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Allgemeine Integration einiger partieller
Differentialgleichungen der mathematischen
Physik durch Quaternionenfunktionen

Von M. EicHLER, Gottingen

Einleitung

1. Der Zweck der vorliegenden Arbeit ist es, die von Herrn Fueter ins
Leben gerufene Funktionentheorie einer Quaternionenvariablen von
einigen elementaren aber gleichwohl noch nicht beachteten Gesichts-
punkten her zu beleuchten!). Diesen Gesichtspunkten liegen die folgenden
beiden Fragen zugrunde: 1. Welche Bedeutung haben die regularen
Quaternionenfunktionen fiir die Auffindung allgemeiner Integrale be-
kannter partieller Differentialgleichungen der mathematischen Physik,
oder was fiir Differentialgleichungen von physikalischer Bedeutung lassen
sich mittels regularer Quaternionenfunktionen allgemein integrieren?
2. Was fiir Darstellungsarten von praktischem Wert gibt es fiir Quater-
nionenfunktionen in der Umgebung einer reguliren Stelle? Naturgemal
kann von einer vollstindigen Beantwortung keiner der beiden Fragen die
Rede sein; hier werden im wesentlichen nur Ansatze aufgezeigt, die in
spateren Veroffentlichungen zu vertiefen und auszuwerten sind.

Um die in den einzelnen Formeln auftretenden Symmetrien und
Unsymmetrien deutlich hervorzuheben, fithren wir die folgenden Be-
zeichnungen ein: die Grundvariable z wird als Summe ihres Realteils mit
einem skalaren Produkt geschrieben:

=24 05% F 1%+ 2y =a+1ix mit 1= (31, 1g, 23), ¥ = (2, Xy, L) ;
im gleichen Sinne schreiben wir
F(z) = f(2) + if(2) .

Die partiellen Ableitungen nach = bezeichnen wir durch iibergesetzte
Punkte, die bekannten Differentialoperatoren grad, div, rot, 4 sollen sich
stets nur auf die Variablen z,, x,, x; beziehen. Die Regularitatsbedin-
gungen fiir eine Funktion F(z) schreiben sich nun in der Form

f=div{
iz_grad.fj:rOtfs

1) Eine gewisse Vertrautheit mit dem Gegenstand wird vorausgesetzt; es eribrigt sich
dann, fiir die einzelnen hier benutzten Hauptsétze aus der Theorie Literaturhinweise zu
bringen.
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wo das obere Vorzeichen im Falle der Rechtsregularitiat, das untere im
Falle der Linksregularitit zu stehen hat.

Falls F(z) von x nicht abhangt, erhalt man den Spezialfall

divf=0, f=0,

: (1)
rot f = grad f, f=0.

Dies sind die Differentialgleichungen des stationiren elektromagnetischen
Feldes im unmagnetischen Leiter, wenn f das elektrische Potential und §
die magnetische Feldstarke bedeutet — Materialkonstanten sind dabei
durch passende Wahl des Ma@3stabes auf 1 normiert.

Eine weitere Spezialisierung erhalt man, wenn auch rot f = 0 ist.
Dann gibt es bekanntlich eine Funktion g so, dal f = grad ¢ ist; g muB
die Gleichung

Ag=0 (2a)

erfiillen. In diesem Falle ist also
F(z) = igrad g(z), (2b)

wo g(x) eine Potentialfunktion ist. F(z) beschreibt jetzt ein elektro-
statisches Feld. Funktionen dieser Art wollen wir statisch nennen.

Weiter unten werden wir zeigen, dal auch zeitlich verdnderte zwei-
dimensionale elektromagnetische Felder AnlaBl zur Bildung regularer
Quaternionenfunktionen geben (Formel (16b)).

Funktionen, die sowohl rechts- wie linksregular sind, wollen wir als
zweiseittg regulidr bezeichnen. Thre Komponenten geniigen den Diffe-
rentialgleichungen

f'z—_divf
%:——gra.df, rot f=0 .

F ist hiernach durch den Realteil f von F eindeutig festgelegt, F' selber
jedoch nur bis auf eine statische Funktion.

