eta_i$  seraient des entiers algébriques, de normes < 1, donc nuls, et les  $\eta$  et  $\xi_n$  seraient tous nuls, ce qui n'est pas. Supposons donc  $H > \Delta$ ; alors  $\xi_n \neq 0$ , et l'on peut appliquer  $(I_0)$  au vecteur  $\mathfrak{x}$  ainsi déterminé, pour l = n; on obtient en vertu de (6'):

$$\sum_{k=1}^{\gamma} \mathfrak{S}_{1}^{(k)}[\mathfrak{y}^{(k)}] + \sum_{k=1}^{\gamma} h^{(k)} |\xi_{n}^{(k)}|^{2} \geqslant \tau(s_{n}) .$$

Remplaçons les  $\eta$  et  $\xi_n$  par les évaluations trouvées; il vient:

$$\frac{\Delta^2}{H^2} \sum_{k=1}^{\gamma} \sum_{i,j=1}^{n-1} |s_{ij}^{(k)}| + \frac{\Delta^2}{H^2} \sum_{k \neq 0} h^{(k)} + h^{(q)} \Delta^2 \cdot H^{2q} \geqslant \tau(s_n) .$$

En tenant compte des inégalités:

$$h^{(k)} \leqslant s_n^{(k)} \; ; \; 2 \, | \, s_{ij}^{(k)} | \; \leqslant \, s_i^{(k)} + \, s_j^{(k)} \; ; \; \tau(s_i) \; \leqslant \; \tau(s_j) \; \; \mathrm{si} \; \; i < j \; \; ,$$

on trouve par un calcul analogue à celui du § 4:

$$(n-1)^2 \frac{\Delta^2}{H^2} \tau(s_n) + \frac{\Delta^2}{H^2} \tau(s_n) + h^{(\varrho)} \Delta^2 H^{2q} \geqslant \tau(s_n)$$

d'où

$$au(s_n) \ \left(1 - n^2 - \frac{\Delta^2}{H^2}\right) \ \leqslant \ h^{(q)} \ \Delta^2 \ H^{2q} \ .$$

$$H = \sqrt{2} \cdot n \cdot \Delta > \Delta$$
.

Des inégalités (4) on déduit aisément:

$$au(s_n) \geqslant c_3 \, s_n^{(\varrho)} \qquad \left(c_3 = rac{\gamma - 1}{c_1} + 1
ight) \cdot$$

L'inégalité trouvée devient finalement:

$$s_n^{(\varrho)} \cdot \frac{c_3}{2} \leqslant h^{(\varrho)} \Delta^2 H^{2q}$$

c'est-à-dire:

$$rac{s_n^{(\varrho)}}{h^{(\varrho)}} \leqslant rac{2}{c_3} \cdot \varDelta^2 H^{2q} = c_0 \ .$$

Le théorème 4 est démontré dans le cas où  $|\mathfrak{S}^{(k)}| > 0$  pour  $k = 1, ..., \gamma$ . Le cas où  $|\mathfrak{S}^{(k)}| = 0$  pour un ou plusieurs k se ramène au précédent. En effet un système S tel que |S| = 0 et vérifiant  $(I_0)$  est la limite d'une suite de systèmes  $S_n$  avec  $|S_n| > 0$  et vérifiant  $(I_0)$ ; celà résulte du fait que le domaine défini par  $(I_0)$  est convexe. Prenons en effet un système  $S_0$  vérifiant  $(I_0)$  et tel que  $|S_0| > 0$ , et considérons les systèmes  $S(\lambda) = (1 - \lambda)S + \lambda S_0$  avec  $1 \ge \lambda > 0$ . Ces systèmes sont formés de matrices toutes positives, comme sommes de matrices positives et semi-positives. Donc  $|S(\lambda)| > 0$ . Pour  $\lambda \to 0$  on a  $S(\lambda) \to S$ . En outre les systèmes  $S(\lambda)$  vérifient  $(I_0)$  à cause de la convexité du domaine  $(I_0)$ . La démonstration du théorème 4 s'applique à ces systèmes  $S(\lambda)$ , qui vérifient par conséquent les inégalités de ce théorème. En passant à la limite, on voit que ces inégalités sont vraies aussi pour le système S.

Une conséquence. Nous avons vu au début de la démonstration du théorème 4 que le domaine défini par  $(I_0)$  est tout entier formé de systèmes de matrices positives ou semi-positives. Comme  $R(\mathfrak{A})$  est défini par  $(I_0)$  et (II), nous voyons que les systèmes de  $R(\mathfrak{A})$  qui ne sont pas dans P sont formés de  $\gamma$  matrices dont l'une au moins est semi-positive; nous les appellerons systèmes semi-positifs. On a pour eux |S| = 0. Il s'ensuit que le domaine réduit R s'obtient en excluant les systèmes semi-positifs de la réunion des  $R_{\nu}$ .

# § 7. Systèmes frontières de R

Considérons maintenant les systèmes frontières du domaine réduit R. Ecartons ceux qui sont semi-positifs. Nous avons le

Théorème 5. Si S est un système frontière de R pour lequel |S| > 0, il existe une matrice unimodulaire  $\mathfrak{U} \neq \omega \mathfrak{E}$  qui transforme S en un système T frontière de R.

Un système S frontière de R est à la fois limite d'une suite de systèmes réduits  $S_m$  et d'une suite de systèmes non réduits  $Q_m$ :

$$\begin{array}{lll} S_1, & S_2, \, \ldots \to S & & S_m \ {\rm dans} \ R \ . \\ Q_1, & Q_2, \, \ldots \to S & & Q_m \ {\rm non} \ {\rm dans} \ R \ . \end{array}$$

On a |S| > 0; sans diminuer la généralité, on peut supposer que  $N(|\mathfrak{S}|) = \prod_{k=1}^{g} |\mathfrak{S}^{(k)}| = 1$ . (Par définition  $\mathfrak{S}^{(\gamma+k)} = \overline{\mathfrak{S}}_{1}^{(g_{1}+k)}$  pour  $k=1,\ldots,g_{2}$ ).

La norme N est le produit étendu sur un indice supérieur k omis, de k=1 à k=g. Pour les  $S_m$  et les  $Q_m$ , on peut également supposer que

$$N(|\mathfrak{S}_m|) = N(|\mathfrak{Q}_m|) = 1$$
.

