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Ober normal-diskontinuierliche
lineare Gruppen in zweî komplexen Variablen

Von Emil Schubarth, Basel.

I. TEIL
Normalfolgen und Gruppen-Diskontinuitât

1. Grundlagen.
2. Eigenthche Diskontmuitat.
3. Normalfolgen und îhre Grenzelemente. Beispiele 1, 2.
4. Normale Diskontinuitat
5 Die Grenzelemente von Ebenenfolgen îm Punktraum. Gruppen 1. Klasse.
6. Grenzmengen und Gruppendiskontmuitat. Bedmgte Diskontinuitat.
7 Zusammenhang zwischen normaler Diskontinuitat und bedingter Diskontinuitat bei

Gruppen 1 Klasse. Beispiele 3, 4, 5.

II. TEIL
Théorie der isometrischen Gebilde

8. Isometnsche Gebilde emer hnearen Gruppe Hilfsbetrachtungen uber Projektiv-
ebenen.

9. Die isometrischen Gebilde bei eigentlich-diskontinuierhchen Gruppen.
10. Bestimmung des Diskontinuitatsbereichs und des Normalbereichs von G und F mittels

der isometrischen Gebilde.
11. Eigenschaften des Normalbereichs
12. Konstruktion eines Fundamentalbereichs fur den Normalbereich.
13. Ausdehnung auf die mduzierte Gruppe. Zusammenfassung. Beispiele 6, 7, 8, 9.

III. TEIL
Ergânzungen und Hinweîse
14. Der Rand des Normalbereichs.
15. AUgemeine Eigenschaften der Fundamentalbereiche.
16. Der Rand von R : Erzeugende fur G. Planarkonvexitat von i?.
17. Speziahsierung :

a) Komplexe Gruppen in emer Variablen (Théorie von Ford).
b) Réelle Gruppen in zwei Variablen.

18. Verallgemeinerung : Gruppen in n komplexen Variablen.
19. Der Normalbereich als Existenzbereich automorpher Funktionen.

Einleitung
Die Théorie der automorphen Funktionen einer komplexen Variablen

ist ein wesentlicher Bestandteil der klassisehen Funktionentheorie. Die
automorphen Funktionen liefern nicht nur eine Verbindung der
Funktionentheorie mit wichtigen mathematischen Disziplinen wie den Diffe-
rentialgleichungen und der Arithmetik, sondern sie haben auch einen
erheblichen Anteil an der Entwicklung der allgemeinen Funktionentheorie

gehabt, zuletzt noch bei den Untersuehungen zur Uniformisierung.
Dasselbe vermag man bisher in der Funktionentheorie mehrerer
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Variablen nicht zu sagen. Es ist geradezu auffallend, da8 in den zahl-
reichen allgemeinen Untersuchungen ûber die analytischen Funktionen
/ (wt, wn) — wie sie aus den letzten vierzig Jahren und vor allem axis
dem letzten Jahrzehnt vorliegen — automorphe Funktionen gar nicht
vorkommen. Andererseits gibt es wohl Arbeiten liber automorphe
Funktionen mehrerer Variablen. Solche von zwei Variablen sind im AnschluB
an die klassischen Arbeiten von Poincaré zuerst von Picard betrachtet
worden. Die wichtigsten Beitrâge zur Théorie in n Variablen stammen
von Wirtinger, Blumenthal, Fubini, Hurwitz, Hecke und Giraud. Aber
dièse Arbeiten gehen entweder von der Zahlentheorie quadratischer
Kôrper aus oder bilden eine Erweiterung und teilweise nur formale
Ergânzung einer Théorie der automorphen Funktionen einer Verânder-
lichen. In beiden Fàllen ist eine Brûcke zur allgemeinen Funktionen-
théorie noch nicht geschlagen. Erst mit den Arbeiten von Myrberg (seit
1922) wird eine Théorie der automorphen Funktionen begrûndet, die
spezifisch auf den Raum mehrerer komplexer Variablen eingestellt ist,
und jede weitere Arbeit auf diesem Gebiet wird an seine Begriffsbildungen
anknûpfen mtissen.

Die folgende Untersuchung behandelt ausschlieBlich im Gebiet der
projektiven Géométrie und der linearen Gruppen den von Myrberg1) ein-
gefûhrten grundlegenden Begriff: die normale Diskontinuitât. Unter
gewissen Einschrânkungen fur die zugrunde liegenden Gruppen, von
denen sogleich die Rede sein wird, gelingt die geometrische Abgrenzung
des Bereiches der normalen und der (noch zu erklârenden) bedingten
Diskontinuitât der Gruppen und die Konstruktion von Fundamental-
bereichen — ein Gegenstand, der in der klassischen Théorie und in frûhen
Untersuchungen von Wirtinger, Hurwitz und Fubini bedeutsam hervor-
getreten ist, wàhrend er in der Théorie von Myrberg bis jetzt uberhaupt
nicht vorkommt.

Um den Gang der Untersuchung zu erlâutern, greifen wir auf die Er-
klàrung der automorphen Funktionen zuruck. Unter einer automorphen
Funktion in zwei und mehr Variablen versteht man in Analogie zur
klassischen Théorie eine einwertige analytische Funktion, die gegenuber
einer Gruppe G von Transformationen ihrer Argumente invariant ist.

Die Linearitàt von G braucht nicht wie im klassischen Fall verlangt zu
werden. Trotzdem werden in der vorliegenden Arbeit von vornherein nur
Gruppen linear-gebrochener Transformationen in Betracht gezogen, und
innerhalb dieser Gruppen wird noch eineAuswahl auf solche Fâlle getrofïen,

*) [1Û]> [11]- Zahlen in eckigen Klammern verweisen auf das Literaturverzeichnis am
SchluÛ der Arbeit.
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in denen die Methoden der projektiven Géométrie, insbesondere das

Prinzip der Dualitât zwischen Punkten und analytischen (2n — 2)-
dimensionalen Ebenen, voll zur Geltung kommen. Dieselbe Einschràn-
kung hat auch Myrberg aus funktionentheoretischen Grunden vorge-
nommen (vgl. seine ,,Gruppen 1. Klasse").

Die eigentliche Diskontinuitàt der Automorphismengruppe G muB
dagegen aus entsprechenden Grunden wie bei den automorphen Funk-
tionen in einer Variablen gefordert werden. Zwar kommen bei n Variablen
fur n > 1 zu einer nicht eigentlich-diskontinuierlichen linearen Gruppe
als automorphe Funktionen nicht nur Konstante in Betracht. Aber durch
eine geeignete Transformation (die allerdings im allgemeinen nicht linear
sein kann) lâfit sich bei Funktionen mit infinitesimalen Transformationen
in sich die Variablenzahl verringern2).

Es hat sich freilich gezeigt, daB fur die Existenz von automorphen
Funktionen in mehreren Variablen die eigentliche Diskontinuitàt der
Automorphismengruppe nicht hinreicht. Ein Beleg dafûr sind schon die
Riemannschen Periodenrelationen. Vor allem aber geht das aus den
Arbeiten von Myrberg hervor, in denen er zu einer Verschàrfung des

Begriffes der eigentlichen Diskontinuitàt sich veranlaBt sah.
Zur Verdeutlichung diene die folgende tïbersicht:
Eine Gruppe G heiBt eigentlich-diskontinuierlich im Bereich A, wenn

fur jeden Punkt p von A folgendes gilt: es gibt eine Umgebung U(p)
von p, die nur mit endlich vielen ihrer Bilder (vermôge Transformationen
aus G) Punkte gemeinsam hat.

Eine Gruppe G heiBt (nach Myrberg) normal-dishontinuierlich im
Bereich A, wenn ihre Transformationen, genauer: die zugehôrigen
Transformationsfunktionen, in jedem abgeschlossenen Teilbereich von A
eine normale Familie bilden3). Der maximale Bereich der normalen
Diskontinuitàt heiBt der ,5Normalbereich" von G. Die ZweckmàBigkeit dieser

Begriffsbildung erhellt aus folgender Gegenûberstellung : Im klassischen
Fall ist der maximale Bereich E der eigentlichen Diskontinuitàt von G

stets der Existenzbereich von automorphen Funktionen zur Gruppe G.

Bei mehreren Variablen ist mit eigentlicher Diskontinuitàt allein keine

automorphe Funktion môglich. Eine Gruppe G muB normal-diskonti-
nuierlich sein, damit automorphe Funktionen zu ihr existieren kônnen,

2) Man ùberblickt aile Môglichkeiten sofort auf Grand des folgenden Satzes von
Fubini ([5] p. 106): Gestattet eine einwertige analytische Funktion eine diskontinuierliehe
Gruppe linearer Transformationen, in der infinitésimale Transformationen vorkommen,
so gestattet sie eine stetige (mindestens) einparametrige lineare Gruppe.

8) Zur genauen Fassung des Begriffs der Konvergenz von Transformationsfolgen vgl. § 4.
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und zwar gilt unter gewissen Voraussetzungen4) iiber G: jeder maximale
zusammenhàngende Teilbereich des Normalbereichs von G ist der
Existenzbereich von automorphen Funktionen zu G.

Andererseits ist, wie die folgenden Entwicklungen zeigen, fur lineare
Gruppen eine Erweiterung des Begriffs der eigentlichen Diskontinuitât
am Platz, die Myrbergs Verschârfung dual entspricht. Eine lineare Grappe
G 1. Klasse heiBt bedingt-diskontinuierlich im Bereich A, wenn fur jeden
Punkt p von A folgendes gilt : zu jeder vorgelegten Normalfolge F aus G

làBt sich eine Umgebung U(p) von p und in ihr ein Punkt q samt einer
Umgebung V(q) angeben, so dafi bei der Ausfiïhrung der Transformatio-
nen von F nur endlich viele Bilder von V(q) Punkte mit U(p) gemeinsam
haben. Der maximale Bereich der bedingten Diskontinuitât heiBt der
,,Diskontinuitâtsbereich" von G5).

Die drei Arten der Diskontinuitât macht man sich leicht klar an der
Gruppe

w' mvw, zr nvz, |w|<|w|<l, v 0, ±1, ±2,...
(vgl. dazu § 6).

Im folgenden soll an den linearen Gruppen in zwei komplexen
Variablen gezeigt werden, wie man zum Begriff der normalen
Diskontinuitât aus rein geometrischen und gruppentheoretischen Erwâgun-
gen gelangen kann. Dazu fûhrt der Gesichtspunkt der Dualitât, d. h. die
Behandlung von Punkten und analytischen Ebenen als gleichberechtigten
Elementen. Die Diskontinuitâtseigenschaften der Punktgruppe und der
durch sie induzierten Ebenengruppe sind nâmlich weitgehend von
einander unabhângig, und geeignete Voraussetzungen ûber die bedingte
Diskontinuitât in der einen Gruppe schafïen eine Bindung, die gerade mit
der aus funktionentheoretischen Gesichtspunkten verlangten Einschrân-
kung auf die normale Diskontinuitât in der induzierten Gruppe uberein-
stimmt. Das zeigt das Hauptergebnis des I. Teils der Arbeit: notwendig
und hinreichend fur die normale Diskontinuitât im Punkt p ist bei einer
linearen Gruppe 1. Klasse die bedingte Diskontinuitât der induzierten
Gruppe in jeder analytischen Ebene durch p.

Im II. Teil wird eine geometrische Théorie entwickelt zur Bestimmung
des Normalbereichs und des Diskontinuitâtsbereichs einer linearen Gruppe

4) nâmlich fur Gruppen 1. Klasse, das sind Gruppen, die lauter Normalfolgen vom
Rang 1 enthalten; im allgemeinen ist zudem die normale Diskontinuitât der induzierten
Ebenengruppe vorauszusetzen.

5) Die Bezeichnung Diskontinuitâtsbereich verwenden wir hier im Anschlufî an
Myrbergs Bezeichnung Normalbereich, aber im Gegensatz zu Fricke-Klein, wo
Diskontinuitâtsbereich synonym und gleichzeitig mit Fundamentalbereich verwendet wird.
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1. Klasse. L. R. Ford [3] [4] hat im klassischen Fall ein einleuchtendes
Verfahren zur Konstruktion von Fundamentalbereichen bei beliebig vor-
gegebenen eigentlich-diskontinuierlichen Gruppen angegeben. Dièses
Verfahren wird hier auf den Fall von zwei Variablen ûbertragen. Dadurch
gelingt es, die Myrbergsehe Théorie der Gruppen 1. Klasse in einem
wesentlichen Punkt zu ergànzen. Es stellt sich heraus, dafi die entspre-
chende Konstruktion stets môglich ist, wenn die Forderung der eigent-
lichen Diskontinuitât zur normalen Diskontinuitat der beiden dualen
Gruppen G und F in einem Pctar von inzidenten Elementen verschàrft wird.
Man erhâlt einen Fundamentalbereich filr den Normalbereich von also
fur den Bereich, der fur die Funktionentheorie von ausschlaggebender
Bedeutung ist.

Das wesentlichste Hilfsmittel fur die Untersuchung sind die iso-
metrischen Gebilde der Gruppe. Jeder Transformation T{ aus G bzw. r{
aus F lâBt sich ein solches Gebilde 77t bzw. S${ zuordnen. Es besteht aus
den Punkten bzw. Ebenen6), in denen die Funktionaldeterminante der
Transformation den Betrag 1 hat. Ausfùhrlich:

1. Die Punkte von 77^ erfullen eine einparametrige Schar von Ebenen,
die aile durch einen Punkt s{ der uneigentlichen Ebene gehen. Wir
nennen daher 77^ den isometrischen Zylinder der Transformation T{. Er
zerlegt die Ebenen durch «^ und damit die Punkte des Raumes W(w, z)

(mit Ausnahme von st) in drei Klassen: Inneres, Mantel, ÂuBeres voni7t.
Eine Ebene aus dem Inneren ist 77t- als ,,Achse" zugeordnet. Jede Hâu-
fungsebene von Achsen der II\ von G nennen wir eine Grenzebene von F.

2. Die Ebenen von ^ gehen durch eine einparametrige Schar von
Punkten, die einen Kreis auf einer Ebene ai durch den Nullpunkt
erfullen. Wir nennen S$t den isometrischen Kreis der Transformation x€.
Er zerlegt die Punkte von Gt und damit die Ebenen in W (mit Ausnahme
von at) in drei Klassen: Inneres, Rand, ÀuBeres von *Pt. Ein Punkt aus
dem Inneren ist S$t als ,,Pol" zugeordnet. Jeden Hàufungspunkt von
Polen der S^{ nennen wir einen Grenzpunkt von G.

Die Menge der Grenzpunkte von G heiBt die 1. Grenzmenge von die
Menge der Punkte aller Grenzebenen von F heiBt die 2. Grenzmenge
von G. Die Komplementârmenge zur 1. Grenzmenge ist der Bereich B
der bedingten Diskontinuitat von G. Die Komplementârmenge zur
2. Grenzmenge ist der Bereich N der normalen Diskontinuitât von G

(Hauptsatz 2).
Als ein Fundamentalbereich fur N erweist sich in einer linearen Gruppe
e) ,,Eben©" bedeutet im folgenden stets f>analytische Ebene", sofem nicht ausdrùekiich

etwas anderes gesagt ist.
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1. Klasse mit normaler Diskontinuitàt in einem Paar inzidenter dualer
Elemente die Menge R derjenigen Punkte, die samt einer Umgebung im
ÀuBeren aller isometrischen Zylinder von G liegen (Hauptsatz 3). Man
gewinnt damit eine neue Darstellung des Normalbereiehs

N R + R' + ••• (Menge R + ihre Bilder).

