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Sur les nombres
de classes de certains corps quadratiques

Par PierrE HuMBERT, Lausanne

Le but de ce travail est de montrer comment on peut construire une
infinité de corps quadratiques imaginaires dans lesquels le groupe des
classes d’idéaux contient un élément d’ordre donné g. La méthode
employée s’inspire de la théorie classique des corps de nombres algébri-
ques, telle qu’on la trouve exposée par exemple dans le livre de Hecke?).

§ 1. Densité des nombres sans diviseurs carrés

Soient z un nombre réel positif, et ¢ un entier rationnel. Nous allons
déterminer le nombre N (z, @) des entiers sans diviseurs carrés, ne dé-
passant pas « et premiers a ).

Supposons d’abord @ = 1. Il s’agit de déterminer le nombre N(z, 1) =
N(x) des entiers n < « sans diviseurs carrés. La méme méthode permettra
ensuite de trouver N(z, Q).

. . 3 . x 7
Si m est un entier quelconque, il est clair que [W] représente le nombre

des n < x divisibles par m2. Soit a{” le nombre des différents p?2, p pre-
mier, par lesquels n est divisible. On a

5]z

2
p LD n<z

car la somme 2 [—%—] étendue a tous les p premiers est le nombre des
4
n < z divisibles par un p2, chaque n étant compté af! fois.
Si n == IT p? est la décomposition de » en facteurs premiers, on a

al == r(n) = nombre de g, > 2.
De méme

el

2 2
v, +o; | Pi P n<e

ou af? est le nombre des différents facteurs p; - p}, p; # p; premiers, par
lesquels n est divisible. D’une fagon générale on a

1) E. Hecke: Vorlesungen iiber die Theorie der algebraischen Zahlen.
Leipzig, 1923.
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AL
y ST ) % pl p n<z

ot a'f est le nombre des différents facteurs de la forme 2% ... pi, p, # p,
premiers, par lesquels n est divisible. On a évidemment

) _ (T
n *(k)

our = r(n) = nombre de facteurs premiers entrant dans n a une puissance
supérieure & la premieére.
Considérons alors 1’expression

x x xr
[x]——z[-—]—;— b [—-—]-—~ > [————-—]+---:
D p2 P17+ pe pi pg P1,P2,Ps pi pg pg

=2 (1—al+aP—a@+ -..).

n<zx

Dans le 2°™¢ membre, la somme

vy = 1—a o —aP 4= 1—( 1)+ () —(5)

est égale 4 0 si 7 >0 et & 1 sir= 0, c’est-a-dire si n est sans diviseurs
carrés. La somme J v(n) représente le nombre N(x) des n <<« sans

n<z
diviseurs carrés. On a donec
Nx——zx]——Z,'[ ]+ 2[————~"” ]— 1
) [ » | P? P13 D2 pipg )

Le nombre des termes non nuls de cette somme est au plus égal au

. Py
un carré p2...p; < z bien déterminé, et 4 2 termes dlﬁerents correspondent

2 carrés différents. Le nombre de ces termes non nuls est done < 'z .

nombre des carrés < x, car a chaque terme [ ] > 0 correspond

Comparons N(z) avec la somme infinie et convergente

— ___+ y o= 1](1.___1_):_—._9”_. 2
* { p? e ) pl pz ? P P ¢(2) 2)

L’erreur que I’on commet en prenant ——- ) pour valeur de N(z) provient

C(2

de 2 causes:

1° Du fait que I’on a remplacé les termes [___az____] > 0 par _____:_v___g_;
Pi- - - DY Pi- - Pi
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Perreur ainsi commise ne dépasse pas 1 pour chacun de ces termes, et leur
nombre est au plus }/x ; on a ainsi une erreur 0 /z, |0] < 1.