Fir die Rechnung sind die Symbole grad, div, rot bisweilen nicht
praktisch, wir fiihren deshalb an ihrer Stelle neue Symbole ein:

; . 0 . 0 . 0
Orp =1 grad <p::zl—ax—1q91 +@2—(-};2-<P+@a‘553—¢,

. Jo . J . 0 .
do p = grad @i = —a—azl-qnl—{— 'b};¢“2+?x;"’”3 .
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Fiir reelle ¢ fallen d,¢ und 4,9 zusammen. Sind f ein reelles Skalar und f
ein reeller Vektor, so gilt

85(if) = — divf+irotf, &y(if)= — divf—irotf,
Bf=df=—4f,

sofern die notigen Differenzierbarkeits- und Stetigkeitsvoraussetzungen

erfiillt sind.
Die Randwertaufgabe fir zeitlich unverdnderliche elekiromagnetische Felder.

2. Es sei ® irgend ein beliebiges endliches Gebiet im x-Raum, sein
Rand R moge aus einer endlichen Anzahl glatter Flachen bestehen.
Dann kann man die den Gleichungen (1) und (2) geniigenden Funktionen
und damit ihre Komponenten durch ihre Werte auf R ausdriicken. Der
Ausdruck, der dies leistet, ist auf einem anderen Wege von Moisil und
Théodoresco 1*) bewiesen worden; er ergibt sich durch eine leichte Rech-
nung aus der Fueterschen Integralformel.

Zur Durchfiihrung dieser Rechnung bezeichnen wir mit R’ den Rand
des Gebietes im (x, x)-Raume, welches aus allen Punkten aus ® und mit
beliebiger x-Koordinate besteht. Ferner sei

t = (01, 025 03)

der nach innen gerichtete Einheitsnormalvektor fiir R; er ist gleichzeitig
der Einheitsnormalvektor fiir R/, wenn man noch als die z-Komponente 0
hinzufiigt. SchlieBlich sei dw das Oberflaichenelement von R, dann ist
dwdz das Oberflichenelement von R’. Ist nun 3 irgend ein innerer Punkt
von G, so besagt die Fuetersche Integralformel

-

FG) = 1) + if6) = 3 [ F®AZA((@ +iz—3)) ,
ml

wobei
dZ = ir do dx
ist. Es ist also

-+ 00
fA((x+i(x—3))“)dx do .

1
F3) = — [ F(z)ir

Nun ist

x—1i(x—3)
(22 + (x —3)?)® ’

und die Integration iiber x 148t sich in geschlossener Form ausfiihren:

A((x +i(x—3))") =—14

18) @r. C. Moisil et N. Théodoresco, Fonctions holomorphes dans l'espace,
Mathematica & (1931), p. 142.
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Wegen

7 x dx —0

Jo(@+E—3

+o0 +o00

f dx 1 f dx
JErE—y 3 J e+
+ o0

_[w CES f CEST f (xchl)z "‘of (x-filnz
- of (xztfl) - ;

+ i(x —3))Vda

erhilt man

_ 1 —f.e(e—3)—{f, 1] e—3)+i(f[r,x—3] — (Fr) (x—3) + [[T.,x].=—3]) .
4n lx—3[°

Es ist also im Falle des stationdren Feldes

f‘”“mf —frE) .0 @8),, 1 g (et g

l[ea—z[? 47 |£—3 |
. (3)
_ 1 [ fle,x—3] —(Fr) (x—3) + [[f,1],x—3]
f(3)—“4n [T—3° dw
_ 1 fr+ [f.1]
mgradf' dw 4nrotm T—3] do

Werden f und f auf R beliebig stetig gegeben, so sind f(3) und §(3)
Real- und Imaginirteil einer im Inneren von G rechtreguldren Quater-
nionenfunktion, denn man kann die vorgenommene Integraltransfor-
mation riickgingig machen und sich dann auf Bekanntes berufen.

Im Spezialfalle des statischen Feldes erhéalt man

— () E—3) +[[f.d.x—3] 5 _ ¢« "
o) = mf Sl do=10)+16 @
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mit

o fe)(x—3) , 1 fr
Fo=—1 fix——al o= Egmdmflx—-u ’

1 [[[f.1],x—3] 1 [f.1] =
" . j,X¥x—3 T
f“"‘mf T—3F Z‘“’tf[—«]d

Aus der ersten Formel (3) folgt noch, weil der Realteil einer statischen
Funktion verschwindet,

R

Ist wieder f auf R beliebig stetig gegeben, so folgt aus (5)
div {/(3) = div {(3) =0 , rot {/(3)

rot {/(3) = idfrx[j:‘ﬂ?)_wa yp gradf[f .1 (x———s

[f,5 c—3) 4,

l£—~3l“’

= 4 grad

2

falls (6) erfiillt ist, stellt also sowohl §/(3) wie {”(3) den Imaginirteil einer
im Inneren von ® statischen Quaternionenfunktion dar.

