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Une interprétation élémentaire
des théorèmes fondamentaux de M. Nevanlinna

Par Charles Blanc, Lausanne

Introduction
Les théorèmes fondamentaux de M. Nevanlinna concernent essentiellement

le comportement du logarithme du module de fonctions méro-
morphes, c'est-à-dire le comportement de fonctions harmoniques en
relation avec les singularités de ces fonctions. On peut se demander quelle
est la propriété essentielle des fonctions harmoniques qui est alors utilisée.
Nous nous proposons de montrer qu'on peut retrouver en gros les résultats
de M. Nevanlinna en partant du fait bien connu qu'une fonction harmonique

dans un cercle prend au centre une valeur égale à la moyenne dea

valeurs qu'elle prend sur le contour.
Au lieu de considérer des fonctions de points dans un plan, nous

considérerons des fonctions définies aux sommets seulement d'un réseau qui
sera constitué (topologiquement) par p rayons issus d'un point Po et par
une suite infinie de cercles Cx, C2, ayant ce point pour centre (le
nombre entier p, qui aura toujours la même signification, jouera le rôle du
2 n des formules connues sur les fonctions méromorphes).

§ 1. Fonction harmonique dans un réseau.

Soit u (P) une fonction définie dans une région D du réseau (on entendra

par région du réseau l'ensemble des points intérieurs d'un polygone fermé
et sans point double du réseau). Soit P un point intérieur de D, et autre
que Po. On posera

la somme étant étendue aux 4 sommets P€ du réseau voisins de P; en Po,
s'il est à l'intérieur de D, on posera

la somme étant étendue aux p sommets de C1. (3{P) mesure la différence
entre la valeur prise par u(P) et la valeur moyenne de u(P) sur les points
voisins; elle exprime dans quelle mesure u(P) diffère d'une fonction qui
serait en chaque point égale à la moyenne des valeurs qu'elle prend aux
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points voisins. Si /?(P) 0, on dira que u(P) est harmonique en P; si

f}(P) a > 0 on pourra dire que P est un pôle d'ordre a, et si fl(P)
b < 0, que P est un zéro d'ordre b.

Théorème d'existence: Etant données sur Cn une fonctionf (P), et en

Po et sur Cx, C2, Cw__i une fonction g(P), il existe une fonction
u(P) et une seule égale à f(P) sur Cn et telle que /3(P) g(P).

En effet, il s'agit de déterminer les valeurs de u(P) en l-{-p(n— 1)

sommets du réseau; on dispose pour cela de l-\-p(n—1) équations
linéaires non-homogènes dont le déterminant n'est pas nul: il suffit, pour
le montrer, d'établir l'existence d'un système de solutions pour un choix
particulier des fonctions / et g. On prend / 0 et g 0 excepté en Po où

g p. On vérifie sans peine que la fonction

u(P) n — k P sur Ck

est alors la solution du système ; le déterminant n'est donc pas nul, et la
solution est bien déterminée quelles que soient / et g.

On retrouve ainsi facilement d'autres propriétés des fonctions harmoniques.

Par exemple:

Soit f (P) une fonction sur Cn, et soit u (P) une fonction définie à Vintérieur
de Gn et sur Cn, égale à f (P) sur Cn. L'expression

où la somme est étendue à tous les points P intérieurs à Cn, et pour tous les

points voisins de P, atteint son minimum lorsque la fonction u(P) est

harmonique dans Cn.

Prenons, pour le montrer, un point P1 et fixons la fonction u(P) en
tout point autre que Px ; posons u (Px) x ; alors

z [u(P) —

et Xr{x) 0 si 4x Zu(P[)
c'est-à-dire si P(Px) 0, ce qui démontre l'affirmation.

D'autre part, on montre sans peine qu'une fonction harmonique dans

un domaine D d'un réseau y vérifie le principe du maximum : elle ne peut
atteindre son maximum ou son minimum qu'en un point du contour
polygonal qui limite D.
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Formule de Oreen: Soient deux fonctions u(P) et v(P) définies dans
et sur Cn. Appelons En l'ensemble des sommets du réseau situés sur les
cercles Cx à Cn et soit E*n En + Po • On a si P est un point de En_1

u(P) pv (P) — v(P) pu(P) *u(P)v(P) — u(P) Zv(P€)
— ±u(P)v(P) + v(P) Z

et en faisant la somme pour tous les points de En_1

Z [u(P) pv(P) — v(P) pu(P)] — Zu(Q)v(P) + Zv{Q)u{P)

- v(P0) Zu(P) + u(P0) Zv(P) (1)

où Q est le point de Cn^1 voisin de P sur Cn. On a en outre

u (Po) A, (Po) — v (Po) Pu (Po) v (Po) Zu (P) -u(P0) Zv (P) (2)
Ci Ci

d'où, en ajoutant (1) et (2),

Z (upv — vpu) —Z[u(Q)v(P) — v(Q)u(P)] (3)

Posons

alors

et la relation (3) devient

Bn-X °n

que nous pouvons appeler formule de Green.