Analog fur die Bereiche B der bedingten Diskontinuitàt und N der
normalen Diskontinuitàt der Ebenengruppe F.

Der III. Teil enthàlt Ergànzungen und Hinweise auf folgendes: Der
Normalbereich N von G und der konstruierte Fundamentalbereich fiir N
sind konvex in bezug auf (analytische) Ebenen [1]. Der Rand von R er-
laubt unter Umstânden Riiekschliisse auf die Erzeugenden von Als
Spezialfall der allgemeinen Théorie hat man 1. fiir eine komplexe Variable
die Théorie von Ford, 2. eine Théorie der reellen linearen Gruppen
1. Klasse in zwei Variablen. Die Théorie der isometrischen Gebilde ist
ebenso (mit allen Auswirkungen auf die Bereiche der bedingten und der
normalen Diskontinuitàt) môglich fiir normal-diskontinuierliche lineare
Gruppen 1. Klasse in n Variablen. Ein letzter Hinweis gilt der funk-
tionentheoretischen Bedeutung des Normalbereiehs.

Mit der Théorie von Ford bin ich durch Herrn E. Peschl bekannt
geworden. Wertvolle Hilfe verdanke ich Herrn H. Behnke7).

I. TEIL
Normalfolgen und Gruppen-Diskontinuitàt

1. Grundlagen
Den folgenden Untersuchungen liegt der Raum 224(w, z) zweier kom-

plexer Verànderlichen w u + iv, z x + iy zugrunde. Wir betrachten
darin Gruppen G von linear-gebrochenen Transformationen mit kom-
plexen Koeffizienten

anw + a12z + aizw ¦

zf
az2z

(i)

7) Nach dem Abschlufi der Arbeit hat Herr A. Ostrowski darauf hingewiesen, dafi
J. I. Hutchinson [8] nicht nur, wie Ford im Vorwort seines Bûches erwàhnt, als erster die
isometrischen Gebilde zur Abgrenzung von Fundamentalbereiehen verwendet, sondern
sein Vèrfahren auch fur zwei Variable skizziert, freilich ailes nur fur Gruppen mit in-
varianter Hermite-Form von der Charakteristik 1. Die Méthode macht von der Invarianz
wesentlich Gebrauch. Der gefundene Fundamentalbereich ist ein solcher fur das Innere der
invarianten Hyperkugel, also im allgemeinen nur fur einen Teil des Normalbereichs
(vgl. Beispiele 6, 7).
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deren Déterminante A(atk) nicht verschwindet, und denken uns dem-
entsprechend den 2?4 durch eine uneigentliche Ebene abgeschlossen.
Statt (w, z) verwenden wir haufig homogène Koordinaten (w1 : w2 : wz),
die nicht aile drei 0 sein durfen und nur bis auf einen gemeinsamen Faktor
bestimmt sind. Die Transformationen von G werden dargestellt durch

3

twt Eatkwk A (atk) # 0 (» 1, 2, 3) (2)

wo der (uberall von 0 verschiedene) Proportionalitatsfaktor t(wlf w2, wz)
dazu benutzt werden soll, das Maximum der Koeffizientenbetrage auf
einen endlichen Wert, etwa auf 1, zu normieren.

Die in den Koeffizienten und den Variablen symmetrische Form
ç>(co, w) co1 wx + o)2w2 + cozwz 0 der Gleichung einer Ebene zeigt,
daB der vierdimensionalen Mannigfaltigkeit W der ,,Punkte w" die vier-
dimensionale Mannigfaltigkeit Q der analytischen ,,Ebenen co" gegen-
uber steht. Man kann also dem Punktraum W den Ebenenraum Q dual
zur Seite stellen, indem man der Ebene co : a)1w1 + co2w2 + (*>aw3 0

îm Punktraum W den Punkt co (œ1 : co2 : co3) im Ebenenraum Q

umkehrbar eindeutig zuordnet durch die Festsetzung ra)t œt (i
1, 2, 3)8). Jede Gruppe von projektiven Punkttransformationen erzeugt
im Punktraum W. eine homomorphe Gruppe F von Ebenentransforma-

tionen, das ist im Ebenenraum Q eine projektive Gruppe F von
Punkttransformationen. Einer Transformation 8 : (atk) von G ist in F 1-1-
deutig eine Transformation Z : (<x4fc) zugeordnet. Ihre Matrix geht durch
Transposition aus der Matrix der zu S inversen Transformationen S*

hervor: <xtk Af
tk AAtk das algebraische Komplement von alh in der

n \atk)
Déterminante A(atk)).

Der Ebenenraum Q ist ebenfalls projektiv abgeschlossen durch eine

uneigentliche Ebene, die durch co3 0 gegeben ist. Ihr entspricht in W
der Nullpunkt O mit den Gleichungen w1 0, w2 0 und in Q die zwei-
dimensionale Mannigfaltigkeit der analytischen Ebenen durch O. Um-
gekehrt ist der uneigentlichen Ebene e^ in W, die durch wz 0 gegeben

ist, im Ebenenraum Q der Nullpunkt eM mit den Gleichungen (ox 0,

8) Die Unterscheidung der Ebene w im Punktraum W vom îhr zugeordneten Punkt S
im Ebenenraum H wird sich als nutzlich erweisen, msbesondere m den gleich folgenden
Konvergenzbetrachtungen uber analytische Ebenen und spater bei der Behandlung der
isometrischen Gebilde der Punkt- und Ebenengruppe.
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o)t 0 zugeordnet und in W die zweidimensionale Mannigfaltigkeit der

analytischen Ebenen durch e^.
Die Konvergenz einer Ebenenfolge definieren wir durch die Konvergenz

der zugeordneten Punktfolge im Dualraum. Jeder Satz uber konvergente

Punktfolgen làBt sich von Q sofort auf die Mannigfaltigkeit Q der Ebenen
in W ubertragen. So folgt aus der Abgeschlossenheit von W und Q:

Satz 1. Jede unendliche Folge von Punkten hat in W mindestens einen

Hâufungspunkt, Jede unendliche Folge von Ebenen hat in Q mindestens
eine Hâufungsebene.

Die Konvergenz einer Ebenenfolge œ(v) in Q (v 1, 2, gegen eine
Grenzebene co, die wir mit Hilfe der Punktkonvergenz im Dualraum
erklàrt haben, ist gleichbedeutend mit der Konvergenz der Koeffizienten
in den Ebenengleiehungen :

«>>>-? cot (i 1, 2, 3)

wobei die co^ nicht aile 0 sind. Das heiBt, dièse Ebenenkonvergenz ist
identisch mit der Konvergenz der Ebenen als Punktmannigfaltigkeiten ;

betrachtet man die einzelne Ebene co(v) als zweidimensionale Punktmenge
My, so konvergieren die Mv gegen eine Grenzmenge M in dem Sinne:
1. Jeder Hâufungspunkt von Folgen pv (pv ein Punkt von Mv) gehôrt
zu M ; dagegen 2. nicht jeder Punkt von M braucht als Hâufungspunkt
solcher Folgen pv aufzutreten (vgl. Beispiel 5, SchluB).

2. Eigentliche Diskontinuitât

Wir wollen jetzt ûber die Transformationen (1) bzw. (2) der zu be-
trachtenden Gruppen G besondere Voraussetzungen machen.

Punkte, ebenso Punktmengen, des Grundraumes, die durch
Transformationen von G auseinander hervorgehen, nennen wir àquivalent. Unter
einem Bereich verstehen wir zunâchst eine offene Punktmenge, die nicht
zusammenhângend zu sein braucht; vielfach werden wir eine solche

Punktmenge durch Randpunkte erweitern ; eine derart erweiterte Punktmenge

nennen wir immer noch einen Bereich.

Définition 1. Die Grappe G heiBt eigentUch-diskontinuierlich (e.-d.) in
einem Bereich A, wenn fur jeden Punkt p von A folgendes gilt:

1. p ist nur Fixpunkt bei endlich vielen Transformationen Tl9...,
Tf aus G ;
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2. in einer genûgend kleinen (vierdimensionalen) Umgebung U(p) von p
gibt es keine Punkte, die mittels Transformationen aus G àquivalent
sind auBer mittels Tx, Tf.

Die Grappe G heiBt e.-d. in einem Punkt p, wenn es zu ihm eine
Umgebung U(p) gibt, in der G e.-d. ist.

E.-d. (schlechtweg) nennen wir jede Gruppe, die einen nicht leeren
Bereich eigentlicher Diskontinuitât besitzt.

Insbesondere gilt fur einen Punkt p, in dem die Gruppe e.-d. ist: p ist
kein Hâufungspunkt von âquivalenten Punkten; und falls p gegemiber
keiner Transformation von G (auBer der Identitàt) fest bleibt, so gibt es

stets eine Umgebung U(p), die keine zwei zu einander âquivalenten
Punkte enthâlt.

Analog definieren wir die eigentliche Diskontinuitât der Gruppe F in
einer Ebene co des Punktraums W.

Définition 2. Man sagt von der Gruppe G, sie enthalte infinitésimale
Transformationen, wenn es bei beliebig klein vorgegebener positiver Zahl e

zu jedemPunkt (w,z) einesBereichsàquivalentePunkte (w', zr) ^(w,z)
gibt, deren Koordinaten den Ungleichungen \wf— w\ < e, \zf — z\ < e

genugen.
Aus den Definitionen 1 und 2 folgt sofort

Satz 2. Eine e.-d. Gruppe enthàlt keine infinitesimalen Transformationen.

Satz 3. In jeder Umgebung U(p) eines Punktes p, in dem G e.-d. ist, gibt
es einen Punkt q, der bei keiner Transformation ^ /) von G fest bleibt.

Beweis : Da G in p e.-d. sein soll, kônnen in einer genûgend klein
gewâhlten Umgebung U (p) nicht Fixpunkte von unendlich vielen
Transformationen aus G liegen. Die Fixpunkte von endlich vielen linearen
Transformationen ^ I) kônnen aber keine voile Umgebung von p aus-
fullen.

3. Normalfolgen und ihre Grenzelemente

Wir stellen in den §§ 3 bis 5 die allgemeinen Ausfuhrungen von
P. J. Myrberg (Acta 46), soweit sie fur uns wichtig sind, in einer unsern
Zwecken angepaBten Formulierung fur zwei Variable zusammen. Dabei
soll der Gesichtspunkt der Dualitât deutlich zur Geltung gebracht
werden.

Jede unendliche Folge von linearen Transformationen enthâlt min-
destens eine konvergente Teilfolge, d. h. eine Folge F von Transfor-
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mationen Sv(v 1, 2, der Form (2), deren normierte Koeffizienten
aik gegen endliche Grenzwerte bik streben, die nicht sàmtlich 0 sind.

Définition 3. Jede solehe Folge F von Transformationen 8V heiBt eine

Normalfolge, T (bik) ihre Grenztransformation; der Rang r der Grenz-
matrix heiBt der Rang von F.

Die Grenztransformation T einer Normalfolge F ist dann und nur
dann nicht entartet, wenn r(F) 3 ist. In diesem Fall konvergieren die
Transformationen 8~?SV+1 (v =¦ 1, 2, mit wachsendem v gegen die
Identitàt. Solehe Transformationenfolgen kônnen in den spàter aus-
schlieBlich verwendeten e.-d. Gruppen nicht vorkommen (Satz 2). Des-
halb betrachten wir nur noch Normalfolgen mit entarteter Grenztransformation.

Eine entartete Grenztransformation ist notwendig in gewissen Punkten
des Raumes nicht definiert, und zwar entweder a) in einem Punkte, oder

b) in den Punkten einer Ebene. Die ùbrigen Punkte werden

im Fall a), wo r(F) 2 ist, auf eine Ebene,

im Fall b), wo r(F) 1 ist, auf einen Punkt abgebildet.

Définition 4. Die Mannigfaltigkeit der Bildpunkte bei der
Grenztransformation heiBt das l.Grenzelement Lx (F) der Normalfolge F.

Définition 5. Die erwâhnten Ausnahmepunkte gegeniiber der
Grenztransformation sind diejenigen Punkte des Originalraums, deren homogène

Koordinaten bei der Grenztransformation sàmtlich 0 werden. Ihre
Mannigfaltigkeit heiBt das 2. Grenzelement L2 (F) der Normalfolge F.

L2(F) ist im Fall a), wo r(F) 2 ist, ein Punkt,
im Fall b), wo r(F) 1 ist, eine Ebene,

wie die folgende TJbersieht ausfûhrlich zeigt.

a) r 2 : b) r 1 :

,w* tw[ bnw1 + b12w2 + blzî

tw'% b2lwt + b2%w

w2

(3) (4)

Bei r 2 erhâlt man eine, bei r 1 zwei lineare Gleichungen zwischen

wx,w2,w3; d. h.
a) Lx ist eine Ebene, b) Lx ist ein Punkt.
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L2 besteht aus denjenigen Punkten w, deren Koordinaten den Glei-
3

chungen twt Ebikwk 0 (i 1, 2, 3) genûgen, das bedingt im Fall

tw[ b11w1 + bl2w2 + brsw3 0
a) r 2 :

/ * 1 11 1 I 12 2 • 13 3 ' V /

also bei r 2 zwei lineare Gleichungen, bei r 1 eine lineare Gleichung
zwischen wx, w2, wz, d. h.

a) L2 ist ein Punkt, b) L2 ist eine Ebene.

Ergânzung zum Fall r 2: Durch die Grenztransformation (3) wird
jeder Punkt von W, der nicht mit L2 zusammenfâllt, auf einen bestimm-
ten Punkt der Ebene Lx abgebildet. Seine Koordinaten wf4 sind stetige
Funktionen der Koordinaten w{ des Originalpunkts. Man kann den Bild-
j)unkt auf Lx beliebig festlegen durch eine Gleichung

oct w[ -\- a2 w2 -)- ocz wfz 0 (7)
die von der Gleichung

ci wi + C2 W2 — tw& 0 (8)

welche Lx definiert, linear unabhângig ist. Ersetzt man in (7) die w^ durch
die wt vermôge (3), so ergibt sich eine lineare Gleichung in Wi. Die zu dem

beliebig festgelegten Bildpunkt p gehôrenden Originalpunkte liegen also

auf einer Ebene oc. Dièse geht durch den Punkt L2, denn dessen Koordinaten

befriedigen nach der Ausubung der Grenztransformation die in w\
homogène Gleichung (7).

Zusammenfassend erhalten wir
Satz 4. Die Grenztransformation einer Normalfolge vom Rang 2 bildet

aile Punkte von W mit Ausnahme des Punktes L2 auf eine Ebene L± ab, und
zwar ist jeder Punkt p von Lx das Bild aller Punkte {mit Ausnahme von L2)

auf der Ebene, die durch p und L2 geht. — Die Grenztransformation einer

Normalfolge vom Rang 1 bildet aile Punkte von W auf einen Punkt Lx ab,

mit Ausnahme der Punkte einer Ebene L2.

