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Allgemeine Intégration einiger partieller
Differentialgleichungen der mathematischen

Physik durch Quaternionenfunktionen

Von M. Eichleb, Gôttingen

Einleitung

1. Der Zweck der vorliegenden Arbeit ist es, die von Herrn Fueter ins
Leben gerufene Funktionentheorie einer Quaternionenvariablen von
einigen elementaren aber gleichwohl noch nicht beachteten Gesichts-

punkten her zu beleuchten1). Diesen Gesichtspunkten liegen die folgenden
beiden Fragen zugrunde: 1. Welche Bedeutung haben die regulâren
Quaternionenfunktionen fur die Auffindung allgemeiner Intégrale be-

kannter partieller Differentialgleichungen der mathematischen Physik,
oder was fur Differentialgleichungen von physikalischer Bedeutung lassen

sich mittels regulârer Quaternionenfunktionen allgemein integrieren?
2. Was fur Darstellungsarten von praktischem Wert gibt es fur
Quaternionenfunktionen in der Umgebung einer regulâren Stelle? NaturgemâB
kann von einer vollstândigen Beantwortung keiner der beiden Fragen die
Rede sein; hier werden im wesentlichen nur Ansàtze aufgezeigt, die in
spâteren Verôffentlichungen zu vertiefen und auszuwerten sind.

Um die in den einzelnen Formeln auftretenden Symmetrien und
Unsymmetrien deutlich hervorzuheben, fiïhren wir die folgenden Be-
zeichnungen ein : die Grundvariable z wird als Summe ihres Realteils mit
einem skalaren Produkt geschrieben:

z=x + i1xl + i2x2 + i3x3 x + xx mit i (il9i2,is)9X= (x1,x2,xz);

im gleichen Sinne schreiben wir
F(z) f(z) + if (z)

Die partiellen Ableitungen nach x bezeichnen wir durch iibergesetzte
Punkte, die bekannten Differentialoperatoren grad, div, rot, A sollen sich
stets nur auf die Variablen xl9 x2, xz beziehen. Die Regularitâtsbedin-
gungen fur eine Funktion F(z) schreiben sich nun in der Form

/=divf
f — grad / ± rot f

*) Eine gewisse Vertrautheit mit dem Gegenstand wird vorausgesetzt ; es erûbrigt sich
dann, fur die einzelnen hier benutzten Hauptsatze ans der Théorie Literaturhinweise zu
b ringen.
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wo das obère Vorzeichen im Falle der Rechtsregularitàt, das untere im
Falle der Linksregularitât zu stehen hat.

Falls F(z) von x nicht abhàngt, erhàlt man den Spezialfall

div f 0 / 0

rot f grad / f 0

Dies sind die Differentialgleichungen des stationâren elektromagnetischen
Feldes im unmagnetischen Leiter, wenn / das elektrische Potential und f
die magnetische Feldstârke bedeutet — Materialkonstanten sind dabei
durch passende Wahl des MaBstabes auf 1 normiert.

Eine weitere Spezialisierung erhâlt man, wenn auch rot f 0 ist.
Dann gibt es bekanntlich eine Funktion g so, da8 f grad g ist ; g muB
die Gleichung

A g 0 (2a)

erfiillen. In diesem Falle ist also

(2b)

wo g(x) eine Potentialfunktion ist. F(z) beschreibt jetzt ein elektro-
statisches Feld. Funktionen dieser Art wollen wir statisch nennen.

Weiter unten werden wir zeigen, daB auch zeitlich verànderte zwei-
dimensionale elektromagnetische Felder AnlaB zur Bildung regulàrer
Quaternionenfunktionen geben (Formel (16b)).

Funktionen, die sowohl rechts- wie linksregulâr sind, wollen wir als

zweiseitig regulâr bezeichnen. Ihre Komponenten genùgen den

Differentialgleichungen

/ div f

f - grad / rot f 0

F ist hiernach durch den Realteil / von F eindeutig festgelegt, F selber

jedoch nur bis auf eine statische Funktion.
Fur die Rechnung sind die Symbole grad, div, rot bisweilen nicht

praktisch, wir fuhren deshalb an ihrer Stelle neue Symbole ein:
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Fur réelle <p fallen ôe<p und ô\<p zusammen. Sind / ein réelles Skalar und f
ein reeller Vektor, so gilt

«A(tf) - div f + t rot f ÔX (if) - div f - t rot f

sofern die nôtigen Differenzierbarkeits- und Stetigkeitsvoraussetzungen
erfullt sind.
Die Randwertaufgabe fur zeitlich unverânderliche elektromagnetische Felder.