2° Du fait que la somme (2) contient une infinité de termes qui se

réduisent & 0 dans (1), tous ceux pour lesr,quels———ﬁ—2 < 1. Soit p(x)
i
Perreur ainsi commise. En valeur absolue cette erreur ne dépasse pas

2 }/x pour = > 4, car

(=]

e(®)| < Z—+ 2 _2x_2_+ <z 2—< —@—<2]/x81 >4,
pizz P? p p ~ g P1 P2 nt>z N2 t2
) z-1
On peut donc écrire
<
N(z) = 5(2) + 6,V avec |0,|<3. (3)
(Pour x < 4 on vérifie numériquement la validité de la formule (3)
2
sachant que {(2) = 7; ) -

Supposons maintenant @ > 1:

@=¢9..-9; , ¢; premier, q; #gq; .

Evaluons d’abord le nombre ¢ () des entiers premiers & ¢ et ne dépassant
9@
Q

pas . Posons y = Si x est un multiple entier de ), on aura -

Q(x) = yx .

Si z est quelconque, on voit par des considérations identiques & celles qui
ont conduit & la formule (1) que

Q(x):[x]_“é/%[%] +qlf/a[q:cqz]”'” ' )

(La mnotation ¢ /@ signifie g divise @.)

En supprimant les crochets, on obtient « IT ( 1 —- -—ql——) = zy dans le 2°™°
q/Q
membre de (4); 'erreur commise est au plus égale au nombre des termes

entre crochets de ce 2°™° membre, donc & 2¢, ol ¢ = nombre de facteurs
premiers de ¢. Donc

Qx)=vx+ 0 avec 6] < 2°. (5)

Nous sommes alors en mesure d’évaluer le nombre N(z, @) des entiers
sans diviseurs carrés, premiers a @ et < x.
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Le nombre des entiers premiers 4@, divisibles par pi...p%, (p;...py, @)=1,
et ne dépassant pas z est égal au nombre des n tels que

npt...pp < @ (n,Q) =1

o(755)

Si A% représente le nombre des facteurs p2 ... p2, (p;... P, @) =1,
par lesquels » est divisible, on aura comme précédemment

donc au nombre

1
(__.__.‘” )_—_ S4B AW (Ai’)
3 ) n n *
@12k, D=1 \Py.. P (n, Q=1

k
pi;-.pZSz ngx
Formons alors 1’expression
x L 1) (2)
Qx)— X Ql=)+ 2 Qls=s)— =2 1—4P+4P—...)
®,Q=1 \P (P192,Q) =1 \P1 D, (n,Q)=1
<z 2 2 n<
pl pz <z (6)

La somme alternée 1 — A 4 AP — --- est égale & 1 81 AP =0 et &

0 si AYV> 0. L’expression (6) représente donc le nombre cherché
N(z, Q). En remplagant les @ (y) par leurs valeurs (5), on obtient

x

2 2 .2
(P192,Q)=1 Py Py
P, v <2

Ne,@=yz—y X o+ — e @ - ()

p

Pz

L’erreur o (z, @) est en valeur absolue au plus égale & 2! multiplié par le
nombre des termes Q(y) dans (6), nombre inférieur, on I'a vu, & Vz :

le(z, @< 2 Va .
En sommant dans le second membre de (7) sur tous les p premiers a @,
on commet une nouvelle erreur inférieure en valeur absolue au reste de la
série yZ{; pour 72 > z, donc inférieure & 2 Vx pour > 4. On obtient

ainsi en définitive

1 —
Ne@=ya T_(1—2) + 9.0 19E0 | <E+2V7. @
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La densité des nombres sans diviseurs carrés et premiers & @, c’est-a-

dire la limite de iv-(%gl pour x—oo est

2
lim Y&Q) _ (1_—_12-):_— ! t@)=2>-.
Z—>0 x (r,Q)=1 /4 C(Q)H (1 + __1___) 6
?/Q p
; : : 9 (@) 1
Rappelons qu’on avait posé y = 0 = 7 {1— > Par exemple, la
»/@

densité des nombres impairs sans diviseurs carrés est —-. On voit que
7

parmi les nombres sans diviseurs carrés il y a 2 fois plus de nombres
impairs que pairs, ce qu’on peut d’ailleurs prévoir a priori en supposant
Pexistence de densités pour ces nombres.