Wendet man auf die Punkte einer Menge M die Transformationen 8V

einer Normalfolge F an, so erhâlt man eine unendliche Folge von Punkt-
mengen Mv 8VM. Dièse besitzen wenigstens einen Hàufungspunkt,
d. h. einen Punkt, in dessen sàmtliche Umgebungen unendlich viele
Mengen Mv eindringen.
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Satz 5. 8) Entkalt die abgeschlossene Menge M keinen Punkt von Lt(F),
so konvergiert jede aus einem Punkt p von M entstehende Punktfolge
pv Svp gegen den BiMpunkt Tp, der dem Punkt p durch die Grenz-

transformation T von F auf Lx (F) zugeordnet wird> und dièse Konvergenz
ist gleichmàssig fur aile Punkte von M. Dagegen ist die gleichmassige

Konvergenz unmoglich in einer Menge M, die Punkte von L2(F) im Inneren
enthalt.

Folgerung : Jeder abgeschlossene Bereich, der zu Lx fremd ist, kann mit
hôchstens endlich vielen Mengen Mv 8VM (M abgeschlossen und fremd
zu L2) Punkte gemeinsam haben.

Définition 6. Die Folge der zu F (Sv) (v 1, 2, inversen Trans-
formationen $* S^1 soll die zu F inverse Folge heiBen und mit J^* be-
zeichnet werden.

Définition 7. Unter einer umkehrbar normalen Folge F verstehen wir
eine solche Folge, die samt ihrer inversen F* normal ist. r und r* r (F*)
seien die zugehôrigen Rangzahlen, Lh und L*h Lh(F*) (h 1, 2) die
Grenzelemente.

Jede unendliche Folge von Transformationen aus G enthalt eine
umkehrbar normale Teilfolge.

Satz 6. Lx ist in L\ enthalten (also auch L\ in L2).

Beweis10): Fall a) r 2. p sei ein beliebiger Punkt der Ebene Lt;
q sei ein Punkt der Ebene oc, die durch p und den Punkt L2 bestimmt
ist, und zwar sei q so gewàhlt, da8 er weder mit L2 zusammenfâllt, noch
auf L{ liegt, sonst beliebig auf oc.

Fall b) r 1. p sei der Punkt Lx ; q sei ein Punkt, der weder auf der
Ebene L2, noch auf L\ liegt, sonst beliebig.

Die Punkte qv Svq (8V aus F) konvergieren gegen p, nach Satz 4.

Angenommen, p lâge aufierhalb L*2. Dann gibt es nach Satz 5 eine Um-
gebung U(p), deren Bilder bei der Ausfûhrung der Transformationen
von .F* gleichmâBig gegen eine Punktmenge aufL\ konvergieren. Anderer-
seits gibt es in U(p) unendlich viele Punkte qv 8vq, deren Bilder Slxqv
bei der Transformationsfolge jF* mit q zusammenfallen. q war aber auBer-
halb L[ gewâhlt. Folglich war die Annahme unzulâssig, daB p auBerhalb

L\ liège. Lx ist also ganz in L\ enthalten.

Satz 7. r + r* ^ 3.

*) Beweis bei Myrberg, Acta 46, 226 f.
10) Einen anderen Beweis dièses grundlegenden Sachverhalts findet man fur Folgen

vom Rang 1 im II. Teil, unter Satz 22.
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Zum Beweis braucht nur gezeigt zu werden, daB nicht r und r* gleieh-
zeitig 2 sein kônnen. Das folgt aber unmittelbar. Denn z. B. im Fall
r* 2 ist L\ ein Punkt, nach Satz 6 also auch Lx ein Punkt, also r 1.

Beispiel 1

m, 7i seien zwei beliebig, aber fest gewâhlte ganze komplexe Zahlen ^ 0.

Man betrachte die Transformation

T

wf ~ w -{- m

bzw. homogen tw'2= w2+ nwz

Die Potenzen Tvm n (m, n ^ 0 fest; v 0, 1, 2, bilden eine Normal-
folge .F vom Rang r 1 mit den Grenzelementen

2/!: der Punkt q(mwz, nwz, 0), d. i. g oo, — i auf e^,

i2 : wz 0, d. i. ew (unabhàngig von m, n).

Die Folge ist umkehrbar normal, und wegen T*mn T^^ hat die
inverse Folge dieselben Grenzelemente.

Die durch Tm n induzierte Transformation ist

O)
— m a> — nX + 1 bzw. ^

C homogen iC homogen i
Ç ^ ^ I

— moi — nÇ-{- 1 \— nÇ-{- 1

Die Potenzen r^n (m, n ^ 0 fest; v 0, 1, 2, bilden eine Normal-

folge $ von Punkttransformationen in i3 vom Rang q(&) 1 mit den

Grenzelementen

iTx: der Nullpunkt in Q (unabhàngig von m, n),
Â2: mZ1 + nœ2 0, d. i. eine Ebene durch den Nullpunkt in Q.

Die zu 0 inverse Folge ist normal und hat dieselben Grenzelemente wie 0

Im Punktraum W ist Ax A\ die uneigentliche Ebene e oo ; A2 ylj

ist das Ebenenbuschel mit dem Tràger g I oo —I auf e^.
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Beispiel 2

a) m, n seien fest gewàhlte komplexe Zahlen, die der Bedingung
\m\ < 1 < \n\ genugen. Man bilde die Transformation

Tm, n
wf =mw bzw. homogen

mwl

tw'2

tw'3

nw9

und betrachte die Folge Tvm (v 1, 2, Es ist eine Normalfolge
mit den Grenzelementen

Lx : (0, oo) bzw. (0, w2i 0) und Lz : z 0 bzw. w2 0.

Die Folge der inversen Transformationen hat die Grenzelemente

L\ : (ex), 0) bzw. (wx, 0, 0) und L*2: w 0 bzw. wt 0.

b) Die Transformationen Tvm n mit \m\ — \n\ > 1 bilden eine Folge
vom Rang r 2 mit Lx= e^, L2= (0, 0). Die inverse Folge hat den
Rang r* 1. Ihre Grenzelemente sind L\ (0, 0), jkg £«>•

Die induzierten Folgen haben die Grenzelemente

a) Ax\ (1,0, 0), d. i. die Ebene w1 0, zugleich Lg ;

Az: o)x 0, d. i. das Buschel der Ebenen durch w2 w3 0,
also mit dem Tràger ij ;

ylj: (0, 1, 0), d. i. die Ebene w2 0, zugleich L2 ;

yl* : ca2 0, d. i. das Buschel der Ebenen durch wx wz — 0,
also mit dem Trâger Lx ;

b) Ax: (0, 0, 1), d. i. die Ebene wz 0, zugleich L*2 ;

A2: co3 0, d. i. das Buschel der Ebenen durch (0, 0) L[;
A^: co3 0, d. i. das Buschel der Ebenen durch (0, 0) L2;
Â*2: (0, 0, 1), d. i. die Ebene wz 0, zugleich Lx.

4. Normale Diskontinuitât

Définition 8. Eine Folge von Transformationen

zf=gn{wyz)
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heiBt im Punlct p konvergent, wenn es zu p eine Umgebung U (p) und eine
(nicht entartete) Transformation

z' lf>(w,z)
des Typus (1) gibt, so daB

Paare von Folgen von Funktionen sind, die sich in U(p) regulàr verhalten
und dort im elementaren Sinn konvergieren. — Entsprechend fur Punkte
auf der uneigentliehen Ebene.

Eine Folge von Transformationen heiBt in einem Bereich konvergent,
wenn sie in jedem Punkt dièses Bereichs konvergiert.

Définition 9. Eine diskontinuierliehe lineare Gruppe G ohne
infinitésimale Transformationen heiBt normal-diskontinuierlich (n.-d.) in einem
Bereich A, wenn es in jeder unendlichen Folge von Transformationen aus
G eine Teilfolge gibt, die in jedem abgeschlossenen Teilbereieh von A
gleichmàBig konvergiert.

Wir sagen auch, G sei n.-d. in jedem Punkt von A, und die Menge der
Punkte, in denen G n.-d. ist, nennen wir den Normalbereich von G. Er ist
ein offener Bereich.

N.-d. (schlechtweg) nennen wir jede Gruppe, die einen nicht leeren
Normalbereich besitzt.

5. Die Grenzelemente von Ebenenfolgen imPunktraum. Gruppen l.Klasse

Wir fûhren folgende Bezeichnungen ein:
F sei eine umkehrbar normale Folge von Punkttransformationen Sv in W ;

S» «*>) -> T (bik) (i,k= 1, 2, 3) ;

F* die zu F inverse Folge S*v S'1 (a$*) -> T* (b*ik) ;

$ die durch F induzierte Folge von Ebenentransformationen av in Q:
flrp=(«îl>)-^T 0»tt);

* die 0 zugeordnete Folge von Punkttransformationen in Q. Rang und
Grenzelemente seien entsprechend bezeichnet mit r, Lh bzw. q, Ah
(h 1, 2).

Es gilt a\vk} a^)#; daraus folgt, daB die durch F induzierte Folge eben-
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falls umkehrbar normal ist, und zwar ist g r*, da der Rang einer
Matrix gegemiber Transposition invariant ist. Die Grenzelemente einer

Folge von Ebenentransformationen stehen mit den Grenzelementen der
inversen Folge der zugehôrigen Punkttransformationen in einem ein-
fachen Zusammenliang :

Satz 8. I. Jede Ebene von Ax inzidiert mit jedem Punkt von L\.

IL Jede Ebene von A% inzidiert mit jedem Punkt von L\.

Falls man zum Punkt w in W die duale Ebene w in Q einfûhrt, so hat man
fur die Punktmengen Àn und die Ebenenmengen L*h die Aussagen

I. Jede Ebene von L\ inzidiert mit jedem Punkt von Al9

II. Jede Ebene von L\ inzidiert mit jedem Punkt von Â2]

und man erkennt, daB die Behauptung II fur eine Folge F identisch ist
mit der Behauptung I fur die inverse Folge F* im Dualraum. Es geniigt
also, etwa I zu beweisen.

Beweis von I. Ax besteht aus allen Ebenen co, deren Koordinaten die

Gleichungen

a>l=èpika>k (i 1,2,3) (9)

befriedigen, wo fiik lim«^= lim a(^)# b*ti ist. L\ besteht aus allen
V->-00 V->00

Punkten wf, deren Koordinaten die Gleichungen

274^ 0 (* 1,2,3) (10)

befriedigen. Die Gleichung der Ebene cof in Punktkoordinaten ist
3

ZcOfWi 0. Setzt man darin nach (9) a)[ £b*kiœki so ergibt sich

Dièse Gleichung gilt aber identisch in cok, wenn wf eine Lôsung von (10)
darstellt. Jeder Punkt von L\ liegt also auf jeder Ebene von Ax, wie in I
behauptet wurde.

Aus Satz 6 entnimmt man ausfuhrlich die folgende Anordnung der
Grenzelemente.
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a) Im Fall q r* 2 :

At ist das Ebenenbuschel mit dem Trâger L\ ;

A 2 ist die Ebene Z£.

b) Im Fall q r* 1 :

/^ ist die Ebene L\ ;

A 2 ist das Ebenenbuschel mit dem Trâger L\.
Dieser Sachverhalt gestattet, den zu Satz 4 dualen Satz folgender-

mafien zu fassen :

Satz 9. F sei eine umkehrbar normale Folge von Punkttransforma-
tionen Sv, 0 die durch F induzierte Folge von Ebenentransformationen
avi e eine Ebene, die nicht zu A2 gehôrt, also L\ nicht ganz enthâlt. Die
Orenzebene s der Ebenenfolge Sve ist

a) im Fall r* 2 : die Ebene durch den Punkt L\ und den Schnittjmnkt q
von e mit L\ ;

b) im Fall r* 1 : die Ebene L\.
Beweis : a) Ax ist das Ebenenbuschel durch den Punkt L\. Eine Einzel-

ebene A von Ax ist bei der Grenztransformation T von F die Bildebene von
allen Ebenen a desjenigen Ebenenbxischels, das durch X und A2 bestimmt
wird, also von allen Ebenen oc durch den Punkt q [A, L{], da A2 L[
ist. Die Anfangsebene e wird also auf die Ebene abgebildet, die durch die
Punkte L\ und [e, L\] bestimmt ist.

b) Satz 8 zeigt unmittelbar : e L\.
Man erhàlt nach dem Gesagten eine vollkommene Analogie im Ver-

halten der Punkt- und Ebenentransformationen, wenn man sich auf
Gruppen beschrânkt, aus deren Transformationen sich nur Normal-
folgen vom Rang r 1 bilden lassen. Solche Gruppen heiBen nach

Myrberg Gruppen 1. Klasse. Die genannte Analogie ist andererseits nur
bei Gruppen 1. Klasse môglich, weil nach Satz 7 die Rangzahlen einer

Normalfolge und der durch sie induzierten Folge der Bedingung r + g ^ 3

unterworfen sind. In allen folgenden Betrachtungen ist nur noch von
Oruppen 1. Klasse die Rede.

6. Grenzmengen und Gruppendiskontinuitât. — Bedingte Diskontinuitat

Définition 10. Wir bilden die Vereinigungsmenge der ersten bzw.
zweiten Grenzelemente aller Normalfolgen aus 0 und bezeichnen sie als
die erste bzw. zweite Grenzmenge {Lh(O)} (h 1, 2) der Gruppe.
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Wir bilden ebenso {Ah(F)} (h 1, 2) fur die Normalfolgen aus der
induzierten Gruppe F.

Satz 10. Jede Grenzmenge ist abgeschlossen und gegenilber G bzw. F
invariant.

Die Abgesehlossenheit folgt uninittelbar aus der Définition 10, die
Invarianz daraus, da8 das Grenzelement Lh einer Normalfolge F durch
irgend eine Transformation aus G iibergeht in das entsprechende
Grenzelement TLh der mit T umrahmten Normalfolge TFT-1.

Aus den Definitionen 9 und 10 ergibt sich auf Grund der Sâtze 4 und 5 :

Satz lia. Der Bereich N der normalen Diskontinuitat von G ist

Ferner: Jeder Punkt von {Lx} ist Hâufungspunkt von àquivalenten
Punkten. G ist also in keinem Punkt von {1^} e.-d. Umgekehrt braucht
aber nicht jeder Hâufungspunkt von àquivalenten Punkten zu {Lt} zu
gehôren. Man betrachte etwas das Beispiel 5 (Seite 102). Die zyklische
Gruppe der Transformationen

Tv:
%JD' fît W

mit I m I < I n I < 1 (*> 0, ± 1, ±2,zf nv z

enthâlt nur die Normalfolgen F (Tv) und F* (T*v) (bzw. Teilfolgen
von ihnen) mit den Grenzelementen (homogen geschrieben)

Lt (0, 0, 1) L2: wz 0,
L\ (1, 0, 0) L\ : wx 0

Die Punkte der Ebene L% haben, mit Ausnahme des Fixpunktes w2

wz 0, das Grenzelement M (0, 1, 0) auf L\, und die Punkte der
Ebene L\ haben, mit Ausnahme des Fixpunktes w1 w2 0, das
Grenzelement ilf* (0, 1, 0) auf L2. Jede Normalfolge aus G erzeugt aus
jedem Punkt von N W — {-^2} eîne Folge von àquivalenten Punkten,
die gegen Lx oder L\ konvergieren. Ein Punkt von {L2} dagegen wird,
wenn er nicht zu {1^} gehôrt, gegen M Jf* konvergieren. Allgemein:
Der Bereich E der eigentlichen Diskontinuitat besteht aus E W —
{Lt} — {M}, unter {M} die Menge der Hâufungspunkte aufierhalb {Lt}
verstanden, nach denen Punkte aus {L2} konvergieren. Weil {L2}
invariant und abgeschlossen ist, ist {M} in {L2} enthalten.

