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Une interprétation élémentaire
des théorémes fondamentaux de M. Nevanlinna

Par CHARLES Branc, Lausanne

Introduction

Les théorémes fondamentaux de M. Nevanlinna concernent essentielle-
ment le comportement du logarithme du module de fonctions méro-
morphes, c’est-a-dire le comportement de fonctions harmoniques en
relation avec les singularités de ces fonctions. On peut se demander quelle
est la propriété essentielle des fonctions harmoniques qui est alors utilisée.
Nous nous proposons de montrer qu’on peut retrouver en gros les résultats
de M. Nevanlinna en partant du fait bien connu qu’une fonction harmo-
nique dans un cercle prend au centre une valeur égale & la moyenne des
valeurs qu’elle prend sur le contour.

Au lieu de considérer des fonctions de points dans un plan, nous con-
sidérerons des fonctions définies aux sommets seulement d’un réseau qui
sera constitué (topologiquement) par p rayons issus d’un point P, et par
une suite infinie de cercles C,, C,, ... ayant ce point pour centre (le
nombre entier p, qui aura toujours la méme signification, jouera le role du
2 7 des formules connues sur les fonctions méromorphes).

§ 1. Fonection harmonique dans un réseau.

Soit u (P) une fonction définie dans une région D du réseau (on entendra
par région du réseau I’ensemble des points intérieurs d’un polygone fermé
et sans point double du réseau). Soit P un point intérieur de D, et autre
que P,. On posera

B(P) = 4u(P)— 2Zu(P)

la somme étant étendue aux 4 sommets P; du réseau voisins de P; en P,
s’il est & l'intérieur de D, on posera

.B(Po)zpu(Po)—Zu(Pi)

la somme étant étendue aux p sommets de C,. g(P) mesure la différence
entre la valeur prise par u(P) et la valeur moyenne de u (P) sur les points
voisins; elle exprime dans quelle mesure u (P) différe d’une fonction qui
serait en chaque point égale 4 la moyenne des valeurs qu’elle prend aux
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points voisins. Si f(P) = 0, on dira que u(P) est harmonique en P; si
B(P) = a > 0 on pourra dire que P est un pdle d’ordre a, et si f(P) =
b < 0, que P est un zéro d’ordre b.

Théoréme d’existence: Etant données sur C, une fonctionf (P), et en
Py et sur C,,0C,,..., C,_, une fonction g(P), il existe une fonction
u (P) et une seule égale a f(P) sur C, et telle que (P) = g(P).

En effet, il s’agit de déterminer les valeurs de u(P) en 1+ p(n — 1)
sommets du réseau; on dispose pour cela de 14 p(n — 1) équations
linéaires non-homogénes dont le déterminant n’est pas nul: il suffit, pour
le montrer, d’établir 1’existence d’un systéme de solutions pour un choix
particulier des fonctions f et g. On prend f = 0 et ¢ = 0 excepté en P, ou
g = p. On vérifie sans peine que la fonction

u(P)=n—k P sur O,

est alors la solution du systéme; le déterminant n’est donc pas nul, et la
solution est bien déterminée quelles que soient f et g.

On retrouve ainsi facilement d’autres propriétés des fonctions harmo-
niques. Par exemple:

Soit f (P) une fonction sur C,,, et sott u (P)une fonction définie a l'intérieur
de C, et sur C,, égale a f(P) sur C,. L’expression

2[u(P) —u(P,)]?

ou la somme est étendue a tous les points P intérieurs a C,, et pour tous les
points voisins de P, atteint son minimum lorsque la fonction u(P) est
harmonique dans C,, .

Prenons, pour le montrer, un point P, et fixons la fonction «(P) en
tout point autre que P,; posons u(P,) = x; alors

2[u(P)—u(P)2=4+ 2[z—u(P)]? = A(x)
V(@) = 25 [z —u(P))]
et A'(x) = 0 si 42 = Zu(P})
c’est-a-dire si g(P,) = 0, ce qui démontre 'affirmation.

