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Théorie de la réduction
des formes quadratiques définies positives
dans un corps algébrique K fini

Par Pierre HumBERT, Lausanne

Introduction

Dans la théorie des formes quadratiques, les classes de formes équi-
valentes relativement & un groupe de substitutions linéaires et homogénes
jouent un réle important. Lorsque ce groupe est celui des substitutions
non dégénérées a coefficients réels, on peut représenter chaque classe par

la forme canonique ' 4 7. Les seuls invariants sont alors le nombre des
i

carrés pris positivement et celui des carrés pris négativement, c’est-a-dire
la signature. Dans ’'arithmétique des formes quadratiques, on envisage
I’équivalence relativement au groupe des substitutions & coefficients
entiers rationnels et de déterminant + 1 (substitutions unimodulaires).
La signature et le déterminant de la forme sont des invariants, mais ils
sont loin de caractériser complétement chaque classe. On sait, par
exemple, que pour une signature et un déterminant donnés, il peut y avoir
plusieurs classes de formes a coefficients entiers (toutefois un nombre
fini).

Le probléme de reconnaitre si deux formes quadratiques sont arithmé-
tiquement équivalentes ou non a été résolu par Lagrange!) pour les formes
binaires définies positives au moyen de la théorie de la réduction, théorie
qui a été étendue par Seeber?) au cas ternaire et généralisée par Min-
kowski%) au cas de n variables. D’illustres mathématiciens, entre autres
Gauss, Dirichlet, Hermite, se sont aussi occupés de cette théorie, dont
I'idée est la suivante: Dans chaque classe de formes quadratiques définis
positives on détermine, par certaines conditions de minimum, une forme
réduite. L’ensemble de toutes les réduites constitue, dans I’espace des
formes, un domaine fondamental R relativement au groupe des trans-
formations unimodulaires. L’équivalence de deux formes revient a
'identité de leurs réduites, exception faite pour la frontiére de R, ol il
peut exister plusieurs formes réduites équivalentes.

1) Lagrange, Oeuvres, t. III, p. 723—728 (Paris, 1869).

2) Seeber, Untersuchungen iiber die Eigenschaften der positiven ternéren quadra-
tischen Formen, (Freiburg i. B. 1831).

8) Minkowski, Gesammelte Abhandlungen, Bd. 2, 8. 563 (Leipzig und Berlin, 1911).
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C’est & Minkowski que 1’on doit les résultats essentiels de cette théorie:
le domaine R est l'intérieur d’un angle solide convexe limité par un
nombre fini d’hyperplans, et touche & un nombre fini seulement de
domaines équivalents (transformés de R par des substitutions uni-
modulaires). Ces résultats, outre leur intérét pour la théorie des formes
quadratiques, interviennent avec fruit dans I’étude des représentations
rationnelles des groupes d’ordre fini.

L’objet du présent travail est d’étendre la théorie de la réduction des
formes quadratiques définies positives, au cas ou le groupe unimodulaire
rationnel est remplacé par le groupe des substitutions & coefficients entiers
dans un corps algébrique K fini de degré g et dont le déterminant est une
unité de K (groupe unimodulaire dans K). Mais ce groupe n’est pas
proprement discontinu dans l'espace des formes quadratiques, aussi
est-on conduit & considérer des systémes de g formes, transformées
respectivement par g substitutions unimodulaires conjuguées. A chacun
des corps conjugués réels K de K correspond dans un de ces systémes
une forme définie positive, et & deux corps K'¥, K» imaginaires conjugués
correspondent deux formes hermitiennes définies positives et imaginaires
conjuguées. Le groupe envisagé est proprement discontinu dans ’espace
de ces systémes, et les résultats de Minkowski subsistent: Il existe un
domaine fondamental formé par la réunion d’un ou de plusieurs angles
solides convexes R, limités par un nombre fini d’hyperplans; chacun des
R, n’est en contact qu'avec un nombre fini de domaines équivalents & des
R,. 1l s’ensuit par exemple que le groupe unimodulaire de degré » dans K
posséde un nombre fini d’éléments générateurs.

La méthode que j’ai employée différe peu dans ses grandes lignes de
celle que Minkowski utilisa pour le groupe unimodulaire rationnel; les
idées directrices sont les mémes. Au lieu du principe des ,,tiroirs* de
Dirichlet, j’ai fait usage du théoréme plus profond de Minkowski sur les
formes linéaires, théoréme qui a de si belles applications en théorie des
nombres. En outre le passage d’un systéme de formes donné au systéme
réduit équivalent se fait en deux étapes, ce qui permet de tourner la
difficulté due au nombre des classes de K et a I’introduction simultanée de
tous les conjugués de K. C’est la deuxiéme étape qui donne lieu aux
différents domaines R, dont se compose le domaine fondamental.

Encouragé, orienté par M. C. L. Siegel, qui m’a mis sur la voie de ce
travail, je suis heureux de lui exprimer ici ma profonde reconnaissance
pour ses conseils et pour I'intérét qu’il m’a témoigné lors de mon séjour a
Gottingue.
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§ 1. Enoneé du probléme et méthode

Soit K un corps algébrique fini donné, de degré g. Si g, désigne le
nombre des conjugués réels et 2g, celui des conjugués imaginaires de K,
on a

g =49+ 29,.
On pose Y=0 1 92
Les conjugués sont numérotés de telle maniére que les corps K¥, ...,

K% soient réels, et les corps K@+ et K01+92:+® jmaginaires conjugués
(e=1,...,9,)-

Par substitution unimodulaire dans K nous entendrons une substitution
linéaire et homogéne dont les coefficients sont des entiers de K et le
déterminant une unité de K. U désignant la matrice d’une pareille sub-
stitution, on aura

U entiére dans K; |U| = ¢ = unité de K.

Les substitutions unimodulaires dans K d’un méme degré » forment un
groupe, le groupe unimodulaire de degré n dans K.

Par systéme S nous entendrons un ensemble de y formes quadratiques
a n variables, constitué par

g, formes définies positives, de matrices symétriques réelles S, ...,
S0) ,

g, formes hermitiennes définies positives, de matrices complexes HV, ...,

5(02) .

Si ’accent désigne la matrice transposée, on a
Sw — St

$ désignant la matrice dont les éléments sont conjugués complexes de
ceux de §, on a - ,
H = g’

Deux systémes 8, et S, sont dits équtvalents, S, ~ S,, ¢’il existe une
matrice U unimodulaire dans K, telle que I'on ait

u(k)’ e(lk)u("’::@(gk) k:l ’ 29""91
et
UOHE QENJO+E) — B p—1,2,...,9g, .

La notation W%*) désigne la matrice formée des k'®™** conjugués des
éléments de 1.
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La relation 8, ~ 8, est réflexive, symétrique, transitive, puisque les
substitutions unimodulaires i forment un groupe. Les systémes S sont
ainsi partagés en classes de systémes équivalents. Le probléme qui se pose
est le suivant:

Deux systémes 8, et S, étant donnés, reconnaitre 8’ils sont équivalents ou
non. On le résoudra ici en généralisant la théorie de la réduction des formes
quadratiques définies positives de Minkowski?). Il s’agira de construire un
domaine fondamental pour les systémes S relativement aw groupe wuni-
modulaire dans K, ces systémes se transformant comme il a été indiqué.

Dans ses grandes lignes la méthode est la suivante: soit un systéme S
formé des y matrices G® = (s%)), k=1, ...,9,, $@= (), 0=1,...,
g,. Appelons pour un instant famille de S I’ensemble de tous les systémes
obtenus a partir de S par transformation avec des substitutions entiéres
dans K et non dégénérées, c’est-a-dire 1’ensemble des systémes de y
matrices AR SWYPY® | k=1, ...,g,, A+ G2 PN+ o1 .. g,
A parcourant toutes les matrices a4 éléments entiers de K et telles que
|A| + 0. Parmi les systémes de la famille de S, extrayons tous ceux pour

1 J2

lesquels la somme ¢, = J s 4+ Y A{¥ est minimum. Puis parmi ces
k=1 k=1

derniers systémes, ayant tous la méme valeur minimum pour la somme

t,;, extrayons ceux pour lesquels la somme ¢,, = :‘"_1,' s 4 g’ h¥) est
k=1 k=1

minimum. Continuant ainsi jusqu’a la somme ¢,,, on obtient finalement
un (ou éventuellement plusieurs) systéme S de la famille de S. S est le
transformé de § par une substitution entiére dans K, non dégénérée, de
matrice YA, (premiére transformation). On démontre (théoréme 1) que
cette matrice U, si elle n’est pas unimodulaire, a néanmoins un déter-
minant de norme bornée, la borne étant indépendante du systéme
initial S. Il en résulte (théoréme 2) que A, = UA,, ot A, appartient & un
ensemble fini de matrices entiéres non dégénérées U, ...., AUy, et ou
U est unimodulaire dans K. En transformant le systéme S par l'inverse
A* de A, on obtient un systéme S équivalent a § et qui est le systéme
réduit de 8 (deuxiéme transformation).

A chacune des matrices U, correspond un certain domaine R, de l’es-
pace des S, domaine défini par les inégalités exprimant les conditions de

minimum auxquelles le systéme 8 est assujetti. La réunion de ces R,,
v=1, ..., N, constitue un domaine fondamental R pour les systémes S

4) H. Minkowski, Diskontinuitétsbereich fiir arithmetische Aquivalenz, Journal de
Crelle, 129, p. 220 ; ou Gesammelte Abhandlungen von H. Minkowski, Bd. 2, S. 53.
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relativement au groupe unimodulaire dans K (théoréme 3). On démontre
(théoréme 6) que les substitutions unimodulaires transformant les uns
dans les autres les systémes frontiéres du domaine R sont en nombre fin:.
I1 s’ensuit immédiatement que le domaine fondamental touche un nombre
fini seulement de domaines équivalents, c’est-a-dire transformés de R
par des substitutions unimodulaires. On voit enfin (théoréme 7), que
chacun des domaines R, est l'intérieur d’un angle solide convexe limité
par un nombre fint d’hyperplans passant par 1’origine de ’espace des 8.