Fiir die Funktionentheorie kommen, wie spàter dargelegt wird, nur
n.-d. Gruppen in Frage. Neben dem Normalbereich N spielt der Bereich E
der eigentlichen Diskontinuitat eine untergeordnete Rolle. Dagegen ist es
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fur manche Zwecke niitzlich und wird schon durch die duale Stellung der
1. und 2. Grenzmenge nahegelegt, den Bereich B W — {Lx} zu be-
trachten. Zu seiner Abgrenzung bediirfen wir einer gemeinsamen Kenn-
zeichnung aller Punkte auBerhalb {Lx(G)}. Dazu dient die

Définition 11. Die Gruppe G heiBt bedingt-diskontinuierlich (b.-d.) im
Punkt p9 wenn zu jeder vorgelegten Normalfolge F aus G eine Umgebung
U (p) von p und in ihr ein Punkt q samt einer Umgebung F (q) sich an-
geben lâBt, so dafi bei der Ausfûhrung der Transformationen von F nur
endlich viele Bilder von V(q) Punkte mit U(p) gemeinsam haben.

Die Menge der Punkte, in denen G b.-d. ist, heiBt der Diskontinuitdts-
bereich B von G.

Satz llb. Der Diskontinuitâtsbereich B einer Gruppe G ist

Beweis. Zunàchst ist klar, daB B keinen Punkt von {Lx} enthàlt, demi
jeder solche Punkt ist das 1. Grenzelement einer Normalfolge Fo von G.

Jede voile Teilumgebung einer jeden vierdimensionalen Umgebung des

Punktes LX(FO) enthâlt notwendig Punkte q, die nicht auf dem 2.
Grenzelement L2(FQ) liegen. Durch die Transformationen der Normalfolge Fo
wird jeder dieser Punkte q abgebildet auf eine Folge von âquivalenten
Punkten, die gegen L^Fq) konvergieren.

Andererseits enthâlt B jeden Punkt auBerhalb {Lt}. Denn bei einer
vorgelegten Normalfolge Fo aus G konvergieren aile Punkte auBerhalb
der Ebene L2(F0) gegen L^Fq). p sei ein Punkt auBerhalb {Lx}> Wir
wàhlen U (p) so klein, daB L^Fq) nicht darin liegt.

a) Liegt p nicht auf L2(F0)9 so konvergiert eine geniigend kleine vier-
dimensionale U(p) gegen Lt(F0), nur endlich viele der durch die
Transformationen der Folge Fo aus U(p) erzeugten Bilder haben also Punkte
mit U(p) gemeinsam.

b) Liegt p auf L2(F0), so gibt es trotzdem in jeder vierdimensionalen
U(p) einen Punkt q und dazu eine vierdimensionale Umgebung V(q), die
durch die Transformationen von Fo in eine Folge von Umgebungen
abgebildet wird, die gegen LX{FQ) konvergieren; nur endlich viele dieser
Bilder haben also Punkte mit U(p) gemeinsam.

Der Satz llb zeigt, zusammen mit den Sàtzen 4 und 5, die Bedeutung
des Diskontinuitâtsbereichs :

Satz 12. B ist der maximale Bereich, der keinen Hâufungspunkt von
Bildern abgeschhssener Punktmengen aus dem Inneren des Normalbereichs
enthâlt.
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Aus der Invarianz der Grenzmengen folgt

Satz 13. Der Diskontinuitatsbereich und der Normalbereich von G sind
invariant gegeniiber G.

Nach Satz 6 ist {Lx} in {L2} enthalten. Und wie das schon herangezo-
gene Beispiel 5 (Seite 102) zeigt, kann eine Grappe auch auBerhalb ihres
Normalbereiches e.-d. sein. Daher

Satz 14. Der Normalbereich ist ein Teilbereich des maximalen Bereiches
der eigentlichen Diskontinuitat, also auch des Diskontinuitâtsbereichs.

Zur Ûbersicht stellen wir noch einmal zusammen :

Maximaler Bereich der bedingten Diskontinuitat (Diskontinuitatsbereich)

B^W-iLJ,
maximaler Bereich der eigentlichen Diskontinuitat

E=W-{L1}-{M},
maximaler Bereich der normalen Diskontinuitat (Normalbereich)

7. Zusammenhang zwischen normaler Diskontinuitat und bedingter
Diskontinuitat bei Gruppen 1. Klasse

Auf Grand des Zusammenhangs der Grenzelemente bei Normalfolgen
aus Punkt- und Ebenentransformationen lâBt sich bei Gruppen 1. Klasse
die normale Diskontinuitat auf die bedingte Diskontinuitat im Dualraum
zurackfûhren.

Hauptsatz 1. Notwendig und hinreichend fur die normale Diskontinuitat
einer Gruppe G im Punkt p ist bei Gruppen 1. Klasse die bedingte Dis-
kontinuitât der induzierten Gruppe F in jeder Ebene ep durch p.

Bei allgemeinen Gruppen ist die Bedingung wohl hinreichend, aber nicht
notwendig.

Beweis: 1. Die bedingte Diskontinuitat von F in jeder ep ist hinreichend

fur die normale Diskontinuitat von G in p. Die Voraussetzung besagt nach
Satz 11 : ,,Keine Ebene sp gehôrt zu {Ax(F)}", die Behauptung: ,,p gehôrt
nicht zu {L2(G)}". Angenommen, dièse Behauptung sei falsch, p sei also
ein Punkt von {L%(G)}, z. B. von Ll(F0), wo Fo eine Normalfolge aus G,

0Q die zugeordnete Folge aus jTbezeichnet. Dann geht, nach Satz 81, jede
Ebene vonA1(0Q) durch p. Es gâbe also (mindestens) eine Ebene e9, die
zu {A^F)} gehôrt, im Widerspruch zur Voraussetzung.
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2. Die bedingte Diskontinuitat von F in jeder ev ist notwendig fur die
normale Diskontinuitat von G in p. Wir setzen voraus, G ist n.-d. in p,
d. h. nach Satz lia: ,,p gehôrt nicht zu {L2((?)}", und behaupten fur
Gruppen 1. Klasse: ,,JTist b.-d. in jeder ep". Denn gàbe es eine Ebene e0
durch p, in der F nicht b.-d. wàre, so hieBe das: eQ gehôrt zu {A^F)},
etwa zu A1(0o)i wo &0 eine Normalfolge aus F und spâteri^ die ihr zu-
geordnete Folge aus G bezeichnet. Nach Satz 81 geht s0 durch jeden
Punkt von L\(F)9 d. h. bei Gruppen 1. Klasse, wo jedes Grenzelement L2
eine Ebene ist: e0 fâllt mit L\{F) zusammen, jeder Punkt von e0 gehôrt
zu {2y2 ((?)}, insbesondere p, im Widerspruch zur Voraussetzung.

Damit ist der Hauptsatz 1 bewiesen, und man erkennt zugleich, wes-
halb die Einschrànkung auf Gruppen 1. Klasse erforderlich istf

In Verbindung mit den Sàtzen 6 und 11 folgt insbesondere

Satz 15. Ist eine lineare Gruppe F von Ebenentransformationen b.-d. in
jeder Ebene durch den Punkt p, so ist die zugehôrige Gruppe G von Punkt-
transformationen b.-d. in p.

Dagegen braucht die bedingte Diskontinuitat von G im Punkt p bereits
nicht mehr zu bestehen, wenn F auch nur in einer einzigen Ebene durch p
nicht b.-d. ist. Das zeigt das Beispiel 3 unten in der Dualform:
F ist nicht b.-d. in e^, trotzdem G nur in einem einzigen Punkt q von
e^ nicht b.-d. ist.

Wir kônnen jetzt die fruhere Erklàrung der normalen Diskontinuitat
durch die folgende ersetzen, die in manchen Fàllen handlicher ist.

Définition 9 a. Eine diskontinuierliche lineare Gruppe G 1. Klasse ohne
infinitésimale Transformationen heifit n.-d. im Punkt p, wenn die durch G

induzierte Gruppe F von Ebenentransformationen b.-d. ist in jeder Ebene

ep durch p.

Beispiel 3. Die Transformationen

T;mtn
wf w + vm
zf =z + vn

: 0 ganz komplex, fest ; v 0,

einer der im Beispiel 1 betrachteten Normalfolgen bilden zusammen mit
den inversen Transformationen eine Gruppe G. Aile Normalfolgen aus G

haben die gleichen Grenzelemente, daher ist

q(oo,—\ {L2(G)} €„. G ist eine Gruppe 1. Klasse,

denn aile ihre Normalfolgen haben den Rang 1. N= W—{L2} ist ein
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echter Teilbereich von B W— {Lt}. Ein Punkt von L2 ew wird

inder Grenzeabgebildetauf M=\oo} — 1 2^. DiemaximalenBereiche

B der bedingten und E der eigentlichen Diskontinuitât sind also die-
selben. — Die induzierte Gruppe F der Ebenentransformationen in W hat
die Grenzmengen {/lx(/*)} e^, {A2(F)}: das Ebenenbuschel mit dem

Tràger

Zu Satz 14: Die bedingte Diskontinuitât von F in eM ist gestôrt, trotz-
dem G nur in einem einzigen Punkt von e^ nicht b.-d. ist.

Beispiel 4

Wir erweitern das vorige Beispiel dadurch, daB wir m, n nicht mehr fest
gewàhlt, sondern ganz komplex variabel sein lassen. Die Transforma-
tionen Tvm bilden dann eine Gruppe G l.Klasse mit den folgenden
Grenzmengen: (2^(6?)}: aile Punkte auf sM, deren Koordinaten als
Quotient zweier ganzer komplexer Zahlen darstellbar sind ; {L2 (G)}: ew.
Da jeder Punkt von ew durch Punkte von {2^} approximierbar ist, so

gilt hier {Lx} {L2}, also N B. Und wie im vorigen Beispiel gilt
E B. — Die Grenzmengen der induzierten Gruppe F sind {AX(F)}
eoo> {A%{F)} Q, d. i. die Gesamtheit der Ebenen im Punktraum.

Dièses Beispiel ist deswegen beachtenswert : die Gruppe G ist in jedem
Punkt des Raumes W auBer in den Punkten von e^ n.-d. ; dagegen ist
die induzierte Gruppe F in keiner Ebene von Q n.-d. Jede Ebene a> ent-
hâlt ja einen Punkt von ew, wegen Hauptsatz 1 (in der Dualform) kann
daher F in keiner Ebene co n.-d. sein.

Beispiel 5
)rx mw1

Die durch Tm%n wf2 — nw2 (m n fest, komplex und | m | < | n \ < 1)

w'

erzeugte zyklische Gruppe G hat die Grenzelemente:

Lt: (0,0,1), L2: wz 0,
LJ: (1,0,0), L\: ^ 0.

Die durch Tm n induzierte Ebenentransformation ist

(m-1

0 0

0 rr1 0 I Daher hat F die Grenzelemente

0 0 1

102



Â± : (1, 0, 0) oder w1 0, d. i. L\ ;

A2 : (o1 0, d. i. das Ebenenbûschel durch (1, 0, 0) L\ ;

Â\ : (0, 0, 1) oder wz 0, d. i. L2 ;

ylg : co3 0, d. i. das Ebenenbiischel durch (0, 0, 1) Lt.
Die Bereiche B, E und N von G wurden in § 6 angegeben.

An diesem Beispiel lassen sich die Aussagen am SchluB von § 1 ùber
Punkt- und Ebenenkonvergenz veranschaulichen. Man betrachte eine
Normalfolge von Transformationen aus G mit den angegebenen Grenz-
elementen Lt, L2. 0 sei die durch F induzierte Folge. e0 sei eine Ebene,
die nicht zu A2(0) gehôrt, also nicht durch L\ (1, 0, 0) geht. Der
Schnittpunkt von eQ mit der Ebene L2 sei s, er ist vom Punkt w2 wz 0
verschieden. Jeder Punkt auBerhalb einer kleinen Umgebung von s wird
durch die Grenztransformation von F nach LV{F) (0, 0, 1) abgebildet,
s dagegen nach M (0, 1, 0). Andererseits konvergieren die durch die
Transformationen von 0 erzeugten Bilder von e0 gleichmàBig gegen die
Ebene A2(0) L\ : wx 0, die durch die Punkte Lx und M hindurch-
geht.

II. TEIL
Théorie der isometrischen Gebilde

In diesem Abschnitt behandeln wir die n.-d. linearen Gruppen l.Klasse
in zwei komplexen Variablen nach einem Verfahren, das zeigt, wie
gunstig es ist, die Gruppen der Punkt- und der Ebenentransformationen
gleichzeitig zu betrachten. In beiden Gruppen wird die normale Dis-
kontinuitât vorausgesetzt. Das wesentliche Hilfsmittel ist einer Théorie
der e.-d. Gruppen von L. R. Ford [3], [4] fur die GauBische Ebene ent-
nommen. Dort werden isometrische Gebilde linearer Gruppen in einer
Variablen mit groBem Erfolg verwendet. Hier wird entsprechend jeder
Transformation einer n.-d. Gruppe ein isometrisches Gebilde zugeordnet.
Mit Hilfe der isometrischen Gebilde der Gruppe G kann

1. der maximale Bereich der bedingten Diskontinuitât der durch G

induzierten Ebenengruppe F,
2. der maximale Bereich der normalen Diskontinuitât der Punkt-

gruppe G

abgegrenzt werden. Unter der Voraussetzung, daB G und F n.-d. sind in
einem Paar von inzidenten Elementen, wird
3. ein Fundamentalbereich der Gruppe G fur ihren Normalbereich
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konstruiert. Entsprechend dem Fordschen Nachweis, da8 in der kom-
plexen Ebene zu jeder e.-d. linearen Grappe ein Fundamentalbereich
existiert, der durch Kreise berandet wird, finden wir im Raum W (wf z)
zweier komplexer Verànderlichen zum Normalbereieh jeder linearen
Gruppe 1. Klasse mit normaler Diskontinuitât in einem Paar inzidenler
dualer Elemente einen Fundamentalbereich, der durch Projektivebenen
[1] berandet wird. Jeder derartige Fundamentalbereich ist daher planar-
konvex.

Die von Ford im klassischen Fall verwendeten Methoden bedurfen vor
allem deswegen einer Umgestaltung, weil erst bei zwei und mehr Varia-
bien die Begrifïe der eigentlichen und der normalen Diskontinuitât aus-
einanderfallen.