D’autre part, on montre sans peine qu’une fonction harmonique dans
un domaine D d’un réseau y vérifie le principe du maximum: elle ne peut
atteindre son maximum ou son minimum qu’en un point du contour poly-
gonal qui limite D.
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Formule de G'reen: Soient deux fonctions u(P) et v(P) définies dans
et sur C,. Appelons £, ’ensemble des sommets du réseau situés sur les
cercles C; a C, et soit E, = K, + P,. On a , si P est un point de £,_,

u(P) B, (P) — v(P) p,(P) = 4u(P)v(P) —u(P) Zv(P))
— 4u(P)v(P) + v(P) Zu(P,)

et en faisant la somme pour tous les points de E,_,

2 [2(P) Bo(P) = v(P) B (P)] = — Zu (@ (P) + Zv(@u(P)
— v(P) Zu(P) + u(Py) Z'v(P) (1)
Cy Cy

ou @ est le point de C,_; voisin de P sur C,. On a en outre
u(Py) B, (Po) — v(Py) Bu(Py) = v(Py) gu(P) —u(Po)C‘,E”(P) (2)

d’ou, en ajoutant (1) et (2),

E‘Z (uﬁv'—_‘vﬂu) :'—'g:[u( ?J(P)—-'L’(Q P)] (3)
Posons i "
2 —u(@—u(P);
alors
ov B'u

2 (up,—vp,) ——On( _Z’?{—”—aZ) , (4)

que nous pouvons appeler formule de Green.

Prenons pour v(P) une fonction v(P, Q) égale a zéro sur C,, avec
B,(P) = 0 excepté pour P = @, pour lequel on a §,(@) = 1. La relation
(4) devient alors

— 3 0(P,Q) Bu(P) + u(Q) = Zu(P)

En—-l Cn

ov(P,Q)
on

d’ol1

w(@ = Zu(P) O 1 5o (p,Q8.(P) -

Cn E*y 4
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Ainsi, la détermination de % (), connaissant ses valeurs sur C, et ses 3,
revient & celle de v(P, Q) et de sa ,,dérivée normale* sur C,. Il y a
1 4+ p (n — 1) fonctions de Green v (P, Q) relatives a C,, ; il en résulte que
le calcul de u(Q) en tout point intérieur & C, est immédiat dés que 'on
posséde le jeu complet des fonctions de Green dans C,.

On remarque que % (@) est une fonction linéaire de § et de u (P) sur C,,.
Il en résulte qu’il existe pour ’ensemble des fonctions u (P) dans C, un
théoréme de décomposition vectorielle: toutes les fonctions u(P) sont
décomposables en une somme de (1-+ pn) d’entre elles, linéairement
indépendantes.

Proposons nous en particulier de trouver «(P,). La fonction de Green
v(P, P,) est facile & calculer:

v(P, Py) = n—k si P est sur C,
et
ov __1__
on - p
d’ol1
1 — R
w(P) =—Iu(P)+ X “—"B,P) -
P ¢y En.—l p
Posons

n—1

Zﬂu(P):y(k’u) ’ Zy(k,u)zf(n—l,u) .
E*i 0

On a alors

pu(Py) = 2u(P)+T'(n—1,u), (T)
Cn

ce qui résout le probléme. C’est ’analogue de la formule de Jensen.

§ 2. Les fonctions m, N et T.

Posons, d’une fagon générale

+ (x sl =0 53“( 0 si >0
TZ010 si <0 Tl —x st z2< 0
+ + - -
et soit m (n, u) = 2u(P) , m (n, u) = g,’u (P)
Cn n
+ e - -
y(n———l,u) ::E'*Z ﬂ(P) ’ y(n_l"u’) =E"2: .B(P)
n-—-1 n-1

n-1

+ n—-1 + - -
Nn—1,u)= 2y (ku) , Nn—1,u)= 2y k, u)
0 1
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La formule (I) devient alors

plu(Po) — u(Pg) 1=m (n, %) — m (n, u) + N(n—1, u) — N(n—1, u)

ou encore

m(n,u) 4 N (n—1,0) — pu(Py) = m(n,%) + N (n—1,2)—pu(P,)

Posons

T (n, u) :m(n,;l,)—{—N(n—-l,;) :

on a ainsi
m(n,u) + Nn—1,u) = T(n, u) —pu (P,
qui n’est qu’une facon d’écrire la relation (I).

