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Théorie de la réduction
des formes quadratiques définies positives
dans un corps algébrique K fini

Par Pierre Humbert, Lausanne

Introduction
Dans la théorie des formes quadratiques, les classes de formes

équivalentes relativement à un groupe de substitutions linéaires et homogènes
jouent un rôle important. Lorsque ce groupe est celui des substitutions
non dégénérées à coefficients réels, on peut représenter chaque classe par
la forme canonique £ i x\. Les seuls invariants sont alors le nombre des

i
carrés pris positivement et celui des carrés pris négativement, c'est-à-dire
la signature. Dans l'arithmétique des formes quadratiques, on envisage
l'équivalence relativement au groupe des substitutions à coefficients
entiers rationnels et de déterminant ± 1 (substitutions unimodulaires).
La signature et le déterminant de la forme sont des invariants, mais ils
sont loin de caractériser complètement chaque classe. On sait, par
exemple, que pour une signature et un déterminant donnés, il peut y avoir
plusieurs classes de formes à coefficients entiers (toutefois un nombre
fini).

Le problème de reconnaître si deux formes quadratiques sont arithmé-
tiquement équivalentes ou non a été résolu par Lagrange1) pour les formes
binaires définies positives au moyen de la théorie de la réduction, théorie
qui a été étendue par Seeber2) au cas ternaire et généralisée par Min-
kowski3) au cas de n variables. D'illustres mathématiciens, entre autres
Gauss, Dirichlet, Hermite, se sont aussi occupés de cette théorie, dont
l'idée est la suivante : Dans chaque classe de formes quadratiques définis

positives on détermine, par certaines conditions de minimum, une forme
réduite. L'ensemble de toutes les réduites constitue, dans l'espace des

formes, un domaine fondamental R relativement au groupe des
transformations unimodulaires. L'équivalence de deux formes revient à

l'identité de leurs réduites, exception faite pour la frontière de R, où il
peut exister plusieurs formes réduites équivalentes.

l) Lagrange, Oeuvres, t. III, p. 723—728 (Paris, 1869).
2) Seeber, Untersuchungen ûber die Eigenschaften der positiven ternâren quadra-

tischen Formen, (Freiburg i. B. 1831).
8) Minkowski, Gesammelte Abhandlungen, Bd. 2, S. 53 (Leipzig und Berlin, 1911).
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C'est à Minkowski que l'on doit les résultats essentiels de cette théorie :

le domaine R est l'intérieur d'un angle solide convexe limité par un
nombre fini d'hyperplans, et touche à un nombre fini seulement de
domaines équivalents (transformés de R par des substitutions uni-
modulaires). Ces résultats, outre leur intérêt pour la théorie des formes
quadratiques, interviennent avec fruit dans l'étude des représentations
rationnelles des groupes d'ordre fini.

L'objet du présent travail est d'étendre la théorie de la réduction des
formes quadratiques définies positives, au cas où le groupe unimodulaire
rationnel est remplacé par le groupe des substitutions à coefficients entiers
dans un corps algébrique K fini de degré g et dont le déterminant est une
unité de K (groupe unimodulaire dans K). Mais ce groupe n'est pas
proprement discontinu dans l'espace des formes quadratiques, aussi
est-on conduit à considérer des systèmes de g formes, transformées
respectivement par g substitutions unimodulaires conjuguées. A chacun
des corps conjugués réels K{i) de K correspond dans un de ces systèmes
une forme définie positive, et à deux corps K{l), K{i) imaginaires conjugués
correspondent deux formes hermitiennes définies positives et imaginaires
conjuguées. Le groupe envisagé est proprement discontinu dans l'espace
de ces systèmes, et les résultats de Minkowski subsistent: II existe un
domaine fondamental formé par la réunion d'un ou de plusieurs angles
solides convexes R^ limités par un nombre fini d'hyperplans ; chacun des

R^ n'est en contact qu'avec un nombre fini de domaines équivalents à des

Rv. Il s'ensuit par exemple que le groupe unimodulaire de degré n dans K
possède un nombre fini d'éléments générateurs.

La méthode que j'ai employée diffère peu dans ses grandes lignes de
celle que Minkowski utilisa pour le groupe unimodulaire rationnel; les
idées directrices sont les mêmes. Au lieu du principe des ,,tiroirs" de
Dirichlet, j'ai fait usage du théorème plus profond de Minkowski sur les
formes linéaires, théorème qui a de si belles applications en théorie des

nombres. En outre le passage d'un système de formes donné au système
réduit équivalent se fait en deux étapes, ce qui permet de tourner la
difficulté due au nombre des classes de K et à l'introduction simultanée de

tous les conjugués de K. C'est la deuxième étape qui donne lieu aux
différents domaines Ru dont se compose le domaine fondamental.

Encouragé, orienté par M. C. L. Siegel, qui m'a mis sur la voie de ce

travail, je suis heureux de lui exprimer ici ma profonde reconnaissance

pour ses conseils et pour l'intérêt qu'il m'a témoigné lors de mon séjour à

Gôttingue.
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§ 1. Enoncé du problème et méthode

Soit K un corps algébrique fini donné, de degré g. Si gx désigne le
nombre des conjugués réels et 2g2 celui des conjugués imaginaires de K,
on a

9 9i + 202
On pose y gx + g2

Les conjugués sont numérotés de telle manière que les corps K{1),
K{9l) soient réels, et les corps K{Ol+ç) et K(Çl+92+e) imaginaires conjugués
(e i,...,gt).

Par substitution unimodulaire dans K nous entendrons une substitution
linéaire et homogène dont les coefficients sont des entiers de K et le
déterminant une unité de K. H désignant la matrice d'une pareille
substitution, on aura

U entière dans K ; | U | € unité de K.

Les substitutions unimodulaires dans K d'un même degré n forment un
groupe, le groupe unimodulaire de degré n dans K.

Par système 8 nous entendrons un ensemble de y formes quadratiques
à n variables, constitué par

gt formes définies positives, de matrices symétriques réelles S(I),
s*™

g2 former hermitiennes définies positives, de matrices complexes §(1),

Si l'accent désigne la matrice transposée, on a

§ désignant la matrice dont les éléments sont conjugués complexes de

ceux de â5 on a _

Deux systèmes 8X et S2 sont dits équivalents, St ~ 82, s'il existe une
matrice U unimodulaire dans K, telle que l'on ait

)' 6£*>H<*> &2k) k 1 2 gx
et

k - 1 2 g2

La notation VL{k) désigne la matrice formée des &ièmeB conjugués des
éléments de U.
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La relation 8X~82 est réflexive, symétrique, transitive, puisque les

substitutions unimodulaires U forment un groupe. Les systèmes 8 sont
ainsi partagés en classes de systèmes équivalents. Le problème qui se pose
est le suivant :

Deux systèmes 8t et 82 étant donnés, reconnaître s'ils sont équivalents ou
non. On le résoudra ici en généralisant la théorie de la réduction des formes
quadratiques définies positives de MinkowsM*). Il s'agira de construire un
domaine fondamental pour les systèmes S relativement au groupe uni-
modulaire dans K, ces systèmes se transformant comme il a été indiqué.

Dans ses grandes lignes la méthode est la suivante : soit un système S
formé des y matrices S<*>= (sfy), k 1, 8l, §<*> (*<?,>), q 1,...,
g2. Appelons pour un instant famille de 8 l'ensemble de tous les systèmes
obtenus à partir de 8 par transformation avec des substitutions entières
dans K et non dégénérées, c'est-à-dire l'ensemble des systèmes de y
matrices «<*>'S<*>îl<*>, k=l,...,gi, 9I<*i+*>' §<*> Wffi+Q), Q=l,...,gt,
21 parcourant toutes les matrices à éléments entiers de K et telles que
1211 +0. Parmi les systèmes de la famille de 8, extrayons tous ceux pour

ai ffî
lesquels la somme txl Z s^ + £ h$ est minimum. Puis parmi ces

derniers systèmes, ayant tous la même valeur minimum pour la somme
01 02

tn, extrayons ceux pour lesquels la somme t22 £ s^ + Z h^ est

minimum. Continuant ainsi jusqu'à la somme tnn) on obtient finalement

un (ou éventuellement plusieurs) système S de la famille de 8. S est le
transformé de 8 par une substitution entière dans K, non dégénérée, de

matrice 2t0 (première transformation). On démontre (théorème 1) que
cette matrice 2I0, si elle n'est pas unimodulaire, a néanmoins un
déterminant de norme bornée, la borne étant indépendante du système
initial 8. Il en résulte (théorème 2) que $I0 U21,,, où 3lv appartient à un
ensemble fini de matrices entières non dégénérées 5I1? 21^, et où

XI est unimodulaire dans K. En transformant le système 8 par l'inverse

$ty de 21^, on obtient un système 8 équivalent à S et qui est le système
réduit de 8 (deuxième transformation).