Soient  $\mathfrak{B}_m$  la matrice auxiliaire du système  $Q_m$ ,  $\dot{T}_m$  le système obtenu en effectuant sur  $Q_m$  la première transformation,  $T_m$  le système réduit équivalent à  $Q_m$ . Employant la notation abrégée du § 2, nous avons

$$egin{align} Q_m[B_m] &= \dot{T}_m = T_m[A_{_{m{V}(m)}}] & \dot{T}_m ext{ dans } R(\mathfrak{A}_{_{m{V}(m)}}) \ Q_m[U_m] &= T_m & T_m ext{ dans } R \ . \ &\mathfrak{B}_m &= \mathfrak{U}_m \mathfrak{A}_{_{m{V}(m)}} \ \end{split}$$

La matrice unimodulaire  $\mathfrak{U}_m$  n'est pas une unité générale, puisque  $Q_m$  n'est pas réduit :  $\mathfrak{U}_m \neq \omega \mathfrak{E} \; .$ 

Le système S étant positif, il existe une quantité  $\mu > 0$  telle que

$$S[x] \geqslant 2 \mu x' \bar{x}$$
.

x est le vecteur formé en superposant  $\gamma$  vecteurs  $\mathfrak{x}^{(k)}$  de n variables chacun,  $k=1,\ldots,\gamma$ . Puisque  $\lim_{m\to\infty}Q_m=S$ , on a à partir d'un certain rang

$$\left| (Q_m - S)[x] \right| \leqslant \mu \, x' \, \bar{x} .$$

$$Q_m[x] \geqslant \mu \, x' \, \bar{x} .$$

Donc

Le système  $Q_m - \mu E$  est donc positif ou semi-positif. Son transformé  $P_m$  par  $\mathfrak{B}_m$  l'est également:

$$P_{m} = \dot{T_{m}} - \mu B'_{m} \, \overline{B}_{m} \geqslant 0 .$$

Supprimons pour un instant l'indice m. Posons

$$\dot{\mathfrak{T}} = (\dot{t}_{ij})$$
  $\mathfrak{B} = (\beta_{ij})$   $\mathfrak{P} = (p_{ij})$   $\dot{t}_{ii} = \dot{t}_i$   $p_{ii} = p_i$ 

Le système P étant positif ou semi-positif, on a

$$p_{i}^{(k)} = \dot{t}_{i}^{(k)} - \mu \sum_{j=1}^{n} |\beta_{ji}^{(k)}|^{2} \geqslant 0$$
.

D'où

$$\dot{t}_{i}^{(k)} \geqslant \mu \sum_{j=1}^{n} |\beta_{ji}^{(k)}|^{2}$$
 (7)

Faisant le produit de k=1 à k=g:

$$N(\dot{t}_i) \geqslant \mu^g \left( \sum_{j=1}^n N(\beta_{ji}^2) + \cdots \right)$$
.

Les termes non écrits sont positifs ou nuls. Or  $|\mathfrak{B}| \neq 0$ , donc les éléments  $\beta_{ij}$  ne sont pas tous nuls pour j = 1, ..., n, et par conséquent, ces  $\beta_{ji}$  étant des entiers de K, on a

$$\sum_{j=1}^{n} N(\beta_{ji}^{2}) + \cdots \geqslant 1.$$

Il s'ensuit que

$$N(\dot{t_i}) \geqslant \mu^g$$
 . (8)

Le système  $\dot{T}$  étant dans  $R(\mathfrak{B})$  donc dans  $R_0$ , les inégalités (4) et (5) du § 6 ont lieu. Multipliant ces inégalités convenablement membre à membre, on obtient

$$c_4 \, \dot{t}_i^{(\lambda)g} \, \leqslant N(\dot{t}_i) \tag{9}$$

$$c_5 N(\dot{t}_i) \leqslant N(\dot{t}_i)$$
 si  $i < j$ . (10)

Les  $c_k$  désignent des constantes positives ne dépendant que de n et de K. Le théorème 4 donne

$$\dot{t}_1^{(k)} \dots \dot{t}_n^{(k)} \leqslant C |\dot{\mathfrak{T}}^{(k)}| ...$$

On en déduit en tenant compte du théorème 1:

$$N(\dot{t_1}) \dots N(\dot{t_n}) \leqslant C^g N(|\dot{\mathfrak{T}}|) = C^g N(|\mathfrak{Q}|) N(|\mathfrak{B}|) \leqslant C^g c$$
.

D'après (10) et (8) on a

$$N(\dot{t_1}) \ldots N(\dot{t_{n-1}}) \geqslant c_6 N(\dot{t_1}^{n-1}) \geqslant c_6 \mu^{g(n-1)}$$
.

Remplaçant dans l'inégalité précédente, on trouve

$$N(\dot{t}_n) \leqslant \frac{C^g \cdot c}{c_n} \mu^{-g(n-1)}$$
.

A cause de (9) (pour i = n) on en tire

$$\dot{t}_n^{(\lambda)} \leqslant c_7 \mu^{-(n-1)} .$$

Les  $t_n^{(\lambda)}$  sont donc bornés, la borne ne dépendant que de S et de K. En vertu de (5) § 6, les  $t_i^{(\lambda)}$  le sont également, de même que les  $\beta_{ij}^{(k)}$  à cause de (7). Comme les  $\beta_{ij}$  sont des entiers de K, il n'y a pour eux qu'un nombre fini de valeurs possibles, et par conséquent aussi pour la matrice  $\mathfrak{B} = (\beta_{ij})$ . La suite des  $\mathfrak{B}_m$  contient donc une infinité de fois la même matrice  $\mathfrak{B}_0 = \mathfrak{U}_0 \mathfrak{A}_{\nu_0}$  ( $\mathfrak{U}_0 \neq \omega \mathfrak{E}$ ):

On a 
$$B_{m_1} = B_{m_2} = \cdots = B_0 = U_0 A_{\nu_0}$$
,

pour une suite d'entiers

$$m_1 < m_2 < \cdots$$

La suite correspondante des Q est telle que

$$Q_m[U_0] = T_m$$
,  $T_m$  dans  $R$ .

En passant à la limite, R étant fermé dans P (voir § 5), on obtient

$$S[U_0] = T$$
  $S, T \text{ dans } R$  ,  $\mathfrak{U}_0 \neq \omega \mathfrak{E}$  .