2. Es sei © irgend ein beliebiges endliches Gebiet im x-Raum, sein
Rand 9t môge aus einer endlichen Anzahl glatter Flâchen bestehen.
Dannkann man die den Gleichungen (l)und(2) geniigenden Funktionen
und damit ihre Komponenten durch ihre Werte auf 9t ausdrûcken. Der
Ausdruck, der dies leistet, ist auf einem anderen Wege von Moïsil und
Théodorescoia) bewiesen worden; er ergibt sich durch eine leichte Rech-

nung aus der Fueterschen Integralformel.
Zur Durehfuhrung dieser Rechnung bezeichnen wir mit 9t ' den Rand

des Gebietes im (x, s)-Raume, welches aus allen Punkten aus © und mit
beliebiger x-Koordinate besteht. Ferner sei

t (gj, q2, qz)

der nach innen gerichtete Einheitsnormalvektor fur 9î ; er ist gleichzeitig
der Einheitsnormalvektor fur 9î', wenn man noch als die #-Komponente 0

hinzufugt. SchlieBlich sei dco das Oberflàchenelement von % dann ist
dœdx das Oberflàchenelement von 9t;. Ist nun 3 irgend ein innerer Punkt
von ffi, so besagt die Fuetersche Integralformel

^(3) /(3) + if(3)

wobei
dZ it dcodx

ist. Es ist also
+00

dco

Nun ist

und die Intégration iiber x lâBt sich in geschlossener Form ausfuhren:

la) Or. C. Moïsil et N. Théodoresco, Fonctions holomorphes dans l'espace,
Mathematica 5 (1931), p. 142.

214



Wegen

f xdx -Q
— oo

+<» +00

r dx 1 r dx
J (x2 + (x — 3)2)2 " 13e — 3I3 J (*2+l)2 '

00— 00

+ 00

/dx ___ Ç dx
__ r dx Ç dx-1

(x2+l)2 ~~
J (»*+l)a ~"J (a;2+l)2 J Jx=r+~

dx
__ n

* + i) ~ ~¥~
"b

erhâlt man

î /•
(ir) J((a? + i(x — 3))~]

Es ist also im Falle des stationàren Feldes

(3)

——-grad / -t— r do* — -7— rot / ; Ll .J de»

Werden / und f auf 91 beliebig stetig gegeben, so sind f(%) und f (3)

Real- und Imaginârteil einer im Inneren von (5 rechtregulâren Quater-
nionenfunktion, denn man kann die vorgenommene Integraltransfor-
mation rûckgângig machen und sich dann auf Bekanntes berufen.

Im Spezialfalle des statischen Eeldes erhâlt man
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mit

(5)
[f.r]

Aus der ersten Formel (3) folgt noch, weil der Realteil einer statischen
Funktion verschwindet,

(6)
i * — a rsu

— 3 I3

Ist wieder f auf 5R beliebig stetig gegeben, so folgt aus (5)

div f (3) div f"(3) 0 rot f'(3) 0

rot f(5)=-L.
E-3 | 4^° J | 3E — 3

91 91

falls (6) erfûllt ist, stellt also sowohl f'(3) wie f//(3) den Imaginàrteil einer
im Inneren von © statischen Quaternionenfunktion dar.

Man zeigt mittels einer bekannten Schlufiweise (vgl. Kellog, Founda-
tions of Potential Theory, Berlin 1929, S. 162): nâhert sich 3 auf der
Normalen einemPunkt 30 auf 91, in welchem 9lund JP=tf zweimal stetig
difîerenzierbar ist, von innen bzw. von auBen, so streben die durch die

Randintegrale definierten Funktionen -P(3), f'(3), f/;(3) Grenzwerten
V(io), V(U) su, fur welche gilt:

F(3o) -r ±\ f (80). r-^j grad J ^ dco r (5a)
9î

[f(3o), r] ±\ [f (3,), r] - [± rot fj^j dco r]
91

und die drei auf den rechten Seiten stehenden Intégrale existieren trotz
der Unstetigkeit der Integranden. K3) macht also einen Sprung an %
und zwar nimmt f '(3) die Normalkomponente und f/7(3) die Tangential-
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komponente des Sprunges auf. Infolgedessen ist die Tangentialkompo-
nente von f'(3) und die Normalkomponente von f "(3) auf 9î stetig.