A chacune des matrices %, correspond un certain domaine Rv de

l'espace des S, domaine défini par les inégalités exprimant les conditions de

minimum auxquelles le système 8 est assujetti. La réunion de ces Rv,
v 1, N, constitue un domaine fondamental R pour les systèmes 8

4) H. Minkow8kit Diskontinuitâtsbereich fur arithmetische Àquivalenz, Journal de
Crelle, 129, p. 220 ; ou Gesammelte Abhandlungen von H. Minkowski, Bd. 2, S. 53.
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relativement au groupe unimodulaire dans K (théorème 3). On démontre
(théorème 6) que les substitutions unimodulaires transformant les uns
dans les autres les systèmes frontières du domaine R sont en nombre fini.
Il s'ensuit immédiatement que le domaine fondamental touche un nombre
fini seulement de domaines équivalents, c'est-à-dire transformés de 2?

par des substitutions unimodulaires. On voit enfin (théorème 7), que
chacun des domaines Rv est l'intérieur d'un angle solide convexe limité
par un nombre fini d'hyperplans passant par l'origine de l'espace des S.

§ 2. Préliminaires. - Notations

Dans la mesure du possible, on se servira de matrices dans les calculs.
Les majuscules allemandes désignent des matrices quadratiques, parfois
rectangulaires. Les minuscules allemandes désignent toujours des colonnes,

ou vecteurs, matrices d'un type particulier. fèk est la matrice unité
de degré k, et (g la matrice unité de degré convenable (pour autant que
l'omission du degré ne nuise pas à la clarté). î) (al9 an) désigne la
matrice diagonale d'éléments diagonaux ax, an, c'est-à-dire la matrice
ayant ax, an dans sa diagonale principale et partout ailleurs des zéros.

Ainsi Œ © (1,..., 1).
91 étant une matrice quelconque, 31 ' désigne sa transposée, c'est-à-dire

la matrice ayant pour lignes les colonnes de 31 et vice-versa. Si une
matrice 31 (oc^) a tous ses éléments oc{j dans le corps JT, on représente par
3l(&) la matrice formée par les &ièmes conjugués des éléments de 31, soit

On dit qu'une matrice est bornée, si tous ses éléments le sont. Pour une

/ Mcolonne x — I • la notation \x\ < c est une abréviation pour\ in'
|f,| < c i 1, n

Il y aura parfois avantage à se servir de la matrice :

0

\ 0

ayant les S et les § d'un système 8 dans sa diagonale principale et
partout ailleurs des zéros. Il n'y a pas de confusion à craindre si l'on désigne
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cette matrice par la même lettre 8 que le système 8. S est une matrice
hermitienne définie positive d'un type particulier, de degré ny. Si U
désigne d'une façon analogue la matrice

on peut écrire U/S1U — 82 pour l'équivalence de deux systèmes Sx et S2.
Cette notation abrégée sera quelquefois employée par la suite. Une
majuscule aDemande désignant une matrice à coefficients dans K, la
majuscule latine correspondante représentera la matrice formée comme U
l'aide de U.

On dira qu'une matrice symétrique ou hermitienne S est positive si la
forme correspondante est définie positive, et Ton écrira : S > 0. On appellera

matrices semi-positives les matrices de formes semi-définies positives,
et l'on écrira pour elles (g > 0. On a | S | > 0 pour les premières et
| (51 0 pour les secondes.

On peut simplifier les notations en désignant les matrices réelles Qik)
et les matrices hermitiennes §(&) d'un système 8 par un même symbole
S(&), Je variant alors de 1 à y. Une matrice positive réelle étant un cas

particulier de matrice hermitienne positive, on pourra considérer
l'ensemble des (5{k) comme un système 8 de y matrices hermitiennes positives,
avec la convention que les gx premières d'entre elles soient réelles :

On calcule alors avec les S(fe) comme avec des matrices hermitiennes.

far exemple, la valeur de la forme de matrice &{k) pour la valeur

X I : I de la colonne t des variables est %fQ{k)x

\î«/
Pour abréger, on emploiera la notation de M. Siegel: S[$] 217 S91,

31 étant une matrice à n lignes et pouvant avoir un nombre quelconque de
colonnes, pour la matrice transformée de ® par %.

Unités générales

Les matrices unimodulaires 3f transformant tous les systèmes 8 en
eux-mêmes forment un sous-groupe invariant du groupe multiplicatif
des matrices unimodulaires U de K. Ces g sont définies par les conditions :
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] S Sg(fc> S k 1,..., y

pour toute S > 0.
Nous allons déterminer ces 5» <lue nous appellerons unités générales.

Pour simplifier les notations, supprimons dans g(fc) l'indice de
conjugaison k.

Montrons d'abord que S[2f] Sa lieu identiquement en S. Soit donc
Q une matrice hennitienne quelconque, définie ou indéfinie, de
déterminant nul ou non, assujettie à la seule condition d'être réelle si le corps
conjugué de K auquel appartiennent les éléments de g est réel. Soit,

/Mcomme précédemment, x I : la colonne des variables de la forme

hermitienne G [s]. Considérons toutes les valeurs des |t- telles que
Xfx — 1, c'est-à-dire que | ^|2 +•••+! fw|2 1. Pour toutes ces
valeurs la forme hermitienne S[x] est bornée en valeur absolue; il existe
un nombre positif [x tel que

/«>|S[x]| si s'ï=l.
A cause de l'homogénéité de Q[x] on a alors:

— S) [I] > 0 pour tout x # 0

La matrice hermitienne ^ (g — S est donc positive, g la transforme en
elle-même: (^(g — S) [g] /j(g — S. Mais g'g (g[g] (g, car (g

est positive, donc S [g] =• S c. q. f. d.
En prenant pour S des matrices particulièrement simples, on arrive

aisément en utilisant ce résultat à déterminer la forme générale de g.
Soient S (*w), g (<xti). Prenons pour S la matrice dont les éléments
sont

8kk 1, k fixe; s^ 0 si i, j ^ k
On obtient:

- __
0 si i, y i=- k

3 1 si % ] k

On a donc |#fcfc|2 1, ce qui implique <xkk ^ 0. Pour j k l'égalité précédente

donne alors:
ocik 0 si i ^ k

On voit ainsi que g est une matrice diagonale :

g J) (oct, ocn) avec |ock\ 1
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Particularisons ensuite S en prenant :

skl 1 ; Je, l fixes, k < l.
8ij 0 si (i, j) ^ (fc, Z) ou (i, &)

On obtient
ockocl 1

Multipliant cette égalité par txl on trouve, à cause de |ot,| 1

La matrice gf a donc la forme suivante:

g <x(£ avec |<x| 1

Cela devant avoir lieu pour toutes les conjuguées de la matrice Ç, oc est

une racine de l'unité. Désignant les racines de l'unité du corps K par w, on
aura :

Réciproquement, on vérifie immédiatement que toute matrice de la
forme g o© transforme un système 8 en lui-même. On peut donc
formuler le résultat suivant:

Le groupe des unités générales 3 est un groupe multiplicatif d'ordre w
(w nombre des racines de Vunité de K) constitué par les matrices co(£

(oo racine de Vunité de K).
C'est un groupe cyclique, comme on le sait.

Si gx > 0, K ne contient pas d'autres racines de l'unité que i 1, et les
.seules matrices Qr sont i (£.

Xï étant une matrice unimodulaire quelconque, on a S [II] S[ÎÏÇ].
En outre, si U ^é g, il existe au moins un système S de y matrices hermi-
tiennes positives Q(k) tel que

Le problème posé est donc d'une façon plus précise celui de la
détermination d'un domaine fondamental pour les systèmes S, relativement
aux transformations du groupe quotient U15.
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Un lemme

Soit x un vecteur de composantes fi} i 1, n, c'est-à-dire une
matrice formée de la seule colonne des ^. Les f4 étant des entiers
algébriques de K, on désignera par x la colonne formée par les y colonnes

conjuguées x{k) superposées. Enfin on emploiera le signe r, qu'on lira
trace, pour indiquer la sommation dek=lkk y sur un indice supérieur

k omis dans l'expression sous le signe r. Ces notations permettent
d'écrire :

x1 Sx S[x] E £<*>[*<*>] t(S[j]).
Lemme. Pour un système 8 donné, il existe un nombre fini seulement de

vecteurs x entiers de K tels que

Cela résulte d'une inégalité connue relative aux formes définies
positives. Si fi > 0 désigne le minimum de 8[x] pour toutes les valeurs
complexes de x telles que

x1 ~x 1 xik) réel si k < gx,
on a

8[x] > iax'x

Par conséquent S [x] ^ c entraîne:

(jlx'Ic < c ou fiT(x'x) < c

ou encore

Toutes les composantes |[*) de x sont donc en valeur absolue inférieures à

]/— donc tous les conjugués de £t sont bornés, et par conséquent ^
n'est susceptible que d'un nombre fini de valeurs entières de K.

§ 3. Première transformation du système 8

Dans ce paragraphe, a, b, X désigneront, à moins de mention
expresse du contraire, des colonnes ou vecteurs dont les n composantes
sont des entiers du corps K :
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¦-(£)• -(t)
<*i, Pi, ft entiers de K.