Il reste à montrer que T est frontière de R. Deux cas peuvent se présenter: ou bien T=S, auquel cas le théorème est vrai puisque par hypothèse S est frontière de R; ou bien  $T \neq S$ ; il suffit alors de recourir au théorème 3 ( $2^{\text{ème}}$  partie) pour voir que T est frontière de R.

Théorème 6. Si deux systèmes S et T réduits sont équivalents,  $\mathfrak{S}^{(k)} = \mathfrak{T}^{(k)}[\mathfrak{U}^{(k)}]$  pour  $k = 1, \ldots, \gamma$ ,  $\mathfrak{U}$  appartient à un ensemble fini de matrices unimodulaires  $\mathfrak{U}_1, \ldots, \mathfrak{U}_M$ .

Pour k=1, ...,  $\gamma$  on a par hypothèse

$$\mathfrak{S}^{(k)} = \mathfrak{T}^{(k)}[\mathfrak{U}^{(k)}]$$
 S, T dans R.

Par définition du domaine R cela signifie que

$$\mathfrak{S} = \dot{\mathfrak{S}} \, [\mathfrak{A}_{\mu}^{-1}] \ \ ext{avec} \ \ \dot{\mathfrak{S}} \ ext{dans} \ R(\mathfrak{A}_{\mu})$$
  $\mathfrak{T} = \dot{\mathfrak{T}} \, [\mathfrak{A}_{\nu}^{-1}] \ \ ext{avec} \ \ \dot{\mathfrak{T}} \ ext{dans} \ R(\mathfrak{A}_{\nu}) \ .$ 

On supprime l'indice supérieur afin d'alléger. Mais il faut se rappeler que les relations écrites doivent avoir lieu pour les valeurs  $1, \ldots, \gamma$  de cet indice.

Comme  $\mathfrak{S} = \mathfrak{T}[\mathfrak{U}]$ , on voit que

$$\dot{\mathfrak{S}} = \dot{\mathfrak{T}}[\mathfrak{A}_{\nu}^{-1}\,\mathfrak{U}\,\mathfrak{A}_{\mu}] = \dot{\mathfrak{T}}[\mathfrak{X}] \quad \text{où} \quad \mathfrak{X} = \mathfrak{A}_{\nu}^{-1}\,\mathfrak{U}\,\mathfrak{A}_{\mu} \; .$$

La matrice  $\mathfrak X$  a ses éléments dans K. Elle n'est pas nécessairement entière, mais il existe un entier rationnel a ne dépendant que de n et de K tel que a  $\mathfrak X$  soit entière. Il suffit en effet de prendre a divisible par tous les  $|\mathfrak A_{\nu}|$ . Nous dirons dans ces conditions que  $\mathfrak X$  a ses dénominateurs bornés.  $\mathfrak X^{-1}$  a également ses dénominateurs bornés, puisque  $\mathfrak X^{-1}=\mathfrak A_{\mu}^{-1}\,\mathfrak A^{-1}\,\mathfrak A_{\nu}$ . Les domaines  $R(\mathfrak A_{\mu})$  et  $R(\mathfrak A_{\nu})$  étant contenus dans  $R_0=R(\mathfrak E)$ , le théorème 6 est une conséquence du

Théorème 6'. Si deux systèmes S et T sont dans  $R_0$ , et si  $\mathfrak{S}=\mathfrak{T}[\mathfrak{X}]$ ,  $\mathfrak{X}$  et  $\mathfrak{X}^{-1}$  ayant leurs dénominateurs bornés, la matrice  $\mathfrak{X}$  est bornée ainsi que ses conjuguées.

En effet de 6' découle que la matrice  $a\mathfrak{X}$  est entière et bornée, ainsi que toutes ses conjuguées. Donc  $a\mathfrak{X}$  n'est susceptible que d'un nombre fini de valeurs entières dans K, et par conséquent  $\mathfrak{U} = \mathfrak{U}_{\nu}\mathfrak{X}\,\mathfrak{U}_{\mu}^{-1}$  également.

Dans ce théorème comme dans la suite, borné signifie inférieur en valeur absolue à une constante ne dépendant que de n et de K. Nous désignerons par  $c_1, c_2, \ldots$  de telles constantes.

Démonstration du théorème 6'.

 $1^{er}$  lemme. Soit S un système positif de  $R_0$ . Considérons une décomposition quelconque de  $\mathfrak S$  en 4 matrices :

$$\mathfrak{S} = \left( egin{array}{ccc} \mathfrak{S}_1 & \overline{\mathfrak{S}}_2 \ \mathfrak{S}_2' & \mathfrak{S}_3 \end{array} 
ight)$$
 ,  $\mathfrak{S}_1$  quadratique de degré  $m$  .

Alors la matrice  $\overline{\mathfrak{S}}_1^{-1} \mathfrak{S}_2$  est bornée.

Appliquons les inégalités ( $I_0$ ) définissant  $R_0$  au vecteur  $\mathfrak{x} = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix}$  de

composantes  $\xi_i = \omega_{\nu}$ ,  $\xi_j = \pm 1$ , i, j fixes, et pour l = j. Les  $\omega_1, \ldots, \omega_g$  forment une base des entiers du corps K. On obtient ainsi

$$|2\sum_{k=1}^{\gamma} R(s_{ij}^{(k)}\omega_{\nu}^{(k)})| \leqslant \sum_{k=1}^{\gamma} s_{i}^{(k)} |\omega_{\nu}^{(k)}|^{2}.$$
 (11)

Pour v = 1, 2, ..., g considérons les g équations

$$\sum_{k=1}^{\gamma} R(s_{ij}^{(k)} \omega_{\nu}^{(k)}) = a_{\nu}$$
 (12)

les g inconnues étant  $Rs_{ij}^{(k)}$ ,  $k=1,\ldots,\gamma$  et  $Js_{ij}^{(k)}$ ,  $k=g_1+1,\ldots,\gamma$ . Les  $a_{\nu}$  sont des quantités réelles données. La matrice de ce système d'équations linéaires est

$$\Phi = (\omega_{\nu}^{(k_1)}, R\omega_{\nu}^{(k_2)}, -J\omega_{\nu}^{(k_2)})$$

$$k_1 = 1, ..., g_1$$
 ;  $k_2 = g_1 + 1, ..., \gamma$  ;  $\nu = 1, ..., g$  .

