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Uber normal-diskontinuierliche
lineare Gruppen in zwei komplexen Variablen

Von Emin ScHUBARTH, Basel.

I. TEIL

Normalfolgen und Gruppen-Diskontinuitat

Grundlagen.

Eigentliche Diskontinuitat.

Normalfolgen und ihre Grenzelemente. Beispiele 1, 2.

Normale Diskontinuitat.

Die Grenzelemente von Ebenenfolgen im Punktraum. Gruppen 1. Klasse.
Grenzmengen und Gruppendiskontinuitét. Bedingte Diskontinuitat.

Zusammenhang zwischen normaler Diskontinuitédt und bedingter Diskontinuitat bei
Gruppen 1. Klasse. Beispiele 3, 4, 5.

At fale

II. TEIL
Theorie der isometrischen Gebilde

8. Isometrische Gebilde einer linearen Gruppe. Hilfsbetrachtungen tiiber Projektiv-
ebenen.

9. Die isometrischen Gebilde bei eigentlich-diskontinuierlichen Gruppen.

10. Bestimmung des Diskontinuitatsbereichs und des Normalbereichs von G und I" mittels
der isometrischen Gebilde.

11. Eigenschaften des Normalbereichs.
12. Konstruktion eines Fundamentalbereichs fiir den Normalbereich.
13. Ausdehnung auf die induzierte Gruppe. Zusasmmenfassung. Beispiele 6, 7, 8, 9.

II11. TEIL
Erganzungen und Hinweise

14. Der Rand des Normalbereichs.
15. Allgemeine Eigenschaften der Fundamentalbereiche.
16. Der Rand von R : Erzeugende fiir G. Planarkonvexitat von R.
17. Spezialisierung:
a) Komplexe Gruppen in einer Variablen (Theorie von Ford).
b) Reelle Gruppen in zwei Variablen.
18. Verallgemeinerung: Gruppen in n komplexen Variablen.
19. Der Normalbereich als Existenzbereich automorpher Funktionen.

Einleitung

Die Theorie der automorphen Funktionen einer komplexen Variablen
ist ein wesentlicher Bestandteil der klassischen Funktionentheorie. Die
automorphen Funktionen liefern nicht nur eine Verbindung der Funk-
tionentheorie mit wichtigen mathematischen Disziplinen wie den Diffe-
rentialgleichungen und der Arithmetik, sondern sie haben auch einen
erheblichen Anteil an der Entwicklung der allgemeinen Funktionen-
theorie gehabt, zuletzt noch bei den Untersuchungen zur Uniformisierung.

Dasselbe vermag man bisher in der Funktionentheorie mehrerer
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Variablen nicht zu sagen. Es ist geradezu auffallend, dafl in den zahl-
reichen allgemeinen Untersuchungen iiber die analytischen Funktionen
f(w,, ..., w,) — wie sie aus den letzten vierzig Jahren und vor allem aus
dem letzten Jahrzehnt vorliegen — automorphe Funktionen gar nicht
vorkommen. Andererseits gibt es wohl Arbeiten iiber automorphe Funk-
tionen mehrerer Variablen. Solche von zwei Variablen sind im Anschluf3
an die klassischen Arbeiten von Poincaré zuerst von Picard betrachtet
worden. Die wichtigsten Beitrage zur Theorie in » Variablen stammen
von Wirtinger, Blumenthal, Fubini, Hurwitz, Hecke und Giraud. Aber
diese Arbeiten gehen entweder von der Zahlentheorie quadratischer
Korper aus oder bilden eine Erweiterung und teilweise nur formale
Erganzung einer Theorie der automorphen Funktionen einer Veriander-
lichen. In beiden Fallen ist eine Briicke zur allgemeinen Funktionen-
theorie noch nicht geschlagen. Erst mit den Arbeiten von Myrberg (seit
1922) wird eine Theorie der automorphen Funktionen begriindet, die
spezifisch auf den Raum mehrerer komplexer Variablen eingestellt ist,
und jede weitere Arbeit auf diesem Gebiet wird an seine Begriffsbildungen
ankniipfen miissen.

Die folgende Untersuchung behandelt ausschlieBlich im Gebiet der
projektiven Geometrie und der linearen Gruppen den von Myrberg!) ein-
gefiihrten grundlegenden Begriff: die normale Diskontinuitdt. Unter
gewissen Einschriankungen fiir die zugrunde liegenden Gruppen, von
denen sogleich die Rede sein wird, gelingt die geometrische Abgrenzung
des Bereiches der normalen und der (noch zu erklirenden) bedingten
Diskontinuitat der Gruppen und die Konstruktion von Fundamental-
bereichen — ein Gegenstand, der in der klassischen Theorie und in friithen
Untersuchungen von Wirtinger, Hurwitz und Fubini bedeutsam hervor-
getreten ist, wihrend er in der Theorie von Myrberg bis jetzt iiberhaupt
nicht vorkommt.

Um den Gang der Untersuchung zu erliutern, greifen wir auf die Er-
klarung der automorphen Funktionen zuriick. Unter einer automorphen
Funktion in zwei und mehr Variablen versteht man in Analogie zur
klassischen Theorie eine einwertige analytische Funktion, die gegeniiber
einer Gruppe G von Transformationen ihrer Argumente invariant ist.

Die Linearitat von G braucht nicht wie im klassischen Fall verlangt zu
werden. Trotzdem werden in der vorliegenden Arbeit von vornherein nur
Gruppen linear-gebrochener Transformationen in Betracht gezogen, und
innerhalb dieser Gruppen wird noch eine Auswahl auf solche Fille getroffen,

1) [10], [11]. Zahlen in eckigen Klammern verweisen auf das Literaturverzeichnis am
Schlu der Arbeit.
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in denen die Methoden der projektiven Geometrie, insbesondere das
Prinzip der Dualitdt zwischen Punkten und analytischen (2n — 2)-
dimensionalen Ebenen, voll zur Geltung kommen. Dieselbe Einschrin-
kung hat auch Myrberg aus funktionentheoretischen Griinden vorge-
nommen (vgl. seine ,,Gruppen 1. Klasse).