8. Isometrische Gebilde einer linearen Gruppe

Hilfsbetrachtungen ûber Projektivebenen

Wir schreiben die Transformationen der Gruppe G jetzt inhomogen

aw -\- bz -\- c
abc

1.T: gw + hz + k
dw + ez + f

mit der Normierung de f

gw + hz + k

Wir erhalten dann fur die Funktionaldeterminante von T den Ausdruck

d(w! z1) AT 1

DT(w,z) d(w z) (gw + hz + k)s (gw + hz

Die Normierung At= 1 erleichtert die Darstellung der in diesem
Teil auseinandergesetzten geometrischen Tatsachen. Sobald von der

Konvergenz der Koeffizienten einer Transformationsfolge Gebrauch
gemacht wird, kehrt man zur fruheren Normierung : Maximum der
Koeffîzientenbetrâge gleich 1 zuruck. Insbesondere zur Erklàrung der
Normalfolgen, worunter nach Définition 3 jede Folge von
Transformationen zu verstehen ist, deren nach § 1 normierte Koeffizienten
gegen endliche, nicht sâmtlich verschwindende Grenzwerte konvergieren.

Définition 12. Zu einer gegebenen Transformation T aus G betrachten
wir die Punkte (w, z), in denen die Funktionaldeterminante DT von T
den Betrag 1 hat. Ihre Gesamtheit nennen wir das isometrische Gebilde
der Transformation T,

Es ist eine ,,Projektivebene" [1] il mit der Darstellung

\gw -f hz + k\ 1
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Eine solche Projektivebene ist eine analytische Hyperflâche, bestehend
aus einer einparametrigen Schar analytischer Ebenen durch einen
festen Punkt auf e^. Dièse Ebenenschar wird am deutlichsten wieder-
gegeben in der Darstellung

77 : gw + hz + h e^V^ï (0 ein reeller Parameter) (12)

Wir nennen 77 den isometrischen Zylinder der Transformation T. Jede

Ebene (12) geht durch den Punkt s oo) ; s heiBt der Scheitel von77.
y

Die zum selben Bundel gehôrende, aber nient in der Sehar 77 enthaltene
Ebene

oc: gw + hz + k 0 (13)

nennen wir die Achse von 77. Jede Ebene (12) hat von a den Abstand

r —- ; r heiBt der Radius von 77. Ein isometrischer

Zylinder 77 zerlegt die Ebenen durch s und damit die Punkte von W (mit
Ausnahme von s) in drei Klassen :

I. yylnneres von II" : die Punkte (w, z) mit \DT | > 1

Hierzu gehôren insbesondere die Punkte auf der Àchse a.

II. ,yMantel vonll11 : die Punkte (w, z) mit | DT\ 1

III. ,,Âuf}eres von II": die Punkte {w, z) mit \DT\ < 1

Hierzu gehôren die Punkte auf der uneigentlichen Ebene e^ (mit
Ausnahme von s).
Den Scheitel s zâhlen wir zur Klasse II.

Die inhomogenen Koordinaten co,£ einer Ebene entnimmt man der
Normalform cow + £z + 1 0 ihrer Gleichung in Punktkoordinaten.
Danach erhâlt man die folgenden Darstellungen in Ebenenkoordinaten.

L_ C L_ (flpein ref* (14)
eo\-i fc ee\-i Parameter) ;

1 C.= 1 ; (15)

g h

Dabei ist zu beachten, daB bei einer n.-d. Gruppe die Koordinaten
so gewàhlt werden kônnen, daB fur keine ihrer Transformationen
k =r 0 oder g h 0 ist.
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Im Dualraum Ù werden die Ebenen der Schar II durch die Punkte einer

Kreisliniei7 wiedergegeben. Die Ebene s dièses Kreises ist dem Scheitel s

von II auf e^ in W dual zugeordnet, s geht also durch den Nullpunkt
von Q. In der Tat folgt aus den Gleichungen (14) und (15)

\kco — g\ \œ\9 \kt — h\ \Ç\,
|*|-|œ-»a| |a>|, I*|-|C-C.I |C|,

ako |o>|2+|C|2=l*l2' (|o>— a>J2+|C— CJ2).

Die entsprechende Gleichung in g>, f wird von denjenigen Punkten von Ù

befriedigt, deren Abstànde vom Nullpunkt und vom Punkt oc das Ver-
hàltnis \h\ haben. Sie erfûllen eine „Apollonius*'-Kugel. Ihr Schnittkreis
mit der Ebene s ist

¦l-l l
hco — gÇ 0

Der Kreis TI ist das isometrische Oebilde der Transformation T. Er ist
der Ort aller Punkte von W, die Trâger von Ebenenbuscheln sind, in
deren Ebenen die Funktionaldeterminante von T den Betrag 1 hat.

Den Punkt a, nennen wir den Pol des isometrischen Kreises II, die

Ebene s seine Leitebene. II ist der Apolloniuskreis in s in bezug auf den

Nullpunkt e^ und den Punkt oc mit dem Abstandsverhâltnis \k\.
ff zerlegt zunâchst die Punkte der Ebene s in drei Klassen:

I. ,,Innere8 vonîî" : die Punkte (co, C) mit |Z>T| > 1.

Hierzu gehôrt insbesondere der Pol oc.

II. ,,Band vonfï": die Punkte (œ, Ç) mit \DT\ 1

III. ,,Au/îeres von fi": die Punkte (co, fj mit \DT\ < 1

Hierzu gehôrt der Nullpunkt von Q.

Damit ist auch eine Einteilung aller Ebenen in Q (zunâchst mit Ausnahme

von s) in drei Klassen gegeben, entsprechend der Einteilung ihrer Schnitt-

punkte mit s. Wir rechnen die Leitebene s zum Rand von 77.

Die genaue Betrachtung der isometrischen Gebilde im Dualraum ist
deswegen wichtig, weil wir damit fur die durch 0 induzierte Ebenen-

gruppe F die isometrischen Gebilde im Punktraum xibersehen. Es sind
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Apollonius-Kreise <P in Leitebenen durch den Nullpunkt; genauer: die
Funktionaldeterminante fî der durch T induzierten Transformation x in
Ebenenkoordinaten hat den Betrag 1 in allen Ebenen von £?, die durch
einen Punkt eines Kreises ty gehen ; das ist eine dreiparametrige Mannig-
faltigkeit, nâmlich die Ebenen aller Bùschel, deren Tràger zu ^ gehôren.

Das duale Bild von ^ ist eine Projektivebene ^ in W. Die Leitebene g

und der Pol a von ty sind dem Scheitel a und der Achse a von ty zuge-
ordnet. (Vgl. die Beispiele 7—9, Seiten 117/9).

Zu jeder Transformation (11) gehôrt eine bestimmte Projektivebene
UT als isometrisches Gebilde, mit Ausnahme der Transformationen
mit g h 0, welche ew festlassen. Die Gesamtheit der IIT (T aus G)

nennen wir die isometrischen Gebilde der Gruppe G. Sie sind nicht invariant.
Setzt man T~x ==¦ ï7*, II^x II*T usw., so làBt sich vielmehr ihr Verhal-
ten gegenuber Transformationen von G folgendermaBen besehreiben:

Satz 16. Die Transformation T bildet das Innere von IIT auf das Âuflere
von II*T ab, den Mantél von IIT auf den Mantel von TTT und das

Àufiere von IIT auf das Innere von TI*T. Dabei geht die Achse ocT ûber in
£«>> eoo in <*r> a^° der Scheitel sT in s*T.

Beweis : Wir setzen Tp pf und bezeichnen mit D* die
Funktionaldeterminante von T* und mit D(p) den Wert von D in p. Bilden wir
T*(Tp) p9 so muB das Produkt der entsprechenden Funktional-
determinanten 1 sein: D(p) • D*(pf) 1. Aus |D(p)|^l folgt also

\D*(pf)\^l, womit der erste Teil des Satzes bewiesen ist. Den Beweis
der letzten Behauptungen entnimmt man den Transformationsformeln
(11) unmittelbar:

TaT= e^; T*txT e^; also Te^ oc*T; endlich Ts s*
>

weil der Scheitel s der Schnittpunkt von <xT und ewi s* der Schnittpunkt
von e^ und oc*T ist.

Die isometrischen Gebilde sind auch nicht normierungsinvariant, wohl
aber ihre Achsen bzw. Pôle. Ohne besondere Normierung wird nàmlich

hz + k\ y)

wenn y \ f~A^\ gesetzt wird ; oder statt (12)

IIT: -¥-w-\ z-\ e
\p xp \p

Der Vergleich mit (15) zeigt die Unabhàngigkeit der Achsen bzw.
Pôle von der Normierung.
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Ehe wir Satz 16 weiter auswerten, geben wir zwei Sàtze ùber die Aus-

artung von Projektivebenen.

Satz 17. Man betrachte eine unendliche Folge von Projektivebenen

llpi/j, 1,2,...). Falls man aus denIJv(v 1, 2, einer geeigneten Teil-
folge der 17^ je eine Ebene ev derart auswâhlen kann, daji die ey gegen e^
konvergieren, so behaupten wir, jede Ebenenfolge ev (je aus I7V) konvergiert
gegen e^.

Man kann auch sagen, in der Folge der/7v konvergieren die Màntel mit
wachsendem v gegen e^, das Innere der FIV geht gegen den vollen Raum
mit AusschluB von ew.

Beweis : TIV bestehe ans den Ebenen ev (6) : gvw + hyZ -f- K — e° ^~* ^ 0-

Wir setzen voraus, daB bei geeigneter Wahl des Parameters 6 60 die
Ebenenfolge ev(00) (v 1, 2, gegen ^ strebt. Dann geht aber die
dritte homogène Punktkoordinate gegen 0, unabhângig von 6, also fur
jede Ebene aus TIV.

Satz 18. Strebt auch nur eine Folge von Punkten py =£ sv (je aus FIV)

gegen einen Punkt q auf e^ (wo q nicht Hàufungspunkt von Scheiteln der

Uv ist)y so strebt jede Folge von Ebenen ev (je aus IIV) gegen e^.
Denn jedes ev hat in sv bereits einen Punkt auf e^.

9. Die isometrischen Gebilde bei eigentlich-diskontinuierlichen Gruppen

Wir versuchen jetzt, die Grappe G so zu transformieren, daB zu jeder
Transformation aus G (mit Ausnahme der Identitât) ein bis auf die

Normierung bestimmtes isometrisches Gebilde gehôrt. Das ist stets
môglich unter der Voraussetzung, daB F in einer Ebene ô [samt einer
Ebenenumgebung &(ô)] e.-d. ist. Denn dann gibt es naeh Satz 3 (ange-

wandt auf F in Q) in 0(ô) eine Ebene s, die gegenûber keiner
Transformation von F fest bleibt. Dièse Ebene e denken wir uns durch eine
lineare Transformation (die natiirlich nicht zu F zu gehôren braucht) in
die uneigentliche Ebene e^ geworfen. Wir operieren von jetzt an mit
der entsprechend transformierten Gruppe und nennen dièse wieder G.

Wir haben damit folgendes erreicht :

1. e^ ist eine Ebene, in der F e.-d. ist.

2. ew ist gegenûber keiner Transformation von F fix ; daraus folgt : zu
jeder Transformation T€(^I) aus G gehôrt bei fester Normierung
ein eindeutig bestimmtes isometrisches Gebilde 77^, und zu zwei
verschiedenen Transformationen gehôren isometrische Gebilde mit
verschiedenen Achsen.
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Hilfssatz. Konvergiert die Folge TIv(v 1, 2, 3? gegen e^, so auch
die Folge n*v.

Beweis: Zu den beiden inversen Transformationen

(av
bv cv\ !Av Dv Gv

dv ev fv J und T\ : i Bv Ev Hv
gV h ky] \Cy FV KV

gehôren die isometrischen Gebilde

IIV : gvw + hyZ + kv — e ^V^ 0 und 77* : Cvw + F^ + Kv — e 0V/=ï 0

Die Voraussetzung 77V -> e^ driickt sich in den Transformationskoeffizien-
ten aus in der Form gv -> 0, hv -> 0. Das hat zur Folge :

Cv rfvAv — ev^v->0, jF^ gvbv — hvav-+0, w z. b. w.

Satz 19. Aus einer Folge von isometrischen Gebilden IJV, die zu
Transformationen Tv aus G gehôren, lâflt sich niemals eine Folge von Punkten pv
je ausllv so auswàhlen, da/3 die pv gegen einen Punkt auf e^ Jconvergieren —
es sei denn, da8 die pv gegen einen Hàufungspunkt der sv konvergieren.
(Kurz gesagt : Die Radien rv der Zylinder JJV kônnen nicht beliebig groB
werden.)

Beweis: Andernfalls mûBte nach Satz 17 jede Folge von Ebenen ev

(je aus ITV) gegen s^ konvergieren. Da nun eine Ebene ev der Schar IJV

mittels Tv zu einer Ebene elv Tvev der Schar77* àquivalent ist, so wurde
nach dem Hilfssatz jede Ebenenumgebung von ew Paare von verschie-
denen âquivalenten Ebenen enthalten, was in Verbindung mit der oben
festgestellten Eigenschaft 2 von e^ der eigentlichen Diskontinuitàt von
F in ew widerspricht.

Die entsprechenden Sâtze gelten fur die isometrischen Gebilde der
Ebenengruppe F, vorausgesetzt, daB der Nullpunkt 0 (da er der uneigent-
lichen Ebene 0 im Dualraum entspricht) ein Punkt eigentlicher Diskontinuitàt

von G und gegeniiber keiner Transformation von G fest ist, und
das làBt sich durch eine affine Transformation stets erreichen, wenn G

e.-d. ist. Man hat dann also insbesondere

Satz 19 a. Aus einer Folge von isometrischen Gebilden ^Jy, die zu Trans-
formationen rv aus F gehôren, la/ti sich niemals eine Folge von Ebenen ev

je aus ï$v so auswàhlen, dafi die sv gegen eine Ebene durch 0 konvergieren —
es sei denn, daB die sv gegen eine Hàufungsebene der Leitebenen av
konvergieren. (Kurz gesagt: Die isometrischen Kreise % kônnen nicht
beliebig nahe an O herankommen.)
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10. Bestimmung des Diskontinuitâtsbereichs und des Normalbereichs
mittels der isometrischen Gebilde

Das Ziel dièses Paragraphen wird nach den Ausfuhrungen im I. Teil
erreieht sein, wenn es gelungen ist, die 1. und 2. Grenzmenge der Gruppen
G und F mittels der isometrischen Gebilde abzugrenzen. Wie in der Ein-
leitung erwàhnt und in § 19 ausfuhrlicher auseinandergesetzt ist, mufi
eine funktionentheoretisch brauchbare Grappe einen nicht-leeren Normal-
bereich besitzen. Wir setzen im folgenden die normale Dislcontinuitàt in der
Punkt- und in der Ebenengruppe voraus. Das ist eine Einschrânkung, die
auch von Myrberg [9] fur die Zwecke der Funktionentheorie als not-
wendig erkannt wurde. Das Beispiel 4 zeigt, daB dièse beiden Voraus-
setzungen von einander unabhângig sind.