Soit un système 8. Nous allons lui faire subir la première transforma-
tion. Comme on Fa vu au § 1, il s'agit de trouver un système 8
transformé de 8 par une matrice 31 entière dans K, non dégénérée, de sorte que

Y

les quantités x (8U) 2J d$ soient minima, à commencer par i 1

jusqu'à i n. k==1

D'une façon générale, considérons une matrice hermitienne § (Ati)
et transformons-la par la matrice X de même degré n que <r>. Soient

xt, xn les colonnes de X (x1} xn). La transformée % de § par X
est 2 Xf &X ô[3£]; les éléments £ti de £ se calculent par les formules

En particulier les éléments diagonaux de % sont

Reprenons notre système 8 et appliquons ce qui précède en prenant

§ Q{k\ X 9t(fe). Le système 5 transformé de 8 par 91 est formé par
les matrices Qik) Q(k)[Wk)]. Si al9 an sont les colonnes de 5t

(du an), les éléments diagonaux des S(fe) sont 8$ S^ta^]. Les

quantités à rendre minima sont par conséquent T(®[ûi]), i 1, n.

Nous commençons donc par déterminer un vecteur entier c^ ^ 0 de K
tel que l'on ait

pour tout x entier de K et ^ 0. Un tel vecteur a± existe certainement, en
vertu du lemme précédent. Car si x0 est un vecteur entier non nul
arbitrairement choisi, on a

pour un nombre fini seulement de 3e, et parmi ces x en nombre fini, il y en a

un ou plusieurs qui rendent t(S[x] minimum, et qui peuvent être pris
pour vecteur ax. On a là un moyen permettant de déterminer effectivement

le vecteur ax. Ce vecteur ax n'est pas unique, par exemple coat
convient également, co étant une racine de l'unité de K. Parmi tous les
vecteurs a% convenables, en nombre fini, prenons en un arbitrairement.
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Puis déterminons d'une façon analogue un vecteur a2 entier de K,
linéairement indépendant de a± : rang (au a2) 2, et tel que l'on ait

pour tout x entier deK et linéairement indépendant de a^ rang (ctu x) 2.

Comme tout à l'heure, on voit que ct2 existe. Il n'est pas non plus déterminé

d'une façon unique; dans tous les cas coa2 convient également. Ici
on ne choisira pas a2 au hasard parmi ses déterminations possibles, bien
au contraire. Voici comment se fait le choix de <x2 :

1er cas.

gx > 0. Les seuls co sont ^ 1, on peut donc choisir entre ± a2. On
détermine le signe de sorte que:

cas.
rx 0. Il se peut que w > 2. Considérons la quantité

« ___ «

Si l'on remplace a2 par coa2, cette quantité 8$ devient a>{1) s$. Or, un
nombre complexe s ^ 0 étant donné, il existe une racine de l'unité co de

K et une seule telle que
n n< arg cos ^ — •

iv w

Le secteur < arg s < — du plan des s complexes est un domaine

fondamental relativement à la multiplication des s par les racines de

l'unité co de K. Si s 0, on peut prendre œ arbitraire, il y a w possibilités.
On peut donc choisir le vecteur û2 de façon que

< arg siV <— •

w 6 12 w

Pour des raisons qui seront claires par la suite, nous nous contenterons de

< arg s\l < —
w 5 12 w

ce qui donnera lieu, dans certains cas, à une ambiguité pour le choix de <x2.

18 Commentarii Mathematici Helvetid ^ ' **



Si w 2, les seuls eo sont i 1, et la condition précédente s'écrit:

— — < arg «â^-y

ou aussi St^iV ^ 0, ce qui montre que l'on peut faire rentrer le 1er cas

dans le 2me.

Le vecteur û2 étant ainsi fixé, on détermine û3 par les trois conditions :

rang (<*!, a2, û3) 3

T(S[ûi)<r(S[x])

pour tout x tel que rang (a1} a2, x) 3

et

- JL < arg aj«> S<*> û?> < £ •

II est inutile de distinguer les cas gx > 0 et gx 0; cela n'a été fait
précédemment que pour plus de clarté.

On continue de la sorte. D'une façon générale, ûi, ûj-x étant fixés,
on détermine ûi par les trois conditions :

rang (<*!,..., û,) l ; (1)

*(®[û|] < t(S[ï] pour tout x tel que rang (ax, o,_l5 ac) Z ; (2)

— — <arg a/(11)S(1)S1)<— si 1^2 ; (3)

cela pour Z 1,2,...,%.
Les n vecteurs ûx, an ainsi obtenus forment une matrice 31

(ax,..., an) entière dans K de déterminant 1311 ^ 0. On l'appellera la
matrixe auxiliaire du système 8.

On transforme alors chacune des matrices (5(fc) par la tèème conjuguée
$(<*) de 3t Les matrices obtenues par cette première transformation seront

désignées par S(fc). Elle sont donc définies par:

Elles forment un nouveau système 8. En introduisant conformément aux
conventions du § 2 la matrice
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\0
on aura

/S S[A]

Cherchons les inégalités que vérifient les S(fc). Pour les S'*', on a:

rCSto^XtCStï]) (I)

pour tout x entier dans K tel que

rang (d, ûw, x) l l 1 2, n

— -î- < arg a;(1) S(1> 5^ < -J Z 2, n (II)

D'après la manière dont les formes quadratiques se transforment, ces

relations s'écrivent d'une façon très simple au moyen des S(Af) (sffi).
On a en effet

$>
Donc

(Pour alléger l'écriture, on contracte deux indices égaux en un seul.)
Soit îl"1^ g. Le vecteur X) n'est pas nécessairement entier, mais il est

caractérisé par la condition que 9lt) soit entier. On a

La condition rang (at, 0,_1; X) l s'écrit, en multipliant à gauche

par 9l-1, ce qui conserve le rang :

rang /^_1,-\ l

Cela signifie que le vecteur t) doit avoir ses dernières composantes à partir
de la Ziême non toutes nulles :

Soit /Vl\
X) I I on aura (97, ,...,»?„) ^ 0 »

\Vn/
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Les conditions (I) et (II) deviennent ainsi:

r(à,)<r(é[t)]) (I)

pour tout t) de K tel que 9It) entier (r]l,..., rjn) ^ 0 ;

1 l,...,n

— — < arg 4V < — ; (II)w l w

l 2,...,n

§ 4. La matrice auxiliaire

Si la matrice auxiliaire 9t du système 8 était unimodulaire, c'est-à-dire
si |9t| e unité de K, les 2 systèmes S et S seraient équivalents. Mais
ce n'est pas nécessairement le cas. Nous allons voir néanmoins que pour
tous les systèmes S, la norme du déterminant de ?t est bornée. C'est ce qui
fait l'objet du

Théorème 1. La norme du déterminant de la matrice auxiliaire $t est

bornée: |^(|?t| )| ^ c, c étant une constante ne dépendant pas de 8, mais
seulement den et de K, c — c (n, K).

La démonstration repose sur un théorème connu de Minkowski relatif
aux formes linéaires, théorème que l'on peut énoncer ainsi :

Soient £ une matrice donnée de degré r, de déterminant \ (£ | ^ 0, dont les

/zA
lignes complexes sont 2 à 2 conjuguées, et z j ; I une colonne de variables

\zrj
indépendantes. Il existe alors de valeurs entières rationnelles non toutes

nulles de zl9 zr telles que :

On va en déduire le théorème :

Soient $B1}..., 230 g matrices non dégénérées de degré n, les gx premières
étant réelles, les 2 g2 suivantes complexes, telles que 93ai+a2+Jb 93ai+J(.

pour k 1, g2, et soit B la valeur absolue du produit de leurs
déterminants. K étant un corps algébrique de degré g, ayant gx conjugués réels et

2 g2 imaginaires, il existe un vecteur entier x non nul du corps K, tel que Von

ait pour tous les conjugués x{k) de x :
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D \d\ est la valeur absolue du discriminant du corps K.
Pour cela, soit {œl9 a>ff) une base des entiers de K. Une colonne

d'entiers du corps K est donnée par

X co^i H h cofft)ff

les colonnes t>v | -1 étant entières rationnelles. Nous numérotons les

conjugés de K comme il a été indiqué au début du § 1.

Appliquons le théorème de Minkowski rappelé tout à l'heure en
prenant :

/

(J\0 93, /
où Q est la matrice Q (co^), i étant l'indice de ligne, k l'indice de

colonne, et où Q x (£n désigne le produit de Kronecker :

Il est clair que (£ satisfait aux conditions du théorème : les gxn premières
lignes de (£ sont réelles, et les n lignes (co(/1+fc) SB,1+4, •, cojf1 f *>

sont respectivement conjugées complexes des n lignes

Le déterminant de (£ vaut |(£| |93X{ • • • |93J • |i3|w. En valeur absolue il
est égal à ||(£|| J3- |/D» ^ 0. Il existe donc une colonne entière rationnelle

to non nulle de gn éléments, que l'on décomposera ainsi :

œ I : 1 avec D,- I :

\ », / V vin

vik entiers rationnels et telle que l'on ait :
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Or

j

/93i
•¦

[o

0

0

*•

'Ci 0\ /3fa)\_/»i*(1)\
,0 ®f/ \x«»>/~\èf x»>/

f- eu, o, ^ 0 est une colonne d'entiers de K.