Man kônnte auf die Formeln (5a) eine parallèle Behandlung der beiden
ersten Randwertaufgaben der Potentialtheorie griinden : durch Auflôsung
der ersten dieser Gleichungen nach f r gewinnt man in bekannter Weise
(siehe etwa das genannte Buch von Kellog) eine Potentialfunktion, deren
Feld eine auf 5R vorgeschriebene Normalkomponente hat. Durch Auf-
lôsung der zweiten Gleichung nach [f, r] wurde man ein Feld mit vor-
geschriebener Tangentialkomponente auf 9î bekommen. Sind nun fur
eine zu konstruierende Potentialfunktion u($) die Randwerte u($0) auf 9?

dreimal stetig differenzierbar vorgeschrieben, so bilde man den Flâchen-
gradienten von u($0) auf 9Î und konstruiere ein Feld, dessen Tangential-
komponenten gleich diesem Flàchengradienten sind. Im Falle eines zu-
sammenhângenden Randes 31 lôst dann das Potential dièses Feldes die
Randwertaufgabe bis auf eine Konstante. Leider muB man bei der so

skizzierten Lôsung der Randwertaufgabe eine Reihe von Dififerenzier-

barkeitsbedingungen stellen, die der Natur des Problems nicht ange-
messen sind.

3. Wir leiten jetzt noch die Poissonsche Integralformel fur die drei-
dimensionale Kugel her. Ihr Rand werde mit R bezeichnet, und $tr be-
deute den Rand desjenigen Gebietes im vierdimensionalen (x, x)-Raum,
das aus allen Punkten dieser Kugel mit beliebiger #-Koordinate besteht.
Dann gilt wieder

f() if(3)

dZ —rxxdqdx (rt — x)

wo r den Radius von ${ und dq das Oberflàchenelement der dreidimen-
sionalen Einheitskugel bedeutet. Âhnlich wie bei der Herleitung der
Poissonschen Formel fur die vierdimensionale Kugel2) teilt man dies

Intégral in Summanden auf: es ist gleich

2) R. Fueter, Zur Théorie der regulàren Funktionen einer Quaternionen-
variablen. Mh. Math. Phys. 43 (1939).
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Das dritte Intégral verschwindet wegen Nr. 2 nach Ausfûhrung der Inte-
ragtion ûber x. Das erste ergibt das Poissonsche Intégral

»-8-l3l2 ftt de
: —3l3

Das zweite wird gleich

:t (ix— t3)(i3)
U-313

und formt sich mittels der fur u ix, v i$ anzuwendenden Identitât

um zu

(u — v) v n(u~^Lv)
u —

\v 2

_
1

I 3 I2
3

¦rdq

L JLAf
(¦

r2 \s
rF3)<)

rdqdx

131

Hier steht jetzt das Intégral (7) fur den Punkt 3' -p-^ 3 er liegt aber

auBerhalb von R'f mithin ist A((z + i (x —¦ îO)"1) innerhalb von Rf
linksregulâr* Soll F(%) if (3) auch noch auf 5l7 regulâr sein, d. h. sollen
die vorgeschriebenen Randwerte angenommen werden, so mu8 es iden-
tisch verschwinden. Damit ist die Poissonsche Formel

4t7l J l^-3l3
(8)

bewiesen.
Man weiB nun andererseits, da6 der Poissonsche Integralausdruck die

vorgeschriebenen Randwerte annimmt, wenn dièse beliebig stetig auf il
gegeben sind; also kann behauptet werden: im Falle der Kugel nimmt
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die durch (3) bzw. (4) definierte Funktion F($) f(%) -f if (3) die vor-
geschriebenen Randwerte dann und nur dann an, wenn sie auBerhalb von
(g identisch verschwindet. Dièses Kriterium gilt auch fur ein beliebiges
Gebietla), falls die Voraussetzungen fur die Gûltigkeit von (5 a) erfûllt
sind, wie man diesen Formeln unmittelbar entnimmt.

Zum SchluB dièses Abschnittes sei noch darauf hingewiesen, da8 die
im ganzen AuBenraum von SI einschlieBlich des unendlich fernen Punktes
regulàre Potentialfunktion u, die auf R dieselben Werte wie die innerhalb
von $t regulàre Funktion u annimmt, durch den Ausdruck

gegeben ist. Dies folgt durch doppelte Anwendung obiger Umformung.
— In dem von Herrn Fueter betrachteten vierdimensionalen Falle2)
gilt das zuletzt Gesagte in analoger Weise.

