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Quelques théorèmes de géométrie
Par Louis Kollros, Zurich

Dans les § 1—4 nous démontrerons très simplement quelques
théorèmes que Steiner a énoncés sans démonstration et nous ajouterons au
§ 5 une propriété de la congruence des tangentes à deux sphères.

Nous considérerons 4 familles de coniques déterminées par 2 cercles
du plan (ou plus généralement par 2 coniques quelconques): le faisceau
ponctuel (§1), le faisceau tangentiel (§2), les cercles tangents aux 2

cercles donnés c et c' et les suites récurrentes qu'ils peuvent former (§ 3),
enfin les coniques bitangentes à c et cr qui se répartissent en 3 séries,
les coniques d'une même série touchant les 2 cercles en 4 points alignés
2 à 2 sur l'un des 3 sommets de leur triangle polaire commun; au § 4

nous n'envisagerons qu'une de ces séries, celle qui interviendra dans
le §5.

§ 1. Faisceau ponctuel de cercles

Désignons par c o et cf o les équations ponctuelles des 2 cercles
donnés ; toutes les coniques du faisceau ponctuel qu'ils déterminent sont
aussi des cercles ayant pour équation c — Xc1 o; nous appellerons Cx

le cercle qui correspond à la valeur X du paramètre. L'équation —, X
c

montre que le cercle Cx est le lieu géométrique des points dont les puissances

par rapport aux 2 cercles donnés ont un rapport constant X k2, ou dont
les tangentes à c et c' ont le rapport k.

Les cercles c (centre 0), c' (centre O') et leur axe radical cx (centre O^)
correspondent respectivement à X 0, oo, et 1; le centre M! de C\ aura
la coordonnée projective X par rapport au point-unité O^, au point-zéro
O et au point-infini 0f\ donc:

(M' 0» OO>) ^~ l Ainsi :

Le centre Mf de Cx divise le segment OOf dans le rapport X ^jjy
Le cercle c^x du faisceau est réel si c et c' se coupent en 2 points réels;

son centre est le milieu M de 00;; c~x est le lieu des points P dont les

puissances par rapport à c et c' sont égales et de signes contraires; si
la perpendiculaire t en P à la droite PO coupe le cercle c aux points A
et jB et c1 en Ar et Br, on aura:

ou
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Quand P varie sur le cercle C-x, la droite t enveloppe une conique de

foyers 0 et 0r dont c_x est le cercle principal; cette conique (enveloppe
des droites t qui sont coupées harmoniquement par c et cf) touche aussi
les tangentes à c et c' en leurs 4 points communs. Cette propriété pro-
jective reste vraie si c et c! sont des coniques quelconques. On voit donc

que:
Uenveloppe des droites coupant harmoniquement deux coniques c et cf

est une conique h qui touche les huit tangentes à c et c1 en leurs points
communs.

h est la conique harmonique tangentielle ou conique contravariante de
c et c!.

En particulier, si c' dégénère en 2 droites isotropes issues d'un point F,
on a le théorème:

,,Les cordes d'une conique c vues d'un point F sous un angle droit,
enveloppent une conique h ayant F pour foyer et sa polaire par rapport
à c pour directrice/4

Si F est le centre de c, l'enveloppe h est un cercle concentrique.
Corrélativement :

Le lieu des points tels que les tangentes menées à deux coniques c et c!
forment un groupe harmonique est une conique h qui passe par les huit
points de contact des tangentes communes a c et c1.h est la conique harmonique

ponctuelle ou conique covariante de c et cf

Si cr se réduit aux 2 points cycliques du plan, h est le cercle orthop-
tique de la conique c.

Un autre cercle de la famille c^ est celui qui a pour diamètre le segment
limité par les 2 centres de similitude / (intérieur) et E (extérieur) des
2 cercles donnés; c'est le cercle de similitude s de c et c'\ il correspond à

r l r\2la valeur &= — ou A j — I r et rf désignant les rayons des cercles

c et c1. Puisque les tangentes menées d'un point quelconque de s aux 2

cercles c et cf sont proportionnelles aux rayons, on voit que:

Le cercle de similitude de deux cercles donnés est le lieu des points d'où
Von voit ces cercles sous le même angle.

Parmi les cercles c^ il y en a 3 qui dégénèrent en paires de droites:
l'un se compose de l'axe radical et de la droite à l'infini, les 2 autres sont
des cercles de rayon nul (paires de droites isotropes) de centres Y et Z.
Si X désigne le point à l'infini de l'axe radical, XYZ est le triangle polaire
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commun à tous les cercles c^. En général, le lieu des centres des coniques
d'un faisceau ponctuel est une conique circonscrite au triangle polaire
commun; pour un faisceau de cercles, cette conique lieu des centres se

réduit à la droite 00' et la droite à l'infini.