T (n, u) est une fonction croissante de n.

Prenons, pour le montrer, un point @ de E,_, ; on a

u@ =% 0(P.Q)Bu(P) + Tu(?) LD

'n—l

v, (P, Q) étant la fonction de Green dans C, relative a @).
Or

n(P,Q >0, Mz,
donc
2@ = X 0,(P,Q) hu(P) + Zu(p) 2D
E*p Cn n
— X 0.P,Q h(P)—Fu(p) 2=
E*n Cn n
c’est-a-dire
@ < 0 PQ P + T i(p) 2 0)
Posons

7. (@ = Z 0, (P, Q) Bu(P)

Si@Q est sur C,—;, V,—,(Q) =0 . D’autre part, ’expression

. (I

(")

Vi@ —Var @) = Zﬂu(P [vn (P, @) — v, P, Q) + Sv,(P, Q) Bu(P)

‘n—-l

est une fonction harmonique dans E*,_,, donc

02 [V'n (Q) - Vn—l (Q)] =P [Vn(PO) — Vn—l (PO)] .
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Or
+
PV,(Po) = N (n—1,u)
+
PVar (Po) = N (n— 2, u)
d’ou, puisque V,_, = 0 sur C

ZV,@=Na—1,u)—Nn—2, 4,

ov, (P, Q)
on

+
D’autre part, 3 u(P) est une fonction harmonique de @
Cn

dans E*, ,, donc

ov, (P, ov, (P, P
zup) 2 —p pip) 2ol
011—1 C’n on on
or on a .
0v, (P, P,) 1 + L +
o =5 et é‘;:‘u(P)—_m(n,u)
donc
+ + + +
mn—1,u) < Nn—1,u) —N(n—2,u) + m(n,u)
et
Tn—1,u)<T(n,u)
c.q.f. d.

§ 3. Un théoréme sur le comportement d’une fonection dans une région
du réseau.

Soit D une région du réseau limitée par un polygone 11 illimité dans les
deux sens, et soit u(P) une fonction bornée sur IlI, ne possédant dans D
aucun f positif. Alors on a Ualternative :

u(P) ne dépasse pas dans D sa borne supérieure sur Il ;
ou bien

M (n,u) étant le maximum de u dans D sur C,, on a

M(n,u)
n

lim >0 .

r->»oo

On peut, sans restreindre la généralité de la démonstration, supposer
que la borne supérieure de u (P) sur II est zéro. Supposons, pour com-
mencer, que % (P) n’est jamais négative en des points de D voisins de 17,

et soit I', la partie de €, dans D, puis D, = 2'T,.
1
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4 Yu(P) <4 Xu(P)—2u(P)+ 2 u(P)— Zu(P)
Dy, I'y Fy

Dy, I'pta

F, étant la partie de D, qui est voisine de I7. Il en résulte que

2 u(P)—Xu(P) = Xu(P)
I'nya I'n Fn
Alors, deux cas peuvent se présenter:

1° Il y a une valeur n, de n pour laquelle 2'u (P) = a > 0, alors

Fp,

2u(P) = (n—mnya
Iy

d’ou1 la seconde éventualité de la conclusion du théoréme;
2° Ou bien X'u(P) = 0 quel que soit n; alors on peut remplacer D par

Fp
une région plus petite du plan en supprimant les points de F,, ; soit D’ la

nouvelle région, /7’ sa frontiére. Les hypothéses du théoréme s’appliquent

encore; si pour une valeur de n, 2'u(P)> 0, la conclusion précédente
F'y
s’applique, sinon on recommence; si, aprés un nombre fini de rétrécisse-

ments de D on obtient une expression 2'u (P) > 0, on peut affirmer que
F

M(n, u)
n

lim >0

sinon, il en résulte que « (P) n’est nulle part positif dans D.