Die eigentliche Diskontinuitdt der Automorphismengruppe G muB
dagegen aus entsprechenden Griinden wie bei den automorphen Funk-
tionen in einer Variablen gefordert werden. Zwar kommen bei n Variablen
fir » > 1 zu einer nicht eigentlich-diskontinuierlichen linearen Gruppe
als automorphe Funktionen nicht nur Konstante in Betracht. Aber durch
eine geeignete Transformation (die allerdings im allgemeinen nicht linear
sein kann) 146t sich bei Funktionen mit infinitesimalen Transformationen
in sich die Variablenzahl verringern?).

Es hat sich freilich gezeigt, dal fiir die Existenz von automorphen
Funktionen in mehreren Variablen die eigentliche Diskontinuitit der
Automorphismengruppe nicht hinreicht. Ein Beleg dafiir sind schon die
Riemannschen Periodenrelationen. Vor allem aber geht das aus den
Arbeiten von Myrberg hervor, in denen er zu einer Verscharfung des
Begriffes der eigentlichen Diskontinuitat sich veranlaBt sah.

Zur Verdeutlichung diene die folgende Ubersicht:

Eine Gruppe G heillt eigentlich-diskontinuierlich im Bereich 4, wenn
fiir jeden Punkt p von A4 folgendes gilt: es gibt eine Umgebung U (p)
von p, die nur mit endlich vielen ihrer Bilder (vermoge Transformationen
aus () Punkte gemeinsam hat.

Eine Gruppe G heilt (nach Myrberg) normal-diskontinuterlich im
Bereich A, wenn ihre Transformationen, genauer: die zugehorigen
Transformationsfunktionen, in jedem abgeschlossenen Teilbereich von A
eine normale Familie bilden3). Der maximale Bereich der normalen Dis-
kontinuitdt heiBt der ,,Normalbereich‘ von G. Die ZweckmaBigkeit dieser
Begriffsbildung erhellt aus folgender Gegeniiberstellung: Im klassischen
Fall ist der maximale Bereich E der eigentlichen Diskontinuitit von G
stets der Existenzbereich von automorphen Funktionen zur Gruppe G.
Bei mehreren Variablen ist mit eigentlicher Diskontinuitit allein keine
automorphe Funktion moglich. Eine Gruppe G mufl normal-diskonti-
nuierlich sein, damit automorphe Funktionen zu ihr existieren konnen,

%) Man iiberblickt alle Moglichkeiten sofort auf Grund des folgenden Satzes von
Fubini ([5] p. 106): Gestattet eine einwertige analytische Funktion eine diskontinuierliche
Gruppe linearer Transformationen, in der infinitesimale Transformationen vorkommen,
S0 gestattet sie eine stetige (mindestens) einparametrige lineare Gruppe.

%) Zur genauen Fassung des Begriffs der Konvergenz von Transformationsfolgen vgl. § 4.
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und zwar gilt unter gewissen Voraussetzungen?) iiber @: jeder maximale
zusammenhingende Teilbereich des Normalbereichs von G ist der
Existenzbereich von automorphen Funktionen zu G.

Andererseits ist, wie die folgenden Entwicklungen zeigen, fiir lineare
Gruppen eine Erweiterung des Begriffs der eigentlichen Diskontinuitit
am Platz, die Myrbergs Verscharfung dual entspricht. Eine lineare Gruppe
@G 1. Klasse heillt bedingt-diskontinuierlich im Bereich 4, wenn fiir jeden
Punkt p von 4 folgendes gilt: zu jeder vorgelegten Normalfolge F aus @
l1aBt sich eine Umgebung U (p) von p und in ihr ein Punkt ¢ samt einer
Umgebung V(g) angeben, so daB bei der Ausfithrung der Transformatio-
nen von F nur endlich viele Bilder von V(g) Punkte mit U (p) gemeinsam
haben. Der maximale Bereich der bedingten Diskontinuitit heit der
,,Diskontinuitatsbereich‘ von G%).

Die drei Arten der Diskontinuitét macht man sich leicht klar an der
Gruppe

w' =mw, 2/ =n2, |m|<|n|<l, »=0, +1, +2,...
(vgl. dazu § 6).

Im folgenden soll an den linearen Gruppen in zwei komplexen
Variablen gezeigt werden, wie man zum Begriff der normalen Dis-
kontinuitdt aus rein geometrischen und gruppentheoretischen Erwagun-
gen gelangen kann. Dazu fiithrt der Gesichtspunkt der Dualitat, d. h. die
Behandlung von Punkten und analytischen Ebenen als gleichberechtigten
Elementen. Die Diskontinuitétseigenschaften der Punktgruppe und der
durch sie induzierten Ebenengruppe sind namlich weitgehend von
einander unabhangig, und geeignete Voraussetzungen iiber die bedingte
Diskontinuitét in der einen Gruppe schaffen eine Bindung, die gerade mit
der aus funktionentheoretischen Gesichtspunkten verlangten Einschran-
kung auf die normale Diskontinuitit in der induzierten Gruppe iiberein-
stimmt. Das zeigt das Hauptergebnis des I. Teils der Arbeit: notwendig
und hinreichend fir die normale Diskontinuitit im Punkt p ist bei einer
linearen Qruppe 1. Klasse die bedingte Diskontinuitit der induzierten
Gruppe in jeder analytischen Ebene durch p.

Im II. Teil wird eine geometrische Theorie entwickelt zur Bestimmung
des Normalbereichs und des Diskontinuitdtsbereichs einer linearen Gruppe

) nédmlich fiur Gruppen 1. Klasse, das sind Gruppen, die lauter Normalfolgen vom
Rang 1 enthalten; im allgemeinen ist zudem die normale Diskontinuitat der induzierten
Ebenengruppe vorauszusetzen.