§ 2. Construction de corps quadratiques imaginaires dont le nombre des
classes h est divisible par un nombre donné ¢

Un nombre D est discriminant d’un corps quadratique dans 1'un des
deux cas suivants:

D = 1(mod 4) et D sans diviseurs carrés.
D D . . .
D = 0(mod 4) , < = 2,3(mod 4) et 4 sans diviseurs carrés.

Un nombre A = 0,1 (mod 4) se met d’une fagon unique sous la forme
A = a®D, ou D = discriminant d’un corps quadratique. En effet mettons
A sous la forme A = a?d, d sans diviseurs carrés, doncd = 1, 2, 3 (mod 4).
Sid = 1 (mod 4) le discriminant cherché est D = d. Sid = 2, 3 (mod 4),
le nombre @ est pair, car sinon on aurait a*? = 1 (mod 4) d’ou 4 =2, 3
(mod 4), ce qui n’est pas. Alors A = 4b2d et le discriminant est D = 4d.

Les nombres entiers du corps K = R(VD), obtenu en adjoignant au
corps des nombres rationnels R la quantité V' D, sont de la forme

_‘?_;“_2?!_!/_2 x , y = entiers rationnels.

Réciproquement un nombre de la forme

_w__—_%—_;_/ll_)_ n’est entier que si

z =y (mod 2) dans le cas D =1 (mod 4), et si x = 0 (mod 2) dans le
cas D = 0 (mod 4).
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Cela rappelé, nous démontrons le

Théoréme 1. Sott g > 0 un entier donné, q son plus petit facteur premaier.
a et P > 1 étant 2 nombres premiers entre eux, considérons le discriminant D
de corps quadratique défini par

a*— 4P = b2D . (9)

St DL — 4P% le nombre des classes du corps K = R(VD) est divisible
par g.

D’apres les lois de décomposition dans le corps K, et & cause de (9), on
voit que chacun des facteurs premiers p, de P se décompose dans K en
deux facteurs idéaux premiers différents.

On a -
po_ a+bVD _ a—bVD
2 2
Décomposons dans K I'idéal principal et entier (ﬁ——g—!/}—)—) en sesfacteurs
premiers:
a+bVD e
(207 ) _ e o
L’accent désignant I’idéal conjugué, on a
P F P,I' .
Pour ¢ =74 c’est vrai car p,|P. Pour ¢ £ 4, c’est vrai également, car sinon
I’idéal (L—Lg—l-{——p—) serait divisible par un facteur pp’= (p). Le nombre
o = g_—{_-l)__@ devrait étre entier. Pour p> 2 cela est impossible, car on

2p
a (a,b) < 2 puisque (a, P) = 1. Pour p =2 c’est aussi impossible; en effet
on aurait alors 2|P, donc ¢ =1 (mod 2) & cause de (a, P) =1, et le

bVD a : :
_‘_”_‘_*_‘_Z_D de trace - he serait pas entier. En prenant les

normes dans (10) on obtient

P = IINpM = IIp™ .

nombre « =

/

On a p;, = Np,; #* Np, = p,; si¢ 5% j puisque p; % p,. Les p, sont les
facteurs premiers de P =IIp}*. D’ou
m; = gn

i .
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Considérons l'idéal a = ITp}* de norme Na=P. L’idéal a? = ( + bVD)

est principal. Montrons que a* n’est pas principal si k <{-%. En effet,

q
supposons a* principal:

ak — (L‘*"_g_v_g_) x, y entiers rationnels.

x # 0 car (a, D) = 1, ce qui résulte de (P, D) = (P,a) = 1. y £ 0 car
on a vu que a n’est divisible par aucun entier rationnel, donc a* non plus;
en outre a # (1) puisque Na = P > 1.