§ 2. Préliminaires. — Notations

Dans la mesure du possible, on se servira de matrices dans les calculs.
Les majuscules allemandes désignent des matrices quadratiques, parfois
rectangulaires. Les minuscules allemandes désignent toujours des colon-
nes, ou vecteurs, matrices d'un type particulier. €, est la matrice unité
de degré k, et € la matrice unité de degré convenable (pour autant que
Iomission du degré ne nuise pas a la clarté). D (a,, ..., a,) désigne la
matrice diagonale d’éléments diagonaux a,, ..., a,, c’est-a-dire la matrice
ayant a,, ..., @, dans sa diagonale principale et partout ailleurs des zéros.
Ainsi €= (1, ..., 1).

A étant une matrice quelconque, A’ désigne sa transposée, c’est-a-dire
la matrice ayant pour lignes les colonnes de U et vice-versa. Si une
matrice W = (x,;) a tous ses éléments «;; dans le corps K, on représente par
A% la matrice formée par les £°™* conjugués des éléments de A, soit

k
Ak — ()

On dit qu'une matrice est bornée, si tous ses éléments le sont. Pour une

( :
colonne % == :
&n

> la notation | x| < ¢ est une abréviation pour
&l e, 1=1,...;n.

I1 y aura parfois avantage & se servir de la matrice:

Sw 0

S
S = H

0 .'55(03)

ayant les S et les § d’un systéme S dans sa diagonale principale et par-
tout ailleurs des zéros. Il n’y a pas de confusion & craindre si ’on désigne
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cette matrice par la méme lettre S que le systéme S. S est une matrice
hermitienne définie positive d’un type particulier, de degré ny. Si U
désigne d’une fagon analogue la matrice

) CUN)
U B ( ... )
0 U»

on peut écrire U’S, U = 8, pour I’équivalence de deux systémes 3, et :S,.
Cette notation abrégée sera quelquefois employée par la suite. Une
majuscule allemande désignant une matrice & coefficients dans K, la
majuscule latine correspondante représentera la matrice formée comme U
Vaide de M.

On dira qu’une matrice symétrique ou hermitienne & est positive si la
forme correspondante est définie positive, et 'on écrira: S > 0. On appel-
lera matrices semi-positives les matrices de formes semi-définies positives,
et 'on écrira pour elles S > 0. On a |S| > 0 pour les premiéres et
| &| = O pour les secondes.

On peut simplifier les notations en désignant les matrices réelles G*)
et les matrices hermitiennes $*) d’un systéme § par un méme symbole
S®, k variant alors de 1 & p. Une matrice positive réelle étant un cas
particulier de matrice hermitienne positive, on pourra considérer 'en-
semble des S*) comme un systéme S de y matrices hermitiennes positives,
avec la convention que les g, premiéres d’entre elles soient réelles:

G* =C® pour k=1,...,9,.

On calcule alors avec les &%) comme avec des matrices hermitiennes.

Par exemple, la valeur de la forme de matrice G'® pour la valeur

& -

§ = ( 51 ) de la colonne x des variables est x' &%)x .
€n

Pour abréger, on emploiera la notation de M. Siegel: S[U] = A' S,

U étant une matrice a n lignes et pouvant avoir un nombre quelconque de
colonnes, pour la matrice transformée de & par .

Unités générales

Les matrices unimodulaires § transformant tous les systémes S en
eux-mémes forment un sous-groupe invariant du groupe multiplicatif
des matrices unimodulaires U de K. Ces § sont définies par les conditions:
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S[FP]=F®SIH =G k=1,...,9

pour toute S > 0.

Nous allons déterminer ces &, que nous appellerons unités générales.
Pour simplifier les notations, supprimons dans ¥ I'indice de conju-
gaison k.

Montrons d’abord que S[F] = © a lieu identiquement en &. Soit done
S une matrice hermitienne quelconque, définie ou indéfinie, de déter-
minant nul ou non, assujettie a la seule condition d’étre réelle si le corps
conjugué de K auquel appartiennent les éléments de § est réel. Soit,

&1

comme précédemment, x = ( : ) la colonne des variables de la forme

€n

hermitienne S[x]. Considérons toutes les valeurs des &; telles que
'x = 1, clest-a-dire que | |2+ --- 4+ |£,|2= 1. Pour toutes ces
valeurs la forme hermitienne S[x] est bornée en valeur absolue; il existe
un nombre positif u tel que

p>|S[x]] si ¥r=1.
A cause de I'homogénéité de S[x] on a alors:
(u€ — S) [£]>0 pour tout x #O0.

La matrice hermitienne u — S est donc positive, § la transforme en
elle-méme: (€ — S) [F] = u€C —S. Mais F'F = C[F] = €, car €
est positive, donc S(F] = S c. q.f. d.

En prenant pour &S des matrices particuliérement simples, on arrive
aisément en utilisant ce résultat a déterminer la forme générale de .
Soient S = (s,,), § = (;;). Prenons pour & la matrice dont les éléments
sont

8kk:1,kﬁxe; SijZOSii,j¢k.
On obtient:
- 0sie,)#k,
e %k T ) 1 g =j=F.

On a done |&,, |2 = 1, ce qui implique &, # 0. Pour j = k 1’égalité précé-
dente donne alors: .

Kip = O S1 1 # k .
On voit ainsi que § est une matrice diagonale:

F=D(y,...,x,) avec |o,l =1.
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Particularisons ensuite & en prenant:

8.,=1; k1 fixes, k<l.
85 = 0 si ("’a ?) ;é(ks l) ou (la k) ¢

On obtient
“k &l — 1 .
Multipliant cette égalité par «; on trouve, a cause de |x;| =1,
Ky = X .

La matrice § a donc la forme suivante:
§=aC avec |x|=1.

Cela devant avoir lieu pour toutes les conjuguées de la matrice , x est
une racine de I'unité. Désignant les racines de I'unité du corps K par o, on
aura:

§=o0C.

Réciproquement, on vérifie immédiatement que toute matrice de la
forme § = w€ transforme un systéme S en lui-méme. On peut donc
formuler le résultat suivant:

Le groupe des unités générales & est un groupe multiplicatif d’ordre w
(w = mombre des racines de Uunité de K) constitué par les matrices o€
(w = racine de U'unité de K).

C’est un groupe cyclique, comme on le sait.

Si g, > 0, K ne contient pas d’autres racines de 'unité que -+ 1, et les
seules matrices § sont 4 .

Il étant une matrice unimodulaire quelconque, on a S{U] = S[UF].
En outre, si U # §, il existe au moins un systéme S de y matrices hermi-
tiennes positives S* tel que

SHUD] £ GH  k=1,.., 9.

Le probléme posé est donc d’une fagon plus précise celui de la déter-
mination d’'un domaine fondamental pour les systémes S, relativement
aux transformations du groupe quotient | .
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Un lemme

Soit ¥ un vecteur de composantes &,, ¢ = 1, ..., n, c’est-a-dire une
matrice formée de la seule colonne des &;. Les §; étant des entiers algé-
briques de K, on désignera par x la colonne formée par les y colonnes
conjuguées x'® superposées. Enfin on emploiera le signe t, qu’on lira
trace, pour indiquer la sommation de k = 1 & k =  sur un indice supé-
rieur k omis dans I’expression sous le signe 7. Ces notations permettent
d’écrire:

' Sz = 8[x] = % SM[x®] =1 (S[x]).
k=1

Lemme. Pour un systéme S donné, il existe un nombre fini seulement de
vecteurs x entiers de K tels que

1(Slx])=8[z]<c.

Cela résulte d’'une inégalité connue relative aux formes définies posi-
tives. Si u > 0 désigne le minimum de S[x] pour toutes les valeurs com-
plexes de z telles que

=1, x® réel si k<yg,,
on a
Szl =>pa'z.

Par conséquent S[x] < ¢ entraine:

pur'x <cou pur(x'x) <c
ou encore

Y n " C
2 Z l 5 (.') |2 < -
k=1 =1 7
Toutes les composantes &* de = sont donc en valeur absolue inférieures &
'/ _;_. , donc tous les conjugués de &; sont bornés, et par conséquent &;

n’est susceptible que d’un nombre fini de valeurs entiéres de K.

§ 3. Premiére transformation du systéme S

Dans ce paragraphe, a,b, ..., ¥ désigneront, & moins de mention
expresse du contraire, des colonnes ou wecteurs dont les n composantes
sont des entiers du corps K :
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() o=(G) - =(2)
a=\{ : , b= 25 ¥ B, =3 S ,
Ot B €n

&;s Bis .-, & = entiers de K.
Soit un systéme S. Nous allons lui faire subir la premiére transforma-

tion. Comme on I’'a vu au § 1, il s’agit de trouver un systéme 8 trans-
formé de S par une ma,trice A entiére dans K, non dégénérée, de sorte que

les quantités r( 8;;) = Z' s"‘) soient minima, & commencer par © = 1
jusqu’a © = n.

D’une fagon générale, considérons une matrice hermitienne § = (h,,)
et transformons-la par la matrice X de méme degré » que §. Soient

Xy, ..., X, les colonnes de X = (x,, ..., ¥,). La transformée T de § par X
est T =X'HX = H[X]; les éléments t,; de T se calculent par les formules
i =%, 9% -

En particulier les éléments diagonaux de T sont

ti=%; 9% = Hlx].

Reprenons notre systéme 8 et appliquons ce qui précéde en prenant
H=C® X =RA®, Le systéme S transformé de S par A est formé par
les matrices G* = S®[Y®]. §i q,, ..., a, sont les colonnes de A =
(ag, --., @), les éléments diagonaux des G® sont s{¥) = S®[a¥]. Les
quantités & rendre minima sont par conséquent v (S[a;]), ¢t =1, ..., n.