Le déterminant est facile à calculer; on trouve

$$|\Phi| = (2i)^{-g_2} |\Omega|$$

où  $\Omega$  est la matrice  $\Omega = (\omega_i^{(k)})$ .  $|\Omega|^2 = d$  est le discriminant de K. On peut donc résoudre ces équations, et l'on trouve

$$\left. egin{aligned} R\,s_{ij}^{(k)} \ J\,s_{ij}^{(k-g_2)} \end{aligned} 
ight| = \sum_{
u=1}^g \zeta_{
u\,k}\,a_
u \quad \left. egin{aligned} k=1\,,\ldots,\,\gamma \ k=\gamma+1\,,\ldots,\,g \end{aligned} 
ight. .$$

où les  $\zeta_{\nu k}$  ne dépendent que du corps K.

Comme d'après (11) et (12):

$$|a_{\nu}| \leqslant \frac{1}{2} \sum_{\lambda=1}^{\gamma} s_{i}^{(\lambda)} |\omega_{\nu}^{(\lambda)}|^{2}$$
,

on voit que les quantités  $Rs_{ij}^{(k)}$ ,  $Js_{ij}^{(k)}$  sont en valeur absolue inférieures à des expressions de la forme  $\sum_{\lambda=1}^{\gamma} \Theta_{\lambda k} s_i^{(\lambda)}$ , où les  $\Theta_{\lambda k} \geqslant 0$  ne dépendent que de K. Les  $s_i^{(\lambda)}$ ,  $\lambda = 1, \ldots, \gamma$  étant d'après (4) § 6 du même ordre de grandeur, on a finalement

$$|s_{ij}^{(k)}| \leqslant c_8 s_i^{(\lambda)}$$
 pour tous les  $\lambda$ ,  $k$ . (13)

Cela est vrai pour j > i aussi bien que pour  $j \leq i$ . Pour  $j \leq i$  cela résulte immédiatement des inégalités (1) et (5) (§ 4 et 6). A cause de la symétrie de  $\mathfrak{S}$  on a aussi

$$|s_{ij}^{(k)}| \leqslant c_8 s_i^{(\lambda)} . \tag{13'}$$

On démontre alors facilement que les éléments de  $\overline{\mathfrak{S}}_1^{-1}$   $\mathfrak{S}_2$  sont bornés. Considérons d'abord  $\overline{\mathfrak{S}}_1^{-1} = \frac{1}{|\mathfrak{S}_1|}$   $(h_{ik}) = (t_{ik})$ . Les  $h_{ik}$  sont les déter-

minants adjoints des éléments de  $\mathfrak{S}_1$ , et comme chaque terme de  $\mathfrak{S}_1$  est d'après (13') inférieur au terme diagonal de sa colonne multiplié par  $c_8$ , on a pour chaque  $h_{ik}$ 

$$|h_{ik}| \leqslant m! c_8^{m-1} \frac{s_1 \dots s_m}{s_k}.$$

Donc

$$| t_{ik} | \leqslant c_9 \frac{s_1 \dots s_m}{|\mathfrak{S}_1|} \cdot \frac{1}{|\mathfrak{S}_k|} . \tag{14}$$

Le système des  $\mathfrak{S}^{(k)}$  est dans  $R_0$ . Désignons par  $R_0^{(n)}$  ce domaine  $R_0$  si l'on veut marquer sa dépendance du degré n des matrices  $\mathfrak{S}$ . Le système des  $\mathfrak{S}_1^{(k)}$  définies par la décomposition  $\mathfrak{S} = \begin{pmatrix} \mathfrak{S}_1 & \overline{\mathfrak{S}}_2 \\ \mathfrak{S}_2' & \mathfrak{S}_3 \end{pmatrix}$  est alors dans  $R_0^{(m)}$ ; il suffit pour le voir d'annuler les n-m dernières composantes du vecteur  $\mathfrak{X}$  figurant dans  $(I_0)$  (§ 6). Le théorème 4 est donc applicable à ce système des  $\mathfrak{S}_1^{(k)}$ , et l'inégalité (14) devient

$$|t_{ik}| \leqslant \frac{c_{10}}{s_k} \cdot$$

Formons alors

$$\overline{\mathfrak{S}}_1^{-1} \, \mathfrak{S}_2 = \left( \sum_{k=1}^m t_{i\,k} \, s_{k\,j} \right) \, = \, (r_{i\,j}) .$$

D'après

$$|t_{ik}| \leqslant \frac{c_{10}}{s_k}$$
 et  $|s_{kj}| \leqslant c_8 s_k$ ,

on voit que

$$|r_{ij}| \leqslant m \ c_{10} \ c_8 \leqslant c_{11}$$
, c. q. f. d.

Reprenons l'identité (6) du § 6:

$$\mathfrak{S} = \begin{pmatrix} \mathfrak{S} & \overline{\mathfrak{s}} \\ \mathfrak{s}' & s_n \end{pmatrix} = \begin{pmatrix} \mathfrak{S}_1 & 0 \\ 0 & a_n \end{pmatrix} \begin{bmatrix} \mathfrak{E}_{n-1} \overline{\mathfrak{S}}_1^{-1} \mathfrak{s} \\ 0 & 1 \end{bmatrix}, \ a_n + \mathfrak{S}_1^{-1} [\mathfrak{s}] = s_n \ . \tag{6}$$

D'après le 1<sup>er</sup> lemme,  $\overline{\mathfrak{S}}_1^{-1}$  s est bornée.