En prenant les normes, on trouve

x> — y2 D
—

Pr —
D 9
Or par hypothése - > P¢; onen déduit, & causede 2#£0, |y|>1:
T g
Pk >Pae donc Ic>—é— .

11 s’ensuit que l’ordre de a dans le groupe des classes est égal @ g. Car of étant
principal, cet ordre est un diviseur de g; or le plus grand diviseur de g

(différent de g) est 'Z et a* n’est pas principal pour k < %— . c.q.f.d.

Remarques. La condition (e, P) = 1 est essentielle, comme on le voit
avec 'exemple suivant:

g=3, a=10, P =4, donc (a, P)=2.

On trouve D= — 39 < — 4 P. Or le corps R(yY— 39) a un nombre de
classes » = 4 non divisible par 3. Le théoréme 1 montre d’ailleurs que
4|h, car pour g =4,a =5, P=2o0n a

D=5%2—4-2t=—39< —4-22,

De méme Pexemple g = 5, a = 11, P = 2 montre la nécessité de la
g

condition D << — 4P, car on trouve ici D= —17>—8, et h=1
dans R(V—7).

Application : Construction d’une infinité de corps quadratiques vmagi-
naires dans lesquels le nombre h des classes est divisible par un nombre
premier q > 2 donné.
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Appliquons le théoreme 1 aveca = 2siq = 3 (4),a = 2%1siq = 1(4).
Le discriminant D est défini par

4(1 — P% =b2D, P impair, si ¢q =3 (4)
4(4?9— P9 =02D, P impair,siqg=1(4) .
Si D est au moins égal & 4 P en valeur absolue, on aura ¢g/h dans le corps

R (VD) .

Choisissons P de sorte que les conditions suivantes soient remplies:
P — 1 sans diviseurs carrés; P %=1 (q) et P=£17 (8) si ¢ =3 (4)
P — 4 sans diviseurs carrés; P=£4(q) et P=1 (4)sig=1 (4).
Cela est possible d’une infinité de fagons. Montrons que la condition
[D| > 4 P est satisfaite. Pour cela raisonnons sur le premier cas ou
q = 3 (4), la démonstration se fait de fagon analogue dans le cas ou
g=1(4). Ona

41—P) Q4+ P+ +Pr-y=02D .
Le nombre 4 =1+ P + --- + P?! est impair car P et ¢ le sont.
D’autre part A est premier & P — 1 car
(P—1,A)=(P—1,9)=1.
Si A n’est pas carré, sa contribution a D est > 3, et 'on aura bien
|ID| >3-4(P—1)>4P.

Or tout carré impair est =1 (8), et I'on a

q—3
A=Q14+P) 4P 4P ) 4 Pi= (4P L p1=5 (8)
dcausede P=3(8) et g=3(4).

Ayant ainsi construit un corps R (VD) dans lequel g|#, on en construira

un deuxiéme & 1’aide d’'un nombre P, > —‘4—l satisfaisant aux conditions

énoncées; le discriminant D; obtenu au moyen de P, est tel que
|Dy| = 4 P, > |D| |Dy| > |DJ .

Les corps R (VD,) et R(VD) sont différents, et en continuant de la
sorte on obtient une infinité de corps R (V' D) de discriminants croissants
(en valeur absolue) et dans lesquels g|h. D’une maniére plus générale,
démontrons le
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Théoréme 2. Il existe ume infinité de corps quadratiques imaginaires
dont le nombre de classes h est divisible par g, g étant un nombre naturel
donné quelconque.

Définissons le discriminant D par
4 (a® — P2?9) = Db? 2a,P)=1.

Si D < — 4 P?, le nombre des classes du corps R (VD) est divisible par
2 g d’apres le théoréeme 1. Prenant pour @ un nombre pair, on aura

2
Df —a?— P = 3(4) .

Le discriminant D est alors égal & D = 4 d, ou d est le nombre sans divi-
seurs carrés défini par

(@ + P%) (@ — P9) = b2 d .