Nous commengons donc par déterminer un vecteur entier a, 7= 0 de K
tel que l'on ait

T(Slay]) <7 (S[x])

pour tout x entier de K et # 0. Un tel vecteur a, existe certainement, en
vertu du lemme précédent. Car si x, est un vecteur entier non nul arbi-
trairement choisi, on a

T(S[x]) <7 (S[x])

pour un nombre fini seulement de x, et parmi ces ¥ en nombre fini, il y en a
un ou plusieurs qui rendent 7 (S[x]) minimum, et qui peuvent étre pris
pour vecteur q,. On a 13 un moyen permettant de déterminer effective-
ment le vecteur q,. Ce vecteur q, n’est pas unique, par exemple wa, con-
vient également, w étant une racine de I'unité de K. Parmi tous les vec-
teurs q, convenables, en nombre fini, prenons en un arbitrairement.
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Puis déterminons d’une fagon analogue un vecteur a, entier de K,
linéairement indépendant de a,:rang (a,, a,) = 2, et tel que l'on ait

7(S[a,]) < (S[x])

pour tout x entier de K et linéairement indépendantde q,: rang (a,, ¥)=2.
Comme tout & I’heure, on voit que a, existe. Il n’est pas non plus déter-
miné d’une fagon unique; dans tous les cas wa, convient également. Ici
on ne choisira pas a, au hasard parmi ses déterminations possibles, bien
au contraire. Voici comment se fait le choix de a, :

1 eas.
g, > 0. Les seuls w sont + 1, on peut donc choisir entre 4+ a,. On
détermine le signe de sorte que:

a{(l) 13y 6(21) > 0 .
27 eas.
g, = 0. Il se peut que w > 2. Considérons la quantité

égl2)= a/(ll) S

Si I'on remplace a, par wa,, cette quantité s{) devient ) s{!. Or, un
nombre complexe 8 % 0 étant donné, il existe une racine de 'unité w de
K et une seule telle que

n<ar ws<n
w 8 S w

Le secteur — —Z)—< arg s < %du plan des s complexes est un domaine

fondamental relativement & la multiplication des s par les racines de
I'unité w de K. Si s = 0, on peut prendre w arbitraire, il y a w possibilités.
On peut done choisir le vecteur a, de fagcon que

JT . 1) T
——< arg 83y < — -
v €812 7
Pour des raisons qui seront claires par la suite, nous nous contenterons de

T .
— o5 Sarg 83 <

g|s

’

ce qui donnera lieu, dans certains cas, & une ambiguité pour le choix de a,.
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Si w = 2, les seuls w sont 41, et la condition précédente s’écrit :

7 . n
—5 S arg s <5

ou aussi Rs{) > 0, ce qui montre que I'on peut faire rentrer le 1° cas
dans le 2™¢,
Le vecteur a, étant ainsi fixé, on détermine a, par les trois conditions:

rang (al, Qas, a3) =3 ’
7 (S[a,) <7 (S[x])

pour tout x tel que rang (a,, a,, ¥) = 3,
et
—_— i \<\ arg a;(l) 6(1) a:(_;l) < % 8
11 est inutile de distinguer les cas g, > 0 et g, = 0; cela n’a été fait précé-
demment que pour plus de clarté.
On continue de la sorte. D’une fagon générale, q,, ..., a,-, étant fixés,
on détermine q; par les trois conditions:

rang (Q;, ..., q;) =1 ; (1)

7(S[q,]) < 7(S[x]) pour tout x tel que rang (a,, ..., a;_;, ) =1; (2)

7 - 2
—— <arg /PSV L — i 1>2 ; (3)
w w
cela pour I =1,2,...,n.
Les n vecteurs q,, ..., a, ainsi obtenus forment une matrice Y =

(@y5 ..., a,) entiére dans K de déterminant || 5% 0. On l'appellera la
matrize auxiliaire du systéme S.

On transforme alors chacune des matrices G par la k*™® conjuguée
WAk de A. Les matrices obtenues par cette premiére transformation seront

désignées par W, Elle sont donc définies par:
S0 — GWAM]  k=1,...,y.

Elles forment un nouveau systéme 8. En introduisant conformément aux
conventions du § 2 la matrice
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NV ¢
(e
0 AP

S = 8[4].

on aura

Cherchons les inégalités que vérifient les S®), Pour les S, on a:

7(Sla,]) <7 (S[x]) (I)

pour tout ¥ entier dans K tel que

rang (Qy, ..., Q;_;, X) = 1 l=1,2 ..., n.

7 - 7
— — < arg a) GW o) L —

- ” l=2,...,n. (IT)

D’aprés la maniére dont les formes quadratiques se transforment, ces

relations s’écrivent d’une facon trés simple au moyen des G* = (s{¥).
On a en effet

0

©(Sla]) = 7(s)) -
(Pour alléger 1’écriture, on contracte deux indices égaux en un seul.)

Soit A-1x = 1. Le vecteur 1) n’est pas nécessairement entier, mais il est
caractérisé par la condition que Ay soit entier. On a

S[x] = S[Ay] = S[y] -

La condition rang (a,, ..., a;_;, ¥) = [l 8’écrit, en multipliant & gauche
par AL, ce qui conserve le rang:

rang ((gl-ln)) = § .

Cela signifie que le vecteur 1) doit avoir ses derniéres composantes & partir
de la I*™¢ non toutes nulles:

Soit "
1)::(5 , on aura (7, ,..., 1M,) 0
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Les conditions (I) et (II) deviennent ainsi:

7(s) <7(Sy)) M
pour tout 1) de K tel que Ay = entier , (Mg 5ee05 My) 0 ;
l=1,...,n
7 . 7
% < arg s{) < v (1)
l=2,....,n.

§ 4. La matrice auxiliaire

Si la matrice auxiliaire A du systéme S était unimodulaire, c’est-a-dire
si |W| = ¢ = unité de K, les 2 systémes S et S seraient équivalents. Mais
ce n’est pas nécessairement le cas. Nous allons voir néanmoins que pour

tous les systémes S, la norme du déterminant de U est bornée. C’est ce qui
fait 'objet du

Théoréme 1. La morme du déterminant de la matrice auxiliaire U est
bornée: |N (|U|)| < ¢, ¢ étant une constante ne dépendant pas de S, mais
seulement de n et de K, ¢ = ¢ (n, K).

La démonstration repose sur un théoréme connu de Minkowski relatif
aux formes linéaires, théoréme que ’on peut énoncer ainsi:

Soient € une matrice donnée de degré r, de déterminant |€| # 0, dont les
2
lignes complexes sont 2 @ 2 conjuguées, et z = ( ;1) une colonne de variables
- zT
indépendantes. Il existe alors de valeurs entiéres ratiomnelles non toutes
nulles de z,, ..., 2, telles que :

1631 < VICIl .

On va en déduire le théoréme:

Soient B, ..., B, g matrices non dégénérées de degré m, les g, premiéres
étant réelles, les 2 g, suivanies complexes, telles que B, ., .; = _?B—gﬁ %
pour k =1, ..., g,, et soit B la valeur absolue du produit de leurs déter-
minants. K étant un corps algébrique de degré g, ayant g, conjugués réels et
2 g, tmaginaires, il existe un vecteur entier x non nul du corps K, tel que U'on
ait pour tous les conjugués x'®) de x:
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gn .7/ J—
| B,x® | <VB - VD .

D = |d| est la valeur absolue du discriminant du corps K.

Pour cela, soit (w,, ..., w,) une base des entiers de K. Une colonne
d’entiers du corps K est donnée par

x:w1n1+”'+wgng:
Vi1 .
les colonnes p, :( : ) étant entiéres rationnelles. Nous numérotons les
Vin .
conjugés de K comme il a été indiqué au début du § 1.

Appliquons le théoréme de Minkowski rappelé tout & 1’heure en
prenant:

--------------------

%1 O
=< ) - (2 X E,)
0 B,

ou 2 est la matrice Q = (0{’), ¢ étant I'indice de ligne, k& V'indice de
colonne, et ou 2 X €, désigne le produit de Kronecker:

Qx E, = (0PE,) .

Il est clair que € satisfait aux conditions du théoréme: les g,» premiéres
lignes de € sont réelles, et les » lignes (w{**¥ B, ;. ..., 0 tO B L)
sont respectivement conjugées complexes des n lignes

(91+ g2+ k) (91+92+%)
(wl %014- gatk > s Wy EB:11+:m+k) *

Le déterminant de € vaut |€] = |B,] - - - |B,|-|2|®. En valeur absolue il
est égal & ||€|| = B-1/D +# 0. 11 existe donc une colonne entiére ration-
nelle w non nulle de gn éléments, que ’'on décomposera ainsi:

v, Y1
w=\ : avee p,=|\ :
D, Yin

v;; = entiers rationnels et telle que ’'on ait:

Cw| <VTEI .
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Or B, 0 oM E,. . .00 E, v,
Cw= ETR TN (R —_
0 B, w?E,...0"CE, v,
(SB! 0) ( oo, + -+ + oPp, )
O %, wga) Dl + .« e + w(:) Dg

%11 0 x.(l) .%1 x)
- 0.'230 0 ) ?:B, 0/

= w0+ -+ o,0, # 0 est une colonne d’entiers de K.

On obtient bien le résultat annoncé:

n 2
18,9 | <VB - VD, $#0 . ¢.q.f.d.