On obtient bien le résultat annoncé:

en 2g

VT \/W, x # 0 c.q.f.d.

Appliquons ce théorème en prenant 23fc 3t(fc)-\ les 2l(&) étant les

conjuguées de la matrice auxiliaire 31 obtenue lors de la première
transformation du système 8. Il est clair que ces 93 k remplissent les conditions
énoncées dans l'hypothèse du théorème. La quantité désignée par B vaut
B | JV 13t| )\-x Il existe donc un vecteur j^Odu corps K tel que

Soit, comme précédemment, X) 3I""1 ï;ona

'¦•=(¦)X n'étant pas nul, x) • I ne Test pas non plus; supposons que

rjn 0 mais que rjt ^ 0. On applique alors les

inégalités (I) de la fin du § 3 à cet t). Supprimons les points sur les s.

On obtient, en tenant compte de \x){k)\ ^ 0 :

t(«,)<t(SDj]) r S a^n^nf'^Z i1 l»i5M •

Or les <S{k) sont des matrices positives, donc ®(fc)[3E] > 0 pour toutes
valeurs complexes (réelles si k ^ g^) des composantes f^ du vecteur x ;

en particulier pour les valeurs suivantes:
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fm 0 si m^i m^j
on trouve:

2|«gM <«?> +
On en déduit:

z i«g»i <z

A cause de (2) on obtient alors

T(«,) < G2 1" l S *f W

Or les inégalités (I) appliquées à t) avec

rjh= l t]i 0 si i ^ézh h^l
donnent :

t(s,) <t(«a) si i < A •
On a donc:

tW<rW< <t(O. (3)

inégalités qui seront plus d'une fois appliquées par la suite.

On renforce l'inégalité obtenue en remplaçant r(st) par r(sl) ce qui
donne

Or t(«,) > 0, car les matrices Qik) sont positives. Comme l < n, on en
déduit:

G-1 < n
i i_

Reprenant la valeur de 0 qui est G D20 • \ N(\%\)\ *non trouve
finalement : n

ce qui démontre le théorème 1.

Théorème 2. Une matrice SU de degré n, d'éléments entiers algébriques dam
un corps K, de déterminant \%\ » ^ 0, se met sous la forme U%> où

%, appartient à un ensemble fini de matrices entières ne dépendant que de

oc, n et K, et où Xt est unimodulaire dans K.
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La démonstration repose sur un

Lemme. Si deux matrices entières 31, 3^ de déterminants associés:

e|9l| ej^lj <%, sont congrues mod (oc): 51 31! ((a)), la matrice
3I3Ï71 Xi est unimodulaire.

Comme J313Ç"1! exe~x unité de K, il suffit pour démontrer ce
lemme de faire voir que 3131^* a ses éléments entiers. Pour cela multiplions

la congruence 31 3l1((<x)) à droite par «3I71, matrice entière;
on trouve ainsi

T1 *«((«)) d'où

c'est-à-dire que 3t3Ï5~1 est entière.

Considérons alors un ensemble complet de matrices ayant leurs
déterminants associés à a, et incongrues mod (oc). Il y en a au plus N ((oc))n*.

Soient 3lx, %M ces matrices. Le nombre M dépend uniquement
de oc, du corps K et de n.

Soit maintenant 31 une matrice quelconque de déterminant associé à oc :

|3I| =oce. La matrice 31 est nécessairement congrue à l'une des 31,,

mod (oc) :

« «,((«)).

D'après le lemme on a 313171 U,U étant unimodulaire, d'où 31 !!$„.
c. q. f. d.

Conséquences et définitions.
Il résulte immédiatement des théorèmes 1 et 2 que la matrice auxiliaire

31 se met sous la forme

où U est unimodulaire dans K et%, appartient à un ensemble fini de matrices

Ces matrices 31, ne sont pas déterminées d'une façon unique, on peut
les multiplier à gauche par des matrices unimodulaires arbitraires. Deux
matrices 3t et 33 qui diffèrent à gauche par un facteur unimodulaire U,
c'est-à-dire telles que 31 US, sont dites associées à gauche. La relation
d'associativité à gauche est réflexive, symétrique, transitive; on peut
donc parler des classes de matrices associées à gauche. Et les résultats
obtenus au sujet de la matrice 31 peuvent se résumer ainsi: II existe un
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nombre fini seulement N de classes d'associées à gauche possibles pour la
matrice auxiliaire 91, quel que soit le système S dont on est parti. Ces classes

sont représentées par les matrices 9Ix, 9I#.
Désignons par R (9t) le domaine de l'espace des sW défini par les inégalités

(I) et (II) du § 3 (les points sur les s étant supprimés), et soit RQ le
domaine RQ= R ((£). On voit aisément que le domaine R (91) est contenu
dans Ro quelle que soit la matrice 9t entière de K et non dégénérée :

R(%) dans Ro

i?(9I) est convexe, car si les systèmes S et T vérifient (I) et (II), il en
est de même du système X8 + \iT avec k + \x 1, A ^ 0, p > 0.

j?(91) est un domaine fermé, ce qui provient du fait qu'il est défini par
des inégalités où se trouve toujours le signe <.

i2(9ï) ne dépend que de la classe d'associées à gauche de la matrice 91:

1?(9Ï) R(U%) si VL est unimodulaire, car dans les inégalités (I) les X)

pour lesquels 911) est entier sont les mêmes que les X) pour lesquels U9ln
est entier.

Remarquons encore que les inégalités (I) et (II) sont linéaires et homogènes

en les coordonnées de S, c'est-à-dire en les quantités Bsffi et
Jsffi. Cela est clair pour (I). Quant aux inégalités (II), on peut les écrire
sous la forme

Rs$ ^ 0 et ± Ja<V < tg ~ Rs$ l 2 n (II')

forme qui met en évidence leur linéarité.
Il s'ensuit que le domaine R (91) est limité par des hyperplans passant

par l'origine des coordonnées. Les inégalités (I) étant en nombre infini, on
pourrait s'attendre à ce que ces hyperplans soient aussi en nombre infini.
Nous verrons cependant plus loin qu'il n'en est pas ainsi, c'est-à-dire que
toutes les inégalités (I) découlent d'un nombre fini d'entre elles.

§ 5. Deuxième transformation. Le domaine réduit II
Le système S, obtenu à partir de 8 par transformation avec la matrice

auxiliaire 91, n'est équivalent à S que si 91 est unimodulaire, ce qui n'a en

général pas lieu. Mais on sait que

Considérons alors le système 8 transformé de 8 par9ï;r\ c'est-à-dire le

système des matrices

k 1 ,...,y
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Ce système S est équivalent au système primitif 8. On l'appellera le

système réduit de S. Pour un 8 donné, 8 dépend de la manière dont les

9li9 •-> 9ty ont été choisies dans leur classes d'associées.

Les coordonnées de 8 vérifient une infinité d'inégalités que l'on obtient
en remplaçant è{k) par ë{k)[%k)] dans (I) et (II). Il est inutile de les
écrire ; elles sont, d'après la remarque faite à la fin du § précédent, linéaires

et homogènes en les parties réelles et imaginaires des sty. Pour chaque %,
on obtient ainsi un domaine que nous désignerons par Rv, et qui sera le
rième douane réduit, relatif à la matrice %,, défini comme le lieu des

• • • •

systèmes de matrices S(fc) S(fc)[2I(viH1] lorsque le système des <5{k)

parcourt tout le domaine 22 (91,,).

Comme on l'a vu à la fin du § 4, R(%,) ne dépend pas des représentantes
choisies pour les 91/, mais Rv en dépend, à une équivalence près. De même

que 22(91,,), 22V est convexe, fermé, limité par des hyperplans.
Soit P l'espace des systèmes 8. Comme il est facile de le voir, P est un

domaine ouvert dans l'espace cartésien dont les coordonnées sont les

parties réelles et imaginaires des s^\
Désignons par R la portion située dans P de la réunion des domaines

N
Rv: R Prs 2J Rv (le signe r\ signifie intersection). 22 est par définition

le domaine réduit des systèmes S.

Théorème 3. Le domaine R précédemment défini constitue un domaine

fondamental pour les systèmes S relativement aux transformations uni-
modulaires dans K.

Il s'agit de démontrer 2 choses :

1° A tout système 8 de matrices positives Q{k) correspond un système Sx

équivalent dans R :
Sj^r^S Sx dans 22.

C'est évident par définition de 22. Reprenons la notation abrégée introduite

au § 2. En transformant le système S par sa matrice auxiliaire 91, on
obtient le système 8 défini par S 8 [A ]. On sait que la matrice 9t se met

sous la forme 91 1191^, U unimodulaire dans K. Alors 8 SIA"1]
8[U] est le système réduit équivalent à 8; 8 est dans 22y puisque 8 est

dans 22(9^). Donc 8 est bien situé dans 22.