8) Die Bezeichnung Diskontinuitétsbereich verwenden wir hier im Anschlu an
Myrbergs Bezeichnung Normalbereich, aber im Gegensatz zu Fricke-Klein, wo Dis-
kontinuitatsbereich synonym und gleichzeitig mit Fundamentalbereich verwendet wird.
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1. Klasse. L. R. Ford [3] [4] hat im klassischen Fall ein einleuchtendes
Verfahren zur Konstruktion von Fundamentalbereichen bei beliebig vor-
gegebenen eigentlich-diskontinuierlichen Gruppen angegeben. Dieses
Verfahren wird hier auf den Fall von zwei Variablen iibertragen. Dadurch
gelingt es, die Myrbergsche Theorie der Gruppen 1. Klasse in einem
wesentlichen Punkt zu ergénzen. Es stellt sich heraus, da} die entspre-
chende Konstruktion stets moglich ist, wenn die Forderung der eigent-
lichen Diskontinuitat zur normalen Diskontinuitit der beiden dualen
Gruppen G und I' in einem Paar von inzidenten Elementen verscharft wird.
Man erhalt einen Fundamentalbereich fiir den Normalbereich von G, also
fiir den Bereich, der fiir die Funktionentheorie von ausschlaggebender
Bedeutung ist.

Das wesentlichste Hilfsmittel fiir die Untersuchung sind die iso-
metrischen Gebilde der Gruppe. Jeder Transformation 7'; aus G bzw. 7;
aus I' laflt sich ein solches Gebilde I7; bzw. B, zuordnen. Es besteht aus
den Punkten bzw. Ebenen®), in denen die Funktionaldeterminante der
Transformation den Betrag 1 hat. Ausfiihrlich:

1. Die Punkte von /I, erfiillen eine einparametrige Schar von Ebenen,
die alle durch einen Punkt s; der uneigentlichen Ebene gehen. Wir
nennen daher I7; den isometrischen Zylinder der Transformation 7';. Er
zerlegt die Ebenen durch s, und damit die Punkte des Raumes W (w, z)
(mit Ausnahme von s,) in drei Klassen: Inneres, Mantel, AuBeres von I7,.
Eine Ebene aus dem Inneren ist I7; als ,,Achse‘ zugeordnet. Jede Hau-
fungsebene von Achsen der I7; von G nennen wir eine Grenzebene von I'.

2. Die Ebenen von B, gehen durch eine einparametrige Schar von
Punkten, die einen Kreis auf einer Ebene o; durch den Nullpunkt er-
filllen. Wir nennen B, den isometrischen Kreis der Transformation ;.
Er zerlegt die Punkte von o; und damit die Ebenen in W (mit Ausnahme
von ¢;) in drei Klassen: Inneres, Rand, AuBeres von ;. Ein Punkt aus
dem Inneren ist P, als ,,Pol“ zugeordnet. Jeden Hiufungspunkt von
Polen der P, nennen wir einen Grenzpunkt von G.

Die Menge der Grenzpunkte von G heit die 1. Grenzmenge von G, die
Menge der Punkte aller Grenzebenen von I' heift die 2. Grenzmenge
von (. Die Komplementérmenge zur 1. Grenzmenge ist der Bereich B
der bedingten Diskontinuitit von @. Die Komplementirmenge zur
2. Grenzmenge ist der Bereich N der normalen Diskontinuitit von G
(Hauptsatz 2).

Als ein Fundamentalbereich fiir N erweist sich in einer linearen Gruppe

®) ,,Ebens‘* bedeutet im folgenden stets ,,analytische Ebene*, sofern nicht ausdriicklich
etwas anderes gesagt ist.
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1. Klasse mit normaler Diskontinuitit in einem Paar inzidenter dualer
Elemente die Menge R derjenigen Punkte, die samt einer Umgebung im
AuBeren aller isometrischen Zylinder von @ liegen (Hauptsatz 3). Man
gewinnt damit eine neue Darstellung des Normalbereichs

N =R+ R4 ... (Menge R -+ ihre Bilder).

Analog fiir die Bereiche B der bedingten Diskontinuitdt und N der
normalen Diskontinuitat der Ebenengruppe I

Der III. Teil enthilt Erginzungen und Hinweise auf folgendes: Der
Normalbereich N von G und der konstruierte Fundamentalbereich fiir N
sind konvex in bezug auf (analytische) Ebenen [1]. Der Rand von R er-
laubt unter Umstéinden Riickschliisse auf die Erzeugenden von G. Als
Spezialfall der allgemeinen Theorie hat man 1. fiir eine komplexe Variable
die Theorie von Ford, 2. eine Theorie der reellen linearen Gruppen
1. Klasse in zwei Variablen. Die Theorie der isometrischen Gebilde ist
ebenso (mit allen Auswirkungen auf die Bereiche der bedingten und der
normalen Diskontinuitét) moglich fiir normal-diskontinuierliche lineare
Gruppen 1. Klasse in » Variablen. Ein letzter Hinweis gilt der funk-
tionentheoretischen Bedeutung des Normalbereichs.

Mit der Theorie von Ford bin ich durch Herrn E. Peschl bekannt
geworden. Wertvolle Hilfe verdanke ich Herrn H. Behnke?) .

I. TEIL

Normalfolgen und Gruppen-Diskontinuitat
1. Grundlagen

Den folgenden Untersuchungen liegt der Raum R,(w, z) zweier kom-
plexer Verdnderlichen w = u + v, 2 = x + ¢y zugrunde. Wir betrachten
darin Gruppen G von linear-gebrochenen Transformationen mit kom-
plexen Koeffizienten
O WA Byp2 + Gy
A3, W + A3p2 + Qg3
Aoy W + Ag22 + gy
O3, W + G322 + Agz

7) Nach dem Abschlul der Arbeit hat Herr A. Ostrowski darauf hingewiesen, daf3
J. I. Hutchinson [8] nicht nur, wie Ford im Vorwort seines Buches erwahnt, als erster die
isometrischen Gebilde zur Abgrenzung von Fundamentalbereichen verwendet, sondern
sein Verfahren auch fiir zwei Variable skizziert, freilich alles nur fiir Gruppen mit in-
varianter Hermite-Form von der Charakteristik 1. Die Methode macht von der Invarianz
wesentlich Gebrauch. Der gefundene Fundamentalbereich ist ein solcher fiir das Innere der

invarianten Hyperkugel, also im allgemeinen nur fiir einen Teil des Normalbereichs
(vgl. Beispiele 6, 7).
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deren Determinante 4(a,,) nicht verschwindet, und denken uns dem-
entsprechend den R, durch eine uneigentliche Ebene abgeschlossen.
Statt (w, z) verwenden wir héufig homogene Koordinaten (w,: w,: w,),
die nicht alle drei O sein diirfen und nur bis auf einen gemeinsamen Faktor
bestimmt sind. Die Transformationen von G werden dargestellt durch

3
tw; = Zagw,, Aay) #0@=1,2,3), (2)
e=1
wo der (iiberall von 0 verschiedene) Proportionalitatsfaktor ¢(w,, w,, w;)

dazu beniitzt werden soll, das Maximum der Koeffizientenbetrige auf
einen endlichen Wert, etwa auf 1, zu normieren.