Appliquons ce théoréme en prenant B, = A*-1, les AK) étant les
conjuguées de la matrice auxiliaire % obtenue lors de la premiére trans-
formation du systéme S. Il est clair que ces B, remplissent les conditions
énoncées dans ’hypothése du théoréme. La quantité désignée par B vaut
B =|N(|¥%)|~*. Ilexiste donc un vecteur ¥ 7 0 du corps K tel que

2g
| Akr-1 gk | VD — @ .

gn

VIN(%A]) |

Soit, comme précédemment, n = A-1x; on a

lp™®| <& ; k=1,...,9.

x n’étant pas nul, y = ( ’h

Nn

Mg = - =1mn,=0, mais que 7, 0. On applique alors les iné-

galités (I) de la fin du § 3 & cet . Supprimons les points sur les s.
On obtient, en tenant compte de [yp*| <G :

) ne ’est pas non plus; supposons que

T(8) < 1(5[0])—2 z 8 0 n "’<G’2 z i

k=1 ¢,j=1 k=1 §,j=1

Or les G® sont des matrices positives, donc S*¥'[x] > 0 pour toutes
valeurs complexes (réelles si k < g,) des composantes &; du vecteur x;
en particulier pour les valeurs suivantes:
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s arg l(k) (k)

Si=1, &= —e Y= (k)l,i,jﬁxes,

Em=0 81 mz*1,m#7g ,

on trouve:
2|8 <8P 48P . (1)
On en déduit:
! l
DAL ARSI (2)
2 == -

A cause de (2) on obtient alors

T(8) < @2 Z l 2 s =[G 2 7(8,) .

k=1 =1 t=1
Or les inégalités (I) appliquées a 1 avec

nhzl’nt':() Si i#’&:h)l’
donnent:
7(8;) < 7(83) 8i l<h,
On a donc:
T(8) <T(s) < -+ < v(sy) (3)

inégalités qui seront plus d’une fois appliquées par la suite.

On renforce 1'inégalité obtenue en remplagant z(s;) par 7(s;) ce qui
donne
1(8) < 12G%x(s) .

Or z(s;) > 0, car les matrices S*' sont positives. Comme ! < n, on en
déduit :
Gr<n.
- 3
Reprenant la valeur de G qui est G = D27 .| N(|%|)| ?"on trouve
finalement:

n
I N(m[l)l gD*-n”“ ,
ce qui démontre le théoréme 1.

Théoréme 2. Une matrice W de degré n, d’éléments entiers algébriques dans
un corps K, de déterminant |W| = « % 0, se met sous la forme U, ou
U, appartient & un ensemble fini de matrices entiéres ne dépendant que de
o, n et K, et ou U est unimodulaire dans K.
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La démonstration repose sur un

Lemme. Si deux matrices entieres W, W, de déterminants associés:
e|U| = &|Wy| = &, sont congrues mod (x): A=W, ((x)), la matrice
AU = W est unimodulaire.

Comme |AUY| = ¢, &1 = unité de K, il suffit pour démontrer ce
lemme de faire voir que AA;* a ses éléments entiers. Pour cela multi-
plions la congruence U = A, ((«)) & droite par «;!, matrice entiére;
on trouve ainsi

AAAT =aG(() , don AA = E((1))

c’est-a-dire que AW est entiére.
1

Considérons alors un ensemble complet de matrices ayant leurs déter-
minants associés & «, et incongrues mod (x). I1 y en a au plus N ((x))™*.
Soient A, ..., A, ces matrices. Le nombre M dépend uniquement
de «, du corps K et de n.

Soit maintenant U une matrice quelconque de déterminant associé a « :
|| = xe. La matrice Y est nécessairement congrue & l'une des A,
mod (x):

A=A ((+)) -

D’aprés le lemme on a AW = U, U étant unimodulaire, d’otr A= U, .
c. q.f. d.

Conséquences et définitions.
I1 résulte immédiatement des théorémes 1 et 2 que la matrice auxiliaire

N se met sous la forme

A=UYA,
ou W est unimodulaire dans K et W, appartient a un ensemble fini de matrices
Wy oo, Uy

Ces matrices W, ne sont pas déterminées d’une fagon unique, on peut
les multiplier & gauche par des matrices unimodulaires arbitraires. Deux
matrices U et B qui différent & gauche par un facteur unimodulaire U,
c’est-a-dire telles que A = UB, sont dites assocides @ gauche. La relation
d’associativité & gauche est réflexive, symétrique, transitive; on peut
donc parler des classes de matrices assocides a gauche. Et les résultats
obtenus au sujet de la matrice Y peuvent se résumer ainsi: Il existe un
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nombre fini seulement N de classes d’associées a gauche possibles pour la
matrice auxiliaire W, quel que sott le systéme S dont on est parti. Ces classes
sont représentées par les matrices U, , ..., .

Désignons par R (%) le domaine de I’espace des s{¥) défini par les inéga-
lités (I) et (II) du § 3 (les points sur les s étant supprimés), et soit R, le
domaine R, = R (€). On voit aisément que le domaine R () est contenu
dans R, quelle que soit la matrice U entiére de K et non dégénérée:

R(N) dans R, .

R (UA) est convexe, car si les systémes S et T vérifient (I) et (II), il en
est de méme du systéme AS + uT avec A +u=1,1>0,u > 0.

R(UA) est un domaine fermé, ce qui provient du fait qu'’il est défini par
des inégalités ol se trouve toujours le signe <C.

R () ne dépend que de la classe d’associées & gauche de la matrice U :

R(A) = RUA) si U est unimodulaire, car dans les inégalités (I) les y
pour lesquels Ay est entier sont les mémes que les 1y pour lesquels U Ay
est entier.

Remarquons encore que les inégalités (I) et (1I) sont linéaires et homo-
génes en les coordonnées de S, c’est-d-dire en les quantités Rs{ et
J s¥). Cela est clair pour (I). Quant aux inégalités (II), on peut les écrire
sous la forme

Rs®) >0 et LJs) <tg—Rsl) l1=2,...n, (II)

forme qui met en évidence leur linéarité.

11 ’ensuit que le domaine R () est limité par des hyperplans passant
par lorigine des coordonnées. Les inégalités (I) étant en nombre infini, on
pourrait s’attendre & ce que ces hyperplans soient aussi en nombre infini.
Nous verrons cependant plus loin qu’il n’en est pas ainsi, c’est-a-dire que
toutes les inégalités (I) découlent d’un nombre fins d’entre elles.

§ 5. Deuxidme transformation. Le domaine réduit R

Le systéme 8, obtenu a partir de 8 par transformation avec la matrice
auxiliaire o, n’est équivalent & S que si A est unimodulaire, ce qui n’a en
général pas lieu. Mais on sait que

€A =AY, .
1

Considérons alors le systéme S transformé de S par A, c'est-a-dire le
systéme des matrices

S — g'(k)[sl[(vkx-ll — GU[®] k=1,...,y.
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Ce systéme S est équivalent au systéme primitif S. On l'appellera le

systéme réduit de S. Pour un S donné, S dépend de la maniére dont les
A, ..., Ay ont été choisies dans leur classes d’associées.

Les coordonnées de S vérifient une infinité d’inégalités que 1’on obtient

en remplagant G* par S® [AX] dans (I) et (II). II est inutile de les
écrire; elles sont, d’aprés la remarque faite a la fin du § précédent, linéaires
et homogénes en les parties réelles et imaginaires des s(" ). Pour chaque %,
on obtient ainsi un domaine que nous désignerons par R , et qui sera le
»®™¢ domaine réduit, relatif & la matrice A,, défini comme le lieu des
systémes de matrices St — é(k)[g[(vk)-l] lorsque le systéme des S par-
court tout le domaine R(2,).

Comme on I’a vu 4 la fin du § 4, B(%,) ne dépend pas des représentantes
choisies pour les U, ; mais R, en dépend, & une équivalence prés. De méme
que R(,), R, est convexe, fermé, limité par des hyperplans.

Soit P I'espace des systémes S. Comme il est facile de le voir, P est un
domaine ouvert dans l’espace cartésien dont les coordonnées sont les
parties réelles et imaginaires des s{}.

Désignons pa.r R la portion sﬂ:uée dans P de la réunion des domaines

R,: R= Pn _)',‘ R, (le signe ~ signifie intersection). R est par définition
le domaine redmt des systémes 8.

Théoréme 3. Le domaine R précédemment défini constitue un domaine

fondamental pour les systémes S relativement aux transformations uni-
modulaires dans K.

Il s’agit de démontrer 2 choses:

1° A tout systéme S de malrices positives S*¥) correspond un systéme S,
équivalent dans R :
S;~8 , S, dans R.

C’est évident par définition de R. Reprenons la notation abrégée intro-
duite au § 2. En transformant le systéme 8 par sa matrice auxiliaire %, on
obtient le systéme S défini par §=8 [4]. On sait que la matrice U se met
sous la forme WA = U, U unimodulaire dans K. Alors S=28 [4;'] =
S[U] est le systéme réduit équivalent & S; S est dans R, puisque S est
dans R(A,). Donc S est bien situé dans R.

2° Deux systémes S et T de R me peuvent étre équivalents que 8’tls sont
situés sur la frontiére de R.
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Soient § et 7' deux systémes réduits et équivalents:
Set Tdans R; S=T[{U]; U # oE.
On a pour certains indices u et »:
S = 8[4;1] S dans R(%,)
T = T[A7] T dans R(W,)

Par conséquent § = T[A;“UA“] = T[V] avec V = A7'U A, . Les
matrices AB = UA, et A,B~ = U, sont entiéres dans K. Montrons

que S et T' sont sur la frontiére des domaines respectifs B(%,) et B(A,);
alors § et T' seront évidemment systémes frontiéres de R, et R,, puisque

le passage de R(U,) & R, se fait par la transformation S = S[U,] qui est
topologique. Distinguons 2 cas, selon que B est diagonale ou non.

1°* cas. B est diagonale: B =D (v,, ..., v,).
Alors B # wC, car U # v € et AV = UNA,. Les éléments de S —

(8) et de T® = (t))) sont liés par les relations G* =IW[P®],
. 0

c-a-d.: s =t v® 9y Considérons les colonnes v, = ('v,-) de B=
0

(01, ..., 0,). Comme U, B est entiére, la colonne W, v, est entiére, et I'on

peut appliquer (I) aux matrices T® avec p=v;, l=1:
v(s) = 7(TMn;]) >(t) -
La matrice QI“Q)'I est aussi entiére; si B! = (vy,..., v,), la colonne
‘ZI“D; est entiére, et I’on peut appliquer (I) &4 S avecy =v;,l =1
T(¢,) = T (S[0]]) > TP
On voit donc que 7(s,) = r(t;), et le systéme T vérifie la relation
v(E0.]) = () -

Si tous les v;, + = 1,...,n, ne sont pas des racines de l'unité, soit

v, # w, on en déduit que T est bien sur la frontiére de R () puisque T est
dans R () et vérifie:

t(Z[0]) = ()
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relation non identiquement satisfaite, car v, # w, obtenue en prenant
le signe = dans I'une des inégalités définissant R (,). Il en est de méme

de S.

