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Sur les complexes avec automorphismes

Par Georges de Rham, Lausanne

Introduction

Soient un groupe abstrait G et une loi associant à chaque élément y de G

une transformation topologique T(y) d'un espace F en lui-même, de

manière que T(y)T(ô) T(yô) quels que soient les éléments y et ô de G.

L'ensemble [F, T(y)] formé par l'espace F et la loi T(y) sera appelé un
espace avec transformations, qui représente G. On dira que deux tels

espaces, [7,^(7)] et [F7, T'(y)], représentant le même groupe G, sont
homéomorphes, s'il existe une transformation topologique S de F en V
telle que ST(y)S~1 T\y) pour tout élément y de G. On appellera
invariant topologique de [F, T{y)\ toute propriété de cet espace qui
appartient en même temps à tous les espaces avec transformations qui lui
sont homéomorphes.

Les invariants topologiques de l'espace avec transformations
[ F, T(yj] ne sont pas autre chose que les propriétés topologiques du

groupe des transformations T(y), et leur recherche se présente ainsi
comme une généralisation de la recherche des invariants topologiques
d'un espace topologique ordinaire. Pour pouvoir appliquer les méthodes
combinatoires, supposons que F admette une subdivision en cellules
invariante relativement aux transformations T(y), ces transformations
ne faisant que permuter les cellules entre elles. Cette subdivision définit un
complexe C et les T(y) se traduisent par des automorphismes de C. On est
ainsi amené à envisager des complexes avec automorphismes et à essayer
d'en faire une théorie qui généralise celle des complexes ordinaires.

L'espace de recouvrement universel d'un espace donné W est un
exemple particulièrement intéressant d'espace avec transformations: les

transformations T(y) sont les transformations de recouvrement, qui
engendrent un groupe isomorphe au groupe fondamental de W. Si W est

un complexe, l'espace de recouvrement se présente comme un complexe
avec automorphismes, et ses invariants topologiques (au sens défini ici)
fournissent automatiquement des invariants topologiques de l'espace de
base W lui-même. Ainsi envisagée, l'étude des complexes de recouvrement
a fait l'objet de nombreux travaux de M. K. Reidemeister1).

Dans le présent Mémoire, dont la lecture ne nécessite pas la connais-

*) Cf. K. Reidemeister, Topologie der Polyeder (Leipzig 1938), pp. 177—190, et
de nombreux mémoires parus dans les ,,Hamburger Abhandl.".
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sance des travaux précités, nous partons à priori de la notion de
complexe avec automorphismes, sans exclure le cas où certains automorphis-
mes peuvent laisser des cellules invariantes, cas qui ne se présente pas
avec les complexes de recouvrement et qui nécessite quelques développements

spéciaux, et nous exposons les principes de la théorie en nous
maintenant strictement au point de vue de la topologie combinatoire.

Un fait remarquable se présente dans cette théorie: un théorème (le
théorème I ci-dessous) qui, dans le cas des complexes ordinaires, ne fournit

aucun invariant distinct des groupes de Betti, fournit au contraire
dans le cas actuel des invariants essentiellement nouveaux. Ce fait a été
découvert par M. Reidemeister, à qui il a permis d'effectuer la classification

topologique de certaines variétés à trois dimensions2) (les ,,Linsen-
ràume") qui avaient résisté aux méthodes antérieurement connues.
M. W. Franz3) et moi-même4) avons montré ensuite que ces mêmes
invariants permettent aussi d'effectuer la classification des variétés
analogues à 2n-\-l dimensions.

Nous avons cherché à approfondir la nature algébrique des nouveaux
invariants, et nous établissons dans cette direction un théorème (le
théorème III) qui peut être considéré comme le résultat essentiel du
présent Mémoire.

Des applications seront développées dans un autre article, où nous
démontrons que, Rx et R2 étant deux rotations (c'est-à-dire deux
transformations orthogonales) de la sphère à n dimensions Sn, s'il existe une
transformation topologique 8 de Sn en elle-même telle que SR^'1 R2,
il existe une rotation R telle que RRXR~X R2. On déduit en particulier
de là que deux espaces riemanniens à courbure constante égale à 1 (c'est-
à-dire deux formes de Clifford de 8n) ne peuvent être homéomorphes sans
être isométriques, résultat qui contient comme cas particulier la classification

topologique des ,,Linsenrâumeu.

1. Définitions
Considérons un complexe topologique G et une loi associant à chaque

élément y du groupe abstrait 0 un automorphisme T{y) de O, de manière
que T(yô) T(y)T(ô). Nous dirons que ces données constituent un

2) K. Reidemeister, Homotopieringe und Linsenràume, Hamburger. Abhandl.
11 (1935).

8) W.Franz, Ûber die Torsion einer Ûberdeckung, Journal fur die r. u. angew.
Math., 173 (1935), pp. 245—254.

4) Sur les nouveaux invariants topologiques de M. Reidemeister, communication

présentée à la Réunion topologique internationale de Moscou (4—10 IX. 1935),
Recueil mathématique T. 1 (43), pp. 737—743.

192



complexe avec automorphismes, qui représente G ; et nous le représenterons
par le symbole [<7,jT(y)], ou par la seule lettre C lorsqu'aucune
confusion ne sera à craindre.

Deux complexes avec automorphismes [O,!7^)] et \Gr, T\y)\,
représentant le même groupe G, sont dit isomorphes, s'il existe un isomorphisme
S de G en C" (c'est-à-dire une correspondance biunivoque entre les cellules
de C et celles de C", conservant la dimension et les relations de frontières)
telle que 8T(y)8~1 T'(y) quel que soit l'élément y de G.

Nous supposerons dans la suite, bien que cela ne soit pas toujours
nécessaire, que les automorphismes T(y) satisfont à la condition suivante :

si T(y) laisse invariante une cellule, il laisse aussi invariantes toutes les

cellules situées sur la frontière de celle-là, de sorte que les cellules
invariantes relativement à T(y) forment un sous-complexe fermé.

Supposons qu'on subdivise une cellule du complexe C; chaque T(y)
fait correspondre à cette cellule une autre cellule et à la subdivision de la
première une subdivision de la seconde. Imaginons qu'on subdivise ainsi
de manières correspondantes toutes les cellules qui correspondent à l'une
d'elles par l'un des automorphismes T(y) ; on obtient un nouveau
complexe Cf et chaque T(y) se laisse prolonger d'une manière bien déterminée
en un automorphisme Tf(y) de Cr. Nous appellerons opération élémentaire
le passage de l'un des complexes avec automorphismes [O,T(y)] et
[C, T'(y)] à l'autre, et nous dirons que deux complexes avec automorphismes

(représentant le même groupe G) sont homéomorphes au sens combina-
foire, si Vun peut être rendu isomorphe à Vautre par un nombre fini d'opérations

élémentaires. Nous dirons aussi que l'un des complexes est transformé
en l'autre par une suite d'opérations élémentaires.