Man zeigt mittels einer bekannten SchluBiweise (vgl. Kellog, Founda-
tions of Potential Theory, Berlin 1929, S. 162): nahert sich 3 auf der
Normalen einem Punkt 3, auf R, in welchem R und F=if zweimal stetig
differenzierbar ist, von innen bzw. von auflen, so streben die durch die
Randintegrale definierten Funktionen F(3), f'(3), §"(3) Grenzwerten
F(30), T'3o), T"(30) zu, fiir welche gilt:

ml

(3,) T = i—%—f(?m).r———zly—tgrad f—l-é—i—l_:%—o—l—dw.r, (5a)

[Go) » ¥] = 5 [[(30) f 3 ik ] -do, t .

und die drei auf den rechten Seiten stehenden Integrale existieren trotz
der Unstetigkeit der Integranden. {(3) macht also einen Sprung an %R,
und zwar nimmt {'(3) die Normalkomponente und §”(3) die Tangential-
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komponente des Sprunges auf. Infolgedessen ist die Tangentialkompo-
nente von {'(3) und die Normalkomponente von {”(3) auf R stetig.

Man koénnte auf die Formeln (5a) eine parallele Behandlung der beiden
ersten Randwertaufgaben der Potentialtheorie griinden: durch Auflésung
der ersten dieser Gleichungen nach fr gewinnt man in bekannter Weise
(siehe etwa das genannte Buch von Kellog) eine Potentialfunktion, deren
Feld eine auf R vorgeschriebene Normalkomponente hat. Durch Auf-
l1osung der zweiten Gleichung nach [f, r] wiirde man ein Feld mit vor-
geschriebener Tangentialkomponente auf R bekommen. Sind nun fiir
eine zu konstruierende Potentialfunktion u(3) die Randwerte « (3,) auf R
dreimal stetig differenzierbar vorgeschrieben, so bilde man den Flachen-
gradienten von u(3,) auf R und konstruiere ein Feld, dessen Tangential-
komponenten gleich diesem Flachengradienten sind. Im Falle eines zu-
sammenhéngenden Randes R lost dann das Potential dieses Feldes die
Randwertaufgabe bis auf eine Konstante. Leider muf3 man bei der so
skizzierten Losung der Randwertaufgabe eine Reihe von Differenzier-

barkeitsbedingungen stellen, die der Natur des Problems nicht ange-
messen sind.

3. Wir leiten jetzt noch die Poissonsche Integralformel fiir die drei-
dimensionale Kugel her. Thr Rand werde mit K bezeichnet, und &’ be-
deute den Rand desjenigen Gebietes im vierdimensionalen (z, x¥)-Raum,
das aus allen Punkten dieser Kugel mit beliebiger x-Koordinate besteht.
Dann gilt wieder

F(3) =1if(3) =
1 [, : 1 . x—i(x—3)
— L (inaz —3)) = ———; [ ifdZ
2 Rf (NAZA((x+ () = — 5g Rf taz 2= )
mit dZ = —rixdodx (re =—x%) ,

wo r den Radius von & und dp das Oberflichenelement der dreidimen-
sionalen Einheitskugel bedeutet. Ahnlich wie bei der Herleitung der
Poissonschen Formel fiir die vierdimensionale Kugel?) teilt man dies
Integral in Summanden auf: es ist gleich

R |2 —131® (ix—i3) (3) . -
2“23[17 (22 + (x —3)?)? rdede ff @t E—37)

(ix)x
dodx .
t3 ff (2% + (x —3)?)* reeas

%) R. Fueter, Zur Theorie der reguliren Funktionen einer Quaternionen-
variablen. Mh. Math. Phys. 48 (1939).
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Das dritte Integral verschwindet wegen Nr. 2 nach Ausfiihrung der Inte-
ragtion iiber z. Das erste ergibt das Poissonsche Integral