Supposons maintenant que «(P) soit négative en certains points de D
voisins de /7; on remplace D par un domaine plus petit, en lui 6tant les
sommets de D ou «(P) < 0 situés a la périphérie. Alors, ou bien on ote
tous les points, et le théoréme est démontré (premiére éventualité), ou
bien on obtient un domaine D* auquel la démonstration précédente
s’applique, et la conclusion, quelle qu’elle soit, reste vraie pour D si elle
Pest pour D*.

Le théoréme peut étre précisé: dans la premiére éventualité, si I’égalité
u(P) = 0 est vérifiée en un point de D, elle Uest en tout point de D. On le
démontre sans peine en partant du fait que u (P) n’a aucun g positif.

§ 4. Théoréme A.

Il existe une solidarité entre les fonctions u (P) qui ont dans E, mémes
valeurs positives et mémes podles, de méme qu’entre les fonctions
|/(2) — @| dans un cercle, pour toute valeur de ¢. C’est cette solidarité
qui est énoncée dans le théoréme A, analogue du premier théoréme
fondamental de M. Nevanlinna.
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Théoréme A: Soit une fonction u(P) dans E,, et soit v(P) une auire
fonction telle que

+ +
v (P) = u (P) sur O,
+ +
ot B.(P)=B,(P) dans E°,, .
Alors mn,v)+Nm—1,v) = T (n,u)— pv (P,) .

C’est une conséquence immédiate de la formule (I”) du § 2. On a en
effet

m (n,v) + N (n—1,0) = T (n, v) — pv (Py)
=T (n, u) — pv (P,) .

Il convient de remarquer qu’il suffit de supposer I’égalité de v et de u
sur C, pour que la conclusion soit vraie. Dans la suite, nous aurons &
considérer des fonctions qui auront mémes valeurs positives dans tout le
réseau, hypothése plus forte que nous n’avions pas & faire ici.

St une fonction w(P) définie dans tout le réseau est telle que T (n , u)
est bornée, alors u(P) est constante.

En effet, si 7" est borné, g8, (P) doit étre constamment nul. Donc

2u(P) = pu(P,) .
Cn
Posons u*(P) = u(P) —u(P,) .

Supposons que u* (P) n’est pas identiquement nul: il existe alors un point
A ou u*(4) < 0, et en vertu du fait qu'une fonction harmonique ne peut
avoir de minimum, il existe un chemin /7, issu de 4 et s’éloignant indé-
finiment, sur lequel *(P) < 0. En appliquant & ce chemin, pris deux fois,
le théoréme du § 3, en remarquant que M (n , u) est borné, on voit que
u* (P) est négatif dans tout le plan, done u*(P,) < 0, ce qui est contra-
dictoire. Donc il n’y a aucun point ol u* (P) est négatif, et u (P) se réduit
a une constante.
On peut remarquer que u (P) sera encore une constante si

lim L% _ o
n

n->oo

Prenons en particulier une fonction u(P) bornée dans tout le réseau et
telle que S(P) ne soit jamais positif. Alors

T(n,u)=m(n,:c)+N(n—-—1,;)<K

T (n , u) étant bornée, u(P) est donc constante:
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St une fonction est bornée dans tout le réseau, et si elle ne posséde aucun f
positif, elle se réduit a une constante.

§ 5. Relations entre les fonetions m et N.

Le théoréme A marque la solidarité qui existe entre toutes les fonctions
ayant mémes f positifs et mémes valeurs positives sur C,, ; il donne alors
exactement la relation qui lie la valeur & l'origine et la fonction carac-
téristique 7'. Il est nécessaire, pour obtenir une relation entre les fonctions
m et N d’une famille de ¢ fonctions u,, de faire des hypothéses plus restric-
tives sur cette famille.

Appelons dérivée de la fonction u(P) toute fonction v(P), telle que
l'on a +

lim ™ [7, (v—u)]

. T(n,u) =4

et, en tout point N 2
B, (P) < 2B, (P) .