2° Deux systèmes 8 et T de R ne peuvent être équivalents que s'ils sont
situés sur la frontière de 22.
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Soient S et T deux systèmes réduits et équivalents :

S et T dans R; S T[U] ; U ^ co(E

On a pour certains indices // et v :

^ S^-1] S dans iJ(^)
T T[A~l] T dans «(«,)

Par conséquent S T[A~lU A^] T[F] avec F J^tf^ Les

que S et T sont sur la frontière des domaines respectifs jR^) et R (%,);
alors S et T seront évidemment systèmes frontières de IL et Rv, puisque
le passage de R(%) à Rv se fait par la transformation S &[%,] qui est

topologique. Distinguons 2 cas, selon que 93 est diagonale ou non.

1er cas. 93 est diagonale : 93 D {vx, vn).

Alors SB ^ o>(Ê, car U ^ co(£ et 91,93 U%. Les éléments de &k)
(ig>) et de 2C*) (^(*)) sont liés par les relations

\
c.-à-d. : 8ffi tffi v^ vfK Considérons les colonnes 1)^== lv€ I de 93

\0 /
(0 \
\0 /

(t)i, *)n). Comme 31,93 est entière, la colonne 9^ est entière, et Ton

peut appliquer (I) aux matrices Zik) avec t) t)t, l i :

La matrice ^l^"1 est aussi entière; si 93~1 (v[y t)*)> ^a colonne

5t^t)J est entière, et Ton peut appliquer (I) à 8 avec X) t)J, ï i:

• • •
On voit donc que r(«t) t(^), et le système T vérifie la relation

Si tous les vif i 1,..., w, ne sont pas des racines de l'unité, soit

vt T& œt on en déduit que T est bien sur la frontière de R(ty) puisque T est

dans R(%) et vérifie:
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relation non identiquement satisfaite, car fy ^ co, obtenue en prenant
le signe dans Tune des inégalités définissant R (%v). Il en est de même

de 8.
Si tous les v{ sont des racines de l'unité, ils ne peuvent être tous égaux.

Soit donc v{ et>t; il existe un l pour lequel o)1^=a)l. Alors i(fc)[2)(fc)]

montre que:

&n — lu COi Wj COj UJi ~IU 7e 1

En particulier pour l'indice supérieur k=l on a

On peut supposer 8$ ^ 0 car si 8$ 0 il est clair d'après (IF)
(§4) que S et T sont frontières.

S et T sont dans R(WU) et R(%) donc d'après (II) :

(ii)

w

En faisant la différence:

w

c'est-à-dire
w

2tz
< argw w

2jt
Cette inégalité entraîne, puisque coa) e w ^ 1 arg co(1)= ±
Cela n'est possible que si

arg «ÎV= —

arg ;<Y=-
ou bien si

arg s\x{=~ —

n
arg *<V

w

Ce qui montre que 8 et T sont systèmes frontières de Ri^) et
respectivement.
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2ème cas. 93 n'est pas diagonale.
Soit de nouveau 93 (vl9 t)n), et soit t)t la première colonne diffé-

PI ¦rente d'une colonne de matrice diagonale; alors, si Dj= ; on a

nécessairement (vu, vln) ^ 0, puisque |93| ^ 0.

93"1 a la même forme que 93, sa Ie colonne est d*= j :"* J avec

(v*u, • -, v*n) ¥" 0. Comme %ft)l est entière, on peut appliquer (I) à T
pour le vecteur t)t, et Ton trouve:

De même, en appliquant (I) à S pour î>*, on trouve:

On en déduit r(fj) t(Sj) et Ton voit comme précédemment que S et T
sont frontières de Ri^t^) et R(%,), étant respectivement dans ces
domaines et vérifiant les égalités non identiques

t(«'i) r(è[r>;] et r(t\) r (£[*,]

En résumé, les systèmes S et T sont frontières de -B(îl^) et de R(%,),
si les systèmes 8 8[A~X] et T TIA^1] sont équivalents. Il s'ensuit

que S et T sont frontières de B^ et Rv respectivement. Pour en déduire que
8 et T sont frontières de R, il faudrait être sûr que R^ et Rv n'aient pas de

région commune. Or il est aisé de voir que si un système 8 appartient à la

fois à R^et à Rv, il est frontière de ces 2 domaines ; en effet soit lt une
substitution unimodulaire transformant S en un système T différent de S :
T 8[U] ^ 8. S appartient à R^ et T appartient au domaine J?* transformé

de Rv par Xï. Ce domaine R*v peut remplacer Rv; on l'obtient comme
Rv en partant de iî (%,), mais en transformant ce dernier domaine par
9I71!! au lieu de 9IJT1; cela revient à prendre U~x%v au lieu de %, comme
représentante de la classe gauche d'associées de %,.

Le résultat obtenu, à savoir que 8 et T sont respectivement frontières
de Rp et Rv s'ils sont équivalents, est valable quels que soient les
représentants 9L et 91^ choisies dans leurs classes d'associées, on peut donc

appliquer ce résultat aux systèmes S et T 8[U] équivalents, l'un 8
situé dans R^, l'autre T dans 12*. Il en résulte que les systèmes 8 et T
sont frontières, l'un de R^, l'autre de R\, et notre assertion est démontrée.
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D'après cela la région commune à R^ et à Rv ne peut être qu'une
portion de la frontière d'un de ces domaines.

Pour achever la démonstration du théorème 3, il reste à faire voir que
les deux systèmes 8 et T ne peuvent se trouver sur une portion de frontière

commune à R^ et Rvi comme le montre schématiquement la figure.
En effet, supposons par absurde qu'il en soit ainsi. Considérons un
système 8t voisin de 8, à Vintérieur de R^. La transformation T S[U]
étant topologique, 8t est transformé par U en un système Tx voisin de ï7.

Si 8V est suffisamment près de 8, Tx sera soit dans R^, soit dans Rv.
Or cela est impossible, car il a été démontré que deux systèmes 8X et Tx
situés tous deux dans R et équivalents, sont frontières, l'un de R^t,
l'autre de Rv,.

Il s'agit maintenant de déterminer la nature du domaine R,
intersection de P avec la réunion des Rv. Notre but est de montrer que
chacun des domaines Rv est limité par un nombre fini d'hyperplans. C'est
la démonstration de ce fait qui présente le plus de difficultés.

§ 6. Théorème préliminaire

Dans le cas où la matrice 31 est égale à la matrice unité (£, les inégalités
(I) du § 3 s'écrivent

avec x entier de K tel que (f j, f„) ^ 0. Ce sont ces inégalités qui, avec

(II), définissent le domaine JB0 contenant tous les domaines 12 (9t).

Théorème 4. Si un système de y matrices &{k\ dont les gx premières sont
réelles et symétriques, lesg2 suivanteshermitiennes, vérifieles inégalités (Jo),

on a pour k 1, 2, y :
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G |

où C est une constante ne dépendant que de n et du corps K : C C (n, K).

Montrons d'abord que les inégalités (Io) à elles seules entraînent
qu'aucune des formes de matrices Q{k) n'est indéfinie; c.-à-d. que l'on a
toujours :

©<*>[*] >0
quel que soit le vecteur x (réel si k < gt).

Supposons par absurde que pour un certain indice g on ait :

«o <5<(?)[*0] < 0 (x0 réel si g < gx)

%0 n'est pas nécessairement un vecteur entier du corps KiQK Mais la
fonction S(ç)[x] des |1? £n étant continue, on peut déterminer un
nombre réel r > 0 tel que, pour tout x satisfaisant à | x — xo\ < r, on ait :

donc aussi

Or il existe une infinité de vecteurs x du corps K{^ tels que \x(Q) —

prenons-en un quelconque, et soit g^O un entier rationnel tel que
qx entier. Désignant ce vecteur entier qx par x, on aura

Il existe donc un vecteur entier x de K pour lequel la forme hermitienne
de matrice S(c) prend une valeur négative.

Supposons alors y > 1. Pour les autres conjugués de cet x, soient

ak S(fc)[x(fc)] les valeurs des autres formes, k =/= q. Soit a max \ak\.

Il existe une unité s du corps K pour laquelle

si k

Pour une certaine puissance de cette unité, puissance que nous désignerons

de nouveau par 6, on aura :

"67 y
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Il est alors visible que, si
effet:

r(S[t)

la trace r(S[t)]) est négative; en

E

Y * (y — l)a — a < 0

Cette conclusion est vraie aussi avec T) X dans le cas où y 1, car
alors r(S[î)])= S(1)[3E(1)] < 0.

Pour un multiple entier rationnel assez grand de t), on pourrait rendre

r(S[t)] négatif et aussi grand qu'on le voudrait, ce qui est impossible,
en vertu de (Io)'

> rfo) si x entier ^ 0

sf

Il suit de là que les inégalités :

s\k) > 0 2

sont des conséquences de (Io) (voir § 4).
Montrons ensuite que les s\k), & 1, y, sont du même ordre de

grandeur, c'est-à-dire que:

s\X) quels que soient A, (4)

la constante cx ne dépendant que de K. Pour la démonstration, on peut
supposer y > 1, car si y 1, l'affirmation (4) est évidente. Ordonnons
les conjugués de K de manière à ce que l'on ait :

Appliquons (Io) au vecteur x I ;

On obtient:
y y

* V o(k) <<* V o(k)
Zd si ^ Zi &i

Or il existe une unité de K telle que :

avec
|. 0 si i t£ l
|j e unité de K.

si
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L'inégalité obtenue s'écrit :

d'où a fortiori, les s(tk) étant non négatifs :

Donc

avec

cx -= max.
1 —

Comme 0

(max. pour toutes les ordonnances

possibles des conjugués)

on voit que

(c. q. f. d.)