—-Ial"’f
f Ix——-?)la

Das zweite wird gleich

(ix —i3) (i3)
Mf f r do

lx—3[®

und formt sich mittels der fiir v = 1%, v = ¢3 anzuwendenden Identitit

@—oo _ Ju] U pE?
—_— i3 2 3
|u—w| ] l Iul v
um zu .
2
(i%) (ix-————-—’ : i3)
LT if 13| rd
47 |3 | lx'— r2 33 e
. 132
re
1 7 (x"Hx Ial“‘?’)
R (x“r (% — EIE 3)2)
1 r rd
52 Tar,| (D 4246 + 12— 75

2
Hier steht jetzt das Integral (7) fiir den Punkt 3’ = Tg—l—é 3, er liegt aber

auBerhalb von K’, mithin ist 4((x+i(x — 3’))~") innerhalb von K’
linksregulir. Soll F(3) = if(3) auch noch auf K’ regulir sein, d. h. sollen
die vorgeschriebenen Randwerte angenommen werden, so mul} es iden-
tisch verschwinden. Damit ist die Poissonsche Formel

rr—|3/° fdo
@) =r—7p T3 (8)
bewiesen. f
Man weil nun andererseits, daB der Poissonsche Integralausdruck die
vorgeschriebenen Randwerte annimmt, wenn diese beliebig stetig auf &

gegeben sind; also kann behauptet werden: im Falle der Kugel nimmt
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die durch (3) bzw. (4) definierte Funktion F(3) = f(3) + if(3) die vor-
geschriebenen Randwerte dann und nur dann an, wenn sie auBerhalb von
® identisch verschwindet. Dieses Kriterium gilt auch fiir ein beliebiges
Gebiet'®), falls die Voraussetzungen fiir die Giiltigkeit von (5a) erfiillt
sind, wie man diesen Formeln unmittelbar entnimmt.

Zum Schluf8 dieses Abschnittes sei noch darauf hingewiesen, dafl die
im ganzen Auflenraum von { einschlieBlich des unendlich fernen Punktes
regulire Potentialfunktion u, die auf & dieselben Werte wie die innerhalb
von K regulire Funktion » annimmt, durch den Ausdruck

— r 72
vO=—nr\ne?
gegeben ist. Dies folgt durch doppelte Anwendung obiger Umformung.

— In dem von Herrn Fueter betrachteten vierdimensionalen Falle 2)
gilt das zuletzt Gesagte in analoger Weise.

Potenzrethenentwicklungen

4. Wir gebrauchen durchweg die folgenden Bezeichnungen:

(ny, ng, mg) =M, (¢, %, 8) =1  (reelle Komponenten)

My=n+n+n, , |t|=|VE+E+2&]|,

nl=mnlnn! , "=y,

(':‘1)_:(’?':11) (;n:) (?:)2 n! (nT—!—n)! ’

[t3] =tz — itx = 2,8, + @ty + 233 — (438, + 1285 + t3tg) X .

Ferner schreiben wir die Fueterschen Polynome p,, ,, , (2) als symbolische
Potenzen und definieren sie, etwas abweichend von der Fueterschen
Erklarung?®) durch

n! . .
2" = T 2 (x, —1,2).. .(x,,<n> —~ Yy x) ,

!
n!
ist und die v, die Werte 1, 2, 3 beziiglich n,, n,, n; mal annehmen.

wobei iiber alle verschiedenen Anordnungen der »;, zu summieren

3) R. Fueter, Uber die analytische Darstellung der regularen Funktionen
einer Quaternionenvariablen. Dieses Journal 8 (1936).
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Die Abweichung wird durch gewisse Analogien zwischen den gewohn-
lichen Potenzen im Kommutativen und den symbolischen Potenzen im
Quaternionensystem gerechtfertigt, welche in den Formeln

o< n!
— zﬂ e o zn-—r
ox* n—x)!
und besonders in
MY /n my In
(z _l_ w)n —_— 2 ( )szﬂ—t — Z ( wtzn—t (9)
(iy=o\ T (ry=0\ T

zutage tritt.

b. Die iiberall absolut konvergente Reihe

5 oo
—_—2n
(ny=o T

stellt eine ganze zweiseitig regulare Funktion dar. An der Stelle z = 0
stimmen die Ableitungen aller Grade dieser Funktion nach den z, mit
den entsprechenden Ableitungen der ebenfalls zweiseitig reguliren
Funktion

eltzl = etx (cos |1] x-—-}—t—

] sin |t| )
iiberein, folglich ist
o [tz]n 0 tn
C[tz]=£0 [n'] — <n§=o—ﬁ—!— PALIN (10)

Aus der Reihenentwicklung und dem Additionstheorem dieser Funktion
laBt sich die ,,binomische Formel‘ (9) besonders einfach herleiten.