Wir wenden uns zuerst der Punktgruppe zu. Wir betrachten nur Gruppen
1. Klasse. Jeder Punkt der 1. Grenzmenge ist das 1. Grenzelement L±(F)
einer Normalfolge F aus G. Durch ihre Transformationen wird jeder
Punkt auBerhalb L2(F) auf eine konvergente Folge von âquivalenten
Punkten abgebildet. Ihr Hâufungspunkt ist, unabhângig vom Ausgangs-
punkt, der Punkt LX(F). Setzen wir also voraus, daB 0 nicht zu {L2(G)}
gehôrt, oder nach Satz 11 :

(I) G sei n.-d. in 0

so kônnen wir das 1. Grenzelement Lx (F) einer jeden Normalfolge F aus G
als Hâufungspunkt der zu O âquivalenten Pôle a* TVO bestimmen,
wenn F aus den Transformationen Tv (v 1, 2, besteht. Dieser
Hâufungspunkt ist nach Satz 9 mit dem Punkt A2(0*) identisch, wo 0
die F entsprechende Normalfolge von Ebenentransformationen be-
zeichnet.

Analog ist jede Ebene aus {A^T)} das 1. Grenzelement At(&) einer
Normalfolge 0 aus F. Durch ihre Transformationen wird jede Ebene
auBerhalb A2(&) auf eine konvergente Folge von âquivalenten Ebenen
abgebildet. Ihre Hâufungsebene ist At(0)9 und zwar, weil es sich stets
um Gruppen 1. Klasse handelt, unabhângig von der Ausgangsebene,
sofern dièse nur auBerhalb A2(&) gewâhlt wird. Nun ist die normale Dis-
kontinuitât einer Gruppe nicht fur ein einzelnes Raumelement erklârt,
sondern fur ein Raumelement samt einer Umgebung. Ist daher unter der
Voraussetzung der normalen Diskontinuitât von G und F das Koordi-
natensystem bereits so gewâhlt, daB G in O n.-d. ist, so lâBt sich auBerdem
durch eine lineare Transformation, die O fest lâBt, erreichen, daB F in
e^ n.-d. ist. Wir machen daher im weiteren die Voraussetzung:

(II) F sei n.-d. in ew
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Dann kônnen wir das 1. Grenzelement Ax(0) einer jeden Nonnalfolge 0
aus F als Hâufungsebene der zu s^ âquivalenten Achsen o?v =^6^
bestimmen. Sie ist mit der Ebene L2(F*) identisch, wo F die 0 entspre-
chende Normalfolge von Punkttransformationen bezeichnet. — Man kann
jetzt auBerdem dafiir sorgen, daB keine Achse durch 0 geht und kein
Pol auf e^ liegt, sodaB fur keine Transformation der Gruppe k 0

oder K 0 ist.

Définition 13. Ein Hàufungspunkt der Pôle von F heiBt ein Grenz-

punkt der Gruppe G. Dual : Eine Hâufungsebene der Achsen von G heiBt
eine Grenzebene der Gruppe F.

Damit lassen sich die vorigen Ausfuhrungen folgendermaBen zu-
sammenfassen :

Satz 20. Unter den Voraussetzungen (I) und (II) gilt: die Menge der

Grenzpunkte von G ist identisch mit der 1. Grenzmenge {Lx(G)}, die Menge
der Grenzebenen von F ist identisch mit der 1. Grenzmenge {A1(F)}

Zusatz. Die Hâufungsebene der Achsen, die zu den Transformationen
einer Normalfolge F aus G gehôren, ist das 2. Grenzelement L2(F) dieser

Normalfolge. Der Hàufungspunkt der Pôle, die zu den Transformationen
einer Normalfolge 0 aus F gehôren, ist das 2. Grenzelement A2(0) dieser

Normalfolge.

In Verbindung mit den frûheren Sâtzen 11 und 9 b ergibt sich der

Hauptsatz 2. Eine Gruppe G l.Klasse erfiille die Voraussetzungen:

(I) G sei normal-diskontinuierlich in 0,
(II) F sei normal-diskontinuierlich in e^.

Dann gilt :

1. Der Bereich B der bedingten Diskontinuitât von G ist die Komplemen-
tàrmenge zur Menge der Grenzpunkte von G.

Der Bereich B der bedingten Diskontinuitât von F ist die Komplementàr-
menge zur Menge der Grenzebenen von F.

2. Der Bereich N der normalen Diskontinuitât von G ist die Menge der

Punkte, die auf keiner Grenzebene von F liegen.
Der Bereich N der normalen Diskontinuitât von F ist die Menge der

Ebenen, die durch keinen Grenzpunkt von G gehen.

11. Eigenschaften des Normalbereichs
Satz 21. Zu jeder Normalfolge von Transformationen Tt aus G (i

1, 2, gehôren isometrische Zylinder 77t-, deren Mântel gegen die Hâu-

fungsebene <x der Achsen oc{ konvergieren. Es gilt also insbesondere : Die
Madien der i7t konvergieren gegen 0.
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Beweis: F sei eine beliebige Normalfolge aus G; da nur Gruppen
1. Klasse in Betracht gezogen werden, hat sie notwendig den Rang 1,

ihre Grenztransformation bildet aile Punkte von W auf den Punkt
LX(F) ab mit Ausnahme der Punkte einer Ebene L2(F). Aus der eigent-
lichen Diskontinuitat von F in s^ folgt: L2(F) /l1(0*) ^ e^ (0 die
durch F induzierte Normalfolge aus F). Aus der normalen Diskontinuitat
von F in ew folgt : Lx (F) liegt im Endlichen, denn nach Hauptsatz 1 (in
der Dualform) ist G e.-d. in jedem Punkt von e^. Wir verlegen fur die
folgende Betrachtung den Ursprung des Koordinatensystems in W nach
Lt(F) und normieren wie im I. Teil. Dann gilt fur die Koeffizienten der
Transformationen Tt der Folge F: at, f% ->0, gt ->£, ht ->h, k% ->jfe, wo
g, h, k nicht aile 0 sind. Daher konvergieren die Funktionaldeterminan-
ten Dt(w, z), die zu den Transformationen Tx gehoren, in allen Punkten
von W gegen 0, auBer in den Punkten der Ebene gw + hz + Jfc 0.

Das Innere von /7t, das ist die Menge der Punkte, in denen \Dt\ > 1

ist, konvergiert demnach gegen dièse Ebene, und dièse muB mit L2(F)
ubereinstimmen (wie schon im Zusatz zu Satz 20 festgestellt wurde).

Satz 21a. Zu jeder Normalfolge von Transformationen xx aus F (i
1, 2, gehoren isometrische Kreise tyt, deren Bander gegen den Haufungs-
punkt a der Pôle at konvergieren. Es gilt also insbesondere : Die Radien der
^Pf konvergieren gegen 0.

Satz 22. Liegt ein Punkt x im Inneren von unendlich vielen verschiedenen
TI% der Oruppe G, so ist G nicht n.—d. in x.

Denn aus den unendlich vielen Tt, die je zu i7< gehoren, laBt sich stets
eine umkehrbar normale Teilfolge Ttv auswâhlen, und die Haufungsebene
der Achsen octy geht nach Satz 21 durch x.

Satz 23. Durch jeden Grenzpunkt geht eine Grenzebene, womit aufs neue
gezeigt ist, daB der Normalbereich im Diskontinuitatsbereich enthalten
ist (Satz 14 bzw. Satz 6).

Beweis : Einer konvergenten Folge von Polen af entspricht eine Folge
von isometrischen Kreisen tyt aus F, deren Rander nach Satz 21a gegen
den Hâufungspunkt a der at konvergieren. Andererseits bleiben samtliche
Pôle von F und also auch ihre Haufungspunkte in einer Entfernung vom
Nullpunkt 0, die eine positive Schranke nicht unterschreitet, weil G in
O e.-d. ist und die Pôle unter einander âquivalent sind. Von einem
gewissen i0 ab wird daher das Abstandsverhâltnis xO : xat fur irgendeinen
Punkt x des Apolloniuskreises ^ einen Betrag | K% \ > 1 haben. Die
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Koordinaten wai — GJKi, zO| HJK€ dieser Pôle a4 erteilen daher
dem Ausdruck \gtw -\- h4z + k{\ einen Wert

--L_<i
d. h. a{ liegt im Inneren des zugeordneten isometrischen Zylinders IIit
fur i > i0 ; nach Satz 22 geht also durch den Hâufungspunkt a der at eine
Grenzebene.

Aus dem Zusatz zu Satz 20 folgt insbesondere, daB A2(0) L{(F)
auf L2(F) liegt, wenn 0 die den ^},- entsprechende Normalfolge aus F
bezeichnet, F die induzierte Folge aus G. Damit ist Satz 6 fur Gruppen
1. Klasse aufs neue bewiesen.

In welcher Art der Diskontinuitâtsbereich tatsâchlich iiber den
Normalbereich hinausragt, dariiber gibt in vielen Fâllen die folgende

Beziehung AufschluB. Zunâchst ist selbstverstândlich B > N + N, wenn
wir unter N den Bereich derjenigen Punkte verstehen, die auf einer Ebene
des Normalbereichs N von F liegen. Dièse Beziehung lâBt sich nun in
allen mir bekannten Fàllen zu einer genauen Bestimmung von B ver-
schàrfen (vgl. die Beispiele 6 und 8, Seite 116, 118). Insbesondere gilt

Satz 24. B N -f- N, wenn die Punkte der 1. Grenzmenge von G diskret
liegen.

Ist nàmlich x ein Punkt von B, der nicht zu N gehôrt, so liegt x nur
dann auf keiner Ebene von N, wenn jede Ebene durch x einen Grenz-

punkt enthâlt. Das ist aber unmôglich, da x selbst nach Voraussetzung
kein Grenzpunkt ist, und da {2^(0)} eine diskrete Menge sein sollte.

12. Konstruktion eines Fundamentalbereichs fur den Normalbereich

Définition 14. Fundamentalbereich K der Gruppe G fur einen (nicht
notwendig zusammenhângenden) Bereich A heiBt ein Bereich mit folgen-
den Eigenschaften :

1. keine zwei Punkte sind âquivalent;
2. der Bereich ist maximal, d. h. jeder Punkt auBerhalb K ist entweder

zu einem Punkt von K âquivalent, oder er liegt auBerhalb A.
Wir werden jetzt einen Fundamentalbereich zum Normalbereich einer

linearen Gruppe G 1. Klasse konstruieren, vorausgesetzt, daB sie samt
ihrer induzierten Gruppe .Tn.-d. ist in einem Paar von inzidenten Elemen-
ten. Das ist nâmlich, wie wir jetzt zeigen wollen, eine hinreichende Be-

dingung dafur, daB ein Bereich auBerhalb aller 77,. von G existiert, und
ein solcher erweist sich als ein Fundamentalbereich von G fur N.

¦j 1 o
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Définition 15. Die Menge der Punkte des Grundraumes W, zu denen
eine Umgebung existiert, die nicht ins Innere eines isometrischen Gebildes

von G eindringt, heiBt der Auflenbereich R von G.

Die Existenz eines AuBenbereichs steht fest, sobald 1. eœ keine Grenz-
ebene ist und 2. auf eM ein Punkt q vorhanden ist, gegen den sich die
Scheitel s{ der isometrischen Gebilde von G nicht hâufen kônnen. Will
man dièses Verhalten durch eine Annahme liber die Gruppen G und F
erzwingen, so geniigt dazu nicht die eigentliche Diskontinuitât von G in q,
weil die Scheitel nur 'paarwei&e âquivalent sind. Hierzu ist vielmehr not-
wendig und hinreichend, dafi durch den Punkt q keine Hàufungsebene
von Achsen der 77, von G hindurchgeht. Also folgt nach Hauptsatz 2 :

eine hinreichende Bedingung fur die Existenz eines AuBenbereiches R ist
die normale Diskontinuitât von G in einem Punkt q auf s^. Da anderer-
seits die normale Diskontinuitât von F in e^ bereits verlangt und aus-
genutzt worden ist, so kommt zu den fruheren Voraussetzungen jetzt
noch hinzu:

(III) Der Normalbereich N von G und der Normalbereich N von F sollen
inzidente Elemente enthalten.

Der AuBenbereich R ist von vornherein so konstruiert, daB er keine
zwei âquivalenten Punkte enthâlt. Denn jede Transformation Ti aus G

wirft jeden Punkt von R ins Innere von 77^ (Satz 16), also aus R heraus.
Es handelt sich jetzt noch darum, das zweite Kennzeichen fur einen
Fundamentalbereich, die Maximaleigenschaft in bezug auf ein geeignetes
Gebiet, nachzuweisen. Dièses Gebiet wird der Normalbereich von G sein.

Aus den Definitionen 13 und 15 folgt zunâchst: Durch keinen Punkt
des AuBenbereichs geht eine Grenzebene. Mit anderen Worten :

Satz 25. Der AuBenbereich R ist im Normalbereich von G enthalten,

Das SchluBstiick unserer Konstruktion bildet der

Satz 26. Ein Punkt x, der samt einer Umgebung aufierhalb R liegt, ist
entweder âquivalent zu einem Punkt von R, oder er liegt nicht in N.

Beweis : x0 sei ein Punkt von j^ auBerhalb R ; er liegt also samt einer
U (x0) im Inneren von mindestens einem II\, sagen wir von TIX.

1. Fall: Der Punkt xx TxxQ liegt samt einer U{xt) im ÀuBeren aller
Fli von G; dann liegt er in R, und der Satz ist bewiesen.

2. Fall: Der Punkt xx liegt im Inneren eines 77t. aus G, etwa im Inneren
von i72. Liegt dann x2 T2xt im ÀuBeren aller IIi von G, so hat man
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einen zu x0 âquivalenten Punkt in R gefunden. Andemfalls fûhrt die
Fortsetzung des Verfahrens zu einem zu x0 âquivalenten Punkt in R
oder zu einer unendlichen Folge von âquivalenten Punkten

X± 1 ±Xq X2 -/ 2#i ==z J- %-L iXq ^3 ^3^2 ^ ^3M-'l *^0 • • • >

wobei jeweilen x{ in ITi+1 liegt. Dièse letzte Môglichkeit wollen wir ad
absurdum fuhren. Wir betrachten dazu die Transformationen Ui9 die xQ

in Xi uberfûhren:
Ux Tït UM T%TX, U3 T,T,Tlt

Fur die Funktionaldeterminante DTi gilt im Punkt x^x :

\DTi(x^)\>l (* 1,2,3,...),
daher ist auch

i Dvfa) i I DTi(x0) | • {D^xJ | •.... | DTlml(*i-*) I • I DTi(*i-i) I >1 •

x0 liegt also im Inneren aller isometrischen Gebilde IIU{ (i — 1, 2, 3,
SchlieBen wir den Fall aus, dafi zwei Transformationen U4 einander
gleich sind. Dann liegt xQ auBerhalb N, nach Satz 22, im Widerspruch
zur Voraussetzung. Der eben ausgeschlossene Fall kann aber gar nicht
eintreten. Denn aus Un+P Un wurde folgen Tn+pTn+p^ --.Tn+X /.
Das widersprâche der Annahme, daB x{ (fur jedes i) im Inneren von
IIi+1 liegen sollte, weil dann stets |-Di»<+1 (^<)l > 1 ^s^-

Aus Satz 26, zusammen mit der Tatsache, daB keine zwei Punkte von jB

âquivalent sind, folgt der

Satz 27. R ist ein Fundamentalbereich von 0 fur N.