Soient F et F' deux espaces avec transformations représentant le
même groupe G et admettant des subdivisions polyèdrales en cellules qui
définissent respectivement les complexes avec automorphismes C et C
Nous ignorons si l'homéomorphie de F et V1 entraîne l'homéomorphie au
sens combinatoire de G et C: c'est là un problème de Topologie encore
non résolu même dans le cas ordinaire où G se réduit à l'élément unité et
où l'on a des espaces sans transformations et des complexes sans
automorphismes. Cette situation oblige à distinguer, au moins provisoirement,
deux espèces d'invariants topologiques : les invariants topologiques proprement

dits, qui fournissent des conditions nécessaires pour l'homéomorphie
de deux espaces avec transformations, et les invariants topologiques
combinatoires9 qui fournissent des conditions nécessaires pour l'homéomorphie

au sens combinatoire de deux complexes avec automorphismes.
Les combinaisons linéaires d'éléments y, ô,..., du groupe G, de la forme
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avec des coefficients p, q, pris dans un anneau donné D, forment
comme on sait un nouvel anneau: Yalgèbre de G sur D, qu'on désignera

par A. Le domaine des coeefficients D pourra être soit l'anneau des entiers
rationnels, soit le corps des nombres rationnels, soit le corps de tous les
nombres complexes ou encore un corps quelconque. Les combinaisons
linéaires telles que f seront appelées nombres de A. La loi de multiplication

de ces nombres de A est complètement déterminée, comme on
sait, par la règle distributive et la loi de multiplication dans G.

Soit c une chaîne d'un complexe avec automorphismes C qui représente
G; nous désignerons par yc la chaîne qui se déduit de c par l'automor-
phisme T(y), et fc désignera la chaîne

£c p(yc) + q(ôc) + .••

Il est clair que Ton a

(£i+£2)c fiC + faC, £i(f2c) (li£2)c et f(Ci + ca) ÇCi + ÇCt.

Les nombres de A se présentent ainsi comme des opérateurs linéaires, qui
opèrent sur les chaînes du complexe C. L'élément unité de G, qui est aussi
l'élément unité de A, sera désigné par 1 et ses multiples, qui forment un
sous-anneau de A isomorphe à D, seront désignés comme les nombres de D.

L'ensemble de tous les nombres f de A tels que f c 0 forme un idéal
(à gauche) de A, appelé Vannulateur de c. L'ensemble des éléments y de G

tels que yc c forme un sous-groupe de G: c'est le sous-groupe laissant c

invariante.
Soit a une cellule, g le sous-groupe de G qui la laisse invariante, et g le

nombre de A égal à la somme des éléments de g. On voit aisément que,
pour que Ça 0, il faut et il suffit que |gr 0; l'annulateur de a est

identique à l'annulateur de g, qu'on appellera aussi Yannulateur de g. Pour
une chaîne quelconque c, on peut affirmer que son annulateur contient
toujours l'annulateur du sous-groupe qui la laisse invariante, mais il ne
lui est pas forcément identique.

Un ensemble de cellules de C sera dit un domaine fondamental de

[C,T(y)], s'il contient une cellule et une seule correspondant, par les

automorphismes T(y)> à toute cellule de C. Si a{(i 1, 2, sont les
cellules d'un domaine fondamental, toute chaîne c de C peut se mettre
sous la forme ^ „c I,Çiai

i
|t. étant un nombre de A déterminé modulo l'annulateur de at(i 1, 2,
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Cherchons à caractériser complètement un complexe automorphismes.
Pour cela, il convient d'abord de numéroter les cellules d'un domaine
fondamental; désignons par a\ celles de dimension q (i 1, 2, <xq;

q 0, 1, n; n est la dimension du complexe). Ensuite, il faut indiquer,
pour chaque cellule a\, le sous-groupe de G qui la laisse invariante. Enfin,
il faut donner l'expression de la frontière Faf de chacune des cellules a\\

ïa\ XE%ayx (i= 1,2, ...,*ff; g 1, 2, ...,n) ;

le coefficient e\j est un nombre de A déterminé modulo l'annulateur de

aqfx. L'ensemble de ces données sera appelé un schéma du complexe avec
automorphismes. A chaque domaine fondamental est ainsi associé un
schéma.

Nous dirons qu'un sous-groupe g de G est un sous-groupe remarquable,
s'il est le plus grand sous-groupe de G laissant invariante une cellule
déterminée quelconque de C. L'ensemble de toutes les cellules invariantes
relativement à g, éventuellement aussi relativement à un sous-groupe
plus ample contenant g, forme un sous-complexe C(g) de C que nous
appellerons un sous-complexe remarquable de 0. C'est un sous-complexe
fermé: si une cellule appartient à C(g), toutes les cellules situées sur sa
frontière lui appartiennent aussi.

Si g est un sous-groupe quelconque de G, l'ensemble de toutes les

cellules invariantes relativement à g est toujours un sous-complexe fermé
de C, formé par la réunion de tous les sous-complexes remarquables
associés aux sous-groupes remarquables contenus dans g.

Il est clair que si y transforme g en gf ygy~x, T(y) transforme C(g)

en C{gr). Supposons que g soit un sous-groupe invariant de G; alors tous
les T(y) transforment C(g) en lui-même, de sorte que C(g) est aussi un
complexe avec automorphismes qui représente G. Mais comme T{y^) et
T(y2) opèrent identiquement de la même manière dans C(g) si yx et y2

appartiennent à la même classe suivant g, le groupe G se réduit en réalité à

G/g. L'ensemble des cellules d'un domaine fondamental de C qui sont
invariantes relativement à g forme un domaine fondamental de C(g),
et le schéma de C(g) se déduit du schéma de C, dans lequel il est
contenu.

Si g n'est pas un sous-groupe invariant de G, soit G1 le plus grand sous-

groupe de G contenant g comme sous-groupe invariant ; C(g) est alors un
complexe avec automorphismes qui représente G rjg. On obtient un
domaine fondamental de C(g) en prenant, dans un domaine fondamental
de O, toutes les cellules invariantes par g, et, de plus, une transformée
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invariante par g de chaque cellule invariante relativement à un sous-

groupe conjugué de g, et le schéma de C(g) se déduit encore de celui de G.

Considérons un ensemble de chaînes b\(i 1, 2, ; q 0, 1, n) de
G jouissant des propriétés suivantes :

1° si g est le sous-groupe laissant b\ invariante, b\ est une chaîne de
O(g).