Die in den Koeffizienten und den Variablen symmetrische Form
p(w, w) = w; W, + w,w, + w,w,; = 0 der Gleichung einer Ebene zeigt,
daf} der vierdimensionalen Mannigfaltigkeit W der ,,Punkte w‘* die vier-
dimensionale Mannigfaltigkeit £ der analytischen ,,Ebenen ‘ gegen-

iiber steht. Man kann also dem Punktraum W den Ebenenraum .(5 dual
zur Seite stellen, indem man der Ebene w: w,w, + w,w, + w,w; = 0

~

im Punktraum W den Punkt o = (@;: @,: ;) im Ebenenraum

umkehrbar eindeutig zuordnet durch die Festsetzung tw, = w; (i =
1, 2, 3)8). Jede Gruppe von projektiven Punkttransformationen erzeugt
im Punktraum W eine homomorphe Gruppe I' von Ebenentransforma-

tionen, das ist im Ebenenraum 2 eine projektive Gruppe I" von Punkt-
transformationen. Einer Transformation §: (a,;) von G ist in I" 1-1-

deutig eine Transformation ¢ : (x,;) zugeordnet. Ihre Matrix geht durch

Transposition aus der Matrix der zu 8 inversen Transformationen S*
hervor: «,, = Z‘%—"—;(Aik das algebraische Komplement von a,, in der
ik

Determinante 4(a,)).

Der Ebenenraum £ ist ebenfalls projektiv abgeschlossen durch eine

uneigentliche Ebene, die durch w, = 0 gegeben ist. Ihr entspricht in W
der Nullpunkt O mit den Gleichungen w, = 0, w, = 0 und in £ die zwei-
dimensionale Mannigfaltigkeit der analytischen Ebenen durch O. Um-
gekehrt ist der uneigentlichen Ebene ¢, in W, die durch w; = 0 gegeben

ist, im Ebenenraum & der Nullpunkt Zw mit den Gleichungen cT)l =0,

8) Die Unterscheidung der Ebene w im Punktraum W vom ihr zugeordneten Punkt ©
im Ebenenraum J2 wird sich als niitzlich erweisen, insbesondere in den gleich folgenden
Konvergenzbetrachtungen iiber analytische Ebenen und spéter bei der Behandlung der
isometrischen Gebilde der Punkt- und Ebenengruppe.
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@y = 0 zugeordnet und in W die zweidimensionale Mannigfaltigkeit der

analytischen Ebenen durch ¢ .
Die Konvergenz einer Ebenenfolge definieren wir durch die Konvergenz
der zugeordneten Punktfolge im Dualraum. Jeder Satz iiber konvergente

Punktfolgen 148t sich von £ sofort auf die Mannigfaltigkeit £ der Ebenen
in W iibertragen. So folgt aus der Abgeschlossenheit von W und 2:

Satz 1. Jede unendliche Folge von Punkten hat in W mindestens einen
Haufungspunkt. Jede unendliche Folge von Ebenen hat in 2 mindestens
esne Hdaufungsebene.

Die Konvergenz einer Ebenenfolge w(’) in 2 (» = 1, 2, ...) gegen eine
Grenzebene w, die wir mit Hilfe der Punktkonvergenz im Dualraum
erklart haben, ist gleichbedeutend mit der Konvergenz der Koeffizienten
in den Ebenengleichungen:

wi(v‘)—> w; (i = 1’ 2’ 3) ’

wobei die w; nicht alle 0 sind. Das heifit, diese Ebenenkonvergenz ist
identisch mit der Konvergenz der Ebenen als Punktmannigfaltigkeiten;
betrachtet man die einzelne Ebene w(*) als zweidimensionale Punktmenge
M,, so konvergieren die M, gegen eine Grenzmenge M in dem Sinne:
1. Jeder Haufungspunkt von Folgen p, (p, ein Punkt von M,) gehort
zu M ; dagegen 2. nicht jeder Punkt von M braucht als Haufungspunkt
solcher Folgen p, aufzutreten (vgl. Beispiel 5, SchluB3).

2. Eigentliche Diskontinuitit

Wir wollen jetzt iiber die Transformationen (1) bzw. (2) der zu be-
trachtenden Gruppen G besondere Voraussetzungen machen.

Punkte, ebenso Punktmengen, des Grundraumes, die durch Transfor-
mationen von G auseinander hervorgehen, nennen wir dquivalent. Unter
einem Bereich verstehen wir zunachst eine offene Punktmenge, die nicht
zusammenhéngend zu sein braucht; vielfach werden wir eine solche
Punktmenge durch Randpunkte erweitern; eine derart erweiterte Punkt-
menge nennen wir immer noch einen Bereich.

Definition 1. Die Gruppe G heillt eigentlich-diskontinuierlich (e.-d.) in
etnem Bereich A, wenn fiir jeden Punkt p von A4 folgendes gilt:
1. p ist nur Fixpunkt bei endlich vielen Transformationen T,...,
T, aus G ;
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2. in einer geniigend kleinen (vierdimensionalen) Umgebung U (p) von p
gibt es keine Punkte, die mittels Transformationen aus G aquivalent
sind auller mittels 7', ..., T',.

Die Gruppe @ heillt e.-d. tn einem Punkt p, wenn es zu ihm eine Um-
gebung U (p) gibt, in der G e.-d. ist.