Si tous les v, sont des racines de I'unité, ils ne peuvent étre tous égaux.
Soit done v; = w,; il existe un ! pour lequel w, = w,. Alors T [BVH ] =
&%) montre que:

8 =tH P 0® , wo,=0F#1 .

En particulier pour l'indice supérieur k=1 on a
8(111)— t(lll)w(l) , 0wV A1, o¥=1.

On peut supposer 80 s£ 0, carsi s =0 il est clair d’aprés (II')
(§4) que S et T sont frontiéres.

8 et T sont dans R(U,) et R(A,) , donc d’apres (II):

(11)

c’est-a-dire

2‘rrmz

Cette inégalité entraine, puisque w® —e * =1, arg oW = i —_

Cela n’est possible que si

. JT It

arg sy = s arg s{) = ——
ou bien si

. 1 _ n . 1 n

arg ty) =—-— arg t{) = —

Ce qui montre que S et T sont systémes frontiéres de R (%,) et R(U,)
respectivement.
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M eas. B n'est pas diagonale.

Soit de nouveau B = (v,, ..., v,), et soit v, la premiére colonne diffé-

(43
rente d’'une colonne de matrice diagonale; alors, si v, = ( ) , on a
Un
nécessairement (v, ..., v;,) 7% 0, puisque |B| % 0.
*
x . Ui
B-1 a la méme forme que B, sa ¢ colonne est v, =|: avec
Vin

(v]1, ..., v,) %= 0. Comme U, v, est entiére, on peut appliquer (I) & 7'
pour le vecteur v,, et I’on trouve:

v(s) = 7(Tl0,]) > 7(t) -
De méme, en appliquant (I) & S pour v;, on trouve:
() = T(S[)]) =>7(s)) -

On en déduit 1(t',) == r(é,), et I'on voit comme précédemment que Set T
sont frontiéres de R(,) et R(U,), étant respectivement dans ces do-
maines et vérifiant les égalités non identiques

7(s) =7(S[0]]) et T(t) = v(T[v,]) .

En résumé, les systémes S et T sont frontiéres de R(%,) et de R(Y,),
si les systémes S = S’[A;l] ot T=T [4;'] sont équivalents. Il s’ensuit
que S et T' sont frontiéres de R, et R, respectivement. Pour en déduire que
S et T sont frontiéres de R, il faudrait étre sir que R, et R, n’aient pas de
région commune. Or il est aisé de voir que si un systéme S appartient a la
fois @ R, et & R,, il est frontiére de ces 2 domaines; en effet soit U une sub-
stitution unimodulaire transformant S en un systéme 7' différent de S:
T = S[U] # 8. 8 appartient & R, et 7' appartient au domaine R, trans-
formé de R, par U. Ce domaine R, peut remplacer R,; on 'obtient comme
R, en partant de R(,), mais en transformant ce dernier domaine par
AU au lieu de A;?*; cela revient & prendre U1, au lieu de A, comme
représentante de la classe gauche d’associées de .

Le résultat obtenu, & savoir que S et 7' sont respectivement frontiéres
de R, et R, ¢'ils sont équivalents, est valable quels que soient les repré-
sentants 2, et U, choisies dans leurs classes d’associées, on peut donc
appliquer ce résultat aux systémes S et T' = S[U] équivalents, I'un S
situé dans R,, 'autre 7' dans R;. Il en résulte que les systémes S et T
sont frontiéres, 'un de R, , 'autre de R}, et notre assertion est démontrée.
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D’aprés cela la région commune & R, et & E, ne peut étre qu’une
portion de la frontiére d'un de ces domaines.

Pour achever la démonstration du théoréme 3, il reste & faire voir que
les deux systémes S et T ne peuvent se trouver sur une portion de fron-
tiére commune & B, et R,, comme le montre schématiquement la figure.
En effet, supposons par absurde qu’il en soit ainsi. Considérons un
systéme S, voisin de S, @ Uintérieur de R,. La transformation T' = S[U]
étant topologique, S, est transformé par i en un systéme 7', voisin de 7.

Si 8, est suffisamment prés de S, T, sera soit dans B, soit dans R, .
Or cela est impossible, car il a été démontré que deux systémes S, et T',
gitués tous deux dans R et équivalents, sont fromtiéres, I'un de R#' ,
Vautre de R, .

Il s’agit maintenant de déterminer la nature du domaine R, inter-
section de P avec la réunion des E,. Notre but est de montrer que
chacun des domaines R, est limité par un nombre fini d’hyperplans. C’est
la démonstration de ce fait qui présente le plus de difficultés.

§ 6. Théoréme préliminaire

Dans le cas ol la matrice U est égale a la matrice unité €, les inégalités
(I) du § 3 s’écrivent
W(S[z]) = tle)  I=1,..,n (o)

avec x entier de K tel que (&,, ..., §,) % 0. Ce sont ces inégalités qui, avec
(II), définissent le domaine R, contenant tous les domaines R (%[).

Théoréme 4. Si un systéme de y matrices S*, dont les g, premiéres sont
réelles et symétriques, les g, suivantes hermitiennes, vérifie les inégalités (I,),
onapourk=12,...,y:
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| SF) | L P el .. .80 L O GW |

ou C est une constante ne dépendant que de n et du corps K : C = C (n, K).

Montrons d’abord que les inégalités (I,) & elles seules entrainent
qu’aucune des formes de matrices S'*) n’est indéfinie; c.-a-d. que l'on a
toujours:

6(’6) [x] > 0
quel que soit le vecteur x (réel si k < g,).
Supposons par absurde que pour un certain indice g on ait:

@y = S@[x,] <0, (x1éelsi p<yg,).

¥, n’est pas nécessairement un vecteur entier du corps K(@. Mais la
fonction S@[x] des &, ..., §, étant continue, on peut déterminer un
nombre réel r > 0 tel que, pour tout x satisfaisant & |x — x,| < r, on ait:

|6 [x] —a | < %]

donc aussi
Qg
2

S [x] <

Or il existe une infinité de vecteurs x du corps K@ tels que |x(@ — x,|<7;
prenons-en un quelconque, et soit ¢ % 0 un entier rationnel tel que
g x = entier. Désignant ce vecteur entier ¢ x par %, on aura

2
S[x®] < g % 2“" = by < 0.

Il existe donc un vecteur entier ¥ de K pour lequel la forme hermitienne
de matrice S(@ prend une valeur négative.

Supposons alors y > 1. Pour les autres conjugués de cet ¥, soient
a, = S®[x%] les valeurs des autres formes, k # g. Soit @ = max |a,|.
11 existe une unité ¢ du corps K pour laquelle

le@ >1, |¢®| <1 siks£p.

Pour une certaine puissance de cette unité, puissance que nous désigne-
rons de nouveau par &, on aura:

be
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Il est alors visible que, si y=¢x, la trace v(S[y]) est négative; en
effet:
©(Sly) = Sy @]+ X W [h*] =

kZe
= [£@|2 G [5@] 4+ T |e®]|2 GBI [50)] <
ke
a
S| By Y bot+ly—1la=—-a<0.

Cette conclusion est vraie aussi avec 1) = ¥ dans le cas ol y = 1, car
alors 7 (S[y]) = GV [xV] < 0.

Pour un multiple entier rationnel assez grand de 1, on pourrait rendre
7(S[y]) négatif et aussi grand qu’on le voudrait, ce qui est impossible,
en vertu de (I,):

t(S[x]) > 7(s;) s8i x entier % 0.

11 suit de 1& que les inégalités:
sP>=0, 28| < s 4 ¥

sont des conséquences de (I,) (voir § 4).
Montrons ensuite que les s{¥), k=1, ..., y, sont du méme ordre de
grandeur, c’est-a-dire que:

s <L, 8™  quels que soient 4, u, (4)
la constante ¢, ne dépendant que de K. Pour la démonstration, on peut

supposer y > 1, car si ¥ = 1, 'affirmation (4) est évidente. Ordonnons
les conjugués de K de maniére a ce que l'on ait:

0 << <P g0 L8
& E,=0s8ie#£41 .
Appliquons (I,) au vecteur ¥ =| : avec ' i
PRI (o) ( £ &, = e=—unité de K.
n
On obtient:
y Y
k=1 k=1

Or il existe une unité de K telle que:
[eW] >1, |e®] <1 si k#1.

288



L’inégalité obtenue s’écrit:
y—1

S (160 P1) + Z P (1P 2= 1) > s (1—[ o7 [1)
=2

d’ou a fortiori, les ¢{¥) étant non négatifs:

sgl)( e |2—1) > 8?”(1-———] g7 |2)

Donc
W2 __]
() | e (1) (1)
8y < 1——-'8(7)|2 8y < €181
avec
C — max | eM2—1 (max. pour toutes les ordonnances
1 - * . . Ve
1—[en possibles des conjugués) .
Comme 0 s <-.. < s, on voit que

sM L s L ey K s (e.q.f.d) .
Les inégalités (3) du § 4 sont des conséquences de (I,):
T(8) S 7(8) < -0 S T(Sy) - (3)

11 en est de méme des inégalités suivantes, que I’'on déduit facilement de
(3) et (4):
s < cisW si 1< . (5)

Pour démontrer le théoréme 4, envisageons d’abord le cas ol aucune
des & n’est semi-positive: S*) > 0 pour tout k. On procéde par induction
sur ». Le théoréme est vrai pour n = 1, avec €' = 1. Supposons le vrai
pour les systémes S de formes quadratiques & » — 1 variables.

On se sert de I'identité:

LA GHIS

ou h + S s]=s,, et ou S, est la matrice obtenue en supprimant
dans & la derniére ligne et la derniére colonne. | S,| est différent de zéro,
car la matrice & est positive.