2° aucune chaîne de l'ensemble n'est égale à la transformée par un T(y)
d'une autre chaîne de l'ensemble.

3° toute chaîne de C(g) peut s'exprimer, d'une manière unique, par une
combinaison linéaire à coefficients dans D de celles des cellules de
l'ensemble et de leurs transformées qui sont invariantes relativement à g;
cela quel que soit le sous-groupe remarquable g.

Un tel ensemble de chaînes sera appelé une base de C. Il est clair que
toute chaîne cQ de C peut se mettre sous la forme

d'une manière essentiellement unique, c'est-à-dire que le coefficient f t- de

6J est complètement déterminé par c9 modulo l'annulateur de 6f; cet
annulateur coïncide d'ailleurs avec l'annulateur du sous-groupe g laissant
6J invariante.

La frontière de 6? peut s'exprimer par une combinaison des 6?""1 :

où rftj est un nombre de A déterminé modulo l'annulateur de bqf~x. Ainsi,
cm peut associer un schéma à toute base, comme à un domaine fondamental.
Comme précédemment, on en déduit une base et un schéma de tout sous-
complexe remarquable C(g). Les 6? seront appelées les chaînes de base

du schéma.

2. Transformations et équivalence des schémas

A partir d'une base, on peut en obtenir d'autres par les opérations
suivantes.

A. Permuter les g-chaînes de la base (c'est-à-dire changer leur ordre de

numérotation).
B. Remplacer une gr-chaîne de la base par la chaîne opposée (c'est-à-dire

la multiplier par — 1).
C. Remplacer une chaîne de la base par sa transformée par un auto-

morphisme T(y) (c'est-à-dire la multiplier par y).
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D. Remplacer une des g-chaînes de la base, 6?, par une chaîne de la
forme 6f + dq, dq étant une combinaison à coefficients dans D des chaînes
obtenues en prenant, dans l'ensemble formé par toutes les g-chaînes de la
base autres que b\ et leurs transformées par les T(y), celles qui sont
invariantes par le sous-groupe g qui laisse 6f invariante.

Comme à chaque base est associé un schéma, on peut considérer les

opérations A, B, C et D comme pouvant servir à transformer des schémas.

Voici encore un autre type d'opérations applicables aux schémas et que
nous aurons à considérer.

E. Adjoindre deux nouvelles chaînes de base, cq et c9"1, dont la seconde
est la frontière de la première, Fcq cq~x et fcq~1 O, invariantes pour
le même sous-groupe g de G. Ou l'opération inverse : suppression de deux
chaînes de base, dont la seconde est la frontière de la première, qui ne
figurent dans l'expression de la frontière d'aucune autre chaîne de base

et qui sont invariantes pour le même sous-groupe de G.

Définition. Deux schémas sont dits équivalents si Vun peut être rendu
identique à Vautre par un nombre fini d7opérations des types A, B, C, D et E.

Une suite de telles opérations qui transforment un schéma S en un
schéma 8' sera appelée un mode d'équivalence de 8 avec 8'.

En appliquant seulement les trois opérations A, B et C, un nombre
quelconque de fois, à un domaine fondamental de C, on obtient encore
un domaine fondamental ; et inversement, il est clair que tous les domaines
fondamentaux de G peuvent se déduire de l'un d'eux de cette manière.

En appliquant les quatre opérations A, B, C et D à un domaine
fondamental de 0, on obtient une base de C. Les bases qui peuvent être ainsi
obtenues forment en général une classe particulière ; nous les appellerons
bases distinguées. Pour un complexe ordinaire (sans automorphismes),
toutes les bases peuvent être obtenues de cette manière, il n'y a par suite

que des bases distinguées et cette notion ne présente aucun intérêt ; mais
il n'en est pas ainsi dans le cas général. Il est clair, d'après ces définitions,
que les schémas associés aux diverses bases distinguées d'un même
complexe avec automorphismes sont tous équivalents entre eux. Lorsqu'on
parlera d'un schéma de C, il s'agira toujours d'un schéma associé à une
base distinguée de C.

Les opérations du type E conduisent à envisager les schémas en eux-
mêmes, indépendemment de tout complexe. Nous dirons qu'un schéma

qui dérive d'un schéma 8 par un nombre fini d'opérations directes du

type E (adjonctions de couples de chaînes) est un prolongement de 8. On

peut vérifier sans peine que si deux schémas sont équivalents, ils ont des
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prolongements qui peuvent être transformés Fun en l'autre par une suite
d'opérations des quatre types À, B, C et D.

Si les deux complexes avec automorphismes G et C", représentant le
même groupe G, sont homéomorphes (au sens combinatoire), les sous-
complexes remarquables G(g) et Gf(g) sont aussi homéomorphes: toute
transformation de G en G1 par une suite d'opérations élémentaires transforme

en même temps G(g) en Cr(g). Si les schémas de C et C7 sont
équivalents, les schémas de G(g) et Cr(g) sont aussi équivalents: tout mode

d'équivalence des schémas de G et G1 induit un mode d'équivalence des

schémas correspondants de C(g) et Cr(g).

3. Théorème I
Enoncé. Pour que deux complexes avec automorphismes G et C1, de

schémas 8 et S', soient homéomorphes (au sens combinatoire), il est nécessaire

que S et Sf soient équivalents. Chaque transformation de G en G1 par une
suite d?opérations élémentaires induit un mode d'équivalence de 8 avec S'.

Démonstration.
Comme deux complexes homéomorphes peuvent être transformés l'un

en l'autre par une suite d'opérations élémentaires, il suffira de prouver
que, si un complexe de schéma 8! dérive par une subdivision élémentaire d'un
complexe de schéma S, alors 8f est équivalent à S.

Rappelons d'abord en quoi consiste la subdivision d'une cellule aq d'un
complexe ordinaire C. Soit F le sous-complexe de G formé par toutes les
cellules situées sur la frontière de aq. Une subdivision de a3 consiste à

remplacer aq par un ensemble E de nouvelles cellules de dimensions au
plus égales à q, jouissant en particulier des propriétés suivantes, les seules

qui seront utilisées ici:
l'ensemble des cellules de E et de F forme un complexe fermé, c'est-à-

dire que la frontière d'une cellule de cet ensemble n'est formée que de
cellules de cet ensemble;

la somme des cellules à q dimensions de E, convenablement orientées,
forme une chaîne Aq dont la frontière est identique à celle de aq; et cette
chaîne Aq doit être substituée h aq dans l'expression de la frontière des

cellules à q+ 1 dimensions de G;
enfin, toute ^-chaîne du complexe E+F, dont la frontière ne contient

que des cellules deF (et aucune deiJ), est identique à un multiple de Aa, et
toute ^-chaîne (k < q) de ce même complexe, fermée ou dont la frontière
ne contient que des cellules de F, est homologue (dans E+F) à zéro ou à

une chaîne de F.
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Considérons le complexe, qu'on désignera par E (mod F), formé par
les cellules de E en prenant leurs frontières (mod F), c'est-à-dire en
supprimant de ces frontières toutes les cellules de F. Les propriétés
rappelées du complexe E +F expriment que E {modF) est un complexe
sans torsion dont tous les nombres de Betti sont nuls sauf le qiéme qui
vaut 1 ; ou, en d'autres termes, que toute i-chaîne fermée de E (mod F)
est homologue à zéro dans E (mod F) si k < q et égale à un multiple
de A9 si k — q.