Les inégalités (3) du § 4 sont des conséquences de (Io) :

(3)

11 en est de même des inégalités suivantes, que l'on déduit facilement de

(3) et (4):
sW < c\8^ si i^j (5)

Pour démontrer le théorème 4, envisageons d'abord le cas où aucune
des S n'est semi-positive: &ik) > 0 pour tout k. On procède par induction
sur n. Le théorème est vrai pour n 1, avec (7=1. Supposons le vrai
pour les systèmes S de formes quadratiques à n — 1 variables.

On se sert de l'identité:

Lo i J (6)

où h + Sï"1[s] «n, et où Sx est la matrice obtenue en supprimant
dans © la dernière ligne et la dernière colonne. | Sx| est différent de zéro,

car la matrice Q est positive.
Si 8 vérifie (Io), le système Sx des &xk) vérifie aussi (Io) pour les vecteurs

X à n — 1 composantes. On le voit immédiatement en particularisant 3e

de sorte que |w 0.
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Par hypothèse d'induction on a:

Comme | Q{k)\ \ G[k)\h{k\ il suffira de démontrer que l'on a:

s(k)
1 < -r—- < cQ avec co(n, K)

La partie de gauche de ces inégalités est évidente d'après h + SrHs]
sn, car la matrice S^"1 Sit'Sr1] e8^ comme Si positive, donc h ^ 8n.
Il reste à démontrer que

^ <c
Posons

-(?.)•
Au moyen de ces variables l'identité (6) s'écrit

avec x S^"1 s

/> \En posant n Ï! + r |B • on aura

Nous allons appliquer (Io) à un vecteur x particulier que nous
déterminons à l'aide du théorème de Minkowski déjà utilisé. Considérons les gn
formes linéaires r)(V et |<f} en les variables uik:

i l,...,n— 1,
k l,...,y

ainsi que pour chaque i les g2 formes conjuguées de celles qui sont
complexes; et g

W=Z«H9<o? k=l,...,g
Les r^A) sont les composantes des vecteurs r(&> ISJ**"'1 s<&). Les o>a sont
les g entiers d'une base de K. Le déterminant de ce système de formes
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linéaires est | Q \n= |/3^. En outre à toute forme correspond sa conjuguée
complexe. On peut donc appliquer le théorème de Minkowski sous la
forme énoncée au § 4.

Mais nous allons auparavant multiplier chacune de ces formes linéaires
par un facteur convenable, sans que le déterminant ne change. Nous
prendrons ce facteur égal à H (nombre positif qui sera fixé plus tard), cela

pour toutes les formes rj, ainsi que pour les |(n*) si k =£ q fixe. Quant à la
forme f^ (si q < gx) ou aux deux formes conjuguées f ^e) et çW+tà
(si gx + 1 < q < y), il faudra la ou les multiplier par le facteur H~q,
avec q gn — 1 ou q \gn — 1 suivant les cas.

Il existe donc des uiQ entiers rationnels non tous nuls tels que:

S™

Pour H > à, on a certainement |n ^ 0; car si fn 0, en vertu de

X) *! + r fw, les ?^t seraient des entiers algébriques, de normes < 1,
donc nuls, et les rj et |w seraient tous nuls, ce qui n'est pas. Supposons
donc H > A ; alors fn ^ 0, et l'on peut appliquer (Io) au vecteur x ainsi
déterminé, pour l n\ on obtient en vertu de (6;):

Remplaçons les rj et fn par les évaluations trouvées; il vient:

En tenant compte des inégalités:

A<*><s<f>; 2|«g>| < «?>+«<*> ; r(«<) < t(«,) si

on trouve par un calcul analogue à celui du § 4 :

(n - 1)«-^-t(O + -^- r(sn)

d'où
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Prenons

Des inégalités (4) on déduit aisément :

L'inégalité trouvée devient finalement:

n 2 "^
c'est-à-dire :

Le théorème 4 est démontré dans le cas où | <S{k)\ > 0 pour k 1, y.
Le cas où | &{k)\ 0 pour un ou plusieurs k se ramène au précédent. En
effet un système 8 tel que \8\ — 0 et vérifiant (Io) est la limite d'une suite
de systèmes 8n avec | Sn \ > 0 et vérifiant (Io) ; cela résulte du fait que le
domaine défini par (Io) est convexe. Prenons en effet un système So vérifiant
(Io) et tel que | SQ\ > 0, et considérons les systèmes S (A) (1 — A) S + A£o

avec 1 ^ A > 0. Ces systèmes sont formés de matrices toutes positives,
comme sommes de matrices positives et semi-positives. Donc |/S(A)| > 0.

Pour A->0 on a £(A)->S. En outre les systèmes 8(A) vérifient (Io) à

cause de la convexité du domaine (Io). La démonstration du théorème 4

s'applique à ces systèmes S (A), qui vérifient par conséquent les inégalités
de ce théorème. En passant à la limite, on voit que ces inégalités sont
vraies aussi pour le système S.

Une conséquence. Nous avons vu au début de la démonstration du
théorème 4 que le domaine défini par (Io) est tout entier formé de

systèmes de matrices positives ou semi-positives. Comme i£(9I) est défini

par (Io) et (II), nous voyons que les systèmes de R(W) qui ne sont pas
dans P sont formés de y matrices dont l'une au moins est semi-positive ;

nous les appellerons systèmes semi-positifs. On a pour eux \S\ 0.

Il s'ensuit que le domaine réduit R s'obtient en excluant les systèmes

semi-positifs de la réunion des Rv.

§ 7* Systèmes frontières de M
Considérons maintenant les systèmes frontières du domaine réduit R.

Ecartons ceux qui sont semi-positifs. Nous avons le
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Théorème 5. Si 8 est un système frontière de R pour lequel \8\ > 0, il
existe une matrice unimodulaire U ^ œ (E qui transforme 8 en un système T
frontière de R.

Un système 8 frontière de R est à la fois limite d'une suite de systèmes
réduits Sm et d'une suite de systèmes non réduits Qm :

8X, S2,... -»fif 8m dans R

Qi> Q2> • • -> ^ Qm non dans i?

On a |$|>0; sans diminuer la généralité, on peut supposer que

N(\<5\) n |S(fe)|=l. (Pardéfinition &y+^ S(/1+^pour k=l,...,g2).

La norme N est le produit étendu sur un indice supérieur Je omis, de
k 1 à k g. Pour les 8m et les Qm, on peut également supposer que

Soient 93m la matrice auxiliaire du système Qm, Tm le système obtenu
en effectuant sur Qm la première transformation, Tm le système réduit
équivalent à Qm. Employant la notation abrégée du § 2, nous avons

Qm[Sm] =Tm= Tm[Av{m)] Tm dans B(%im))
Qm[Um] î1™ î1™ dans R

La matrice unimodulaire Um n'est pas une unité générale, puisque Qm

n'est pas réduit:
U

Le système S étant positif, il existe une quantité jlc > 0 telle que

# est le vecteur formé en superposant y vecteurs x{k) de n variables
chacun, k 1, y. Puisque lim Çw 5, on a à partir d'un certain rang

Donc QmM > px' x

Le système Qm — pE est donc positif ou semi-positif. Son transformé Pm

par 83W l'est également :
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Supprimons pour un instant l'indice m. Posons

x («„> s fa) y (pt

hi U Pu Pi

Le système P étant positif ou semi-positif, on a

D'où

Faisant le produit de k= 1 à & gr:

Les termes non écrits sont positifs ou nuls. Or |95| ^0, donc les éléments
Pu ne sont pas tous nuls pour j 1, n, et par conséquent, ces f}H étant
des entiers de K9 on a

II s'ensuit que
t*a • (8)

Le système î7 étant dans iî(93) donc dans j?o, les inégalités (4) et (5) du
§ 6 ont lieu. Multipliant ces inégalités convenablement membre à membre,
on obtient

j? (9)

cBN(tt) ^N(it) si i<j (10)

Les ch désignent des constantes positives ne dépendant que de n et de K.
Le théorème 4 donne

On en déduit en tenant compte du théorème 1 :

N(t\) ...N(tn)^CN(\i\)
D'après (10) et (8) on a

N(ix) N(tn-X) > c
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Remplaçant dans l'inégalité précédente, on trouve

A cause de (9) (pour i n) on en tire

Les t™ sont donc bornés, la borne ne dépendant que de S et de K.
En vertu de (5) § 6, les t[X) le sont également, de même que les (t™ à
cause de (7). Comme les /3ti sont des entiers de K, il n'y a pour eux qu'un
nombre fini de valeurs possibles, et par conséquent aussi pour la matrice
23 (f}tj). La suite des 2?m contient donc une infinité de fois la même
matrice 33O U0%0 (Uo ^ (*>&):

On a Bmi Bm% •. Bo U0AVq

pour une suite d'entiers

mi < m2 <
La suite correspondante des Q est telle que

««[^0]=^, Tmdans R.