Die Gleichung (10) ist eine Zusammenfassung der Polynomidentitaten

[t2]™ _ Rl
n! ——<n>2'=n n!

an (11)

Es gibt nun ebensoviele homogene Polynome t" in den Komponenten
von t vom Grade {n) = n, wie es Fuetersche Polynome vom Grade n
gibt, namlich
_ (4l mt2)

2 ’

Kn

alle diese t" sind linear unabhéngig. Man kann daher «, Vektoren t,,...,
t., 8o bestimmen, da8 die Determinante

| ]
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nicht verschwindet. Die Gleichungen (11), fiir alle diese t, angesetzt,
lassen sich jetzt nach 2" auflosen, es gibt also reelle ¢, so, daB3

2= Y c,[t 2] (12)

ist; die ¢, hangen natiirlich von den t, ab.

Eine rechtsregulire Funktion laBit sich deshalb auch nach gewohn-
lichen Potenzen entwickeln:

K

F(z) = 20 en.v [tn. »2]" - (13)

v=1

3

Diese Reihen sind Verallgemeinerungen der Reihenentwicklungen der
reguldren ,,analytischen‘‘ Funktionen. Thre Bedeutung scheint gering zu
sein, da in der Wahl der t,, , eine unendlich grole Willkiir steckt. Aufler-
dem werden die Reihen (13) i.a. nirgends absolut konvergieren; ein
Beispiel hierfiir liefert die Funktion

. 2, T, + Xy x
F(2) =: (e®s + e—%3) cos V3 cos vy
z, + . x
— 6 T3 —Zg _._1—._..?_ —_— ;
o(e*s -+ e=%s) cos Vs sin V3

auch Integralreihen

Fz) = 20 (ff ea(t) [tz]nde, de, dt,

werden nirgends absolut konvergieren. Man beweist dies, indem man die
Reihen (13) bzw. diese Integrale unter Annahme ihrer absoluten Kon-
vergenz in eine Fourierreihe nach « entwickelt und dann das Verhalten
der Koeffizienten als Funktionen von x betrachtet.

6. Die symbolische Potenzreihe

F(z) = :‘f’ Cn 2"t
{(n)=0

fiir eine rechtsregulire Funktion konvergiert bekanntlich in jeder im
Regularititsbereich gelegenen Kugel gleichmifBig absolut, d. h. fiir eine
solche Kugel

2| <7
gibt es zwei Konstanten ¢, p so, daf fiir hinreichend groBes { n)
len| < e<m>, || <ol , cop<1

ist. Wir setzten nun
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x(“)

<n>'

2" = ay,0 (%) + xan,1(%) + a'n 2 (%) + - @y, ¢n> (%)

und schatzen die a,, , ab: Es ist fiir
x=0, |z|=]|x|<r

| @n (%) | < <™,

0 3 /n . B
%2 2| = lama®) | = é’l(e )z“ i, | <3(ndel™ 1,
02 3 n It o " )
ox2 | @y,2 (%) | = “il(ey) (Qv) P ev'l,“z < 32(<2>)Q<n) 2
k
———aik 2t =0, ,(x)] < 3% (<2>) oS>k
wobei

e, =(1,0,0), ¢e,=¢(0,1,0), ¢;=1(0,0,1)
gesetzt wurde. Die Reihen

@ (%) . néocnan,k (%)

sind also gleichm&fBig absolut konvergent, und nach dem Doppelreihen-
satze gilt im Sinne absoluter und gleichméBiger Konvergenz

Feo) = 3 20 g,(a) -

n=0

Man erkennt ferner, diese Reihe kann gliedweise beliebig oft nach allen
Variablen differenziert werden, da dies fiir die symbolische Potenzreihe
erlaubt ist. Die Regularitatsbedingung ergibt dann die Relationen

ae(pn = Pny1 = 0,
es gilt also in jeder im Regularitiatsbereich gelegenen Kugel

F(z) = 2 (— 1) -—6"F(t£) = e %% F(ix) . (14)

n=0

Man kann diese Reihen bequem zur Berechnung der Fueterschen
Polynome benutzen. Es ist namlich

2" =" fir =0,

setzt man diese in (14) ein, so erhalt man fast ohne Rechnung
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N — va(zr) xn——Zr(_l)(r)(n) (213)! <I?>!