Si C est un complexe avec automorphismes et non plus un complexe
ordinaire, il faut subdiviser, en même temps que a9 et de manière
correspondante, toutes les cellules qui correspondent k a9 par les automorphismes.

Mais, de toutes ces cellules, une seule, soit a9, appartient au domaine
fondamental de 0, et pour obtenir un domaine fondamental du complexe
subdivisé, il suffit de remplacer a9 par l'ensemble E des cellules qui
proviennent de sa subdivision, cellules qui sont naturellement invariantes

pour le même sous-groupe de G que a9. Ainsi, pour étudier l'effet de la
subdivision sur le schéma, il suffit de considérer la seule cellule a9, comme
dans le cas d'un complexe ordinaire. Nous allons modifier le schéma 8f
du complexe subdivisé, par des opérations des types A, B, C et D, de
manière à le transformer en un prolongement du schéma S du complexe
initial.

Les propriétés rappelées du complexe E (mod .F) entraînent que l'on
peut trouver des bases pour les A-chaînes de E (mod F) comprenant, pour
k q la chaîne A9 et une série de chaînes B9, pour k < q deux séries de
chaînes Bk et Ck (pour k 0 il n'y aura que la série des C°) de telle
manière que

FA9 0 (mod F), FBk C*-1 (mod F), FC*"1 0 (modF),

On peut obtenir ces bases en effectuant sur les cellules à k dimensions de E
une substitution unimodulaire à coefficients entiers, en suivant par exemple
le procédé décrit au n° 14 de ma thèse, ou bien directement de la manière
suivante : on choisit d'abord la série des chaînes Ck formant une base pour
les ^-chaînes fermées et homologues à zéro (mod F), puis à chacune de ces

chaînes Ck on associe une chaîne Bk+1 telle que FBk+1 Ck (mod F), et
à cause des propriétés de E (mod F) on a bien des bases.

Comme toute substitution unimodulaire à coefficients rationnels entiers

peut être décomposée en une suite d'opérations des types A, B et D, nous

pouvons substituer aux cellules de E les chaînes A9, Bk, Ck que nous
venons de former. Le schéma 8' est alors transformé en un schéma
équivalent 8" comprenant une première partie identique au schéma 8 (elle se
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déduit de S en remplaçant a9 par A9) et une seconde partie relative aux
chaînes Bk et C*.

Comme FJ3* C*"1 (mod J1), on a FBk Ck~x + D*~\ D*-1 étant
une chaîne de F. Remplaçons Gk~x par la chaîne B^1 C1^1 -f- D*"1, ce

qui est une opération du type D. Le schéma 8fr est alors transformé en un
schéma équivalent Sm, comprenant toujours la même première partie
identique à S et dont la seconde partie, relative aux chaînes Bk et B\, se
réduit aux relations

FBk B\~l FB^1 0

c'est-à-dire que Sm est un prolongement de S, et le théorème est établi.

4. A-modules, modules de Betti

A étant un anneau, nous appellerons A-module tout groupe additif
abélien M admettant les nombres de A comme opérateurs; cela signifie
que, quels que soient le nombre oc de A et l'élément m de M, il y a un
élément bien déterminée de M, que l'on désigne par ocm, les lois suivantes
étant vérifiées:

oc(m1^-m2)=ocm1^zocm2, oc^oc^m) (oc1oc2)m (a1^z.oc2)m oc1m^!-oc2m.

Un isomorphisme entre deux A-modules qui conserve la loi d'opération
des nombres de A sera appelé un A-isomorphisme.

Un sous-module M7 de M est appelé un sous-A-module, si avec un
élément m il contient toujours ocm, quel que soit le nombre oc de A. Comme
on sait, on peut répartir les éléments de M en classes suivant M', en
rangeant deux éléments dans une même classe, si leur différence est dans
Mr, et ces classes sont les éléments d'un nouvel A-module, que l'on
désignera par M — M;.

Soit maintenant A l'algèbre du groupe G représenté par un complexe
avec automorphismes C. L'ensemble Cq de toutes les ^-chaînes de C forme
un A-module, l'ensemble Fq de toutes les g-chaînes fermées de C est un
sous-A-module de CQ, et l'ensemble Hq de toutes les g-chaînes homologues

à zéro (c'est-à-dire les frontières des [q+ 1]-chaînes) est un sous-A-
module de FQ. F9 — Hq est un A-module appelé le ^éme module de Betti
de C. Les relations de frontière dans C s'expriment par un A-isomorphisme
entre C9 - F9 et H9-1.

Comme dans le cas des complexes ordinaires, la structure des modules
de Betti de G pourra se déterminer en utilisant un schéma S de C, et il
est évident qu'elle ne dépend pas de la base de C choisie pour former S,
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Soit C un autre complexe avec automorphismes représentant le même

groupe G que 0, et supposons qu'un schéma 8' de G' se présente comme
un prolongement de 8, Toute chaîne c7 de C" se présente alors comme une
somme de deux composantes, dont la première est une chaîne de C et la
seconde une combinaison des chaînes de base adjointes dans le prolongement

(opération E). Pour que cf soit fermée ou homologue à zéro, il faut
et il suffit que chacune de ces composantes soit fermée ou homologue à
zéro respectivement. Or, la seconde composante ne peut pas être fermée
sans être homologue à zéro, d'après la définition même de l'opération E.

Il en résulte qu'on a un A-isomorphisme entre les modules de Betti de G

et ceux de Gf. Par suite:

Théorème II. Si les schémas S et Sf de deux complexes avec automorphismes

C etCr sont équivalents, en particulier si C etC sont homéomorphes
{au sens combinatoire), les modules de Betti de C sont A-isomorphes à ceux
de C. Chaque mode d'équivalence de S avec 8' induit un A-isomorphisme
entre les modules de Betti de C et ceux de C".

Soit (<7i, <72> •••) une famille de sous-groupes remarquables de G.