En appliquant la même identité à  $\mathfrak{S}_1$ , qui est dans  $R_0^{(n-1)}$  comme on vient de le voir, et en continuant de la sorte, on obtient finalement

$$\mathfrak{S} = \begin{pmatrix} a_1 & 0 \\ \ddots & \\ 0 & a_n \end{pmatrix} \begin{bmatrix} 1 & \beta_{ik} \\ \ddots & \\ 0 & 1 \end{bmatrix} = \mathfrak{D}_a [\mathfrak{B}]$$

où  $\mathfrak{D}_a$  est la matrice diagonale d'éléments  $a_1, \ldots, a_n$ , et où  $\mathfrak{B} = (\beta_{ik})$  a ses éléments bornés:

$$eta_{ik} = 0 \quad ext{si} \quad i > k \; ; \quad eta_{ii} = 1 \; ; \quad |eta_{ik}| \leqslant c_{12} \; .$$

Quant aux a, on a pour  $a_n$  d'après (6):

$$|\mathfrak{S}| = |\mathfrak{S}_1| a_n ; \qquad a_n \leqslant s_n .$$

Or le théorème 4 donne

$$\frac{s_1 \dots s_n}{|\mathfrak{S}|} \leqslant C \; ; \; |\mathfrak{S}_1| \leqslant s_1 \dots s_{n-1} \; .$$

On en déduit que  $s_n \leqslant Ca_n$ .

D'une façon générale on a de même

$$s_k \geqslant a_k \geqslant \frac{1}{C} s_k$$
.

 $a_k$  est du même ordre de grandeur que  $s_k$ .

La matrice I peut être mise sous une forme analogue à S:

$$\mathfrak{T} = \begin{pmatrix} b_1 & 0 \\ & \ddots \\ 0 & b_n \end{pmatrix} \begin{bmatrix} 1 & \gamma_{ik} \\ & \ddots \\ 0 & 1 \end{bmatrix} = \mathfrak{D}_b [\mathfrak{C}]$$

où C est une matrice du même type que B, et où

$$t_k \geqslant b_k \geqslant \frac{1}{C} t_k$$
.

En vertu de (5) § 6 on voit alors que

$$a_i \leqslant c_{13} a_j$$
 si  $i \leqslant j$ .  
 $b_i \leqslant c_{13} b_j$  si  $i \leqslant j$ . (15)

 $2^e$  lemme. Les  $a_i^{(k)}$  et  $b_i^{(k)}$  précédemment définis sont du même ordre de grandeur, c'est-à-dire qu'il existe une constante  $c_{17}$  ne dépendant que de n de K telle que

$$rac{1}{c_{17}} b_i^{(\mu)} \leqslant a_i^{(\lambda)} \leqslant c_{17} b_i^{(\mu)} \quad \stackrel{\lambda, \mu = 1, \ldots, \gamma}{i = 1, \ldots, n}.$$

Pour la démonstration, il est essentiel que  $\mathfrak{X}$  soit une matrice à coefficients dans K de dénominateurs bornés, de même que  $\mathfrak{X}^{-1}$ .

On a 
$$\mathfrak{S}=\mathfrak{T}[\mathfrak{X}]$$
, d'où  $\mathfrak{D}_a=\mathfrak{D}_b[\mathfrak{P}]$  avec  $\mathfrak{P}=\mathfrak{CXB}^{-1}$ . Soit  $\mathfrak{P}=(p_{ij})$   $\mathfrak{X}=(\xi_{ij})$ .

La relation  $\mathfrak{D}_a = \mathfrak{D}_b[\mathfrak{P}]$  donne

$$a_k = \sum_{i=1}^n |p_{ik}|^2 b_i$$
 .

Par conséquent

$$\mid p_{ik} \mid \leqslant \sqrt{\frac{a_k}{b_i}} . \tag{16}$$

Considérons la relation  $\mathfrak{X} = \mathfrak{C}^{-1}\mathfrak{PB}$ . La matrice  $\mathfrak{C}$  étant bornée et  $|\mathfrak{C}| = 1$ , il s'ensuit que  $\mathfrak{C}^{-1} = (\delta_{ij})$  est également bornée; en outre  $\mathfrak{C}^{-1}$  a une forme analogue à  $\mathfrak{C}$ , c'est-à-dire que  $\delta_{ij} = 0$  si i > j et  $\delta_{ii} = 1$ . La relation  $\mathfrak{X} = \mathfrak{C}^{-1}\mathfrak{PB}$  donne à cause de (15) et (16):

$$|\xi_{ik}| = |\sum_{\substack{r \geq i \\ s < k}} \delta_{ir} \gamma_{sk} p_{rs}| \leqslant c_{14} \sqrt{\frac{a_k}{b_i}}.$$
 (17)

Cela est valable pour tous les conjugués des  $\xi_{ik}$ , qui sont dans K. Or ces  $\xi_{ik}$  ont leurs dénominateurs bornés; il existe un nombre naturel G = G(n, K) tel que  $|N(\xi_{ik})| \ge G^{-1}$  si  $\xi_{ik} \ne 0$ . Comme  $|\mathfrak{X}| \ne 0$ , il y a au moins un terme non nul dans ce déterminant:

 $\xi_{1k_1} \, \xi_{2k_2} \dots \, \xi_{nk_n} \neq 0 \quad , \quad \xi_{ik_i} \neq 0 \quad \text{pour} \quad i = 1, \dots, n \; .$   $|N(\xi_{ik_i})| \geqslant G^{-1} \; . \tag{18}$ 

Les  $s_i^{(k)}$ ,  $k = 1, ..., \gamma$  étant du même ordre de grandeur, il découle de  $s_i^{(k)} \geqslant a_i^{(k)} \geqslant \frac{1}{C} \cdot s_i^{(k)}$  que les  $a_i^{(k)}$  sont du même ordre de grandeur, pour  $k = 1, ..., \gamma$ ; il en est de même des  $b_i^{(k)}$ . On peut donc écrire à cause de (17):

$$\mid \xi_{ik}^{(\varrho)} \mid \leqslant c_{15} \sqrt{\frac{a_k^{(\lambda)}}{b_i^{(\mu)}}} \lambda$$
 ,  $\mu$  ,  $\varrho$  quelconques . (19)

Prenant la norme, il vient à cause de (18):

 $G^{-1} \leqslant c_{15}^g \left( rac{a_{ki}^{(\lambda)}}{b_i^{(\mu)}} 
ight)^{rac{g}{2}}.$ 

D'où

Alors

$$b_{i}^{(\mu)} \leqslant c_{16} a_{k_{i}}^{(\lambda)} \qquad i = 1, ..., n$$
 (20)

Récrivons (15) en mettant des indices supérieurs:

$$a_{i}^{(\lambda)} \leqslant c_{13} a_{j}^{(\lambda)}$$
 si  $i \leqslant j$ .  
 $b_{i}^{(\mu)} \leqslant c_{13} b_{j}^{(\mu)}$  si  $i \leqslant j$ . (21)

Or  $\binom{1 \dots n}{k_1 \dots k_n}$  est une permutation des indices  $1, \dots, n$ . Soit  $i_0$  un indice fixe. Les  $k_i$  avec  $i \ge i_0$  sont tous différents, donc l'un au moins est  $\le i_0$ ; soit par exemple

$$k_{j}\leqslant i_{0}$$
 ,  $j\geqslant i_{0}$  .