Prenons pour v(P) une fonction v(P,Q) égale à zéro sur Cn, avec
pv(P) 0 excepté pour P Q, pour lequel on a pv(Q) 1. La relation
(4) devient alors

d'où

u(Q) Zu(P
Cn
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Ainsi, la détermination de u(Q), connaissant ses valeurs sur Cn et ses f}>

revient à celle de v(P, Q) et de sa ,,dérivée normale" sur Cn. Il y a
1 + p (n — 1) fonctions de Green v(P, Q) relatives à Cn ; il en résulte que
le calcul de u(Q) en tout point intérieur à Cn est immédiat dès que Ton
possède le jeu complet des fonctions de Green dans Cn.

On remarque que u(Q) est une fonction linéaire de fi et de u(P) sur Cn.

Il en résulte qu'il existe pour l'ensemble des fonctions u(P) dans Cn un
théorème de décomposition vectorielle: toutes les fonctions u(P) sont
décomposables en une somme de (\-\-pn) d'entre elles, linéairement
indépendantes.

Proposons nous en particulier de trouver u(P0). La fonction de Green

v(P, Po) est facile à calculer:

v(P,P0) n — k
Si p est sur Ck

et
dv

__
1

dn p
d'où

n-i
Posons

On a alors

pu (Po) Eu (P) + r{n — l,u), (I)

ce qui résout le problème. C'est l'analogue de la formule de Jensen.

§ 2. Les fonctions m, N et T.

Posons, d'une façon générale

x 0 si a; < 0
{JC :—:

et soit m (n,

y(n —

N (n-

u)

1,
+
u)

1,«)

- Zu(P)
Cn

^ Î{P)

%(k,u)
0

m (n, u)

y(n—l,

N(n-

«)

i,«:

i:«(P)

E?/(P)
n-1

1
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La formule (I) devient alors

p[u(P0) — Û(PO) ] m(n,u) — m (n, û) + N(n—1, u) — N{n—1, u)

ou encore

m(n,u)-\-N(n—\,u) — pu(P0) m(n,u) + N(n—l,u)—pu(P0)
Posons

T(n, u) — m (n, u) -f N(n — 1, u) ;

on a ainsi

m (n, u) -f- N(n — 1, u) T(n, u) — pu (Po)

qui n'est qu'une façon d'écrire la relation (I).

T (n, u) est une fonction croissante de n.

Prenons, pour le montrer, un point Q de ^*_x ; on a

m v^.,m *>n(P,Q)

vn(P, Q) étant la fonction de Green dans Cn relative à Q.
Or

vn(P,Q)>o ^>o
donc

u(Q) E vn(P,Q) pu(P) + Zu(P) dVn[PJ

- E vn(P,Q) pu(P)-ZÛ(P)
c'est-à-dire

Posons

E*n-i

Si Q est sur Cn-1 Vn-± {Q) 0 D'autre part, l'expression

VM—V^i (Q) Z }U{P) [vn (P, Q) - v^iiP, Q)] + Zvn(P, Q) JM

est une fonction harmonique dans -E*n_2, donc

Z [Vn (Q) - Vn.AQ)] p[Fn(P0) - F^tPo)] •
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Or

d'où, puisque Fn_j 0 sur C

Vn(Q) N(n—l, Ù—Ntji—2 u)

D'autre part, 2J u(P)—!L^-J—- est une fonction harmonique de Q
Cn dn

dans E*n-1, donc

2J UU(P) ^ -z=p£\
Cn-i Cn ôn Cn

or on a

donc

m (n— 1, u) ^ N(n—1, u) —N(n — 2, u) + m(n, u)
et

T(n— 1 ,u) < T (n,u)
c. q. f. d.

§ 3. Un théorème sur le comportement d'une fonction dans une région
du réseau.

Soit D une région du réseau limitée par un polygone 77 illimité dans les

deux sens, et soit u(P) une fonction bornée sur 77, ne possédant dans D
aucun fi positif. Alors on a Valternative :

u(P) ne dépasse pas dans D sa borne supérieure sur77;
ou bien

M{n,u) étant le maximum de u dans D sur Cn, on a

v M{n,u)lim v ' > 0

On peut, sans restreindre la généralité de la démonstration, supposer
que la borne supérieure de u(P) sur II est zéro. Supposons, pour
commencer, que u(P) n'est jamais négative en des points de D voisins de II,

n
et soit _Tn la partie de Cn dans D, puis Dn Urk.