Si 8 vérifie (I,), le systéme 8, des G{¥ vérifie aussi (I,) pour les vecteurs
x & n — 1 composantes. On le voit immédiatement en particularisant x
de sorte que &, = 0.
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Par hypothése d’induction on a:

k '’}
s® oW

1< B <ec c=0n—1, K) .
| &3
Comme |G'®| = | G{¥| k¥, il suffira de démontrer que ’on a:
s®
1< S < ¢ , avec ¢, (n, K) .

La partie de gauche de ces inégalités est évidente d’aprés » + S [s] =
8,, car la matrice S7! = S,[S;!] est comme S, positive, donc & < s,,.

Il reste & démontrer que
§®
*__<Lec
Rty >0

( xl ) ( El )
== N Oh il = E .
en Eﬂ.—-l

Au moyen de ces variables I'identité (6) s’écrit

Posons

6[*] = 6l[xl + En] -} hl 5nl2

avec ¥t = G ' s .

L/}
En posant p =3, + ¢ .f,,—:-( : )on aura
Nn

Slx] = Gily] + Al &l* . (6')

Nous allons appliquer (I,) & un vecteur ¥ particulier que nous déter-
minons & 'aide du théoréme de Minkowski déja utilisé. Considérons les gn
formes linéaires 7®) et £*) en les variables u,,:

g 9 1 =1,...,n—1,
= Zu,0P + 1 X u, 0P |0
o =1 o=1 == Ly, '}’ ’
ainsi que pour chaque ¢ les g, formes conjuguées de celles qui sont com-
plexes; et J
V= Ty 0¥  k=1,..q .
o=1
Les r® sont les composantes des vecteurs t® = S{¥~1g®), Les w, sont
les g entiers d’'une base de K. Le déterminant de ce systéme de formes
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linéaires est | 2|"=}/d". En outre & toute forme correspond sa conjuguée
complexe. On peut donc appliquer le théoréme de Minkowski sous la
forme énoncée au § 4.

Mais nous allons auparavant multiplier chacune de ces formes linéaires
par un facteur convenable, sans que le déterminant ne change. Nous
prendrons ce facteur égal &4 H (nombre positif qui sera fixé plus tard), cela
pour toutes les formes 7, ainsi que pour les & si k £ o fixe. Quant a la
forme £ (si ¢ <g,) ou aux deux formes conjuguées & et £(e+92
(si g+ 1< p<y), il faudra la ou les multiplier par le facteur H-¢,
avec ¢ =gn — 1 ou ¢ = $gn — 1 suivant les cas.

Il existe donc des u,, entiers rationnels non tous nuls tels que:

(k)‘ A ’l:=1,...,n-—1
H k=1,...,¢q .
4

l'f(nk)l< H k:ly'~°;gsk#939+g2'

2¢

60| <Hi-4  A=VD.

Pour H > A4, on a certainement &, # 0; car si £, = 0, en vertu de
) =% + t&,, les 7, seraient des entiers algébriques, de normes <1,
donc nuls, et les 7 et &, seraient tous nuls, ce qui n’est pas. Supposons
donc H > A4; alors &, # 0, et ’on peut appliquer (I,) au vecteur x ainsi
déterminé, pour ! = n; on obtient en vertu de (6’):

3 SPW] + 5 AW [ ED |2 > 7(s,)
k=1

k=1
Remplagons les 5 et &, par les évaluations trouvées; il vient:

42 Zy' ’E'l (k) 42 2 R L ple A2. H22 > (s,)
8'\k 4+ hle . a 7(8,) -
H? k=1 i,4‘=1l ”l i H? kze -

En tenant compte des inégalités:
O L85 2|sW] < 8P+ 8P 5 1(s) < w(sy) sl i<y,

on trouve par un calcul analogue & celui du § 4:

Vo A%
(n— 1) 25 7(5,) + — 7(6,) + @ 42 H9 > (s,)
d’ A
ou s
7(s,) (1-—-n= Ha) < h'@ A2 Ha
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Prenons
H=V2  -n.-A4>4.

Des inégalités (4) on déduit aisément :

7(8,) = ¢; 8@ (c3.~.:y_1 + 1) .
L’inégalité trouvée devient finalement:

c
s@ . 23 < hl@ A2 H2a

c’est-a-dire:
(e)
Sp 2
<< . 2 2q —
e S o A% H* —=¢, .
Le théoréme 4 est démontré dans le cas o | S®| > Opourk = 1, ..., y.
Le cas ot | &®| = 0 pour un ou plusieurs k se raméne au précédent. En

effet un systéme S tel que | S| = 0 et vérifiant (I,) est la limite d’une suite
de systémes S, avec | S, | > 0 et vérifiant (I,); cela résulte du fait que le
domaine défini par (I,) est convexe. Prenons en effet un systéme S, vérifiant
(I,) et tel que | Sy| > 0, et considérons les systémes S(1) = (1 — A)S+ 48,
avec 1> 4 > 0. Ces systémes sont formés de matrices toutes positives,
comme sommes de matrices positives et semi-positives. Donc |S(4)| > 0.
Pour 1->0 on a S(4)—>S. En outre les systémes S(4) vérifient (I,) a
cause de la convexité du domaine (I,). La démonstration du théoréme 4
s’applique & ces systémes S(4), qui vérifient par conséquent les inégalités
de ce théoréme. En passant & la limite, on voit que ces inégalités sont
vraies aussi pour le systéme 8.

Une conséquence. Nous avons vu au début de la démonstration du
théoréme 4 que le domaine défini par (I,) est tout entier formé de
systémes de matrices positives ou semi-positives. Comme R () est défini
par (I,) et (II), nous voyons que les systémes de R () qui ne sont pas
dans P sont formés de y matrices dont I'une au moins est semi-positive;
nous les appellerons systémes semi-positifs. On a pour eux |8| = 0.
Il s’ensuit que le domaine réduit R s’obtient en excluant les systémes
semi-positifs de la réunion des R,.

§ 7. Systémes frontiéres de R

Considérons maintenant les systémes frontiéres du domaine réduit R.
Ecartons ceux qui sont semi-positifs. Nous avons le
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Théoréme 5. Si S est un systéme frontiére de R pour lequel |S| > 0, il

existe une matrice unimodulaire W # o € qui transforme S en un systéme T
frontiére de R.

Un systéme S frontiére de R est & la fois limite d’une suite de systémes

réduits S,, et d’une suite de systémes non réduits Q,,,:

S, Sy, > 8 S,, dans R .
@, @, ... > 8 Q,, non dans R .

On a |8|> 0; sans diminuer la généralité, on peut supposer que

g
N(|S|)=MI |&®|=1. (Par définition S+" = S¥++¥ pour k=1,...,9,).

k=1
La norme N est le produit étendu sur un indice supérieur k£ omis, de
k=1ak=g. Pour les S,, et les @,,, on peut également supposer que

N(|G,|) = N(IQ.l)=1.

Soient B, la matrice auxiliaire du systéme @Q,,, j'm le systéme obtenu
en effectuant sur @,, la premiére transformation, 7, le systéme réduit
équivalent a @,,. Employant la notation abrégée du § 2, nous avons

QnlBnl = T = Tn[dy] Ty dans R(L,()
Q. U,.1=1T, T, dans R .
B, = umsuv(m)
La matrice unimodulaire [, n’est pas une unité générale, puisque Q,,
n’est pas réduit:
U, #o€.
Le systéme 8 étant positif, il existe une quantité u > 0 telle que
Sz]=2px" =z .

x est le vecteur formé en superposant y vecteurs ¥*) de n variables

chacun, k = 1, ..., . Puisque lim @,, = 8, on a & partir d’un certain rang
m->» oo
|@n — S)2]| <pa' .
Done Q. lxl>=pux'x .

Le systéme Q,, — uE est donc positif ou semi-positif. Son transformé P,
par B,, 'est également:

P

m

=T —uB/ B, >0.
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Supprimons pour un instant I'indice m. Posons

T = (t) B = (B P = (p:;)
bis = U DPis = Ds
Le systéme P étant positif ou semi-positif, on a
p® = i®__ 4 Z; | BB >
jom
D’olr
" n
1> pu X | BRI . (7
J=1
Faisant le produit de k=1 a k=g:
NE) > pe (ZN(ﬁf,) +--0) .
J=1

Les termes non écrits sont positifs ou nuls. Or |B| # 0, donc les éléments
pB:; ne sont pas tous nuls pour j = 1, ..., n, et par conséquent, ces §,; étant
des entiers de K, on a

NG+ =1
jaml
Il s’ensuit que ’

N(t,) > uo. (8)

Le systéme T étant dans R(B) donc dans R,, les inégalités (4) et (5) du
§ 6 ont lieu. Multipliant ces inégalités convenablement membre & membre,
on obtient

e tP? < N(t) (9)
es N(t) < N@¢) i i<j . (10)

Les ¢, désignent des constantes positives ne dépendant que de n et de K.
Le théoréme 4 donne

t® .. DL o|T®| .
On en déduit en tenant compte du théoréme 1:

N@)...N(t,) <CN(Z|) = OON(Q)N(B]) < Cve.
D’aprés (10) et (8) on a
N(t.l) oo N(.tn—-l) = cg N( t.'f—l) 2 cg uoin)
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Remplagant dans I'inégalité précédente, on trouve

C?.c

Cs

N(,) < u=9m=1)

A cause de (9) (pour ¢ = %) on en tire
tg“) < ¢ u (-0

Les t.ﬁ,") sont donc bornés, la borne ne dépendant que de S et de K.
En vertu de (5) § 6, les ¢ () le sont également, de méme que les B a
cause de (7). Comme les §,; sont des entiers de K, il n’y a pour eux qu’un
nombre fini de valeurs possibles, et par conséquent aussi pour la matrice
B = (f;;). La suite des B,, contient donc une infinité de fois la méme

matrice B, = U, A, (U, # 0 €):
On & By, = By -+ = By— Us 4

mg

pour une suite d’entiers
ml < m2 < <

La suite correspondante des @ est telle que
Q.U 1=1T1T,, T, dans R.
En passant & la limite, R étant fermé dans P (voir § 5), on obtient
SUy=T §8,T dans R, U;+# €.