On dira d’autre part qu’une famille de ¢ + 1 fonctions u,, ..., u
forme un agrégat si

+ +
1° u; (P) = u, (P) ;
+ +
2° Pui (P) = fu, (P) ;
3° 1l existe un nombre K > 0 tel que, en tout point P, il y a un indice ¢

au plus avec —u(P)>K ;

G’v

4° La fonction »(P) est une dérivée pour toutes les fonctions u,(P).
Nous allons démontrer le théoréme:

Théoréme B: Soit un agrégat de fonctions u,,...,u,,v. Alors

(@—1) T (0, 55) < EN(n—1, %) + N (n— 1, 43) — N, (, ) +x(n)
1

ol . o (n)

" Ty

et
- +
Ni(n,0) =Nmn—1,0)+2N@mn—1,u)—Nn—1,9>0.

Posons, pour cela,

+ —
W = U%; — max u;

et soit , ’ensemble des sommets de C, ou u, < — K. Les ensembles y,
n’empiétent pas, donc
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mn,w) > 3 Su, ;
T
or

m(nu,)-—-Z'u —-Zu +CZ w, <Xu;,+ pkK,
dol " "
m(n,w) > Zm(n,u,) — pgK .

D’autre part, on a, si «,(P)<0

w =
< —u; + (w0 — ) + (v + max w,)

= — ¥%; + (% — ) + (v — min u,)

m(n,w) < m(n,u) + m(n, (4, —0)) + m(n, (e —minu,) .
Et -

m () = m(n,u) + N(n—1,%) — N@n—1,u) — pu,(Py) -
m(n, () = m(n, (0 —w)) + Nw—1,(u, ) —
—N(n—1, (4, —v)) — po(Py) + puy(Po)
= m(n,(v —up)) + N(n—1,0) — N(n— 1,)
4+ Nn—1,0) — N —1,u,) — pv(P) + puy(Py) -
m(n,w) < 2 T(n,u,) + m(n,(©—u)) + m(n,(© — min u,))

— m(n:ul) — N, (n,v) — pv(P,y)

Y

ou
N, =Nmn—1,0) + 2Nn—1,u)— N@n—1,5) >0
et
+ i +
m (0,0 —min ) < Em(n, - u) ;
1
donc

Smn,u) — pgK < 2 T, u) — Ny(n,0) — m(n,u) + o(n)
1

avec
am) .

i T(n,u)

d’oli, en ajoutant dans les deux membres
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SN@n—1,u) + Nn—1,u)
1
q
(¢+1)T(n,u,) — %‘ui(Po) — pgK < 2 T(n,u,) — N,(n,v) +

+ ”§N<n —1,2) + Nn—1, %) + a(n)
puis

(q—1) Tn,u) < 5 Nn—1,5) + N(n—1,0) —N,(n,0) + a(n)

en ajoutant a x(n) des termes négligeables par rapport & 7' (n , u,).

On tire sans peine du théoréme B des propositions analogues au
théoréme de Picard:

8¢ deux fonctions harmoniques dans tout le réseau forment un agrégat,
elles se réduisent a des constantes.

En effet, si 'on appelle u, et u, ces deux fonctions, il résulte du théo-
réme B que T (n,u,) est bornée dans tout le réseau, donc que u, et u,
sont des constantes.

Ou encore:

Si trots fonctions formant un agrégat ne possédent aucun f§ négatif, elles se
réduisent & des constantes.

La démonstration est immédiate.

§ 6. Conclusion.

On pourrait poursuivre encore longtemps ce jeu d’analogies; ce n’est
pas 1a notre but. Il s’agirait bien plutot de montrer que les considérations
précédentes permettent de fonder une théorie de fonctions plus générales
que les fonctions méromorphes; conjointement, il est probablement
possible de définir certaines variétés, généralisant les surfaces de Rie-
mann dans le sens de la quasi-conformité et au sujet desquelles les mémes
problémés se posent que pour les surfaces de Riemann (probléme du type);
or, sur ces variétés, I’étude d’une fonction sur les sommets d’un réseaun
de points suffit pour connaitre les propriétés globales de cette fonction;
c’est ce qui nous a conduit & entreprendre cette étude préliminaire.

(Regu le 11 aoht 1939.)
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