î
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Z
Dn Dn rn rn+1 Fn

Fn étant la partie de Dn qui est voisine de 77. Il en résulte que

Z u(P) — Zu(P)^Zu(P)
Ai+i A* Fn

Alors, deux cas peuvent se présenter:

1° II y a une valeur n0 de n pour laquelle Zu(P) a > 0, alors

Zu(P) > (n— nQ)a

d'où la seconde éventualité de la conclusion du théorème;

2° Ou bien Zu(P) 0 quel que soit n; alors on peut remplacer D par

une région plus petite du plan en supprimant les points de Fn ; soit Dl la
nouvelle région, 77f sa frontière. Les hypothèses du théorème s'appliquent
encore; si pour une valeur de n, Zu(P) > 0, la conclusion précédente

F'n
s'applique, sinon on recommence; si, après un nombre fini de rétrécissements

de D on obtient une expression Eu(P) > 0, on peut affirmer que
F

M(n,u)hm—v } >0

sinon, il en résulte que u(P) n'est nulle part positif dans 7).

Supposons maintenant que u(P) soit négative en certains points de D
voisins de 77; on remplace D par un domaine plus petit, en lui ôtant les

sommets de D où u(P) < 0 situés à la périphérie. Alors, ou bien on ôte
tous les points, et le théorème est démontré (première éventualité), ou
bien on obtient un domaine 7)* auquel la démonstration précédente
s'applique, et la conclusion, quelle qu'elle soit, reste vraie pour 7) si elle
l'est pour 7)*.

Le théorème peut être précisé : dans la première éventualité, si Végalité

u(P) 0 est vérifiée en un point de 7), elle Vest en tout point de D. On le
démontre sans peine en partant du fait que u(P) n'a aucun (} positif.

§ 4. Théorème A.

Il existe une solidarité entre les fonctions u(P) qui ont dans E*n mêmes
valeurs positives et mêmes pôles, de même qu'entre les fonctions
\f(z) — a\ dans un cercle, pour toute valeur de a. C'est cette solidarité
qui est énoncée dans le théorème A, analogue du premier théorème
fondamental de M. Nevanlinna.
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Théorème A: Soit une fonction u(P) dans E*n> et soit v(P) une autre
fonction telle que

v(P) u (P) sur Cnn

et X(P) PAP) dans JTn_i

Alors m (n, v) + N (n — 1, v) T (n, u) — pv (Po)

C'est une conséquence immédiate de la formule (I/;) du § 2. On a en
effet

m (n, v) + N (n — 1, v) T (n, v) — pv (Po)

T(n,u) — pv(P0)

Il convient de remarquer qu'il suffit de supposer l'égalité de v et de u
sur Cn pour que la conclusion soit vraie. Dans la suite, nous aurons à

considérer des fonctions qui auront mêmes valeurs positives dans tout le

réseau, hypothèse plus forte que nous n'avions pas à faire ici.
Si une fonction u (P) définie dans tout le réseau est telle que T(n ,u)

est bornée, alors u(P) est constante.
En effet, si T est borné, /3M(P) doit être constamment nul. Donc

Zu(P) pu(P0)
Cn

Posons u* (P) u(P) — u (Po)

Supposons que u*(P) n'est pas identiquement nul: il existe alors un point
A où u*{A) < 0, et en vertu du fait qu'une fonction harmonique ne peut
avoir de minimum, il existe un chemin 77, issu de A et s'éloignant
indéfiniment, sur lequel u*(P) < 0. En appliquant à ce chemin, pris deux fois,
le théorème du § 3, en remarquant que M(n ,u) est borné, on voit que
u*(P) est négatif dans tout le plan, donc u*(P0) < 0, ce qui est
contradictoire. Donc il n'y a aucun point où u* (P) est négatif, et u (P) se réduit
à une constante.

On peut remarquer que u(P) sera encore une constante si

lim y(*'*> =0.
n->oo W

Prenons en particulier une fonction u (P) bornée dans tout le réseau et
telle que (3(P) ne soit jamais positif. Alors

T (n, u) m (n, u) + N (n — l,u) < K
T(n ,u) étant bornée, u(P) est donc constante:
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Si une fonction est bornée dans tout le réseau, et si elle ne possède aucun jS

positif, elle se réduit à une constante.

§ 5. Relations entre les fonctions m et N.