Supposons cette famille invariante dans G, c'est-à-dire qu'elle contient,
en même temps qu'un sous-groupe, tous ses conjugués. Le sous-complexe
K formé par la réunion des sous-complexes remarquables C(g1), G(g2),
est alors transformé en lui-même par chaque automorphisme T(y). Soit
Kr le sous-complexes de G1 associé à la même famille de sous-groupes de 6?.

Les schémas de K et Kf se déduisent des schémas de (7 et C", et chaque
mode d'équivalence des deux derniers induit un mode d'équivalence des

deux premiers. Par suite, si les schémas de C et G1 sont équivalents, les

modules de Betti de K sont A-isomorphes à ceux de K!.
On peut aussi envisager le complexe G (mod K), c'est-à-dire le

complexe qui se déduit de C en supprimant toutes les cellules de K. Le schéma
de C (mod K) se déduit de celui de C, et tout mode d'équivalence des

schémas de G et G' induit un mode d'équivalence des schémas de C (mod K)
et G' (mod K1),

II résulte de là que, si les schémas de G et G1 sont équivalents, les modules
de Betti de C, K, C (mod K), sont respectivement A-isomorphes à ceux de

G1, K', G' (mod Kf).
On aurait un énoncé analogue en considérant un sous-complexe associé

à une famille non invariante de sous-groupes remarquables.
Les modules de Betti de C, K et C (mod. K), que nous désignerons par

Bq(G), Bq(K) et Bq[C (modK)], ont entre eux certaines relations,
comme dans le cas des complexes ordinaires, et qu'il convient d'indiquer.
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Chaque cycle de K étant aussi un cycle de 0, et deux cycles de K
homologues dans K étant aussi homologues dans C, on a un A-homo-
morphisme de Bq (K) dans Bq (C), qu'on désignera par Hx.

Chaque cycle de C est en même temps un cycle de C (mod K), et deux
cycles de C homologues dans C sont aussi homologues (mod K) ; il en
résulte un A-homomorphisme de Bq (C) dans B9 (C [mod if]), qu'on
désignera par H2.

Enfin, à chaque cycle à q dimensions de C (mod K), correspond un
cycle à (q — 1) dimensions de K, sa frontière dans C, et à deux g-cycles de
C (mod if) homologues dans C (modK) correspondent deux (q — 1)-
cycles de K homologues dans K, d'où résulte un homomorphisme de
Bq [C (mod K)] dans B^1 (K), qu'on désignera par H3.

On vérifie immédiatement que les homomorphismes composés H2 Hx et
H 3 H 2 se réduisent à zéro.

Nous pouvons alors énoncer la proposition suivante, qui apporte encore
un complément au théorème II et qui se démontre aussi simplement.

Soient H{, H2, Hg les homomorphismes analogues à Hl5 H2, H3, relatifs à
Cr et Kr. Les A-isomorphismes entre les modules de Betti de C, C (mod K),
K et ceux de C, Cr {modK1), Kr induits par un mode d'équivalence des

schémas de CetC, transforment H1? H2 et H3 en H[, H2 et H3 respectivement.

5. Réduction modulo p

Soit p un idéal bilatère de l'anneau A, c'est-à-dire un sous-anneau de A
tel que, quels que soient les nombres oc de p et £ de A, oc £ et (oc soient des

nombres de p. Les classes de congruence modulo p forment, comme on
sait, un nouvel anneau; nous le désignerons par Ap et nous dirons que
A se réduit modulo p à Ap; nous appellerons aussi réduction modulo p
l'opération consistant à remplacer un nombre de A par sa classe modulo p.
Une classe modulo p, en tant qu'élément de Ap, sera aussi appelée un
nombre de Ap

Soit g un sous-groupe de G. Nous avons défini l'annulateur de g comme
l'ensemble des nombres | de A tels que fg 0, g étant le nombre de A
égal à la somme des éléments de g. C'est un idéal à gauche de A, il
contient tous les nombres de la forme

y

où y parcourt g et où les £y sont des nombres arbitraires de g, et ceux-là
seulement.

Si g est un sous-groupe invariant de G, et dans ce cas seulement, son
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annulateur a (g) est un idéal bilatère. Aa(a) est alors isomorphe à l'algèbre
de G/g. En particulier, A se réduit modulo l'annulateur de G lui-même à

un anneau isomorphe au domaine des coefficients D.

Considérons encore un sous-groupe invariant particulièrement intéressant

: le groupe des commutateurs de G, appelé aussi groupe dérivé de G,

que nous désignons par G'\ C'est le plus petit sous-groupe invariant de G

tel que le groupe quotient GjGf soit commutatif, et pour que G\g soit
commutatif, il faut et il suffit que g contienne Gf. L'annulateur de G', que
nous appellerons Vidéal des commutateurs de A, jouit de propriétés
correspondantes relativement à l'algèbre A. C'est le plus petit idéal de A dont
les classes de congruence forment un anneau commutatif; a étant un
idéal bilatère quelconque de A, la condition nécessaire et suffisante pour
que Aa soit commutatif est que a divise l'idéal des commutateurs (c'est-
à-dire qu'il le contienne).

M étant un A-module, on désignera par pM le plus petit sous-A-module
de M qui contient tous les éléments de la forme ocm, oc étant un nombre
quelconque de p et m un élément quelconque de M, et par Mp le module
Mp M — pM. Mp est encore un A-module, mais il jouit de la propriété
que deux nombres de A qui sont congrus modulo p opèrent identiquement
de la même manière dans Mp ; l'anneau des opérateurs de Mp se réduit
donc à Ap et Mp peut être considéré comme un Ap-module. Nous dirons
aussi que M se réduit modulo p à Mp. Il est clair que tout Ap-isomorphisme
entre deux A-modules M et M' induit un Ap-isomorphisme entre Mp et

Mp, et tout A-homomorphisme de M dans M' induit un Ap-homomor-
phisme de Mp dans Mp

Considérons maintenant les A-modules CQ de toutes les g-chaînes d'un
complexe avec automorphismes O, et les A-homomorphismes F de Cq dans
Cq~x qui définissent les frontières des chaînes de G. En réduisant modulo p,
on obtient les Ap-modules CJ et F induit un Ap-homomorphisme, que
nous désignerons encore par F, de C£ dans OJ""1. L'ensemble de ces

modules CJ, pour q 0, 1, ...,n, avec les homomorphismes F, sera

appelé le complexe Cp, et nous dirons que C se réduit modulo p à Cp ; un
élément de Cqp sera appelé une chaîne de Cp, l'élément correspondant par F

dans C%~x sera appelé sa frontière. On définit alors de la manière usuelle
les chaînes fermées ou homologues à zéro dans Cp, qui forment des

Ap-modules que nous désignerons par Fq(Cp) ou Hq(Cp) respectivement,
et le ^ème module de Betti de Cp, Bq(Cp) Fq{Cp) - Hq(Cp). Il faut
remarquer que Fq(Cp), Hq(Cp) et Bq(Gp) ne sont pas respectivement
identiques aux Ap-modules F*, H* et B* auxquels se réduisent modulo p
les A-modules F9, Hq et Bq attachés à C.
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Le raisonnement qui nous a conduit au théorème II fournit, en
considérant les modules de Betti de Cp et sans aucune modification, le
résultat suivant:

Théorème II généralisé. Si les schémas 8 et 8' des deux complexes avec

automorphismes G et G' sont équivalents, en particulier si C et Cf sont

homéomorphes (au sens combinatoire), les Ap-modules Bq(Cp) et BQ(C'V)

sont Ap-isomorphes. Chaque mode d'équivalence de S avec 8f induit un
fi^-isomorphisme entre B9(Cp) et Bf(C'v).