En passant à la limite, R étant fermé dans P (voir § 5), on obtient

flf[CT0] T S,T dans R Uo ^ co®

Il reste à montrer que T est frontière de Jî. Deux cas peuvent se présenter:

ou bien T 8, auquel cas le théorème est vrai puisque par hypothèse

8 est frontière de R; ou bien T ^ 8; il suffit alors de recourir au
théorème 3 (2ème partie) pour voir que T est frontière de R.

Théorème 6. Si deux systèmes 8 et T réduits sont équivalents, Qik)
Xik)[VL{k)] pour k=l,...,y, U appartient à un ensemble fini de matrices
unimodulaires VLi, VLM.

Pour i=l,...,yona par hypothèse

8 T dans R

Par définition du domaine R cela signifie que

Q è [%~l] avec S dans

% X [«71] avec i dans
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On supprime l'indice supérieur afin d'alléger. Mais il faut se rappeler que
les relations écrites doivent avoir lieu pour les valeurs 1, y de cet
indice.

Comme Q %[VL], on voit que

où x w-1u%.

La matrice X a ses éléments dans K. Elle n'est pas nécessairement
entière, mais il existe un entier rationnel a ne dépendant que de n et de K
tel que a X soit entière. Il suffit en effet de prendre a divisible par tous les

|3tv|. Nous dirons dans ces conditions que X a ses dénominateurs bornés.

X'1 a également ses dénominateurs bornés, puisque X~1 <$lp1}X~1($ll/.
Les domaines iZ(3l^) et R (9Q étant contenus dans Ro jR((E), le

théorème 6 est une conséquence du

Théorème 6'. Si deux systèmes S et T sont dans Ro, et si S
X et X"1 ayant leurs dénominateurs bornés, la matrice X est bornée ainsi que
ses conjuguées.

En effet de 6 ' découle que la matrice aX est entière et bornée, ainsi que
toutes ses conjuguées. Donc aX n'est susceptible que d'un nombre fini de

valeurs entières dans K, et par conséquent U <HVX<H^1 également.
Dans ce théorème comme dans la suite, borné signifie inférieur en valeur

absolue à une constante ne dépendant que de n et de K. Nous désignerons

par c1,c2i de telles constantes.

Démonstration du théorème 6'.
1er lemme. Soit S un système positif de RQ. Considérons une

décomposition quelconque de Q en 4 matrices :

I Sx quadratique de degré m
©2 ©s/

Alors la matrice Si"1 S2 est bornée.

MAppliquons les inégalités (Io) définissant jB0 au vecteur x I ; I de

\ £w /
composantes |t cov, Ç3 ± 1> i j fixes, et pour l j. Les a>1, œg

forment une base des entiers du corps K. On obtient ainsi

| 2 Z R{s^o>^) | < Z s[k) | co(vk) |2 (11)
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Pour v — 1, 2, g considérons les g équations

Z B(8<*> (*><*>)= a, (12)

les g inconnues étant Rs[*\ Je 1, y et Js^\ le =- grx + 1, y. Les

av sont des quantités réelles données. La matrice de ce système d'équations

linéaires est

fci=-i, ...,ffi ; &2 9i + h ...,y

Le déterminant est facile à calculer ; on trouve

où i3 est la matrice Q (co^). |-O|2 d est le discriminant de K.
On peut donc résoudre ces équations, et l'on trouve

RsiV

y-l
*= 1, —, y
& y + 1,..., g

où les tVfc ne dépendent que du corps K.
Comme d'après (11) et (12):

on voit que les quantités Rs[*\ Js{k) sont en valeur absolue inférieures à
y

des expressions de la forme Z @\jcs[X\ ou les @Xk ^ 0 ne dépendent que

de K. Les a^, A 1, y étant d'après (4) § 6 du même ordre de

grandeur, on a finalement

I s[k) I ^ css[X) pour tous les A k (13)

Cela est vrai pour j > i aussi bien que pour j < i. Pour ?' < i cela résulte
immédiatement des inégalités (1) et (5) (§ 4 et 6). A cause de la symétrie
de © on a aussi

KM <c8<> (iso

On démontre alors facilement que les éléments de ©J"1 ©2 sont bornés.

Considérons d'abord ®r1==Tg7" (*•*) (*•*)• Les *•* sont les déter"
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minants adjoints des éléments de Ql9 et comme chaque terme de Qt
est d'après (13 ') inférieur au terme diagonal de sa colonne multiplié par
c8, on a pour chaque hik

Donc
i i ^ 01 • • • 8n

Le système des Q{k) est dans Ro. Désignons par jR£° ce domaine Bo
si l'on veut marquer sa dépendance du degré n des matrices S. Le

système des Si*) définies par la décomposition S r) * est alors

dans Bf^ ; il suffit pour le voir d'annuler les n — m dernières
composantes du vecteur x figurant dans (Io) § 6). Le théorème 4 est donc
applicable à ce système des <5^\ et l'inégalité (14) devient

&k
Formons alors

m

^"* ^^2 V «rf ik Kj/ \ %jf *

D'après

M< * I ^ ~ e^ I 8ki I ^ C8 sk

on voit que
m cio ^8 < cn c. q. f. d.

Reprenons l'identité (6) du § 6:

D'après le 1er lemme, Sf1 s est bornée.
En appliquant la même identité à (5%, qui est dans B$~t> comme on

vient de le voir, et en continuant de la sorte, on obtient finalement

;=( ••• :•• =».[»]

où î)0 est la matrice diagonale d'éléments alt...,an, et où SB (/3,-fc) a
ses éléments bornés:
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pik 0 si i>k; /8«

Quant aux o, on a pour an d'après (6):

Or le théorème 4 donne

On en déduit que sn ^.Can

D'une façon générale on a de même

ak est du même ordre de grandeur que sk.

La matrice % peut être mise sous une forme analogue à S :

0 6./ LO 1 J

où (£ est une matrice du même type que 93, et où.

En vertu de (5) § 6 on voit alors que

i^ 13 ^/
t>i ^ c13 6^- si i ^j •

2e lemme. Les a\k) et 6[*) précédemment définis sont du même ordre de

grandeur, c'est-à-dire qiïil existe une constante c17 ne dépendant que de n
de K telle que

Ci? t 1 n

Pour la démonstration, il est essentiel que X soit une matrice à
coefficients dans K de dénominateurs bornés, de même que X"1»

On a S £[£], d'où Da J)d[$] avec $ ŒX»-1. Soit

^P {Pu) * (f«) •
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La relation T)n DJ9B1 donne
n

ak= Z\ Pik I2 K
Par conséquent

(16)

Considérons la relation X (£r1<$3$. La matrice G étant bornée et
|G| 1, il s'ensuit que G"1 (ôl3) est également bornée; en outre G"1 a
une forme analogue à G, c'est-à-dire que ôt3 0 si i > et <5tt 1. La
relation 3£ G"1^® donne à cause de (15) et (16):

I f,* I I U ôtr y8k pr8\ < c

«<*
Cela est valable pour tous les conjugués des ftfc, qui sont dans K, Or ces

itk ont leurs dénominateurs bornés; il existe un nombre naturel
G G(n, K) tel que \N($tk)\ > G-1 si ilk =£ 0. Comme |3Ê| ^ 0, il y a

au moins un terme non nul dans ce déterminant :

fi*- £2* "•i'njr 9^0 f,». 7^0 pour f=l, ...,n.
Alors

(18)

Les «^, & 1, y étant du même ordre de grandeur, il découle de

s[k) ^ a[k) > -ff • s[k) que les a[A?) sont du même ordre de grandeur,

pour k= 1, y; il en est de même des 6(f*\ On peut donc écrire à

cause de (17):

I fit' I < cisf -r(fi *¦
> P Q quelconques (19)

t

Prenant la norme, il vient à cause de (18) :

D'où
v % **v-^ 16 1c% > ' ' ' ' • \ t

Récrivons (15) en mettant des indices supérieurs:

a% ^ Cuaj 8l *^ / •
(21)
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Or l j
* ' ' j est une permutation des indices 1, n. Soit i0 un

\lc1... lcn]
indice fixe. Les kt avec i > i0 sont tous différents, donc l'un au moins est

< i0; soit par exemple
k, < H j > i0

Alors on a en vertu de (20) et (21) :

°t0 ^ C13 °j ^ C13 C16 aA^ ^ C16 C13 at0 •

Donc

Cela a lieu pour i0 1, 2, n.
Par analogie (on utilise ici le fait que X~x a ses dénominateurs bornés)

on a évidemment

Le 2ème lemme est donc démontré.
Pour la suite, nous poserons

a, - a'1) b, b?

En tenant compte du 2ème lemme, on peut écrire les inégalités (19) sous
la forme

1 / n..
(22)

La démonstration du théorème 6 ' procède alors par induction sur n de

la manière suivante: ce théorème est vrai pour n — 1, ce qui résulte par
exemple de (22). Supposons qu'il soit vrai pour tous les t ^ n — 1.