Le théorème A marque la solidarité qui existe entre toutes les fonctions
ayant mêmes fl positifs et mêmes valeurs positives sur Cn ; il donne alors
exactement la relation qui lie la valeur à l'origine et la fonction
caractéristique T. Il est nécessaire, pour obtenir une relation entre les fonctions
met N d'une famille de q fonctions u{, de faire des hypothèses plus restrictives

sur cette famille.
Appelons dérivée de la fonction u(P) toute fonction v(P), telle que

l'on a +

lim ™K(»-;W)3
n^oo T(n U)

et, en tout point + +

=0

On dira d'autre part qu'une famille de q + 1 fonctions ux, ut ,v
forme un agrégat si

1° ut (P) ut (P) ;

2° }tti (P) pUl (P) l

3° II existe un nombre K > 0 tel que, en tout point P, il y a un indice i
au plus avec _,. TjrF —ui{P)>K;

4° La fonction v(P) est une dérivée pour toutes les fonctions u^P).
Nous allons démontrer le théorème:

Théorème B: Soit un agrégat de fonctions ux, ,uq,v. Alors

(q—l) T (n, ux) < !N(n—l, û{) + N(n — l9 uJ — N^n, v)+oc(n)

et

Nx(n,v) N(n— l,v) + 2 N(n— 1, ux) — N(n— 1, v) >0
Posons, pour cela,

w Ui — max ut

et soit yi l'ensemble des sommets de Cn où u{ < — K. Lçs ensembles

n'empiètent pas, donc

11 Commentarii Mathematici Helvetici



m(n,w) > £Siii ;
* n

or

Z u4 < Zu{ + pK
Cn yi Cn-yi yt

d'où

m(n,w) > Emin.Ui) — pqK
i

D'autre part, on a, si v>{(P) < 0

w max u{

< — ui + (^x — #) + (v + max u{)

— ut + (^1 — v) + (^ — min u4)

Et
m(n,w) < m(n,%) + m(n, (ux — v)) + w&(w,(v — min

n,uù m{n,u<ù + N(n — 1,^) — N(n— 1,%) —

m(n,(uî — v)) m(n,(v — ux)) + iV(7i— 1,(% —

— N(n — 1 (% — v)

+ ^(n— 1,^) — J^(n — 1,^) — pv(P0) + pux(P0)

+ +
m(n,w) ^ 2 T{n,n^) + m(n,(v — %)) + m(n,(v — min^))

— m(n,ux) — N^n^v) — pv(P0)
où

Nx(n9v) N(n—l~v) + 2 N(n—lXi) — N(n—l9v) > 0
et

m(n,(t; — min^)) ^ 2Jm(n,(v — u{)) ;
i

donc
Q +

Hm{n,u*ù — pqK < 2 jP(w,%) — N^n^v) — m(^,%) + «(n)
i

avec

hm v \ 0 ;

d'où, en ajoutant dans les deux membres



(q+1) 2P(*,«!> — Zut(P0) — pqK < 2 T(n,Ul) — N^n.v) +

+ ZN(n — 1,»,) + tf(n — 1,«,) + <x(n)
1

puis

(g —1) SPfra,^) < ZNin—ltùt) + N(n — l,ûl)—N1(n9v) + oc{n)
i

en ajoutant à oc (ri) des termes négligeables par rapport à T(n ux).
On tire sans peine du théorème B des propositions analogues au

théorème de Picard:

Si deux fonctions harmoniques dans tout le réseau forment un agrégat,
elles se réduisent à des constantes.

En effet, si l'on appelle ux et u2 ces deux fonctions, il résulte du théorème

B que T (n u±) est bornée dans tout le réseau, donc que ux et u%

sont des constantes.
Ou encore:
Si trois fonctions formant un agrégat ne possèdent aucun fi négatif, elles se

réduisent à des constantes.
La démonstration est immédiate.

§ 6, Conclusion.

On pourrait poursuivre encore longtemps ce jeu d'analogies; ce n'est
pas là notre but. Il s'agirait bien plutôt de montrer que les considérations
précédentes permettent de fonder une théorie de fonctions plus générales

que les fonctions méromorphes; conjointement, il est probablement
possible de définir certaines variétés, généralisant les surfaces de Rie-
mann dans le sens de la quasi-conformité et au sujet desquelles les mêmes

problèmes se posent que pour les surfaces de Riemann (problème du type) ;

or, sur ces variétés, l'étude d'une fonction sur les sommets d'un réseau
de points suffit pour connaître les propriétés globales de cette fonction;
c'est ce qui nous a conduit à entreprendre cette étude préliminaire.

(Recule 11 août 1939.)
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