Potenzreihenentwicklungen

4. Wir gebrauchen durchweg die folgenden Bezeichnungen :

(nx, n2, nz) n, (tlf t2, tz) t (réelle Komponenten)

nx + n2 + n3 |t| | Vfx + i\ + ?z \

nl^iHln.lns! tn %* tp Ç»

/m\ (mx\ tm%\ /m3\ m!
\n) [nj \nj \nj n! (m-n) '

[tj$] tx — tta; z^x + x2t2 + x3tz — (i^ + i2t2 + iztz)x

Ferner schreiben wir die Fueterschen Polynôme pni Wg ns (z) als symbolische
Potenzen und definieren sie, etwas abweichend von der Fueterschen

Erklàrung3) durch
tt î

wobei iiber aile {¦'•• verschiedenen Anordnungen der v{ zu summieren
n!

ist und die v€ die Werte 1, 2, 3 bezuglich nx, n2, nz mal annehmen.

8) jB. Fueter, Ûber die analytische Darstellung der regulâren Funktionen
einer Quaternionenvariablen. Dièses Journal S (1936).
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Die Abweichung wird durch gewisse Analogien zwischen den gewôhn-
lichen Potenzen im Kommutativen und den symbolischen Potenzen im
Quaternionensystem gerechtfertigt, welche in den Formeln

2" '. gît
dxx ~ (n —r)!

und besonders in
<«> /n\ <n> /n\(2 + W)n <&. r rwn~X <rf=„ r «*" <9)

zutage tritt.
6. Die ûberall absolut konvergente Reihe

<n>=0 Tt!

stellt eine ganze zweiseitig regulàre Funktion dar. An der Stelle z 0

stimmen die Ableitungen aller Grade dieser Funktion nach den xv mit
den entsprechenden Ableitungen der ebenfalls zweiseitig regulâren
Funktion

e[tz] etx (C0S 111 x — -jjr- sin 111 x)

ûberein, folglich ist
J£?I-= 21 ^j2". (10)

n=0

Aus der Reihenentwicklung und dem Additionstheorem dieser Funktion
làBt sich die ,,binomische Formelu (9) besonders einfach herleiten.

Die Gleichung (10) ist eine Zusammenfassung der Polynomidentitàten

n\ -<„?_,, n!
2 •

Es gibt nun ebensoviele homogène Polynôme tn in den Komponenten
von t vom Grade <n> n, wie es Fuetersche Polynôme vom Grade n
gibt, nàmlich

_ (n + 1) (n + 2)
b

aile dièse tn sind linear unabhângig. Man kann daher Kn Vektoren ti,...,
t^ so bestimmen, da8 die Déterminante
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nicht verschwindet. Die Gleichungen (11), fur aile dièse tv angesetzt,
lassen sich jetzt nach zn auflôsen, es gibt also réelle cv so, daB

(12)
V

ist; die cv hângen natûrlich von den tv ab.

Eine rechtsregulàre Funktion làBt sich deshalb auch nach gewôhn-
lichen Potenzen entwickeln:

F(Z)= T 2c,»[t»,r2]» • (13)

Dièse Reihen sind Verallgemeinerungen der Reihenentwicklungen der
regulâren ,,analytischen" Funktionen. Ihre Bedeutung scheint gering zu
sein, da in der Wahl der tnv eine unendlich groBe Willkiir steckt. AuBer-
dem werden die Reihen (13) i. a. nirgends absolut konvergieren ; ein
Beispiel hierfur liefert die Funktion

F(z) =r: (C*« + 6-*») COS
*

^-
*

COS

cos
Xl jl52 sin x

auch Integralreihen

F(z)= 1

werden nirgends absolut konvergieren. Man beweist dies, indem man die
Reihen (13) bzw. dièse Intégrale unter Annahme ihrer absoluten Kon-
vergenz in eine Fourierreihe nach x entwickelt und dann das Verhalten
der Koeffizienten als Funktionen von x betrachtet.

6. Die symbolische Potenzreihe

fur eine rechtsregulàre Funktion konvergiert bekanntlich in jeder im
Regularitàtsbereich gelegenen Kugel gleichmâBig absolut, d. h. fur eine
solche Kugel

gibt es zwei Konstanten c, q so, daB fur hinreichend groBes < n>

|cn|<C<«> |««|<e<«> CQ<1

ist. Wir setzten nun
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und schâtzen die an „ ab: Es ist fur

I «n,i(l) I < <?<">

dx K,l(x)|

9a;2*
1 «.,.(*)! Je, (enj(.n>---'v>

<3<n>e<B>-\

<32(<

3a;* «..*(*) l< a*

wobei

d (1, o, 0), e2 (0, î, o), e3 (0, o, 1)

gesetzt wurde. Die Reihen

<n>-o

sind also gleichmâBig absolut konvergent, und nach dem Doppelreihen-
satze gilt im Sinne absoluter und gleichmâBiger Konvergenz