Il reste & montrer que 7' est frontiére de R. Deux cas peuvent se présen-
ter: ou bien 7' = 8, auquel cas le théoréme est vrai puisque par hypo-
thése S est frontiére de R; ou bien 7' £ S; il suffit alors de recourir au
théoréme 3 (2°™° partie) pour voir que 7' est frontiére de R.

Théoréme 6. Si deux systémes S et T réduits sont équivalents, S =
IWUR] pour k=1,...,y, U appartient & un ensemble fini de matrices
unimodulaires U, ..., U,,.

Pour k=1, ..., y on a par hypothése

Sk = FEYW] S, T dans R.
Par définition du domaine R cela signifie que
S=6 [A'] avec S dans R(%,)
=g [A1] avec < dans R(U,) .
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On supprime 'indice supérieur afin d’alléger. Mais il faut se rappeler que
les relations écrites doivent avoir lieu pour les valeurs 1,...,y de cet
indice.

Comme G = T[U], on voit que

S =AU UA,] = T[X] ot ¥=AUA,.

La matrice X a ses éléments dans K. Elle n’est pas nécessairement
entiére, mais il existe un entier rationnel @ ne dépendant que de n et de K
tel que a X soit entiére. Il suffit en effet de prendre a divisible par tous les
|,|. Nous dirons dans ces conditions que X a ses dénominateurs bornés.
X1 a également ses dénominateurs bornés, puisque X-1= U U A,.

Les domaines R(%,) et E(A,) étant contenus dans R, = R(C), le
théoréme 6 est une conséquence du

Théoréme 6'. Si deux systémes S et T sont dans Ry, et st S = T[X],
X et X1 ayant leurs dénominateurs bornés, la matrice X est bornée ainsi que
ses conjuguées.

En effet de 6’ découle que la matrice aX est entiére et bornée, ainsi que
toutes ses conjuguées. Donc a X n’est susceptible que d’'un nombre fini de
valeurs entiéres dans K, et par conséquent U = A, X A" également.

Dans ce théoréme comme dans la suite, borné signifie inférieur en valeur
absolue a une constante ne dépendant que de n et de K. Nous désignerons
par ¢, ¢,, ... de telles constantes.

Démonstration du théoréme 6’.
1¢r lemme. Soit S8 un systéme positif de R,. Considérons une décom-

position quelconque de S en 4 matrices :

( 61 —C;2

, S, quadratique de degré m .
6; 63) 1 q q eg

Alors la matrice S S, est bornée.

&
Appliquons les inégalités (I,) définissant E, au vecteur x = ( ;1 )de
€n

composantes {, = w,, &;,= 41,1, fixes, et pour [=4j. Les w,, ..., o,
forment une base des entiers du corps K. On obtient ainsi

y y
| 22 B o) < X P2, (11)
k=1 k=1
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Pour v =1, 2, ..., g considérons les g équations

> R(s® o®) = g, (12)

k=1

v ?
a, sont des quantités réelles donnees. La matrice de ce systéme d’équa-
tions linéaires est

les g inconnues étant Rsy), k=1, ...,y et Js{¥ k=g, + 1,..., 9. Les

D = (0, R, -~ J )

ky=1,...,9, , ky=¢,4+1,...,9 ; v=1,...,9 .
Le déterminant est facile & calculer; on trouve
|P| = (2¢)7%2 | Q]

ou Q2 est la matrice Q = (v'¥). |02|2=d est le discriminant de K.
On peut donc résoudre ces équations, et 'on trouve
Rs®

(k—g2)
Jsz.j ?

g
= 2 Cvka’v

v=1

k=1,...,9 .
k=vy+1,...,¢9 .

ou les ¢,, ne dépendent que du corps K.
Comme d’aprés (11) et (12):

1 : A A
| a,| <*‘2“ 2 s o2,
A=1
on voit que les quantités Rs{¥), Js{*¥) sont en valeur absolue inférieures &

1.7’

des expressions de la forme 2 08P, ol les @), > 0 ne dépendent que
a=1

de K. Les s{”, A=1,...,y étant d’aprés (4) § 6 du méme ordre de
grandeur, on a finalement

| s® | < cys{¥ pour tous les 1,k . (13)

Cela est vrai pour j > ¢ aussi bien que pour j < 7. Pour j < ¢ cela résulte
immédiatement des inégalités (1) et (5) (§ 4 et 6). A cause de la symétrie
" de S on a aussi

| 8| < g8 . (13')

On démontre alors facilement que les éléments de S G, sont bornés.

Considérons d’abord &= | 61 |

(h;) = (t;x). Les h,, sont les déter-
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minants adjoints des éléments de &,, et comme chaque terme de G,
est d’aprés (13’) inférieur au terme diagonal de sa colonne multiplié par
Cs, On a pour chaque k,,

1 81...8,
| hop | < mlopt 2
k
Done
8 ...8 1
b | < 0 — m. . 14
Ilk XX Y9 |6| 8k ( )

Le systéme des S* est dans R,. Désignons par R{® ce domaine R,
si 'on veut marquer sa dépendance du degré n des matrices S. Le
gz g:) est alors
dans R{™ ; il suffit pour le voir d’annuler les » — m derniéres com-
posantes du vecteur x figurant dans (I,) (§ 6). Le théoréme 4 est donc
applicable & ce systéme des S, et I'inégalité (14) devient

systéme des S{¥) définies par la décomposition S = (

Cc
| | < 22
8k

Formons alors
@-1_l S, = (kgtiksu) = (ry) .
D’apreés

c
[t | < 810 et |8y, | < sy,
k
on voit que

|7l < meycs < 04y, c.q.f. d.

Reprenons I’identité (6) du § 6:

- =-1
s=(g ;)=(3 ) [07] ererm=s. ©

D’aprés le 1 lemme, ;™ s est bornée.
En appliquant la méme identité & S;, qui est dans R{""Y comme on
vient de le voir, et en continuant de la sorte, on obtient finalement

a, O 1 B
5 = = D, [8]
0 a, 0 1

ol D, est la matrice diagonale d’éléments a,, ..., a,, et ol B = (8,,) &
ses éléments bornés:
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Bir=0 8i i>k; PBu=1; |[Bul<cp.
Quant aux a, on a pour a, d’apres (6):
‘G'z‘ellan; an<8n'
Or le théoréme 4 donne

8 ...8,
| S|
On en déduit que s, << Ca, .

<C; '61'<81.-.8n-1.

D’une fagon générale on a de méme

1
8p Z Ay = 7 8y .

C
a; est du méme ordre de grandeur que s,.

La matrice T peut étre mise sous une forme analogue & S:

b, 0 1 %
(50 [
0 b, 01

oll € est une matrice du méme type que B, et ou

1
> b > b

En vertu de (5) § 6 on voit alors que

a; < Ci38; si v (15)

b; <505 sl i

N IN

9 .
7 .
2¢ lemme. Les alt) et b¥) précédemment définis sont du méme ordre de

grandeur, c’est-a-dire qu’il existe une constante c,, ne dépendant que de n
de K telle que

A,u=1,... .
! b < af? < ¢, P ﬂ ¥
C17 1=1,...,n .

Pour la démonstration, il est essentiel que X soit une matrice & coef-
ficients dans K de dénominateurs bornés, de méme que X1,

On a G = I[¥X], dou D, = D,[P] avec P = CXB-1. Soit

P = (pi) X =(&) .
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La relation D, = D,[P] donne

n
ak:_zlpik 126; .
i=1

pal < |32 - (16)
i

Considérons la relation X = C-1BB. La matrice € étant bornée et
|€| = 1, il s’ensuit que €~ = (J,;) est également bornée; en outre €1 a
une forme analogue a ¢, c’est-a-dire que §;; = 0 si ¢ >j et §,, = 1. La
relation X = C1PB donne & cause de (15) et (16):

Par conséquent

1/ a
| | = | 2 Oir Vor Prs | < €14 = . (17)
r=>1 bi

§<k
Cela est valable pour tous les conjugués des &,,, qui sont dans K. Or ces
&;. ont leurs dénominateurs bornés; il existe un nombre naturel
G = G(n, K) tel que |[N(&,,) =G 1si &, #0. Comme |X| #£0,ilya
au moins un terme non nul dans ce déterminant:

Elklfzkgn-‘fnkn#o ’ fiki#o pour 1=1,...,n.

Alors
| N(Siki) | =G . (18)
Les s{¥, k=1, ..., y étant du méme ordre de grandeur, il découle de
1
sk > al® > i s que les a{® sont du méme ordre de grandeur,
pour k=1, ...,9; il en est de méme des b¥). On peut donc écrire &
cause de (17):
0 <o )IE
| EQ ] < g5 B A, w, o quelconques . (19)

Prenant la norme, il vient & cause de (18):

g
AN \2
a
] g ki
G <cl5( bﬁ”’) .

D’our
b < cpal) t=1,...,n . (20)

Récrivons (15) en mettant des indices supérieurs:

a® < ¢ 50 sio1< g .

(21)
b < cy5 b i1 < g .
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1 * o 0 . . . . -
Or ( & Z ) est une permutation des indices 1,...,7n. Soit 2, un
10

n

indice fixe. Les k,; avec 1 > 1, sont tous différents, donc I’un au moins est
< 14; S0it par exemple
ki < ) ’ ? .> 7;0 d

Alors on a en vertu de (20) et (21):

A 2 (O
bgﬁ) < € b <oy g a’gcj) < Gy Cp3 a,g-o) .
Donec
A
b < ¢y, af)
Cela a lieu pour 1y = 1, 2, ..., n.

Par analogie (on utilise ici le fait que X-1 a ses dénominateurs bornés)

on a évidemment o0 w
@y’ < ¢ OF .