Si le nombre impair P est assez grand, P > (, il existe au moins un
nombre a 4+ P? sans diviseurs carrés compris entre P? et 2 P?, impair et
premier & P. En effet nous avons vu au § 1 que la densité des nombres n
sans diviseurs carrés tels que

(n,2P) =1

est finie et vaut « = 4 II b

n® opp P+ 17

Plus précisément, la formule (8) montre que le nombre de ces » compris
entre P? et 2 P7 est

9
N=«kP'+w avec |o <2+ 2)(1+V2) P2

t = nombre de facteurs premiers de P.

Or N tend vers l'infini en méme temps que Psi g >2. En effet chacun

log P

des facteurs premiers de P étant au moins égal & 3,ona ¢ < , et dans

log 3
Pexpression de « = 2 o2 , les facteurs P__ sont au moins
n? ppPpt1 p+1
égaux & 3 , ce qui donne o
4 4 1__.,?.9____
K= — P log 3
7
donc
4 g+1— log 4 B log 2 g
N>—-P g3 _2(14V2) (Plke3d +1)P2.
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g log2 .. :
> 5 -+ Tog 3 dés que ¢ > 2, on voit que

log 4
Comme on a g+l__1@_3'
N-—>o00c 8si P>oo.

Il existe donc un nombre pair a < P? tel que P? + a soit sans diviseurs
carrés et premier a 2 P.

Les 2 nombres P? 4+ a et P? — a sont premiers entre eux, par consé-
quent |d| est au moins égal & P? 4 a, et 'on a

|D| = 4|d| > 4P .

Supposons qu’on ait obtenu de cette facon un corps quadratique imagi-
naire R (VD) dans lequel 2¢g/h. A I'aide d’'un nombre P,>C tel que
4 P{> |D|, on obtiendra au moins un autre corps R (V' D,), avec 2g/h,;
ce corps est différent du précédent car

ID,| > 4P> |D| .

En poursuivant de la sorte, on obtient bien une infinité de corps
R (VD) dans lesquels 2g/h .

§ 3. Corps quadratiques réels dans lesquels g /h

Des considérations analogues & celles du § 2 permettent de construire
des corps quadratiques réels dont le nombre de classes est divisible par
un nombre donné ¢g; malheureusement I'existence effective de tels corps
parait difficile & établir ainsi.

Théoréme 3. Un corps quadratique réel ayant son discriminant D défint
par

=1
atD=4P»2 +1, P>1, avec O<a<P02“ (11)

a son nombre de classes divisible par g.

I1 est clair d’aprés les lois de décomposition dans R (VD) et & cause de
(11) que tous les facteurs premiers p de P se décomposent en 2 facteurs
idéaux premiers distincts: p = pp’.

Considérons le nombre entier de R (VD)

2P +1+aVD
2

dont la norme est No = P?.

242



L’idéal principal engendré par ce nombre se décompose de la fagon
suivante en facteurs idéaux premiers:

(o) =ITp* p;#p; si 547, (12)
11 est visible que Np, = Np,si¢ 5 j, car « n’est divisible par aucun entier

rationnel.
En prenant les normes dans (12) on obtient

P =IINpM=1IIp" p,=Np, p,Fp,.

Soit P = IIp}* la décomposition de P en ses facteurs premiers entiers
rationnels. On aura m; = gn,.

L’idéal entier a = ITp? a pour norme Na = P. La ¢*™ puissance
de a est I'idéal (x) qui est principal: a? = ITp?" = (x). Nous allons voir

que I’'idéal a* ne peut pas étre principal pour &k < —g-, q étant le plus petit

facteur premier de g; le théoréme 3 s’en suit. Supposons donc que a*
soit principal: ak = (&)

Soit £ > 1 une unité de norme — 1 du corps R (VD). En remplagant ¢
par un associé convenable, on aura, si I’accent désigne le conjugué:

§
5
On peut encore supposer N £ = — P¥; car si N & = P*, on prendra &£’
au lieu de £, ce qui revient & changer a en a’ c’est-d-dire  en o/, et tous les
raisonnements précédents subsistent. De méme en prenant éventuelle-
ment — & au lieu de &, on aura & > 0, done £§/< 0 .