Désignons, comme précédemment, par K et Kr les sous-complexes
formés par la réunion de tous les sous-complexes remarquables de G et
G' respectivement, associés à une famille invariante de sous-groupes
remarquables de G. La réduction modulo p peut s'appliquer à K et à C

(mod K) aussi bien qu'à C, et les remarques faites à la suite du théorème II
nous montrent que le mode d'équivalence de 8 avec S' induit un Ap-isomor-
phisme non seulement entre Bq(Cp) et Bq(Gp), mais encore entre Bq(Kp) et

B(Kfp) ainsi qu'entre Bq([C (mod K)]p) et Bq([Cf (mod K')\)
Enfin, on a encore des homorphismes analogues à ceux désignés au

n° précédent par H1? H2 et H3, et le théorème énoncé à la fin du n° précédent

s'applique sans modification après qu'on a réduit les complexes
modulo p.

Supposons que G se réduise à l'élément unité : C est alors un complexe
ordinaire (sans automorphismes) et A se réduit au domaine des coefficients

D; supposons que ce domaine soit l'anneau des entiers rationnels,
dont les idéaux sont les idéaux principaux (m). Alors les Bq(Cp) ne sont

pas autre chose que les modules de Betti (mod m) qui ont été introduits
par J. W. Alexander.

6. Sur un isomorphisme en relation avec la formule d'Euler-Poincaré

Nous allons considérer spécialement le cas où p est un idéal premier,
diviseur de l'idéal des commutateurs, de sorte que A se réduise modulo p
à un corps commutatif k Ap. Les A-modules, qu'on appelle aussi espaces
vectoriels sur k, jouissent de propriétés particulièrement simples, dont il
convient de rappeler quelques-unes.

Plusieurs éléments d'un A-module sont dits linéairement indépendants
(sous-entendu: relativement à k), si une combinaison linéaire de ces

éléments, avec coefficients dans k non tous nuls, ne peut jamais s'annuler.
Le nombre maximum, r, d'éléments linéairement indépendants, est

appelé le rang du A-module (ou dimension de l'espace vectoriel), r tels
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éléments forment une base : leurs combinaisons linéaires représentent tous
les éléments du A-module, chacun d'une manière unique. Deux A-modules
sont A-isomorphes s'ils ont le même rang, et dans ce cas seulement.

A et B étant des A-modules, A + B désignera leur somme directe : c'est
un A-module dont le rang est égal à la somme des rangs de A et B, et dont
on obtient une base en juxtaposant une base de A et une base de B.

Soit A ' un sous A-module de A ; on peut déterminer, et de plusieurs
manières, un autre sous-A-module Ar! de A tel que A A n + A '. A "
contient un élément et un seul de chaque classe de A suivant A ', ce qui fournit

un A-isomorphisme naturel entre A" et (A — A'). On en déduit un
A-isomorphisme de A avec (A — A ') + A;/, associé à la décomposition
A A" + A'. Soient A A{ + A' et A A% + A' deux telles
décompositions, «! et s2 les isomorphismes associés, envisagés comme transformations

de A; alors s^s2 est un automorphisme de A, qui transforme
A2 en A'I et qui laisse invariants chaque élément de Ar et chaque classe
de A suivant Ar.

Appliquons ces considérations aux A-modules Cq(Cp),FQ(Cp) et Hq(Cp),
que nous désignerons simplement par Cq, Fq et Hq (aucune confusion
n'est à craindre, car nous n'aurons pas à envisager, pour le moment,
d'autre complexe que Cp). On obtient les isomorphismes que nous
désignons ci-dessous par le symbole ££ :

jF* ^ (J?q _ Hq) + Hq, Cq m (Cq — Fq) + Fq (1)

d'où résulte, comme Fq — Hq Bq:

Cq m (Cq — Fq) + Bq + Hq (2)

En utilisant encore Fisomorphisme de Cq — Fq avec Hq~x fourni par
les relations de frontière dans Cp (c'est-à-dire par l'homomorphisme F de
Cq dans C*"1), on obtient:

C*&H-1 + Bq + Hq (g 0,l,...,n) (3)

d'où l'on déduit encore, en effectuant des sommes directes et en tenant
compte de ce que H"1 et Hn se réduisent à zéro :

(4)
+jBn-4^ ^Bn+Hn~1+B^+H"-2-]

d'où résulte finalement:

^ (5)
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Pour abréger, nous désignerons par Mx et M2 les modules qui figurent
aux premiers membres des relations (4) (et qui se retrouvent aux premier
et second membres de (5)) et par M celui qui figure au second membre
de chacune des relations (4).

L'égalité des rangs de Mx et M2, qui découle de (5), peut être appelée la
formule d'Euler-Poincaré relative à Cv. Elle se réduit en effet à la formule
connue sous ce nom dans le cas où Cp est un complexe ordinaire, le rang
de Cq étant égal au nombre des cellules à q dimensions et le rang de BQ

étant le ^ème nombre de Betti. Le raisonnement fait ici coïncide du reste
avec la démonstration habituelle de cette formule.

Mais Fisomorphisme entre Mx et M2 obtenu dans (5) n'est pas
quelconque, car il a été déterminé par l'intermédiaire de (3) et (1), et les iso-

morphismes (1) ont été formés par le procédé particulier qui a été indiqué.
A cause de ce procédé, l'isomorphisme (3) le plus général sq est de la forme

où sq est un isomorphisme (3) particulier et aq un automorphisme de CQ

assujetti à laisser invariants chaque élément de Hq,Fq et chaque classe de

Fq suivant Hq, ainsi que chaque classe de Cq suivant Fq. Comme Cq est une
,,composante" de Mx ou M2 (suivant que n — q est pair ou impair), aq peut
être considéré aussi comme un automorphisme de Mj ou M2; <rfl et oq-.2k,

opérant dans des composantes distinctes, sont évidemment permutables.
Désignons par 8± (respectivement 82) l'isomorphisme (4) entre Mx

(respectivement M2) et M qui se déduit, par les sommations directes, de

sn, sn_2, sn_4, (respectivement snHl, sn_3, sn_5, Soient 8[ et 82 les

isomorphismes (4) qui se déduisent de la même manière des srq. Nous
avons alors

8[ 8l{anan^an^...) et 8r% 82(an^ <xn_3 crM_5...)