Alors on a en vertu de (20) et (21):

$$b_{i_0}^{(\mu)} \leqslant c_{13} \, b_{j}^{(\mu)} \leqslant c_{13} \, c_{16} \, a_{k_j}^{(\lambda)} \leqslant c_{16} \, c_{13}^2 \, a_{i_0}^{(\lambda)} \, .$$

Donc

$$b_{i_0}^{(\mu)} \leqslant c_{17} a_{i_0}^{(\lambda)}$$
.

Cela a lieu pour  $i_0 = 1, 2, ..., n$ .

Par analogie (on utilise ici le fait que  $\mathfrak{X}^{-1}$  a ses dénominateurs bornés) on a évidemment

 $a_i^{(\lambda)} \leqslant c_{17} b_i^{(\mu)}$ .

Le 2<sup>ème</sup> lemme est donc démontré.

Pour la suite, nous poserons

$$a_i = a_i^{(1)} \qquad b_i = b_i^{(1)}$$
 .

En tenant compte du 2<sup>ème</sup> lemme, on peut écrire les inégalités (19) sous la forme

 $\mid \xi_{ik}^{(\varrho)} \mid \leqslant c_{18} \sqrt{\frac{a_k}{a_i}} . \tag{22}$ 

La démonstration du théorème 6' procède alors par induction sur n de la manière suivante: ce théorème est vrai pour n=1, ce qui résulte par exemple de (22). Supposons qu'il soit vrai pour tous les  $t \leq n-1$ .

On a d'après (15)

$$a_i \leqslant c_{13} a_k \qquad \text{si} \quad i \leqslant k .$$
 (23)

Soit

$$c_{19} = c_{13} \, c_{18} \, \sqrt[g]{G}$$
.

Considérons les quotients  $\sqrt{\frac{a_i}{a_{i-1}}}$ ,  $i=2,\ldots,n$ .

Supposons que

$$\sqrt{rac{a_n}{a_{n-1}}}\leqslant c_{19}\;, \qquad \sqrt{rac{a_{n-1}}{a_{n-2}}}\leqslant c_{19}\;, \ldots, \qquad \sqrt{rac{a_{t+2}}{a_{t+1}}}\leqslant c_{19}$$

mais que

$$\sqrt{rac{a_{t+1}}{a_t}} > c_{19}$$
 .

Cela a certainement lieu pour un  $t \leq n-1$ .

On a alors pour i > t,  $j \le t$ , d'après (22) et (23):

$$\mid \, \xi_{ij}^{(k)} \, \mid \, \leqslant \, c_{18} \sqrt{rac{a_{j}}{a_{i}}} \leqslant c_{18} \quad \sqrt{rac{c_{13}^{2} \, a_{t}}{a_{t+1}}} < rac{c_{18} \, c_{13}}{c_{19}} = rac{1}{\sqrt[g]{G}} \, .$$

Prenant la norme:

$$\mid N(\xi_{i\,j})\mid < rac{1}{G} \;\; \cdot$$

Par conséquent

$$\xi_{ij} = 0$$
 si  $i > t$ ,  $j \leqslant t$ .

La matrice X se décompose alors en 4 parties:

$$\mathfrak{X} = \begin{pmatrix} \mathfrak{X}_1 & \mathfrak{X}_2 \\ 0 & \mathfrak{X}_4 \end{pmatrix}$$
 où  $\mathfrak{X}_1$  est de degré  $t$  .

Toutes les conjuguées de la matrice  $\mathfrak{X}_4$  sont bornées, car pour i>t, j>t, on a

$$\mid \, \xi_{ij}^{(k)} \mid \, \leqslant \, c_{18} \quad \sqrt{\frac{a_j}{a_i}} \leqslant c_{18} \quad \sqrt{\frac{c_{13}^2 \, a_n}{a_{t+1}}} \leqslant c_{18} \, c_{18} \, c_{19}^{n-t-1} \, .$$

Il reste à montrer que  $\mathfrak{X}_1$  et  $\mathfrak{X}_2$  sont bornées. Pour cela décomposons  $\mathfrak{S}$  et  $\mathfrak{T}$  d'une façon analogue à  $\mathfrak{X}$ :

$$\mathfrak{S} = egin{pmatrix} \mathfrak{S}_1 & \overline{\mathfrak{S}}_2 \ \mathfrak{S}_2' & \mathfrak{S}_3 \end{pmatrix} \qquad \qquad \mathfrak{T} = egin{pmatrix} \mathfrak{T}_1 & \overline{\mathfrak{T}}_2 \ \mathfrak{T}_2' & \mathfrak{T}_3 \end{pmatrix} \; .$$

A cause de  $\mathfrak{S} = \mathfrak{T}[\mathfrak{X}]$ , on a

$$egin{align} \mathfrak{S}_1 &= \mathfrak{T}_1[\mathfrak{X}_1] \ \mathfrak{S}_2 &= \overline{\mathfrak{X}}_1'\,\mathfrak{X}_1'\,\mathfrak{X}_2 + \overline{\mathfrak{X}}_1'\,\mathfrak{T}_2\,\mathfrak{X}_4 \ . \end{aligned}$$

Le théorème 6' étant par induction supposé vrai pour les systèmes de formes à moins de n variables, on peut l'appliquer aux systèmes des  $\mathfrak{S}_1$  et  $\mathfrak{T}_1$  liés par  $\mathfrak{S}_1 = \mathfrak{T}_1[\mathfrak{X}_1]$ , car ces systèmes sont dans  $R_0^{(t)}$  comme on l'a vu et  $\mathfrak{X}_1$ ,  $\mathfrak{X}_1^{-1}$  ont de même que  $\mathfrak{X}$ ,  $\mathfrak{X}^{-1}$  leurs dénominateurs bornés, puisque

$$\mathfrak{X} = egin{pmatrix} \mathfrak{X}_1 & \mathfrak{X}_2 \ 0 & \mathfrak{X}_4 \end{pmatrix} \qquad \mathfrak{X}^{-1} = egin{pmatrix} \mathfrak{X}_1^{-1} & * \ 0 & \mathfrak{X}_4^{-1} \end{pmatrix} \; .$$