2¢) <(2t)! r!
(15)
b0, S et gty 1)<f>+1( n ) (2r + e)! <)l
v=1 ' x 2vr+e¢y) <{2t4¢,3!1 !

die Summe ist iiber alle r = (0, 0, 0) zu erstrecken, fiir welche keine
negativen Variablenpotenzen auftreten?).

7. Die Theorie der reguliren Quaternionenfunktionen ist ein hervor-
ragendes Mittel, allgemeine Séatze iiber die Integrale der Differential-

gleichungen
3 Pu__y 1 1
p.,%;l “#VW = (v = Qv , | Q| = £ 1) (16)
zu beweisen, wenn die a,, konstant sind. Durch eine lineare Variablen-
substitution kann man diese Gleichungen auf eine der Formen

Auw=0, (16a)
92 o 92

o2 u -+ 32 U=t (& == 2,) (16 b)

bringen. Im Falle der Schwingungs- oder Wellengleichung (16b) ist es
notig, sich auf solche Integrale zu beschranken, die sich in einem gewissen
Gebiet nach der Zeit x in eine Potenzreihe entwickeln lassen:

L
u(xla L2 x)zz_,rz'_un(xla x2) € (17)

n=0
Im Falle (16a) ist
F(ix) = du(x), (18a)
im Falle (16D)
0 . =
F(x+ix) = S R(u(z,, x;, x + 2393V2))
B (18b)
— G R(u(z,, xy, ® + 2,34,V2))

eine zweiseitig regulire Quaternionenfunktion (R bedeutet den Realteil).

4) Die Formel weicht naturgemaB von der durch B.Schuler (Zur Theorie der
regularen Funktionen einer Quaternionenvariablen, dieses Journal 10 (1938))
gegebenen ab, da wir hier eine etwas andere Definition der Fueterschen Polynome zu-
grunde legen. Daneben hat aber der Imaginérteil ein anderes Vorzeichen erhalten; dal das
von Schuler angegebene nicht richtig sein kann, bestatigt man auch leicht durch Prifung
an der Regularitatsbedingung.
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Diese Funktionen lassen sich jetzt in Potenzreihen

7 j§ o<n>
——<n>=o_ﬁT ox"

F(0) 2» (19)

entwickeln, aus denen man Entwicklungen von d,u bzw. u = R(F(x+
1, %; +15%,)) nach homogenen Polynomlosungen von (16) gewinnen kann.

Wir betrachten den Fall (16a) besonders. Zunachst erkennt man, dafl
die einzelnen homogenen Bestandteile

. 5 1 o<w
fn(tx) —'—<n>=n II! axﬂ

F(0) zv

von (19) die Variable x nicht enthalten kénnen, weil F(ix) von « nicht
abhangt; sie miissen also in der Form

fn (1) = 0o Uny1(%)

durch reelle homogenen Polynome u,.,(x) vom Grade n -+ 1 darstellbar
sein; diese u,  ,(x) sind Laplacesche Kugelfunktionen der Ordnung » -+ 1.
Damit haben wir die Moglichkeit erhalten, die bekannten Satze iiber die
Entwicklung von Potentialfunktionen nach Kugelfunktionen besonders
einfach herzuleiten. Auch der gelaufige Satz, daBl auf dem Rande der
Konvergenzkugel mindestens eine Singularitat liegt, iibertragt sich auf
die Potentialfunktionen, wahrend dies fiir die in Reihen entwickelten
Losungen der Wellengleichung nicht zu gelten braucht, da in diesem
Falle aus den Reihen (19) die Variable x; erst durch Nullsezten zu ent-
fernen ist.

Die explizite Gestalt fiir die Reihenentwicklung von Potentialfunk-
tionen nach Kugelfunktionen hangt natiirlich von der Wahl der Basis
aller Kugelfunktionen ab. Besonders elegant sind die Entwicklungen der
nachstehenden Form:

% (— 1)m2 gnatne

F(izx)= X

ny,ny=0 n1! nz! ax';’ ax';‘

F(0) 15 (23 4 v, 25 — %2 7y) ("""2’0)7351;
(20)

man erhélt diese Formel sofort aus (19), wenn man nur verifiziert, daf3
F(ix) i3 = 6, u(2,, x,, x;) ¢5 eine rechtsregulire Funktion der Variablen

(Eingegangen den 4. Dezember 1939.)
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