Soient

1< <L g?.

x-+yVD

x—yVD
2 ’ |

&= 9

g =

o | w

L’inégalité |£| < e2|&’| avec |&&'| = P* donne |& << eP?2.

o|w

L’inégalité |&'| < |&| avec |&£'|= Pk domne |¢'| << P

Done D L3
0< x + g VD <eP?

= k

D’olt par addition k
2

0<yVD<(¢+1)P
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Or ¢ = 2P + a¥VD > 1 est une unité de norme — 1 du corps R(VD).
On a alors

e+4+1 L3 L3
< P:=aqa(2 P2,
On vérifie aisément que 0 < p < -% .
L’égalité N &= — P* g’écrit, si I’on tient compte de & =—§—i——%—‘/—g—:
a? z?* = (2y P9)? + (y2 — 4 a? P¥) . (13)

La quantité A = y% — 4 a2 P¥ ne peut étre nulle, car si elle I’était on

2y P?
a

aurait * = 4

_ —Y — Y
E= 5 ==—¢ ou §= 5g%

L’idéal (£) serait entier rationnel, ce qui est impossible, car on a (&) = a¥,
a # (1) puisque N a = P > 1, et deux facteurs idéaux premiers différents

de a ne peuvent étre conjugués.

L’égalité (13) montre alors que la quantité 4 est au moins égale en
valeur absolue & la différence entre (2y P?)? et le carré immédiatement
supérieur ou inférieur suivant que 4 est positif ou négatif.

1¥ cas. A > 0. Alors
y®— 4a2 Pk > 4yP7 4+ 1 .

k
Comme 1 <y <<a(2+ o) P2 on en déduit

Oronavuque 0<p< é—, par conséquent

P’°>—1—2z
a

28 cqs. A < 0. Alors
402 P —y?2 > 4yP7—1.
Comme y > 1 on en tire
pe

P> .
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9 -t
On a donc dans les 2 cas P > -a—Pz—; or par hypotheése a<P’? ; il en

découle
2 g
Pk > Pe  cest-a-dire k> 7’
et le théoréme est démontré.
Pour g = 2 on obtient la curieuse conséquence:

Aucun des nombres 4 P* 4 1 n’est premier pour P > 1.

En effet, supposons 4 P* + 1 = p premier; on aurait D =p, a=1,
g—1

et la condition a < Plr— V P serait satisfaite; le nombre des classes
du corps R (Vp) serait d’aprés le théoréme 3 divisible par 2. Or, cela est
impossible, car dans le groupe des classes restreintes d’idéaux de R(V' D),
le nombre d’éléments de base dont ’ordre est une puissance de 2 est égal &
t— 1, t étant le nombre des facteurs premiers distincts de D. Si D= p
on a t=1, et I’'ordre &, du groupe des classes restreintes est impair, et a
fortiori ’'ordre & du groupe des classes, puisque kg = k ou hy = 2 h.

Si P=£0(5), ona P*=1 (5) et les nombres 4 P* -+ 1 sont tous divi-
sibles par 5. Donc seul le cas P = 5 - Q mérite d’étre signalé:

Aucun des nombres 2500 Q* + 1 n’est premier.

Et pourtant il n’existe aucun nombre premier fixe p qui divise tous
ces nombres, car la congruence 2500 @*+ 1 = 0 (p) admet au plus
quatre solutions (mod p), et comme p > 13, il existe des @ pour les-
quels 2500 @* + 1 =£ 0 (p).

(Regu le 9 décembre 1939.)
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