Les  $\mathfrak{X}_{1}^{(k)}$  sont donc bornées par hypothèse d'induction. On calcule alors  $\mathfrak{X}_{2}$  au moyen de (24):

$$egin{aligned} \mathfrak{X}_2 &= \mathfrak{T}_1'^{-1} \ \overline{\mathfrak{T}}_1'^{-1} \ (\mathfrak{S}_2 - \overline{\mathfrak{T}}_1' \ \mathfrak{T}_2 \ \mathfrak{X}_4) = \ &= \mathfrak{X}_1 \overline{\mathfrak{S}}_1^{-1} \ \mathfrak{S}_2 & - \overline{\mathfrak{T}}_1^{-1} \ \mathfrak{T}_2 \ \mathfrak{X}_4 \ . \end{aligned}$$

On voit que  $\mathfrak{X}_2$  est bornée, puisque  $\mathfrak{X}_1$  et  $\mathfrak{X}_4$  le sont, ainsi que  $\overline{\mathfrak{S}}_1^{-1} \mathfrak{S}_2$  et  $\overline{\mathfrak{T}}_1^{-1} \mathfrak{T}_2$ , cela en vertu du 1<sup>er</sup> lemme.

Le théorème 6' est ainsi démontré, et l'on a vu que le théorème 6 s'en suit.

Conséquence. Soit D un domaine quelconque de l'espace des S. Appelons domaine équivalent à D tout domaine transformé de D par une substitution unimodulaire  $\mathfrak{U}$ . Nous désignerons par  $R_{\nu}^{(i)}$  les domaines équivalents à  $R_{\nu}$ . Il résulte du théorème 6 que:

Les  $R_{\nu}^{(i)}$  touchant un  $R_{\mu}$  suivant une portion intérieure à P de sa frontière sont en nombre fini. (P désigne l'espace des systèmes positifs.)

# § 8. Forme des domaines $R_{\mu}$

Théorème 7. Chacun des domaines  $R_{\mu}$ ,  $\mu=1,\ldots,N$ , est l'intérieur d'un angle solide convexe limité par un nombre fini d'hyperplans passant par l'origine de l'espace des S. La portion de la frontière de  $R_{\mu}$  située sur la multiplicité |S|=0 a une dimension d'au moins  $gn-g_2$  unités inférieure à celle de  $R_{\mu}$ .

Nous ne considérons dans ce théorème que les  $R_{\mu}$  ayant la dimension  $d=\frac{n}{2}\;(ng+g_1)$  de l'espace des S. Les éventuels  $R_{\mu}$  de dimension inférieure à d peuvent être laissés de côté, car ils sont équivalents à des portions de frontière de  $R_{\nu}$  de dimension d.

Examinons d'abord les points frontières semi-positifs de  $R_{\mu}$ . On peut raisonner sur  $R(\mathfrak{A}_{\mu})$  au lieu de  $R_{\mu}$ , car la transformation qui change  $R_{\mu}$  en  $R(\mathfrak{A}_{\mu})$  est linéaire et laisse la multiplicité |S|=0 invariante.

Soit donc S un système frontière de  $R(\mathfrak{A}_{\mu})$  tel que |S| = 0. Le théorème 4 et les inégalités (5) donnent

$$s_1^{(k)^n} \leqslant C^* \mid \mathfrak{S}^{(k)} \mid$$

la constante  $C^*$  ne dépendant que de n et de K. Comme  $|S| = |\mathfrak{S}^{(1)}| \dots$   $|\mathfrak{S}^{(r)}| = 0$ , il existe un k pour lequel  $|\mathfrak{S}^{(k)}| = 0$ , d'où  $s_1^{(k)} = 0$ . D'après (4) § 6 on en déduit que

$$s_1^{(\lambda)} = 0$$
 pour tout  $\lambda$ ,

et d'après (13) § 7 que

$$s_{1j}^{(\lambda)} = 0$$
 pour tous  $j$ ,  $\lambda$ .

Ce sont là  $ng - g_2$  relations indépendantes entre les coefficients de S. La  $2^{\text{ème}}$  partie du théorème 7 est démontrée.

Pour ce qui concerne la 1<sup>ère</sup> partie, nous savons déjà que  $R_{\mu}$  est convexe et limité par des hyperplans passant par l'origine (voir § 5). Il reste à montrer que ces hyperplans sont en nombre fini. Soit H un de ces hyperplans. On peut supposer que la portion de H frontière de  $R_{\mu}$  contient des systèmes positifs, car  $ng - g_2 \geqslant 2$  (sauf dans le cas banal  $n = \gamma = 1$  que nous excluons ici).

L'hyperplan H divise l'espace P des systèmes positifs en 2 régions, dans l'une desquelles  $R_{\mu}$  est situé. L'autre de ces régions contient au moins un  $R_{\nu}^{(i)}$  qui touche  $R_{\mu}$  suivant H. Les domaines  $R_{\mu}$  et  $R_{\nu}^{(i)}$  étant convexes ne peuvent se toucher que suivant l'hyperplan H. Donc l'existence d'une infinité de H serait en contradiction avec la conséquence du théorème 6 énoncée à la fin du § 7.

## Remarques

1. Si n>1, les systèmes semi-positifs de  $R_{\mu}$  admettent chacun une infinité de transformations unimodulaires en eux-mêmes.

En effet, pour un S de  $R(\mathfrak{A}_{\mu})$  tel que |S|=0 on a  $s_{1k}^{(\lambda)}=0$ . Il s'ensuit que toute matrice de la forme  $\mathfrak{B}=\begin{pmatrix} 1 & \mathfrak{b}' \\ 0 & \mathfrak{E} \end{pmatrix}$  transforme S en lui-même. Le système T correspondant à S dans  $R_{\mu}$  est alors transformé en lui-même par la matrice  $\mathfrak{C}=\mathfrak{A}_{\mu}\,\mathfrak{B}\,\mathfrak{A}_{\mu}^{-1}\;.$ 

Il suffit de choisir les composantes de  $\mathfrak{b}'$  dans K et divisibles par le déterminant  $|\mathfrak{A}_{\mu}|$  pour que  $\mathfrak{C}$  soit unimodulaire dans K. On voit qu'il y a bien une infinité de  $\mathfrak{C}$  unimodulaires laissant T invariant.