13. Âusdehnung auf die induzierte Gruppe

Ist unter der Voraussetzung der normalen Diskontinuitât von G und F
in inzidenten dualen Elementen das Koordinatensystem so gewâhlt
worden, daB F in e^ und G in einem Punkt q auf ew n.-d. ist, £0 làBt sich
auBerdem durch eine affine Transformation erreichen, daB G im Null-
punkt 0 und F in einer Ebene e0 durch O n.-d. ist. Dann ist auf die

Punktgruppe F im Dualraum Q die eben entwickelte Théorie anweûdbar :

es existiert ein AuBenbereich P, bestehend aus allen Punkten e>.âm samt

einer Umgebung auBerhalb aller isometrisehen Zylinder S${ von F liegen,

und P ist ein Fundamentalbereich von F fur N. (Dabei bezeichnet St die

Menge aller Punkte, in denen F n.-d. ist.)
Die in § 12 abgeleiteten Sâtze gelten also mutatis mutandis fur den

AuBenbereich P der Ebenengruppe F: er besteht aus allen Ebenen, die
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samt einer Umgebung im ÂuBeren aller isometrischen Kreise ty4 von F
liegen. P enthâlt insbesondere eine Ebene ô durch den Nullpunkt O samt
einer Ebenenumgebung W(ô).

Zusammenfassend erhalten wir den

Hauptsatz 3

Voraussetzungen :

(I) G sei eine Gruppe 1. Klasse, normal-diskontinuierlich in einem
Bereich N;

(II) die durch G induzierte Gruppe F sei normal-diskontinuierlich in
einem Bereich N;

(III) N und N môgen inzidente Elemente aufweisen, insbesondere im
Nullpunkt und in der uneigentlichen Ebene.

Behauptung : Der Auflenbereich R von G ist ein Fundamentalbereich von
G fur N. Der Auflenbereich P von F ist ein Fundamentalbereich von Ffiir N.

Durch diesen Satz werden die Bereiche der normalen Diskontinuitât
der Gruppen G und F auf eine neue Weise bestimmt :

N R + die àquivalenten Bereiche zu i? ;

N P + die àquivalenten Bereiche zu P.

Die Unabhàngigkeit der normalen Diskontinuitât von G und F wurde
schon durch das Beispiel 4 belegt. Das folgende Beispiel 6 (automorphe
Kollineationen der Einheitskugel) wird zeigen, da6 G und F n.-d. sein
kônnen, ohne es in inzidenten Elementen zu sein. Gruppen der letzten
Art werden durch unsere Konstruktion nur erfaBt, wenn die Existenz
des AuBenbereichs anderweitig gesichert ist, wie etwa im folgenden

Beispiel 6

Die Kollineationen mit ganzen komplexen Koeffizienten, die die
Hyperkugel r, — -J* & H:ww + zz 1

in sich iiberfuhren, bilden eine Gruppe 1. Klasse; ihre 1. Grenzelemente
sind Punkte von H, die auf H ûberall dicht liegen. Ihre 2. Grenzelemente
sind die Tangentialebenen an H in diesen Punkten (vgl. hierzu Myrberg,
Math. Ann. 93, 1924, 81 ff.). Daher ist N das Innere, N das ÀuBere von H.
N und N haben keine inzidenten Elemente. Die Bereiche der bedingten
Diskontinuitât sind

• «

fur G : B N + N (N die Menge der Punkte, die auf einer Ebene aus
N liegen);
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fur F: B N -f N (N die Menge der Ebenen, die durch einen Punkt
von N gehen).
Ein Fundamentalbereich fur das Innere von H lâBt sich nach der an-

gegebenen Méthode konstruieren, da die Existenz eines 0 enthaltenden
AuBenbereichs aus der Théorie der quadratischen Formen erschlossen
werden kann [vgl. Hutchinson (8)].
Beispiel 7

TJbersichtlich sind die Verhâltnisse etwa bei der hyperfuehssehen
Gruppe G mit der erzeugenden Transformation

(V2
0 —1\ / V2

0 1 0 J und der induzierten r^ 0

— 1 0 V2J \ 1

Da der Nenner frei von z ist, sind die Schnittkreise der isometrischen
Zylinder mit allen Ebenen z konst. dieselben. Andererseits entnimmt
man den induzierten Transformationen, daB ihre isometrischen Kreise aile
in der Leitebene z 0 liegen. Bezeichnet F die Normalfolge der
Transformationen Tn (n 1, 2, 0 die induzierte Folge, so hat man

Lt(F) A[(0): t*=l; L\(F) Ax(0)\ w —\\
=A2(0) Ll(F): w= 1, z 0; A\{0)

0
1 0
0 V2J

Die Grenzpunkte der Gruppe liegen also auf der invarianten Hyperkugel
|w|2 + M2=l> und die Grenzebenen sind die Tangentialebenen in den

Grenzpunkten. Ein Fundamentalbereich fur die Punktgruppe ist der
Bereich R auBerhalb aller isometrischen Zylinder von 0. Sein Schnitt mit
irgend einer Ebene z konst., speziell mit z 0, ist in der folgenden
Figur wiedergegeben :
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Beispiel 8*, Die Transformationen

(2qn — pn) w + (1 — pn) z + 2 (qn — pn)
vu ¦

(pn — qn) w + (pn — 1) z + 2 pw —

(pn — qn^ y) _j__ (pn — i J jj; _j_ 2 pn qto

(p,q feste komplexe Zahlen mit den Bedingungen \p\ < 1, pq 1)

bilden fur n 0, ±1, ±2, eine unimodulare Gruppe 1. Klasse mit
folgenden Grenzelementen:

2 0

Die durch î7^ in

+ 2 0.

(0

induzierte Transformation ist

(2 pn — qn) co -f- (qn — pn)

(2pn — 2qn)œ + 2qn — pn

J1 hat die Grenzelemente

Ai das ist L\ ; yl2 : — co + 1 0, das ist Z£ ;

co=l das ist L2 ; A\: — 2ct> + 1 0, das ist Lx

Die Normalbereiche von 0 und F existieren und enthalten inzidente
Elemente, insbesondere im Nullpunkt und in ew. Daher existiert zu jeder
Transfonnation aus G bzw. F das isometrische Gebilde und zwar ist

nn- \(pn — qn)w+ (p»_ l)z + 2p»-g»| l, lTn^n_n,

oder einfaeher
\w —

2=0
Achse «„: (pft — ?") w + (pn — 1) z -f 2pn — g" 0

Pol an: w0 (2p» — 2g") / (2qn — pn), za 0 ;

Scheitel «„ : (— (pw — 1) / (pw — g»), oo),
Leitebene <rB: z 0.
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Der AuBenbereich und damit ein Fundamentalbereich von G fur N
bzw. von F fur N ist

R : die Menge der Punkte, fur die gleichzeitig

\(pn — qn)w+(pn—l)z + 2pn — qn\>li
P : die Menge der Ebenen, fur die gleichzeitig

| (2pn—24n)w + 2qn — pn\ > 1

ist fur n ±1, ±2,
Man bestâtigt: IIn->L2i <xn-+L2 usw.

Pw->/l2, an->A2 usw.

Endlich B N + N B N + N (vgl. Beispiel 6).

Beispiel 9. Ich vertausche im vorigen Punkt- und Ebenengruppe
und setze nachtrâglich p ^. Fur diesen Spezialfall làBt sich der
Fundamentalbereich R bequem veranschaulichen. Man hat

(2pn—
qn 0 qn — pn\

l—qn 1 qn — 1

pn—2qn 0 2qn — pn

' 2qn—pn 1—pn 2qn—2pnN>

t_=| 0 1 0

pn —• qn pn — i ^ pn —• qn

« i L% : — w + 1 0 zugleich A\ :

z

w 1

L\: —2w-\- 1 0, zugleich Ax:
z 0

nn: |(2p» —

œ — 1

co 2

f 0

w+ 2^ — ^|
\z\2=\2pn — W

(2>w — 1) w — (pn — qn) z 0

<xn: w — pn 0 ^an

lim wan 1, d. i. Zr2 ; lim w?«n |, d. i. L2 ;
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lim Wa» 1

lim z^ 0
d.i. A2 bzw. L\

lim wf.
»->— 00

lim zan
»->—oo

d.i. yljbzw. Lx\

R: die Menge der Punkte, fur die gleichzeitig

| (2pn — 2qn) w + 2qn — pn \ > 1

ist, also in jeder Ebene z konst. die Punkte, die samt einer Um-
gebung gleiehzeitig im ÂuBeren gewisser Kreise liegen, wie die fol-
gende Figur 2 es zeigt.

Fig. 2

III. TEIL
Ergànzungen und Hinweise

14. Der Eand des Normalbereichs

Définition 16. p heifit ein Randpunkt des Bereichs A, wenn p nicht zu A
gehôrt, wenn aber jede Umgebung U(p) von p Punkte von A enthàlt.

Définition 17. Ein (schlichter) Bereich A heiBt, naeh Behnke und
Peschl [1], planarkonvex, wenn es in jedem Randpunkt p von A eine

(analytische) Ebene (Stûtzebene) gibt, die nieht in A eindringt.
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Satz 28. N ist planarkonvex.
Denn durch jeden Randpunkt von N geht eine Grenzebene. Dièse

verlâuft ganz auBerhalb N, ist also eine Stutzebene fur N.

16. ÂUgemeine Eigenschalten der Fundamentalberciche

Die allgemeinen Angaben ûber Fundamentalbereiche geben wir im
wesentlichen in der Darstellung von Fubini.

Satz 29. Ist A ein Bereich, der keine zwei àquivalenten Punkte enthalt,
so kônnen sich keine zwei zu A àquivalenten Bereiche ûberdecken.

Beweis: Angenommen, A1~T1A und A2=T2A (TX,T2 aus
haben einen nicht leeren Durehschnitt B, und z sei ein Punkt aus B, also
z Txx T2y (x, y aus A). Wâre x ^ y fur irgend einen Punkt z des

Durchschnitts B, so wàre x àquivalent zu y, gegen die Voraussetzung
liber A. Ist x y fur jeden Punkt z des Durchschnitts B, so ist T1 T2.

Satz 30. Jeder abgeschlossene Teilbereich des Normalbereichs von G wird
durch endlich viele zu R âquivalente Bereiche (einschlie/îlich R) einfach
Hberdeckt. Dièse Bereiche passen lilckenlos aneinander.

Beweis: A sei ein abgeschlossener Teilbereich von N. TR R' (T aus
6?) liegt im Inneren von 77^. Rf kann also nur dann Punkte von A ent-
halten, wenn 77^ Punkte von A enthàlt. Aber nur endlich viele isome-
trische Zylinder von G kônnen Punkte von A enthalten (Satz 22). Also
enthalten nur endlich viele zu R âquivalente Bereiche Punkte von A.
Dièse Bereiche ûberdecken sich nicht, nach geeigneten Abmachungen
liber die Ergànzung des offenenBereiches R durch Randpunkte (Satz 29).
Sie schlieBen andererseits llickenlos aneinander (Satz 26).

16. Der lland von B: Erzeugende der Gruppe

Planarkonvexitat von B
Ein Randpunkt von R kann nicht im Inneren eines isometrischen

Zylinders von G liegen. Die Randpunkte von R zerfallen in drei Arten :

1. Randpunkte von N ;

2. Innere Punkte von N auf dem Mantel eines einzigen isometrischen
Zylinders von G (,,einfache Randpunkte");

3. Innere Punkte von N9 die gleichzeitig auf den Mânteln von mehreren
(natlirlich endlich vielen) isometrischen Zylindern von G liegen
(^mehrfache Randpunkte").

Wir betrachten die Randpunkte von R nâher, die im Inneren des

Normalbereichs liegen.
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Satz 31. Die Bandpunkte zweiter Art von R erfilllen Teile von Projektivebenen,

,,8eiten" von JR genannt, die paarweise àquivalent sind.

Beweis: p sei ein Randpunkt zweiter Art. p liège auf TIT, p1 Tp
liegt dann auf 77^.

pf ist ebenfalls ein Randpunkt zweiter Art, Denn erstens liegt p ' nicht
im Inneren eines 77g. Sonst wâre \Ds(pf)\ > 1, also \DST(p)\ \DT(p)\ •

I^(P;)I > * wegen \DT(p)\ 1. \DST(p)\ > 1 widerspricht aber der
Voraussetzung, daB p ein Randpunkt von R sei. Zweitens kann pf nicht
auf dem Mantel eines anderen isometrischen Zylinders als II*T liegen.
Lâge nàmlich p' etwa auf 77g, so wàre \DST(p)\ \DT{p)\-\Ds{pr)\ 1,

d. h. p lâge a,vdt IIST, wàhrend p auf dem Mantel von77T allein liegen sollte.
In einer genugend kleinen Umgebung von p verlàuft auBer IIT kein

isometrischer Zylinder von G. Die Punkte von IIT innerhalb einer solchen

Umgebung sind daher ebenfalls Randpunkte zweiter Art, ebenso ihre
Bilder auf 77^. Ein Teil des Randes von R wird also aus Mantelstucken
von Projektivebenen gebildet, und dièse sind paarweise àquivalent. Dièse
Randstûcke sind entweder vollstàndige Projektivebenen, oder sie werden
ihrerseits von Randpunkten erster oder dritter Art begrenzt.

Die Âquivalenztransformationen zwischen den dreidimensionalen Seiten
eines Fundamentalbereichs bilden unter gewissen Voraussetzungen ein
Erzeugendensystem fur 0.

Définition 18. Aneinandergrenzend heiBen zwei Fundamentalbereiche,
die eine dreidimensionale Seite gemeinsam haben.

Satz 32. Von einem Fundamentalbereich fûrN môge man zu jedem seiner
Bildbereiche gelangen kônnen, indem man eine endliche Kette aneinander-
grenzender Fundamentalbereiche durchschreitet. Dann ist jede Transformation

V von G entweder eine Transformation Tt, die den Ausgangsbereich
in einen angrenzenden Fundamentalbereich transformiert, oder V ist ein
Produkt solcher Transformationen.

Zum Beweis verwenden wir eine sofort einleuchtende Tatsache, die
wir voraussehieken als

Hilfssatz. Ti(i—1,2,...) seien diejenigen Transformationen aus
die den Fundamentalbereich KQ in einen angrenzenden Bereich trans-
formieren. UK0 Kj(V aus G) sei irgend ein Bildbereich von Ko.
Dann sind UTiU"1 diejenigen Transformationen, die K^ in einen
Nachbarbereich transformieren.

Beweis von Satz 32 : Ki sei der Bildbereich von Ko bei der Transformation

F : Ks VKQ. Weiter sei KQ) Kh, Kh, Kig, Ki eine
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Kette aneinandergrenzender Bilder von K0. Setze ; i8+1. Die
Transformation, die Ko in Kit transformiert, ist eine Transformation T€. Zu
zeigen ist noch : Wenn der Satz richtig ist fur die Transformation V ', die
Ko in Kif (r ^s) transformiert, so ist er auch richtig fur die Transformation

F", die KQ in Ko in K^ transformiert. Nach dem Hilfssatz ist
nun die Transformation X, die Kif in Kif+i transformiert, vom Typus
X VfTVf~l, wo T eine der Transformationen ist, die KQ in einen an-
grenzenden Fundamentalbereieh transformieren. Daraus folgt V"K0
Kif+i V'TV'-iV'K» also F" V'T. Nach Induktionsvoraussetzung
ist F' eine Transformation Tt oder ein Produkt solcher Transformationen,

also ist auch V" ein Produkt solcher Transformationen, w.z.b.w.
Die Voraussetzung von Satz 32 lâBt sich auch so fassen : Jeder Punkt x0

von R soll mit allen zu x0 àquivalenten Punkten durch Kurven verbindbar
sein, die den Normalbereich nicht verlassen. Denn jeder zu R âquivalente
Bereich liegt vollstândig im Inneren eines 77\. — Dièse Bedingung ist in
einem zusammenhàngenden Teil des Normalbereichs stets erfûllt (und
nur solche kommen als Existenzbereiche automorpher Funktionen in
Betracht, vgl. § 19).