Posons encore 8 S^1 8X et 8f S^S^; nous obtenons la formule

8'= (<&!<%!*...) 8{Gnon-2...) (6)

qui représente l'isomorphisme (5) le plus général 8' au moyen d'un
isomorphisme (5) particulier 8, d'ailleurs quelconque. Cette formule
est équivalente à la suivante:

S' (<Tn_1cr^,...)i8f(fflla^,...) (6')

car le champ de variabilité de aq est identique à celui de a^1. Pour
mettre en évidence une propriété commune à tous les isomorphismes 8f,
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qui sera par suite une propriété de C lui-même, nous allons faire usage
de la représentation des isomorphismes par des matrices.

D'une manière générale, étant donné un isomorphisme J entre deux
^-modules A et B, dans lesquels on a choisi des bases déterminées, nous
appellerons déterminant de J le déterminant ||atfc||, où atk est égal au
coefficient du &lème élément de base de B dans l'expression, au moyen de
cette base, de l'élément de B qui correspond par J au iième élément de
base de A. Lorsque J est un automorphisme, B étant identique à A, ce

déterminant ne dépend pas de la base choisie. Nous appellerons encore
déterminant d'un changement de base donné dans un /c-module, le
déterminant de l'automorphisme associé à ce changement de base,
automorphisme par lequel le iième élément de la nouvelle base correspond
au iième élément de l'ancienne base.

Cela posé, supposons qu'on choisisse des bases de tous nos ^-modules
Cq et Bq. Par juxtaposition, on en déduit des bases de Mx et M2, qui
définissent les déterminants de 8 et Sf. Nous allons montrer que ces

déterminants sont égaux.
Pour cela, il suffira, en vertu de la formule (6) et de la règle connue de

multiplication des déterminants, de montrer que le déterminant de

l'automorphisme aQ est égal à 1. A cet effet, prenons une base de Cq

adaptée aux sous-fc-modules Fq et Hq, c'est-à-dire une base dont les r
premiers éléments forment une base de Hq et dont les r-\-rr premiers
éléments forment une base de Fq (r étant le rang de Hq et r + r! celui de

Fq) ; la matrice de aq prend alors la forme

E

X

Y

0

E

Z

0

0

E

où E représente la matrice unité, 0 la matrice nulle et X, Y et Z des

matrices quelconques. Son déterminant est bien égal à 1.

Le déterminant de 8 ne dépend par suite que des bases des Cq et des Bq.
Supposons que l'on change ces bases, et soient cQ et bQ les déterminants
des changements de base Cq et de Bq respectivement; la nouvelle
valeur A* du déterminant de 8 est alors reliée à l'ancienne A par la
formule

• A
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Le produit en facteur devant A est le quotient du déterminant du changement

de base de M± par celui de M2.

7, Nouvelles conditions d'équivalence

Le déterminant A va nous conduire à des conditions nécessaires pour
l'équivalence des schémas de deux complexes avec automorphismes, qui,
comme on verra, précisent les conditions déjà énoncées dans le théorèmeIL

Bornons-nous tout d'abord à considérer des complexes G dont les

automorphismes T(y) ne laissent aucune cellule invariante (pour y ^ 1),

ou, ce qui revient au même, dont Fannulateur de chaque cellule se réduit à

zéro.

Il résulte de cette propriété que l'annulateur d'une chaîne d'une base

distinguée quelconque se réduit aussi à zéro. Par réduction modulo p, les

g-chaînes d'une base distinguée fournissent toujours une base de C£, dont
le rang est par suite égal au nombre des cellules à q dimensions d'un
domaine fondamental.

Calculons le déterminant A de l'isomorphisme S en prenant successivement,

comme bases des (7£, les bases qui se déduisent ainsi, par réduction
modulo p, de deux bases distinguées différentes, et en prenant les mêmes
bases des Bq(Cp) dans les deux calculs. Les deux valeurs obtenues, A et
A*, sont reliées par la formule (7), qui se réduit à

A*=hc[-vn~* * A

tous les bq étant égaux à 1, puisque les bases des BQ(Cp) ne sont pas
changées. Cherchons à calculer les déterminants cq des changements de
base des Cqp.

On passe d'une base distinguée à l'autre par une suite d'opérations des

types A, B, C et D ; les déterminants des changements de base correspondants

des CJ, comme on le vérifie immédiatement, sont égaux à 1 ou
— 1 pour A et B, à 1 pour D, et pour le type C, au nombre yv auquel se

réduit modulo p un nombre de A égal à un élément y de 0. Il résulte de là

que le produit II é~X) est égal à un nombre de la forme (dhy)p> auquel
se réduit modulo p un nombre de A, de la forme ±y, indépendant de p.

Supposons maintenant que l'on prolonge le schéma de notre complexe

par adjonction de deux chaînes de base, cq et c*"1, dont la seconde est la
frontière de la première: Fca cq~x (opération E). L'effet de cette opération

est l'adjonction d'un élément de base à chacun des modules OJ et
OJ""1, et par suite à chacun des modules Mx et M2, ces deux éléments se
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correspondant par Fisomorphisme 8. La seule modification subie par le
déterminant de 8 consiste par suite en l'adjonction d'une nouvelle ligne
et d'une nouvelle colonne dont tous les éléments sont nuls, sauf celui
situé sur leur place de croisement qui est égal à 1. La valeur du
déterminant n'est donc pas changée, ou changée de signe, et cela indépendem-
ment de p.

En définitive, nous avons ainsi établi le

Théorème III. Soient C et C deux complexes avec automorphismes,
représentant le même groupe G, dont les automorphismes T(y) ne laissent

aucune cellule invariante (pour y =fi 1), et dont les schémas attachés à deux
bases distinguées données (par exemple deux domaines fondamentaux) sont

équivalents. Il existe alors un nombre de A de la forme ± y, y étant un
élément de G, tel que, quel que soit Vidéal premier p diviseur de Vidéal des

commutateurs de A, on ait :

A et A' étant les déterminants des isomorphismes 8 relatifs à Cp et Cp,
calculés en prenant les bases de Cqp et Cpq qui se déduisent des bases distinguées
données de C et de C", et en prenant des bases de Bq(Cp) et de Bq(Cp) qui
se correspondent par Visomorphisme entre Bq(Cp) et Bq(Cp) induit par
le mode d'équivalence des schémas de C et de Cf.