Le 2°™¢ lemme est donc démontré.
Pour la suite, nous poserons

En tenant compte du 2°™° lemme, on peut écrire les inégalités (19) sous
la forme

a;
| €% | < clSV az" . (22)
La démonstration du théoréme 6’ procéde alors par induction sur n de
la maniére suivante: ce théoréme est vrai pour n = 1, ce qui résulte par
exemple de (22). Supposons qu'’il soit vrai pour tous les { < n — 1.
On a d’aprés (15)

a; < €30, si 1<k . (23)
. g
SOlt 619 - 613 618 VG
‘1. . a; .
Considérons les quotients p ,1=2,..., n .
)
Supposons que
a, Ap— At 42
< C V < C ® s 0 < 019
V Ay P By o @t 41
mais que —_—
Qg 41
= Oy
a;

Cela a certainement lieu pour un ¢t < n — 1.

301



On a alors pour ©+ > ¢, § < t, d’aprés (22) et (23):

2
a Cia @ Cia C 1
B < ¢ l/ i <o '/ 137t - “18%18
l 5;; I XX Cis "*‘a‘ X U3 a g

t+1 C1o ]/@— .

Prenant la norme:

| N(E) | < — -

Par conséquent

La matrice X se décompose alors en 4 parties:

X= (? ? ol X, est de degré ¢ .

Toutes les conjuguées de la matrice X, sont bornées, car pour ¢ > ¢,
j>1t, on a
@, Cfa Qy

3 o i)
| 55’;') | < ¢4 ““‘ai < €5 i

< €38 €13 Cro

@t +1

11 reste & montrer que X, et X, sont bornées. Pour cela décomposons S
et T d’une fagon analogue a X:

6 — G’l _6—2 Iz z: fz i
S & L T
A cause de © = I[X], on a
S, = Ti[X,]

- _ (24)
62 = x{z;x2+ x;z2£4 .

Le théoréme 6’ étant par induction supposé vrai pour les systémes de
formes & moins de n variables, on peut ’appliquer aux systémes des S,
et T, liés par S, = I,[¥,], car ces systémes sont dans R{’ comme
on I'a vu et X,, X;! ont de méme que X, X leurs dénominateurs bornés,

puisque . %1 xg £ xi—l *
“\o % —\o x

Les X{¥) sont donc bornées par hypothése d’induction. On calcule alors
X, au moyen de (24):
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xa = z{.—l E{_l (62“’21 S:2 x4) =
-'-‘—'%1_@1_162 “_fl_lzzx‘; .

On voit que ¥, est bornée, puisque X, et X, le sont, ainsi que ;' &, et
1T, cela en vertu du 1°F lemme.

Le théoréme 6’ est ainsi démontré, et I'on a vu que le théoréme 6 s’en
suit.

Conséquence. Soit D un domaine quelconque de I’espace des S. Appe-
lons domaine équivalent & D tout domaine transformé de D par une sub-
stitution unimodulaire ). Nous désignerons par R les domaines équi-
valents & R, . Il résulte du théoréme 6 que:

Les R touchant un R, suivant une portion intérieure ¢ P de sa frontiére
sont en nombre fini. (P désigne I’espace des systémes positifs.)

§ 8. Forme des domaines R,

Théoréme 7. Chacun des domaines R,, p =1, ..., N, est Vintérieur d’un
angle solide convexe limité par un nombre fini d’hyperplans passant par
Vorigine de Vespace des S. La portion de la frontiére de R, située sur la
multiplicité | S| = 0 a une dimension d’au moins gn — g, unités inférieure
a celle de R, .

Nous ne considérons dans ce théoréme que les B, ayant la dimension
d = -g- (ng + ¢,) de l'espace des S. Les éventuels R, de dimension in-

férieure & d peuvent étre laissés de coté, car ils sont équivalents a des
portions de frontiére de R, de dimension d.

Examinons d’abord les points frontiéres semi-positifs de R,. On peut
raisonner sur R(2,) au lieu de R,, car la transformation qui change R,
en R(,) est linéaire et laisse la multiplicité | S| = O invariante.

Soit donc § un systéme frontiére de R(,) tel que |S| = 0. Le
théoréme 4 et les inégalités (5) donnent

s L 0% | GW |

la constante C* ne dépendant que de n et de K. Comme |S| = |SY)]...
| G| = 0, il existe un & pour lequel |S®| = 0, d’ou s{¥) = 0. D’aprés
(4) § 6 on en déduit que

s¥»=0 pour tout 1,
et d’aprés (13) § 7 que
8{) =0 pour tous 5,24 .
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Ce sont la ng — g, relations indépendantes entre les coefficients de S.
La 2°™ partie du théoréme 7 est démontrée.

Pour ce qui concerne la 1° partie, nous savons déja que R, est con-
vexe et limité par des hyperplans passant par 1'origine (voir § 5). Il reste
4 montrer que ces hyperplans sont en nombre fini. Soit H un de ces
hyperplans. On peut supposer que la portion de H frontiére de R, con-
tient des systémes positifs, car ng — g, = 2 (sauf dans le cas banal
n = y = 1 que nous excluons ici).

L’hyperplan H divise ’espace P des systémes positifs en 2 régions,
dans I'une desquelles R, est situé. L’autre de ces régions contient au
moins un R’ qui touche R, suivant H. Les domaines R, et R’ étant
convexes ne peuvent se toucher que suivant 'hyperplan H. Donc I'exis-
tence d’une infinité de H serait en contradiction avec la conséquence du
théoréme 6 énoncée a la fin du § 7.

Remarques
1. 8t n>1, les systémes semi-positifs de R, admetlent chacun wune
wnfinité de transformations unimodulavres en eux-mémes.

En effet, pour un S de R(2,) tel que || = 0 on a s{p = 0. Il s’ensuit
/

0 (E) transforme S en lui-méme. Le

systéme 7' correspondant a S dans R, est alors transformé en lui-méme

par la matrice
C=ABA*.

que toute matrice de la forme B :(

I1 suffit de choisir les composantes de b’ dans K et divisibles par le déter-
minant || pour que € soit unimodulaire dans K. On voit qu’il y a bien
une infinité de € unimodulaires laissant 7' invariant.

2. Le domaine R peut étre rendu connexe par un chorx convenable des U, .
En effet, 'espace P des systémes S positifs est connexe. Or en trans-
formant R par un ensemble complet de représentantes U du groupe
quotient U|F (voir § 2) on obtient une infinité de domaines équivalents a
R et recouvrant exactement P. Supposons alors que R se compose de
deux parties R’ et R” n’ayant aucun point commun, en dehors de 0.
Effectuant sur R’ et R” toutes les substitutions de U|{F, on obtient des
domaines P’, P” qui forment P par leur réunion et qui ont & cause de la
connexité de P d’autres points communs que 0; soit S un de ces points,
8, et S, ses équivalents dans R’ et R”. On a

S, dans R/,

8 = 8,[U,] = 8,[U,] 8, dans R’
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En transformant R” par U, U, on obtient un domaine équivalent R”
qui a avec R’ le point S, en commun. En continuant de la sorte, on
obtient finalement un domaine R connexe.

§ 9. Application

Les résultats obtenus permettent de démontrer facilement un théo-
réme de Hurwitz sur la structure du groupe unimodulaire dans K :

Théoréme. Le groupe unimodulaire de degré n dans K posséde un nombre
fint d’éléments générateurs, pour lesquels on peut prendre les U, du
théoréme 6 et les v ®.

Soit U une substitution unimodulaire dans K. Choisissons un systéme
réduit S;, et soit S, son transformé par U. Dans I'espace P des 8, le
segment de droite 8, S, rencontre, comme nous le verrons, un nombre fin:
seulement de domaines équivalents & R; soient R® = R, RV ..., R@
ces domaines dans l’ordre ou le segment S, S, les rencontre, et soit B, la
substitution unimodulaire transformant R en R, B, = ¢, B, = U.

Les domaines R® et R!'+1) se touchent; leurs transformés par B;' se
touchent également: ce sont R et son transformé par B,,, B; . Il s’ensuit
que la substitution B,,, B;™* appartient dans le groupe quotient U/F &
la méme classe que 'une des U; du théoréme 6:

By =U,,; B, (mod F) .
De ces relations pour ¢ = 0,1, ..., ¢ — 1 on déduit que
U=93, = umq-1 oo U W, (mod )

ce qui démontre le théoréme.

Il reste & voir que le segment 8,8, rencontre un nombre fini de do-
maines R équivalents a R. Supposons par absurde que S, 8, rencontre
une infinité de R, Prenons un point du segment S, S, dans chacun de ces
R, Ces points en nombre infini auraient un point d’accumulation S :

S=18,4+1—A8,, 0<i<l, |8>0.

Dans tout voisinage de § il y aurait des points d’une infinité de domaines
équivalents & R, ce qui est en contradiction avec le
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Lemme : Soit un systéme S positif, | S| > 0. Il existe un voisinage de S
ne conlenant qu'un mombre fini de portions de domaines équivalenis au
domaine réduit R.

Distinguons 3 cas pour la démonstration de ce lemme.

I* cas. 8 est intérieur a Uun des R, .

Le domaine R, est convexe et limité par un nombre fini d’hyperplans.
Soit r > 0 la plus petite des distances de S & ces hyperplans. Le voisinage
formé par lintérieur de la sphére X'(S, r) de centre S et de rayon r ne
contient que des points de R.

2tme cas. S est sur la frontiére d'un R, .

D’aprés le théoréme 6 il existe un nombre fini seulement de domaines
équivalents & R se touchant en S; les domaines R{) équivalents aux R,
et sur la frontiére desquels S est situé sont donc aussi en nombre fini. Soit
r > 0 la plus petite des distances de S aux hyperplans en nombre fini
limitant ces R{), les hyperplans passant par § exceptés. La sphére X' (S,7)
est un voisinage de S convenable.

3%me cas. S n’est pas dans R.

Soit 9, le systéme réduit équivalent a S, U la substitution unimodulaire
transformant 8, en 8. S, rentre dans I'un des deux premiers cas. Si V, est
un voisinage de §; ne contenant & son intérieur qu’'un nombre fini de

1

portions de domaines équivalents & R, le voisinage V transformé de V,

I 4

par U jouira de la méme propriété.
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