2. Le domaine R peut être rendu connexe par un choix convenable des  $\mathfrak{A}_{\nu}$ . En effet, l'espace P des systèmes S positifs est connexe. Or en transformant R par un ensemble complet de représentantes  $\mathfrak{U}$  du groupe quotient  $\mathfrak{U}|\mathfrak{F}$  (voir  $\S$  2) on obtient une infinité de domaines équivalents à R et recouvrant exactement P. Supposons alors que R se compose de deux parties R' et R'' n'ayant aucun point commun, en dehors de 0. Effectuant sur R' et R'' toutes les substitutions de  $\mathfrak{U}|\mathfrak{F}$ , on obtient des domaines P', P'' qui forment P par leur réunion et qui ont à cause de la connexité de P d'autres points communs que 0; soit S un de ces points,  $S_1$  et  $S_2$  ses équivalents dans R' et R''. On a

$$S = S_1[U_1] = S_2[U_2]$$
  $S_1 \text{ dans } R',$   $S_2 \text{ dans } R''.$ 

En transformant R'' par  $\mathfrak{U}_2$   $\mathfrak{U}_1^{-1}$ , on obtient un domaine équivalent R''' qui a avec R' le point  $S_1$  en commun. En continuant de la sorte, on obtient finalement un domaine R connexe.

#### § 9. Application

Les résultats obtenus permettent de démontrer facilement un théorème de Hurwitz sur la structure du groupe unimodulaire dans K:

Théorème. Le groupe unimodulaire de degré n dans K possède un nombre fini d'éléments générateurs, pour lesquels on peut prendre les  $\mathfrak{U}_m$  du théorème 6 et les  $\omega \mathfrak{E}$ .

Soit  $\mathfrak U$  une substitution unimodulaire dans K. Choisissons un système réduit  $S_1$ , et soit  $S_2$  son transformé par  $\mathfrak U$ . Dans l'espace P des S, le segment de droite  $S_1S_2$  rencontre, comme nous le verrons, un nombre fini seulement de domaines équivalents à R; soient  $R^{(0)} = R$ ,  $R^{(1)}, \ldots, R^{(q)}$  ces domaines dans l'ordre où le segment  $S_1S_2$  les rencontre, et soit  $\mathfrak{B}_i$  la substitution unimodulaire transformant R en  $R^{(i)}$ ,  $\mathfrak{B}_0 = \mathfrak{E}$ ,  $\mathfrak{B}_q = \mathfrak{U}$ .

Les domaines  $R^{(i)}$  et  $R^{(i+1)}$  se touchent; leurs transformés par  $\mathfrak{B}_{i}^{-1}$  se touchent également: ce sont R et son transformé par  $\mathfrak{B}_{i+1}$   $\mathfrak{B}_{i}^{-1}$ . Il s'ensuit que la substitution  $\mathfrak{B}_{i+1}$   $\mathfrak{B}_{i}^{-1}$  appartient dans le groupe quotient  $\mathfrak{U}/\mathfrak{F}$  à la même classe que l'une des  $\mathfrak{U}_{i}$  du théorème 6:

$$\mathfrak{V}_{i+1} \equiv \mathfrak{U}_{m_i} \mathfrak{V}_i \pmod{\mathfrak{F}}$$
.

De ces relations pour i = 0, 1, ..., q - 1 on déduit que

$$\mathfrak{U}=\mathfrak{V}_{q}\equiv\mathfrak{U}_{m_{q-1}}\,\ldots\,\mathfrak{U}_{m_{1}}\,\mathfrak{U}_{m_{0}}\ (\mathrm{mod}\ \mathfrak{F})$$

ce qui démontre le théorème.

Il reste à voir que le segment  $S_1S_2$  rencontre un nombre fini de domaines  $R^{(i)}$  équivalents à R. Supposons par absurde que  $S_1S_2$  rencontre une infinité de  $R^{(i)}$ . Prenons un point du segment  $S_1S_2$  dans chacun de ces  $R^{(i)}$ . Ces points en nombre infini auraient un point d'accumulation S:

$$S = \lambda S_1 + (1 - \lambda) S_2$$
,  $0 \le \lambda < 1$ ,  $|S| > 0$ .

Dans tout voisinage de S il y aurait des points d'une infinité de domaines équivalents à R, ce qui est en contradiction avec le

Lemme: Soit un système S positif, |S| > 0. Il existe un voisinage de S ne contenant qu'un nombre fini de portions de domaines équivalents au domaine réduit R.

Distinguons 3 cas pour la démonstration de ce lemme.

## I<sup>er</sup> cas. S est intérieur à l'un des R<sub>v</sub>.

Le domaine  $R_{\nu}$  est convexe et limité par un nombre fini d'hyperplans. Soit r > 0 la plus petite des distances de S à ces hyperplans. Le voisinage formé par l'intérieur de la sphère  $\Sigma(S, r)$  de centre S et de rayon r ne contient que des points de R.

# $2^{\text{ème}}$ cas. S est sur la frontière d'un $R_{\nu}$ .

D'après le théorème 6 il existe un nombre fini seulement de domaines équivalents à R se touchant en S; les domaines  $R_{\nu_i}^{(i)}$  équivalents aux  $R_{\nu}$  et sur la frontière desquels S est situé sont donc aussi en nombre fini. Soit r > 0 la plus petite des distances de S aux hyperplans en nombre fini limitant ces  $R_{\nu_i}^{(i)}$ , les hyperplans passant par S exceptés. La sphère  $\Sigma(S,r)$  est un voisinage de S convenable.

## 3ème cas. S n'est pas dans R.

Soit  $S_1$  le système réduit équivalent à S,  $\mathfrak{U}$  la substitution unimodulaire transformant  $S_1$  en S.  $S_1$  rentre dans l'un des deux premiers cas. Si  $V_1$  est un voisinage de  $S_1$  ne contenant à son intérieur qu'un nombre fini de portions de domaines équivalents à R, le voisinage V transformé de  $V_1$  par  $\mathfrak{U}$  jouira de la même propriété.