A l'aide de ce théorème, on pourra établir que les schémas de deux
complexes avec automorphismes C et C' ne sont pas équivalents, dans
certains cas où le théorème II seul ne suffirait pas. En effet, supposons que
pour tous q et p, on ait un Ap-isomorphisme entre Bq(Cp) et Bq(Cp). On

peut alors calculer, pour chaque valeur de p, les déterminants A et Af,
en prenant des bases de Bq(Cp) et Bq(Cp) qui se correspondent par les

isomorphismes donnés ; leur rapport est un nombre de Ap parfaitement
déterminé et à chaque p correspond une équation

S'il n'existe aucun nombre de A de la forme i y <lui satisfasse à toutes ces

conditions, on sera assuré que les isomorphismes considérés entre les

Bq(Gp) et les Bq(Cp) ne peuvent pas être induits par un mode
d'équivalence du schéma de C avec celui de Cf. Si ces conditions sont incompatibles

quel que soit l'ensemble des isomorphismes considérés, on sera alors
assuré que les schémas de C et G1 ne sont pas équivalents, et par suite que
C et C' ne sont pas homéomorphes (au sens combinatoire).
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Nous n'avons considéré que des complexes dont les automorphismes
T(y) ne laissent aucune cellule invariante. Mais le théorème III s'applique
aussi (indirectement) aux complexes qui ne satisfont pas à cette condition.
Soit en effet K le sous-complexe de C formé par la réunion de tous les

sous-complexes remarquables de G associés aux sous-groupes
remarquables de G (G lui-même étant exclu), et soit K! le sous-complexe
analogue de C"; si les schémas de G et Cf sont équivalents, les schémas de
G (mod K) et C (mod K ') sont aussi équivalents, et le théorème III
s'applique directement à C (mod K) et Cf (mod K'), car les automorphismes

T(y) ne laissent aucune de leurs cellules invariante.
Les isomorphismes considérés entre les BQ(Gp) et les Bq(Cp), pour

pouvoir être induits par un mode d'équivalence des schémas de C et C7,

doivent satisfaire à encore d'autres conditions. Ils doivent en particulier
respecter certaines relations qui existent entre les divers modules Bq(Cp)
relatifs à une même dimension q et à divers idéaux p de A, ou même aux
diverses algèbres A de C? construites avec les divers domaines de coefficients

D. Mais nous n'aborderons pas cette question ici. Bornons-nous à

remarquer que le nombre ± 7 ne dépend pas du domaine des coefficients
D, comme cela ressort de notre démonstration.

Il y a aussi les relations entre les modules Bq relatifs à des dimensions q
différentes, que l'on déduit de la théorie des intersections; ces relations
sont respectées dans les isomorphismes induits par une transformation de
C en C1 par une suite d'opérations élémentaires, mais en général pas dans
les isomorphismes induits par un mode d'équivalence des schémas de
C et C

II peut arriver, dans certains cas, que tous les modules de Betti de Cp
se réduisent à zéro. Le déterminant A est alors, au facteur (±y)p près, un
invariant topologique absolu (au sens combinatoire) qui a été déjà
considéré par M. Franz sous le nom de torsion (3).

8. Remarques sur la réduction modulo p

p étant un idéal (bilatère) quelconque de A, on a défini au n° 5 les
chaînes de Cp et leurs frontières : elles se déduisent par réduction modulo p
des chaînes de C et de leurs frontières. Nous pouvons définir les cellules
orientées de Cp comme étant les chaînes auxquelles se réduisent modulo p
les cellules orientées de C (qui sont des chaînes particulières de C), et une
cellule de Gp sera définie par l'ensemble des deux cellules orientées de Cp

qui se déduisent d'une même cellule de C prise avec les deux orientations
différentes.
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Cp peut-il être considéré alors comme un véritable complexe, indépen-
demment de CI Pas nécessairement. Dans un complexe au sens habituel,
une combinaison linéaire à coefficients rationnels non tous nuls de cellules
distinctes (orientées) ne peut pas, par définition même, se réduire à zéro,
tandis que cela peut arriver dans Cp. Pour que cette circonstance ne se

présente pas, il faut et il suffit que Fannulateur de toute cellule de C
coïncide avec l'annulateur du sous-groupe de G qui la laisse invariante.
Considérons en particulier une cellule a de C dont l'annulateur se réduise
à zéro, le sous-groupe qui la laisse invariante se réduisant à l'élément
unité. L'annulateur de la cellule correspondante a^ de Cp se réduit alors à

p, et le sous-groupe qui la laisse invariante est formé par l'ensemble des

éléments y de G tels que y 1 (mod p). Ce sous-groupe g est nécessairement

un sous-groupe invariant et il laisse invariantes toutes les cellules
de Cp. Pour que Cp soit un véritable complexe, il est donc nécessaire que p
coincide avec l'annulateur a(g) de g. Inversement, si p a(g), Ca(y) peut
être considéré comme un véritable complexe ; le groupe des automorphis-
mes se réduisant à G/g, Caig) est un complexe avec automorphismes qui
représente G/g.

En particulier, Ca{0) est un complexe ordinaire (sans automorphismes).
A chaque famille de cellules de C qui se déduisent de l'une d'elles par les

automorphismes T(y) correspond une cellule de Ca(Q), et inversement.
Supposons que C satisfasse à la condition suivante : deux cellules distinctes

d'une même famille (auxquelles correspondra une même cellule de

Cam) ne peuvent pas être situées sur la frontière d'une même cellule (si
C ne satisfaisait pas à cette condition, la subdivision normale de C y satisfait

toujours) ; alors les complexes frontières de deux cellules correspondantes

de C et Ca(G) sont isomorphes. C est donc un complexe de recouvrement

de Ca(Oy Sauf dans le cas où les T(y) ne laissent aucune cellule
invariante, il y aura des ramifications qui correspondent aux sous-complexes
remarquables de C.

__
Les réductions peuvent s'effectuer successivement. Si p divise a, et si

p est l'idéal de Aa qui correspond à p, il est clair qu'en réduisant Ca

modulo p, on obtient Cp. Il résulte de là que tous les complexes Cp qui
interviennent dans le théorème III peuvent s'obtenir à partir du
complexe Ca associé à l'idéal des commutateurs a, qui est un complexe avec
automorphismes représentant un groupe abélien : le groupe quotient de G

par son sous-groupe des commutateurs.

(Reçu le 9 novembre 1939.)
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