E.-d. (schlechtweg) nennen wir jede Gruppe, die einen nicht leeren
Bereich eigentlicher Diskontinuitat besitzt.

Insbesondere gilt fiir einen Punkt p, in dem die Gruppe e.-d. ist: p ist
.kein Haufungspunkt von dquivalenten Punkten; und falls p gegeniiber
keiner Transformation von G (auler der Identitat) fest bleibt, so gibt es
stets eine Umgebung U (p), die keine zwei zu einander &aquivalenten
Punkte enthalt.

Analog definieren wir die eigentliche Diskontinuitit der Gruppe I' in
einer Ebene o des Punktraums W.

Definition 2. Man sagt von der Gruppe G, sie enthalte infinitesimale
Transformationen, wenn es bei beliebig klein vorgegebener positiver Zahl ¢
zu jedem Punkt (w,2) eines Bereichs aquivalente Punkte (w’, 2’) # (w, 2)
gibt, deren Koordinaten den Ungleichungen |w/ — w| < ¢, |2/ —2| < ¢
geniigen.

Aus den Definitionen 1 und 2 folgt sofort

Satz 2. Eine e.-d. Gruppe enthilt keine infinitesimalen Transforma-
ttonen.

Satz 3. In jeder Umgebung U (p) eines Punktes p, in dem G e.-d. ist, gibt
es einen Punkt q, der bei keiner Transformation (£ I) von G fest bleibt.

Beweis: Da @ in p e.-d. sein soll, konnen in einer geniigend klein
gewahlten Umgebung U (p) nicht Fixpunkte von unendlich vielen Trans-
formationen aus G liegen. Die Fixpunkte von endlich vielen linearen
Transformationen (s I) konnen aber keine volle Umgebung von p aus-
fiillen.

3. Normalfolgen und ihre Grenzelemente

Wir stellen in den §§ 3 bis 5 die allgemeinen Ausfiihrungen von
P. J. Myrberg (Acta 46), soweit sie fiir uns wichtig sind, in einer unsern
Zwecken angepaBten Formulierung fiir zwei Variable zusammen. Dabei
soll der Gesichtspunkt der Dualitit deutlich zur Geltung gebracht
werden.

Jede unendliche Folge von linearen Transformationen enthédlt min-
destens eine konvergente Teilfolge, d. h. eine Folge F von Transfor-
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mationen S,(» = 1,2, ...) der Form (2), deren normierte Koeffizienten
a;. gegen endliche Grenzwerte b;, streben, die nicht samtlich 0 sind.

Definition 3. Jede solche Folge I’ von Transformationen S, heiflt eine
Normalfolge, T = (b,,) ihre Grenztransformation; der Rang » der Grenz-
matrix heillt der Rang von F'.

Die Grenztransformation 7' einer Normalfolge ¥ ist dann und nur
dann nicht entartet, wenn »(¥) = 3 ist. In diesem Fall konvergieren die
Transformationen S;'8,., (v =1, 2,...) mit wachsendem » gegen die
Identitat. Solche Transformationenfolgen koénnen in den spater aus-
schlieBlich verwendeten e.-d. Gruppen nicht vorkommen (Satz 2). Des-
halb betrachten wir nur noch Normalfolgen mit entarteter Grenztransfor-
mation.

Eine entartete Grenztransformation ist notwendig in gewissen Punkten
des Raumes nicht definiert, und zwar entweder a) in einem Punkte, oder
b) in den Punkten einer Ebene. Die iibrigen Punkte werden

im Fall a), wo r(F) = 2 ist, auf eine Ebene,
im Fall b), wo r(F) = 1 ist, auf einen Punkt abgebildet.

Definition 4. Die Mannigfaltigkeit der Bildpunkte bei der Grenz-
transformation heilt das 1. Grenzelement L, (F) der Normalfolge F.

Definition 5. Die erwahnten Ausnahmepunkte gegeniiber der Grenz-
transformation sind diejenigen Punkte des Originalraums, deren homo-
gene Koordinaten bei der Grenztransformation simtlich 0 werden. Ihre
Mannigfaltigkeit heiflt das 2. Grenzelement L, (F') der Normalfolge F'.

L,(F) ist im Fall a), wo r(F) = 2 ist, ein Punkt,
im Fall b), wo r(F') = 1 ist, eine Ebene,

wie die folgende Ubersicht ausfiihrlich zeigt.

a) r=2: b) r=1:
twy = by w, + by wy + byw, t w) = by, wy + bipw, + bygw,
twy = by wy + by, + baywy ) (3) bw, = ¢y Wy (4)
twy=c¢; Wy + ¢, W, twy = ¢, W) )

Bei » = 2 erhalt man eine, bei » = 1 zwei lineare Gleichungen zwischen
Wy, Wy, wy; d. h.
‘a) L, ist eine Ebene, b) L, ist ein Punkt.
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L, besteht aus denjenigen Punkten w, deren Koordinaten den Glei-

3
chungen tw, = X'b,,w, = 0 (1 = 1, 2, 3) geniigen, das bedingt im Fall

k=1
tw{ = by, w; + b wy + b yw; =0
a) r=2: . , (5)
twy = by wy + bpy Wy + bz wy =0

also bei r = 2 zweli lineare Gleichungen, bei r = 1 eine lineare Gleichung
zwischen w,, w,, w,;, d. h.

a) L, ist ein Punkt, b) L, ist eine Ebene.

Erginzung zum Fall » = 2: Durch die Grenztransformation (3) wird
jeder Punkt von W, der nicht mit L, zusammenfallt, auf einen bestimm-
ten Punkt der Ebene L, abgebildet. Seine Koordinaten w] sind stetige
Funktionen der Koordinaten w; des Originalpunkts. Man kann den Bild-
punkt auf L, beliebig festlegen durch eine Gleichung

oq Wy + Wy - g wy = 0, (7)
die von der Gleichung
Cwy + cauwy —twy =0, (8)

welche L, definiert, linear unabhingig ist. Ersetzt man in (7) die w} durch
die w; vermoge (3), so ergibt sich eine lineare Gleichung in w;. Die zu dem
beliebig festgelegten Bildpunkt p gehorenden Originalpunkte liegen also
auf einer Ebene «. Diese geht durch den Punkt L,, denn dessen Koordi-
naten befriedigen nach der Ausiibung der Grenztransformation die in w/
homogene Gleichung (7).