On a d'après (15)

at ^ c13 ak si i ^ k (23)

g
Soit c19 c13 c18 y G

Considérons les quotients 1/—!— i 2,,.., n
F «i—i

Supposons que

1/ "n

mais que
1/-

Cela a certainement lieu pour xmt^.n— 1.

301



On a alors pour i > t, j < t, d'après (22) et (23) :

Prenant la norme:

NatJ) i < JL
Par conséquent

f%i 0 si i>t, j ^t
La matrice X se décompose alors en 4 parties :

£ f*1 **\ où aex est de degré t

Toutes les conjuguées de la matrice 3£4 sont bornées, car pour i > t,

j > t, on a

CC13 C19

II reste à montrer que HLX et 3£2 sont bornées. Pour cela décomposons S
et % d'une façon analogue à X :

(8; s.)

A cause de S 2[3£], on a

©2 — *i 3^i 3£2 + 3£i 2^2 3^4 •

Le théorème 6' étant par induction supposé vrai pour les systèmes de
formes à moins de n variables, on peut l'appliquer aux systèmes des ®x
et %x liés par S1 ïi[3£1], car ces systèmes sont dans R$ comme
on l'a vu et 3Êx, X^1 ont de même que X, X~~% leurs dénominateurs bornés,
puisque

^ ^

Les X^ sont donc bornées par hypothèse d'induction. On calcule alors
3ê2 au moyen de (24):
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%1 * *1 (®2

On voit que 3E2 es^ bornée, puisque 3^ et 3£4 le sont, ainsi que Sjf1 S2 et
Z^"1 Z2, cela en vertu du 1er lemme.

Le théorème 6; est ainsi démontré, et Ton a vu que le théorème 6 s'en
suit.

Conséquence, Soit D un domaine quelconque de l'espace des 8. Appelons

domaine équivalent à D tout domaine transformé de D par une
substitution unimodulaire U. Nous désignerons par R^ les domaines
équivalents à Rv. Il résulte du théorème 6 que :

Les R^ touchant un R^ suivant une portion intérieure à P de sa frontière
sont en nombre fini. (P désigne l'espace des systèmes positifs.)

§ 8. Forme des domaines JRM

Théorème 7. Chacun des domaines R^, jm 1, N, est Vintérieur d'un
angle solide convexe limité par un nombre fini d'hyperplans passant par
Vorigine de Vespace des S. La portion de la frontière de R^ située sur la
multiplicité \S\ 0 a une dimension d'au moins gn — g2 unités inférieure
à celle de R^.

Nous ne considérons dans ce théorème que les R^ ayant la dimension

d — (ng + gx) de l'espace des 8. Les éventuels R^ de dimension

inférieure à d peuvent être laissés de côté, car ils sont équivalents à des

portions de frontière de Rv de dimension d.
Examinons d'abord les points frontières semi-positifs de R^. On peut

raisonner sur U($L) au lieu de R^, car la transformation qui change R^
en R(tyLij) est linéaire et laisse la multiplicité |$| 0 invariante.

Soit donc 8 un système frontière de 12(91^) tel que \8\ 0. Le
théorème 4 et les inégalités (5) donnent

*<*>" < C* | S<*> |

la constante C* ne dépendant que de n et de K. Comme 18 \ | S(1)|...
| S^l 0, il existe un k pour lequel | &k)\ 0, d'où s™ 0. D'après
(4) § 6 on en déduit que

s^= 0 pour tout A

et d'après (13) § 7 que
s^> 0 pour tous j A
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Ce sont là ng — g2 relations indépendantes entre les coefficients de S.

La 2ème partie du théorème 7 est démontrée.
Pour ce qui concerne la lêre partie, nous savons déjà que R^ est

convexe et limité par des hyperplans passant par l'origine (voir § 5). Il reste
à montrer que ces hyperplans sont en nombre fini. Soit H un de ces

hyperplans. On peut supposer que la portion de H frontière de R^
contient des systèmes positifs, car ng — g2 > 2 (sauf dans le cas banal
n y 1 que nous excluons ici).

L'hyperplan H divise l'espace P des systèmes positifs en 2 régions,
dans l'une desquelles R^ est situé. L'autre de ces régions contient au
moins un R^ qui touche R^ suivant H. Les domaines R^ et R^ étant
convexes ne peuvent se toucher que suivant l'hyperplan H. Donc l'existence

d'une infinité de H serait en contradiction avec la conséquence du
théorème 6 énoncée à la fin du § 7.

Remarques
1. Si n > 1, les systèmes semi-positifs de R^ admettent chacun une

infinité de transformations unimodulaires en eux-mêmes.

En effet, pour un S de R^) tel que | S\ 0 on a s[^ 0. Il s'ensuit

que toute matrice de la forme 33 =1 n ~ I transforme S en lui-même. Le

système T correspondant à S dans R^ est alors transformé en lui-même

par la matrice

Il suffit de choisir les composantes de b ' dans K et divisibles par le
déterminant I^I^I pour que (£ soit unimodulaire dans K. On voit qu'il y a bien

une infinité de (£ unimodulaires laissant T invariant.

2. Le domaine R peut être rendu connexe par un choix convenable des (HV.

En effet, l'espace P des systèmes S positifs est connexe. Or en
transformant R par un ensemble complet de représentantes U du groupe
quotient lt|3f (voir § 2) on obtient une infinité de domaines équivalents à

R et recouvrant exactement P. Supposons alors que R se compose de

deux parties R' et Rn n'ayant aucun point commun, en dehors de 0.

Effectuant sur R1 et R!l toutes les substitutions de 1115? on obtient des

domaines Pr, P" qui forment P par leur réunion et qui ont à cause de la
connexité de P d'autres points communs que 0; soit S un de ces points,
St et 8g ses équivalents dans R! et R". On a

<* o rrz î q rrr i s* dans R'>8 ^[C7l] ^[C7a]
8% dans R*.
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En transformant R" par lt2 Ufx, on obtient un domaine équivalent Rm

qui a avec R' le point 8X en commun. En continuant de la sorte, on
obtient finalement un domaine R connexe.

§ 9. Application

Les résultats obtenus permettent de démontrer facilement un théorème

de Hurwitz sur la structure du groupe unimodulaire dans K :

Théorème. Le groupe unimodulaire de degré n dans K possède un nombre

fini d'éléments générateurs, pour lesquels on peut prendre les Uw du
théorème 6 et les co(£.

Soit lt une substitution unimodulaire dans K. Choisissons un système
réduit 8l9 et soit S2 son transformé par U. Dans l'espace P des S, le

segment de droite S182 rencontre, comme nous le verrons, un nombre fini
seulement de domaines équivalents à R; soient R{0) R, R{1), R{q)

ces domaines dans l'ordre où le segment S1S2 les rencontre, et soit 331 la
substitution unimodulaire transformant R en R{%), 330 ®> 33

a lt.
Les domaines R{t) et R{t+1) se touchent; leurs transformés par 33r1 se

touchent également : ce sont R et son transformé par 33t+i 337"1. Il s'ensuit

que la substitution S^+iSîT"1 appartient dans le groupe quotient lt/2f à
la même classe que l'une des VLt du théorème 6 :

33^! Um, 93, (mod8f).

De ces relations pour i 0, 1, q — 1 on déduit que

U », U^ Umi Umo (mod 5)

ce qui démontre le théorème.

Il reste à voir que le segment 8182 rencontre un nombre fini de
domaines R{i) équivalents à R. Supposons par absurde que SX82 rencontre
une infinité de R{i). Prenons un point du segment 8X82 dans chacun de ces

R{t). Ces points en nombre infini auraient un point d'accumulation S :

S= X8X + (1 - l)S2i 0< A<1, |S|>0.

Dans tout voisinage de 8 il y aurait des points d'une infinité de domaines

équivalents à R, ce qui est en contradiction avec le
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Lemme : Soit un système S positif, | S \ > 0. Il existe un voisinage de S
ne contenant qu'un nombre fini de portions de domaines équivalents au
domaine réduit R.

Distinguons 3 cas pour la démonstration de ce lemme.

Ier cas. S est intérieur à Vun des Rv.
Le domaine Rv est convexe et limité par un nombre fini d'hyperplans.

Soit r > 0 la plus petite des distances de S à ces hyperplans. Le voisinage
formé par l'intérieur de la sphère E (S, r) de centre S et de rayon r ne
contient que des points de R.

2ème cas. S est sur la frontière d'un Rv.

D'après le théorème 6 il existe un nombre fini seulement de domaines
équivalents à R se touchant en S; les domaines R^\ équivalents aux Rv

et sur la frontière desquels S est situé sont donc aussi en nombre fini. Soit

r > 0 la plus petite des distances de S aux hyperplans en nombre fini
limitant ces Hty, les hyperplans passant par S exceptés. La sphère E {S,r)
est un voisinage de S convenable.

3èmc cas. S n'est pas dans R.

Soit St le système réduit équivalent à $, Xt la substitution unimodulaire
transformant S± en S, 8t rentre dans l'un des deux premiers cas. Si Vt est

un voisinage de Sx ne contenant à son intérieur qu'un nombre fini de

portions de domaines équivalents à R, le voisinage F transformé de Vx

par U jouira de la même propriété.
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