F(z) f^ Vn(x)

Man erkennt ferner, dièse Reihe kann gliedweise beliebig oft nach allen
Variablen differenziert werden, da dies fur die symbolische Potenzreihe
erlaubt ist. Die Regularitâtsbedingung ergibt dann die Relationen

Pn + <Pn+l 0

es gilt also in jeder im Regularitàtsbereich gelegenen Kugel

(14)

Man kann dièse Reihen bequem zur Berechnung der Fueterschen
Polynôme betfutzen. Es ist nâmlich

zn xn fur x 0

setzt man dièse in (14) ein, so erhàlt man fast ohne Reehnung
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n\ (2r)!
<2r>! r!

(15)

4- h i yx<u>+1xn-2t-tv(— i)<'>+1( n \ (2r+ ey)! <r>!
\VVT ' \2r + eJ <2r+c,>! r! '

die Summe ist iiber aile r ^ (0, 0, 0) zu erstrecken, fur welche keine
negativen Variablenpotenzen auftreten4).

7. Die Théorie der regulâren Quaternionenfunktionen ist ein hervor-
ragendes Mittel, allgemeine Sàtze iiber die Intégrale der Differential-
gleichungen

aflv ±1) (16)

zu beweisen, wenn die a^v konstant sind. Durch eine lineare Variablen-
substitution kann man dièse Gleichungen auf eine der Formen

zd^ O, (16a)

32 02 92

u+—j-u -—u (x x3) (16b)
dx\ dx\ dx2

bringen. Im Falle der Schwingungs- oder Wellengleichung (16b) ist es

nôtig, sich auf solche Intégrale zu beschrânken, die sich in einem gewissen
Gebiet nach der Zeit x in eine Potenzreihe entwickeln lassen :

u(xlf x2, x) Z—run(x1, x2) (17)

Im Falle (16 a) ist
F{ix) ôQu(x) (18a)

im Falle (16b)

F(x + ix) -^R(u(xlix2,x + xzhV2)

(18b)
— SQB(u(x1, xz, x + xsi3V2))

eine zweiseitig regulàre Quaternionenfunktion (R bedeutet den Realteil).

4) Die Formel weicht naturgemâfi von der durch B.Schuler (Zur Théorie der
regulàren Funktionen einer Quaternionenvariablen, dièses Journal 10 (1938))
gegebenen ab, da wir hier eine etwas andere Définition der Fueterschen Polynôme zu-
grunde legen. Daneben hat aber der Imaginàrteil ein anderes Vorzeichen erhalten ; dafi das
von Schuler angegebene nicht richtig sein kann, bestâtigt man auch leicht durch Prûfung
an der Regularitâtsbedingung.
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Dièse Funktionen lassen sich jetzt in Potenzreihen

entwickeln, aus denen man Entwicklungen von ôQu bzw. u R(F(x-\~
iiX1+i2x2)) nach homogenen Polynomlôsungen von (16) gewinnen kann.

Wir betrachten den Fall (16a) besonders. Zunâchst erkennt man, daB
die einzelnen homogenen Bestandteile

von (19) die Variable x nicht enthalten kônnen, weil F(ix) von x nicht
abhàngt ; sie miissen also in der Form

dureh réelle homogenen Polynôme un+1(x) vom Grade n-\-\ darstellbar
sein; dièse un^t(x) sind Laplacesche Kugelfunktionen der Ordnung n-\-1.
Damit haben wir die Môglichkeit erhalten, die bekannten Sàtze ûber die
Entwicklung von Potentialfunktionen nach Kugelfunktionen besonders
einfach herzuleiten. Auch der gelàufige Satz, daB auf dem Rande der

Konvergenzkugel mindestens eine Singularitât liegt, iibertràgt sich auf
die Potentialfunktionen, wâhrend dies fur die in Reihen entwickelten
Lôsungen der Wellengleichung nicht zu gelten braucht, da in diesem
Falle aus den Reihen (19) die Variable x3 erst durch Nullsezten zu ent-
fernen ist.

Die explizite Gestalt fur die Reihenentwicklung von Potentialfunktionen

nach Kugelfunktionen hângt natiirlich von der Wahl der Basis
aller Kugelfunktionen ab. Besonders élégant sind die Entwicklungen der
nachstehenden Form:

(20)

man erhàlt dièse Formel sofort aus (19), wenn man nur verifiziert, daB

F(ix) iz ôQ u(xx, x2, x3) iz eine rechtsregulâre Funktion der Variablen

(Eingegangen den 4. Dezember 1939.)
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