Zusammenfassend erhalten wir

Satz 4. Die Grenztransformation einer Normalfolge vom Rang 2 bildet
alle Punkte von W mit Ausnahme des Punktes L, auf eine Ebene L, ab, und
zwar ist jeder Punkt p von L, das Bild aller Punkte (mit Ausnahme von L,)
auf der Ebene, die durch p und L, geht. — Die Grenztransformation einer
Normalfolge vom Rang 1 bildet alle Punkte von W auf esnen Punkt L, ab,
mit Ausnahme der Punkte einer Ebene L,.

Wendet man auf die Punkte einer Menge M die Transformationen §,
einer Normalfolge F' an, so erhilt man eine unendliche Folge von Punkt-
mengen M, = S,M. Diese besitzen wenigstens einen Haufungspunkt,
d.h. einen Punkt, in dessen simtliche Umgebungen unendlich viele
Mengen M, eindringen.
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Satz 5. ®) Enthdlt die abgeschlossene Menge M keinen Punkt von L, (F),
80 konvergiert jede aus einem Punkt p von M entstchende Punkifolge
p, = S,p gegen den Bildpunkt Tp, der dem Punkt p durch die Grenz-
transformation T von F auf L,(F) zugeordnet wird, und diese Konvergenz
st gleichmdsstg fir alle Punkte von M. Dagegen 1ist die gleichmdissige
Konvergenz unmaoglich in einer Menge M, die Punkte von L,(F') im Inneren

enthdlt.

Folgerung : Jeder abgeschlossene Bereich, der zu L, fremd ist, kann mit
hochstens endlich vielen Mengen M, = S, M (M abgeschlossen und fremd
zu L,) Punkte gemeinsam haben.

Definition 6. Die Folge der zu F =(8,) (v=1, 2, ...) inversen Trans-
formationen S, = S soll die zu F ¢nverse Folge heilen und mit F* be-
zeichnet werden.

Definition 7. Unter einer umkehrbar normalen Folge F verstehen wir
eine solche Folge, die samt ihrer inversen F'* normal ist. r und r* = r(F*)
seien die zugehorigen Rangzahlen, L, und L; = L,(F*) (h = 1, 2) die
Grenzelemente.

Jede unendliche Folge von Transformationen aus G enthélt eine um-
kehrbar normale Teilfolge.

Satz 6. L, ist in L; enthalten (also auch L] in L,).

Beweis1%): Fall a) r = 2. p sei ein beliebiger Punkt der Ebene L,;
q sei ein Punkt der Ebene «, die durch p und den Punkt L, bestimmt
ist, und zwar sei ¢ so gewahlt, daBl er weder mit L, zusammenfillt, noch
auf L; liegt, sonst beliebig auf o.

Fall b) »r = 1. p sei der Punkt L, ; ¢ sei ein Punkt, der weder auf der
Ebene L,, noch auf L; liegt, sonst beliebig.

Die Punkte g, = S,q (S, aus F') konvergieren gegen p, nach Satz 4.
Angenommen, p lige auBerhalb L,. Dann gibt es nach Satz 5 eine Um-
gebung U (p), deren Bilder bei der Ausfithrung der Transformationen
von F'* gleichmBig gegen eine Punktmenge auf L; konvergieren. Anderer-
seits gibt es in U (p) unendlich viele Punkte ¢, =8, g, deren Bilder S;!g,
bei der Transformationsfolge F* mit ¢ zusammenfallen. ¢ war aber auBer-
halb L; gewahlt. Folglich war die Annahme unzuléssig, daBl p auBerhalb
L; liege. L, ist also ganz in L; enthalten.

Satz 7. r + r* < 3.

9) Beweis bei Myrberg, Acta 46, 226 f.

19) Einen anderen Beweis dieses grundlegenden Sachverhalts findet man fir Folgen
vom Rang 1 im II. Teil, unter Satz 22.
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Zum Beweis braucht nur gezeigt zu werden, da nicht r und r* gleich-
zeitig 2 sein konnen. Das folgt aber unmittelbar. Denn z. B. im Fall
r* = 2 ist L, ein Punkt, nach Satz 6 also auch L, ein Punkt, also r = 1.

Beispiel 1
m, n seien zwei beliebig, aber fest gewahlte ganze komplexe Zahlen # 0.
Man betrachte die Transformation

w=w+m tw, = w;, + muw,
/
T bzw. homogen ( tw, = w,+ nw, . (*
2 =z4n tw, = W,

Die Potenzen T,‘;.,” (m,n # 0 fest; » =0, 1, 2, ...) bilden eine Normal-
folge F vom Rang r = 1 mit den Grenzelementen
L,: der Punkt q(mw,, nw,, 0), d.i. q(oo,%—) auf ¢,

L,: wy =0, d.i. ¢, (unabhingig von m, n).

Die Folge ist umkehrbar normal, und wegen T, ,=T_ _ hat die
inverse Folge dieselben Grenzelemente.

Die durch 7, , induzierte Transformation ist

[ ~

& = = Ao =
~ —mow—mnl+1 bzw. - -
T { Aws = w
B F homogen ~'2 L 5
("= = Y Awg = —mw, —nw, + w;
—mow—n+ 1

\

Die Potenzen ;;’nm (m,n 5% 0 fest; » =0, 1, 2, ...) bilden eine Normal-
folge & von Punkttransformationen in 2 vom Rang ¢(®) =1 mit den
Grenzelementen

A,: der Nullpunkt in Q (unabhéangig von m, n),
12: m&l -+ ng)z = 0, d. i. eine Ebene durch den Nullpunkt in Q. _
Diezu @ inverse Folge ist normal und hat dieselben Grenzelemente wie @ .