Der Rand des AuBenbereichs R wird nach unserer Konstruktion ge-
bildet aus Stiicken von Projektivebenen oder von Hâufungsgebilden von
Projektivebenen (zugleich Rand von N). Als solche kommen nur wieder
Projektivebenen oder (analytische) Ebenen vor [1], Daraus folgt

Satz 33. R ist planarkonvex.

17. Spezialisierung

a) Komplexe Oruppen in einer Variablen (Théorie von Ford),
Aile Gruppen ohne infinitésimale Transformationen sind Gruppen

1. Klasse. Die Dualitât fàllt weg. Die normale und die bedingte Dis-
kontinuitàt fallen mit der eigentlichen Diskontinuitàt zusammen. Jedes
2. Grenzelement L2 ist mit dem zugehôrigen L\ identisch. Unter der
Voraussetzung, daB die Gruppe 0 e.-d. ist, wird das Koordinatensystem so

gewàhlt, daB G im uneigentlichen Punkt p^ der komplexen Ebene e.-d.
ist. Die isometrischen Gebilde sind Kreise (fur die 2-Ebene die Schnitt-
gebilde der isometrischen Zylinder mit der Ebene w 0). Ihre Zentren
(Schnittpunkte der ZyKnderachsen mit w 0) sind zu p^ équivalent,
und jeder Hàufungspunkt solcher Zentren (Grenzpunkt) ist ein 1.

Grenzelement Lt. Der maximale Bereich E der eigentlichen Diskontinuitàt von
0 ist die von den Grenzpunkten befreite Ebene. Man erhâlt im AuBen-
bereich R einen von Kreisbôgen berandeten Fundamentalbereich fur E.
Vgl. [81 [4].
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b) Réelle Gruppen in zwei Variablen.

G sei eine Gruppe von linearen Transformationen

*, mit der Normierung A rt
Q/aX 4- 6vv 4- f-

d| 6t- c,-

9i h h

in zwei reellen Variablen x, y und mit reellen Koeffizienten. G enthalte
keine infinitésimale Transformationen und sei eine Gruppe l.Klasse. F sei

die durch G induzierte Gruppe in den kontragredienten Variablen f, 7).

Die Théorie der eigentlichen, der bedingten und der normalen Diskonti-
nuitât von G ist in den friiheren Ausfuhrungen enthalten. Im einzelnen
findet man folgendes. Die réelle Ebene F schneidet die uneigentliche
analytische Ebene ew in einer Geraden y^, der uneigentlichen Geraden

von F. Wenn F e.-d. ist, so làBt sich durch eine lineare Transformation
erreichen, daB T^e.-d. ist in yw. Dann gehôrt zu jeder Transformation Tt
aus G ein isometrisches Gebilde 77^ als Ort derjenigen Punkte, in denen
die Funktionaldeterminante

hty + W
den Betrag 1 hat. Man findet

n{: ÇiX + h€y + k{ ±1,
also ein Parallelenpaar mit dem gemeinsamen Punkt s{ j L, cx>)

\ 9i 1

auf yw. Wir nennen 77\ den isometrischen Streifen der Transformation
T{ y s{ den Scheitel von 77t

die Achse von 77^ Der Abstand der Achse von den Randgeraden ist

r{ — : Der Streifen 77^ zerlegt die Geraden durch st und damit

die Punkte von F (zunâchst mit Ausnahme von ^) in drei Klassen:
Inneres, Rand, ÀuBeres von 77^, je nachdem \Di (x, y)\ ^ 1 ist. Wir
rechnen #t zum Rand von II{

Wenn G e.-d. ist, lâBt sich unabhângig von der vorigen Koordinaten-
wahl durch eine lineare Transformation erreichen, daB G e.-d. ist im
Nullpunkt 0. Dann gehôrt zu jeder Transformation x{ aus F ein
isometrisches Gebilde als Ort derjenigen Geraden, in denen die
Funktionaldeterminante #*(£, tj) der Transformation r{ den Betrag 1 hat. Man findet
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wobei at der Punkt ist mit den Koordinaten

Htx— G,y 0

*Pt ist also das Punktepaar, in dem die Leitgerade at den Apollonius-
kreis der Punkte mit dem Abstandsverhaltnis \Kt\ von 0 und at schneidet.
Die Koordinaten der Schnittpunkte sind

f% x- l_K y- l_K
G. H.

y

Wir nennen dièse Punkte das isometrische Punktepaar von rt, a% heiBt der
Pol von S$t. Das isometrische Punktepaar ^ zerlegt die Punkte von at
und damit die Geraden von V (zunachst mit Ausnahme von at) nach der
Einteilung ihrer Schnittpunkte mit a% in drei Klassen: Inneres, Rand,
ÂuBeres von ^t, je nachdem |#t(f, rj) | g 1 ist. Wir rechnen a% zum Rand
von Sfit.

Zur Gewinnung der ubrigen Ergebnisse ist analog zum komplexen Fall
vorauszusetzen :

(I) G sei n.-d. in einem Bereich N, insbesondere in 0,
(II) F sei n.-d. in einem Bereich N, insbesondere in y^.

Eine Haufungsgerade der Achsen der isometrischen Streifen von G heiBt
eine Grenzgerade von F; ein Haufungspunkt der Pôle der isometrischen
Punktepaare von F heiBt ein Grenzpunkt von G.

Der Diskontinuitatsbereich B (der maximale Bereich der bedingten
Diskontinuitat) von G (bzw. B von F) ist die Komplementarmenge zur
Menge der Grenzpunkte von G (bzw. der Grenzgeraden von F).

Der Normalbereich N von G (bzw. N von F) ist die Menge der Punkte
(Geraden), die auf keiner Grenzgeraden von F liegen (die durch keinen
Grenzpunkt von G gehen).

Der Normalbereich ist im Diskontinuitatsbereich enthalten. Es gilt
B > N + N, und wenn die Menge der Grenzpunkte von G diskret ist, so

gilt sogar B N + N.
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Weiter wird vorausgesetzt :

(III) Die Normalbereiche N und N sollen inzidente Elemente enthalten.

Daim làBt sich (nach geeigneter Koordinatenwahl) ein AuBenbereich R
von G konstruieren : die Menge der Punkte, die samt einer Umgebung im
ÂuBeren aile isometrischen Streifen TIi von G liegen. R enthàlt einen
Punkt auf y^ samt einer Umgebung. R ist ein Fundamentalbereich von G

fur N, Ebenso làBt sich unter der Voraussetzung (III) ein AuBenbereich
P von F konstruieren : die Menge der Geraden, die samt einer Umgebung
im ÂuBeren aller ^ von F liegen. P enthâlt eine Gerade durch 0 samt
einer Umgebung. P ist ein Fundamentalbereich von F fiir N.

18. Verallgemeinerung: Gruppen in n Variablen

Die Théorie der isometrischen Gebilde ist ohne weiteres auf den Raum
W2n von n Variablen zu ûbertragen; natûrlich wirkt sich die Einschràn-
kung auf Gruppen 1. Klasse um so stârker aus, je grôBer die Variablen-
zahl ist. Man betrachtet nebeneinander: die Grappe G der Punkttrans-
formationen und die durch G induzierte Gruppe F der Transformationen
der 2(n — l)-dimensionalen analytischen Ebenen M2n_2 in W2n. Falls
G und F e.-d. sind, lâBt sich das Koordinatensystem so wàhlen, daB zu
jeder Transformation Tt aus G bzw. xi aus F ein bestimmtes isometrisches
Gebilde II\ bzw. ^ gehôrt. 12\ ist eine (2n— l)-dimensionale Mannig-
faltigkeit von Punkten ; dièse liegen auf einer einparametrigen Schar von
analytischen Ebenen M2n_2, die durch eine und dieselbe lineare Mannig-
faltigkeit M2n-.A innerhalb der uneigentlichen 2(n—l)-dimensionalen
analytischen Ebene e^ gehen. ^Pt- ist eine (2n — l)-dimensionale Mannig-
faltigkeit von analytischen Ebenen M2n_2 ; dièse gehen durch eine ein-
parametrige Schar von Punkten, die auf einer und derselben linearen
Mannigfaltigkeit M2 durch den Nullpunkt liegen.

Zum Nachweis dieser Behauptungen denke man sich wieder die
Déterminante A der Transformation T (aik) auf 1 normiert und die Elemente
der letzten Zeile an+1, k mit gk bezeichnet, ihre Unterdeterminanten mit
Gk(k 1, n + 1). Dann hat man die Darstellungen:

Achse oc von 77: g1w1 + • • • + gnwn + gn+1 0 ;

I ^^l I I l I n I I ft-|-l I Vil 11 i « I n n

\JO-t U)gt U}

Pol a von ^f$ : w^a) ¦„ * (i 1, n)
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<P ist also ein Kreis, nâmlich der Schnitt der Ebene (**) mit der Apollo-
niuskugel (*). Die Punkte von *P haben vom Nullpunkt und vom Pol a
das konstante Abstandsverhàltnis | Gn+1 \. Das isometrische Gebilde einer
Transformation aus G zerlegt die Punkte, dasjenige einer Transformation
aus F zerlegt die 2(n—l)-dimensionalen analytischen Ebenen des
Raumes W2n in drei Klassen: Inneres, Rand und ÂuBeres. Zum ÂuBeren

von il bzw. ^ gehôren e^ bzw. 0, zum Inneren gehôren oc bzw. a. Jeder
Hâufungspunkt von Polen, die zu Transformationen aus F gehôren, heifit
ein Grenzpunkt von G, jede Hàufungsebene von Aehsen, die zu
Transformationen aus G gehôren, heiBt eine Grenzebene von F. Die Menge der
Grenzpunkte bildet die 1. Grenzmenge von G, diejenige der Grenzebenen
die 1. Grenzmenge von F.

Der maximale Bereich B der bedingten Diskontinuitât von G ist die
Komplementârmenge zur 1. Grenzmenge von G. Der maximale Bereich B
der bedingten Diskontinuitât von F ist die Komplementârmenge zur
1. Grenzmenge von F.

Der maximale Bereich N der normalen Diskontinuitât von G ist die
Menge der Punkte, die nicht auf einer Grenzebene von F liegen. Der
maximale Bereich N der normalen Diskontinuitât von F ist die Menge der
2(n—l)-dimensionalen analytischen Ebenen, die nicht durch einen
Grenzpunkt von G gehen.

N ist ein Teilbereich von B.
Wenn N und N inzidente Elemente haben, so ist nach geeigneter Wahl

des Koordinatensystems ein Fundamentalbereich von G fur N der Bereich
R derjenigen Punkte, die samt einer Umgebung im ÂuBeren aller isome-
trischen Gebilde 77t von G liegen. Analog ist ein Fundamentalbereich von
F fur N der Bereich P derjenigen 2(n— l)-dimensionalen analytischen
Ebenen, die samt einer Umgebung im AuBeren aller ^}t von F liegen.

19. Der Normalbereich als Existenzbereich automorpher Funktionen

Um die Bedeutung der verwendeten Begriffe, insbesondere des Dis-
kontinuitâtsbereichs und des Normalbereichs fur die Théorie der auto-
morphen Funktionen klar zu machen, knûpft man am besten (wie
Myrberg, [9], p. 87 fï. oder [10], Kap. 5) an die Darstellung dieser
Funktionen durch Poincaré an. Er bedient sich unendlicher Reihen, die
im Falle zweier Variablen die Gestalt haben
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Darin ist ûber aile Bilder von (w, z) vermôge Transformationen aus G zu
summieren. p bedeutet eine ganze Zahl, H (w, z) eine rationale Funktion,
z. B.

m1 w + m2 z -f m3H(w,z)
nx w

wo ntw + n2z -\- n2 0 eine Ebene ist, die keinen Grenzpunkt enthàlt.
Eine solche Ebene existiert nach Voraussetzung (II), und wir haben das

Koordinatensystem bereits so gewàhlt, daB e^ eine solche Ebene ist.
Die Funktionaldeterminante einer unimodularen Transformation

d] e] fA hat den Wert {{™''z'\ }
\ /

Der zweite Faktor des allgemeinen Reihengliedes wird also oo in den
Punkten der zur Transformation Ti gehôrenden Achse <xi. Unendlich
viele Glieder der 0-Reihe sind also unbeschrànkt, wenn man sich einer
Grenzebene nâhert. Dagegen konvergiert die 0-Reihe gleichmâBig und
absolut — nach Abspaltung von jeweils hôchstens endlich vielen Glie-
dern — in jedem Bereich, der von allen Grenzebenen einen festen positi-
ven Abstand hat.

Die 0-Reihen (*) stellen daher analytische Funktionen dar, die auBer-
halb der 2. Grenzmenge L2(G) sich wie rationale Funktionen verhalten.
Sie erfûllen die Gleichung

\-p

Der Quotient zweier verschiedener 0-Funktionen mit dem gleichen
Exponenten p ist demnach eine automorphe Funktion von G ; dièse hat
auBerhalb {L2(G)} nur algebraische Singularitâten.

Wenn nun die Ebenen L2 diskret liegen in W, so definiert jede 0-Reihe

(*) eine einzige analytische Funktion, mit dem Normalbereich W —
{L2(G)} von G als Existenzbereich. Jede Ebene L2 erweist sich dann nàm-
lich als wesentlich singulâre Flàche dieser Funktion. Aber auch ohne die

Voraussetzung, daB die Ebenen L2 diskret liegen in W und ohne Bezug-
nahme auf die analytische Darstellung der Funktionen durch 0-Reihen —
was bei mehreren Variablen eine Einschrânkung bedeutet — findet man
bei Gruppen ohne invarianten Punkt oder invariante Ebene, daB jede
Ebene L2 eine wesentlich singulâre Flâche fur jede automorphe Funktion
von G ist. Dièse Ergebnisse veranlassen Myrberg, unter den automorphen
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Funktionen einer Gruppe 1. Klasse diejenigen Funktionen zu verstehen,
die nur in den Punkten der Grenzebenen von F wesentlich singulàr sind.
Jeder zusammenhângende Teilbereich des Normalbereichs von G ist der
Existenzbereich einer solchen Funktion. Es handelt sieh dabei um
Funktionen mit festen wesentlichen Singularitàten (d. h. solchen, die von der
Gruppe allein abhângen) — im Gegensatz zu Funktionen mit einer
normal-diskontinuierlichen linearen automorphen Gruppe, die nicht zur
1. Klasse gehôrt; in diesem allgemeineren Fall kônnen bewegliche
Singularitàten im Inneren des Normalbereichs auftreten ; sie hângen nicht mehr
von der Gruppe allein, sondern von den einzelnen Funktionen ab.

(Eingegangen den 3. Mai 1939.)
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