Im Punktraum W ist A, = /1; die uneigentliche Ebene eco; Ay = A,
ist das Ebenenbiischel mit dem Triger ¢ (oo , %) auf ¢ .
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Beispiel 2

a) m,n seien fest gewahlte komplexe Zahlen, die der Bedingung
|m| <1< |n| geniigen. Man bilde die Transformation

/ /
tw; = mw,
/I —
w =mw
T a bzw. homogen { tw) = nw
s J 2 2
g ==uz
‘tw; = wy

und betrachte die Folge T, ,(»=1,2,...). Es ist eine Normalfolge
mit den Grenzelementen

L, : (0, c0) bzw. (0, w,,0) und L,:z = 0 bzw. w, = 0.
Die Folge der inversen Transformationen hat die Grenzelemente

L;: (o0, 0) bzw. (w;, 0,0) und L;: w = 0 bzw. w, = 0.

b) Die Transformationen 77, , mit [m| = |n| > 1 bilden eine Folge
vom Rang r =2 mit L, = ¢, L, = (0, 0). Die inverse Folge hat den
Rang 7* = 1. Thre Grenzelemente sind L] = (0, 0), L, = ¢_.

Die induzierten Folgen haben die Grenzelemente

a) A,: (1,0,0), d.i. die Ebene w, = 0, zugleich L ;
Ay: =0, d.i. das Biischel der Ebenen durch w, = w, = 0,
also mit dem Triger L, ;

(0,1, 0), d.i. die Ebene w, = 0, zugleich L,;
wy = 0, d.i. das Biischel der Ebenen durch w, = w, = 0,
also mit dem Trager L, ;

b) A;: (0,0, 1), d.i. die Ebene w, = 0, zugleich L; ;
Ay @y =0, d.i. das Biischel der Ebenen durch (0, 0) = L};
w; = 0, d.i. das Biischel der Ebenen durch (0, 0) = L,;
(0,0,1), d.i. die Ebene w, = 0, zugleich L,.

4. Normale Diskontinuitit

Definition 8. Eine Folge von Transformationen

w = f.(w, 2)

.
n-*

4 ¥ = gn(w, 2)
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heilt im Punkt p konvergent, wenn es zu p eine Umgebung U (p) und eine
(nicht entartete) Transformation

w =1w, 2)
S, : '
7 =10 (w, 2)

des Typus (1) gibt, so daB3
lg())(fn (w ’ Z) > gn(w, Z))
1 (fa(w, 2) , gu(w, 2))

Paare von Folgen von Funktionen sind, die sich in U (p) regulir verhalten
und dort im elementaren Sinn konvergieren. — Entsprechend fiir Punkte
auf der uneigentlichen Ebene.

Eine Folge von Transformationen heillt in einem Bereich konvergent,
wenn sie in jedem Punkt dieses Bereichs konvergiert.

Definition 9. Eine diskontinuierliche lineare Gruppe G ohne infini-
tesimale Transformationen heilt normal-diskontinuierlich (n.-d.) in einem
Bereich A, wenn es in jeder unendlichen Folge von Transformationen aus

G eine Teilfolge gibt, die in jedem abgeschlossenen Teilbereich von A
gleichméBig konvergiert.

Wir sagen auch, G sei n.-d. in jedem Punkt von 4, und die Menge der

Punkte, in denen G n.-d. ist, nennen wir den Normalbereich von G. Er ist
ein offener Bereich.

N.-d. (schlechtweg) nennen wir jede Gruppe, die einen nicht leeren
Normalbereich besitzt.
5. Die Grenzelemente von Ebenenfolgen im Punktraum. Gruppen 1. Klasse

Wir fithren folgende Bezeichnungen ein:
F sei eine umkehrbar normale Folge von Punkttransformationen S, in W ;

S, = @) > T = (by), (G k=123);
F* die zu F inverse Folge S, = S;' = (a{}*) — T* = (b},) ;

? die durch F induzierte Folge von Ebenentransformationen ¢, in Q:
0, = (0‘?1?) =7 = () ;

é die @ zugeordnete Folge von Punkttransformationen in 9. Rang und

Grenzelemente seien entsprechend bezeichnet mit r, L, bzw. o, 4,
(h=1,2).

Es gilt «}) = af)"; daraus folgt, daB die durch F induzierte Folge eben-
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falls umkehrbar normal ist, und zwar ist ¢ = r*, da der Rang einer
Matrix gegeniiber Transposition invariant ist. Die Grenzelemente einer
Folge von Ebenentransformationen stehen mit den Grenzelementen der
inversen Folge der zugehorigen Punkttransformationen in einem ein-
fachen Zusammenhang:

Satz 8. 1. Jede Ebene von A, inzidiert mit jedem Punkt von L, .

I1. Jede Ebene von A, inzidiert mit jedem Punkt von L.

Falls man zum Punkt w in W die duale Ebene w in Q einfiihrt, so hat man

fir die Punktmengen A, und die Ebenenmengen E; die Aussagen

I. Jede Ebene von L] inzidiert mit jedem Punkt von A,
II. Jede Ebene von 1~}; inzidiert mit jedem Punkt von A,;

und man erkennt, dafl die Behauptung II fiir eine Folge ¥ identisch ist
mit der Behauptung I fiir die inverse Folge F'* im Dualraum. Es geniigt
also, etwa I zu beweisen.
Beweis von I. 4, besteht aus allen Ebenen w, deren Koordinaten die
Gleichungen
3
w;=2X B, (1=1,2,3) (9)

k=1

befriedigen, wo B, = lim o} = lim a{)* = b;, ist. L; besteht aus allen
V> 00 V->» 00

Punkten w’, deren Koordinaten die Gleichungen

3
2byw, =0 (1 =1,2,3) (10)
k=1

befriedigen. Die Gleichung der Ebene «’ in Punktkoordinaten ist

3
2 o} w; = 0. Setzt man darin nach (9) w; = 2'b;; w,, so ergibt sich
k=1

3 3

2 0 (X byw;) =0 .
k=1 t=1

Diese Gleichung gilt aber identisch in w,, wenn w’ eine Losung von (10)

darstellt. Jeder Punkt von L; liegt also auf jeder Ebene von A,, wie in I

behauptet wurde.

Aus Satz 6 entnimmt man ausfiihrlich die folgende Anordnung der
Grenzelemente.
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a) Im Fall g =r* = 2:
A, ist das Ebenenbiischel mit dem Triger L ;
A, ist die Ebene L.
b) Im Fall p =7r*=1:
A, ist die Ebene L ;
A, ist das Ebenenbiischel mit dem Trager L.

Dieser Sachverhalt gestattet, den zu Satz 4 dualen Satz folgender-
mafen zu fassen:

Satz 9. F sei eine umkehrbar normale Folge von Punkttransforma-
tionen §,, @ die durch F induzierte Folge von Ebenentransformationen
0,, ¢ eine Ebene, die nicht zu A, gehort, also L; nicht ganz enthalt. Die
Grenzebene & der Ebenenfolge S, ¢ ist

a) im Fall r* = 2: die Ebene durch den Punkt L; und den Schnittpunkt q
von & mit Ly ;

b) im Fall r* = 1: die Ebene L.

Beweis: a) 4, ist das Ebenenbiischel durch den Punkt L;. Eine Einzel-
ebene 4 von A, ist bei der Grenztransformation 7" von F die Bildebene von
allen Ebenen « desjenigen Ebenenbiischels, das durch A und A, bestimmt
wird, also von allen Ebenen « durch den Punkt ¢ = [4, L;], da 4, = L;
ist. Die Anfangsebene ¢ wird also auf die Ebene abgebildet, die durch die
Punkte L; und [, L;] bestimmt ist.

b) Satz 8 zeigt unmittelbar: ¢ = L.

Man erhalt nach dem Gesagten eine vollkommene Analogie im Ver-
halten der Punkt- und Ebenentransformationen, wenn man sich auf
Gruppen beschrinkt, aus deren Transformationen sich nur Normal-
folgen vom Rang r = 1 bilden lassen. Solche Gruppen heifien nach
Myrberg Qruppen 1. Klasse. Die genannte Analogie ist andererseits nur
bei Gruppen 1. Klasse moglich, weil nach Satz 7 die Rangzahlen einer
Normalfolge und der durch sie induzierten Folge der Bedingung r + o <3
unterworfen sind. In allen folgenden Betrachtungen ist nur noch von
Qruppen 1. Klasse die Rede.

6. Grenzmengen und Gruppendiskontinuitit. — Bedingte Diskontinuitit

Definition 10. Wir bilden die Vereinigungsmenge der ersten bzw.
zweiten Grenzelemente aller Normalfolgen aus @ und bezeichnen sie als
die erste bzw. zweite Grenzmenge {L,(@)} (b = 1, 2) der Gruppe.
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Wir bilden ebenso {A4,(I')} (A = 1, 2) fiir die Normalfolgen aus der
induzierten Gruppe I

Satz 10. Jede Grenzmenge ist abgeschlossen und gegeniiber G bzw. I’
imvariant.

Die Abgeschlossenheit folgt unmittelbar aus der Definition 10, die
Invarianz daraus, dafl das Grenzelement L, einer Normalfolge F' durch
irgend eine Transformation aus G iibergeht in das entsprechende Grenz-
element 7'L, der mit 7' umrahmten Normalfolge 7'F7T-1.

Aus den Definitionen 9 und 10 ergibt sich auf Grund der Satze 4 und 5:

Satz 11a. Der Bereich N der normalen Diskontinuitit von G st
N=W—{L,(G)} .

Ferner: Jeder Punkt von {L,} ist Haufungspunkt von &quivalenten
Punkten. ¢ ist also in keinem Punkt von {L,} e.-d. Umgekehrt braucht
aber nicht jeder Haufungspunkt von aquivalenten Punkten zu {L,} zu
gehoren. Man betrachte etwas das Beispiel 5 (Seite 102). Die zyklische
Gruppe der Transformationen

w =m’w

T,: mit |m|<|n|<1 =0, 4+1, +2,...)

d=n"z
enthilt nur die Normalfolgen F = (7,) und F* = (T';) (bzw. Teilfolgen
von ihnen) mit den Grenzelementen (homogen geschrieben)

L,=(0,0,1), Ly: w;=0,
L =(1,0,00, L;: wy=0.

Die Punkte der Ebene L, haben, mit Ausnahme des Fixpunktes w, =
wy = 0, das Grenzelement M = (0, 1, 0) auf L;, und die Punkte der
Ebene L; haben, mit Ausnahme des Fixpunktes w, = w, = 0, das
Grenzelement M* = (0, 1, 0) auf L,. Jede Normalfolge aus G erzeugt aus
jedem Punkt von N = W — {L,} eine Folge von aquivalenten Punkten,
die gegen L, oder L; konvergieren. Ein Punkt von {L,} dagegen wird,
wenn er nicht zu {L, } gehort, gegen M = M* konvergieren. Allgemein:
Der Bereich £ der eigentlichen Diskontinuitiat besteht aus £ = W —
{L,} — { M}, unter { M} die Menge der Haufungspunkte auferhalb { L, }
verstanden, nach denen Punkte aus {L,} konvergieren. Weil {L,}
invariant und abgeschlossen ist, ist { M} in {L,} enthalten.

Fiir die Funktionentheorie kommen, wie spater dargelegt wird, nur
n.-d. Gruppen in Frage. Neben dem Normalbereich N spielt der Bereich ¥
der eigentlichen Diskontinuitét eine untergeordnete Rolle. Dagegen ist es
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fiir manche Zwecke niitzlich und wird schon durch die duale Stellung der
1. und 2. Grenzmenge nahegelegt, den Bereich B = W — {L,} zu be-
trachten. Zu seiner Abgrenzung bediirfen wir einer gemeinsamen Kenn-
zeichnung aller Punkte auBerhalb { L, (()}. Dazu dient die

Definition 11. Die Gruppe G heillt bedingt-diskontinuierlich (b.-d.) im
Punkt p, wenn zu jeder vorgelegten Normalfolge ' aus G eine Umgebung
U (p) von p und in ihr ein Punkt ¢ samt einer Umgebung V¥ (q) sich an-
geben 1aft, so dafl bei der Ausfithrung der Transformationen von F' nur
endlich viele Bilder von <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>