§ 2. Faisceau tangentiel déterminé par deux cercles

Cette famille comprend toutes les coniques c\ inscrites au quadrilatère
des 4 tangentes communes aux 2 cercles donnés c et c;; il y en a 3 qui
dégénèrent en paires de points. Le lieu des centres de ces coniques étant
la droite 00', on pourra faire correspondre à chacun des cercles c^ du
§ 1, la conique c^ qui a le même centre ; au cercle de similitude correspond
la paire de points / et E ; à l'axe radical cx correspondra la seule parabole
cx du faisceau tangentiel; son foyer est le milieu M du segment 00r.
Soit P un point quelconque de l'axe radical et t la perpendiculaire en
P à la droite PM; t détermine sur c et c' des cordes 2s et 2s' (réelles ou
imaginaires). Si a et a' sont les distances de P aux milieux de ces cordes,
on aura a a' puisque M est le milieu de OO! et (a + s) (a — s)

(a'+ s') {af — s')
ou a2 —a'* s2 — s'2

puisque P est sur l'axe radical; donc s — s'. Ainsi:

L'enveloppe des droites qui déterminent sur deux cercles donnés des cordes

égales est une parabole ayant pour tangente au sommet Vaxe radical des

deux cercles et pour foyer le milieu du segment limité par leurs centres.

En faisant tourner la figure autour de l'axe 00', on voit que: ,,Tous
les plans coupant deux sphères suivant des cercles égaux enveloppent un
paraboloïde de révolution ; son foyer est le milieu de la ligne des centres ;

le plan tangent au sommet est le plan radical des deux sphères."

Plus généralement, si F et F' sont les 2 points de l'axe 00' tels que:

F0 / + F'° h

le milieu de FFf divisera le segment 00' dans le rapport k2 A et sera
donc le centre du cercle c^ et de la conique c^. Si l'on joint F (ou F')
à l'un quelconque des points P' de la circonférence c^ et si l'on mène

par P' la perpendiculaire à FP', cette droite détermine sur les cercles
donnés c et c' des cordes 2s et 2sf dont le rapport est égal à k.
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En effet, si a et a' sont les distances de Pr aux milieux de ces cordes,
on aura: a kaf puisque FO k-FOr

et (a+ s) (a — s) _ « _ t
(a'+«')(a'—*')

puisque P/ est sur le cercle c^; donc a2 — s2 &2a/2 — &2s'2 et par suite

Quand P' varie sur le cercle c^, la perpendiculaire à P'F enveloppe
la conique c^ dont ex est le cercle principal.

Si k —f, la conique de seconde classe c se réduit aux 2 centres de

similitude / et E,
Ainsi: Les droites qui coupent deux cercles donnés suivant des cordes

dont le rapport k est constant, enveloppent une conique du faisceau tangentiel
déterminé par les deux cercles.

Lorsque k varie, on obtient toutes les coniques du faisceau. Leurs
foyers forment une involution dont les points doubles sont les centres O

et Of des 2 cercles; si ce sont les foyers imaginaires qui sont sur la ligne
des centres, les foyers réels correspondants sont sur le cercle de
diamètre 00 '.

Ce théorème, trouvé dans un manuscrit de février 1825, a été énoncé
sans démonstration par Steiner (O. c, t. II, p. 467); il l'avait envoyé
en 1827 au rédacteur des Annales de Mathématiques de Montpellier,
qui le publia plus tard — peut-être par erreur — sous un autre nom.

§ 3. Chaînes fermées de cercles et de sphères

Les cercles tangents à 2 cercles donnés Cetc forment 2 séries distinctes
suivant que les points de contact sont alignés sur le centre intérieur /
ou sur le centre extérieur E de similitude. Nous considérerons seulement
la série des cercles i qui peut donner lieu à des chaînes fermées. Il faut
pour cela que les points d'intersection des cercles O et c soient
imaginaires; en outre les points de contact doivent être alignés sur / si l'un
des cercles est intérieur à l'autre, et sur E si les 2 cercles sont extérieurs.

Voici les démonstrations les plus simples des théorèmes énoncés par
Steiner (O. c, 1.1, p. 135, n° 11, 160, 225 et 455—457, n°8 80—83), mais
qu'il n'a démontrés ni dans ses publications, ni dans ses manuscrits1):

1) Des démonstrations plus compliquées ont été trouvées par Clausen (Crelle, t. 6, 7

et H); Ostwalds Klassiker, Nr. 123, p. 112 à 123, et par Bûtzberger : Ûber bizentrische
Polygone, Steinersche Kreis- und Kugelreihen (Teubner 1914; p. 33 à 48).
Voir aussi mon premier travail sur cette question: Comm. math. helv. vol. 4, p. 97—101.
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I. On donne dans le plan deux cercles C et c (c intérieur à C); on trace

un cercle ix tangent à C et c, puis un deuxième cercle i2 tangent à il9 G et c;
un troisième i3 tangent à i2, C et c, etc. Si, après u révolutions autour
de c, on trouve un cercle in tangent au premier il9 la chaîne des cercles

inscrits se fermera toujours, quelle que soit la position du cercle initial ix\
pour qu'il en soit ainsi, il faut et il suffit qu'il existe entre les rayons R
et r des deux cercles donnés et la distance d de leurs centres, la relation :

(i?_r)2_4i?r tg«—= <ï« (1)
n

En effet, la relation est évidente dans le cas de 2 cercles concentriques
jj r(d 0); tous les cercles i ont alors le même rayon ; ils doivent

être vus du centre commun des 2 cercles donnés sous l'angle pour

que la chaîne se ferme après u tours avec le nme cercle ; un triangle

rectangle dont le côté opposé à l'angle — est et le côté adjacent
n JL

VRr, donne la condition de fermeture:

un R — r 2 ^uti (R — r)2
tg — —-=- ou tg2 —B n 2VRr 6 n

Or, on peut toujours transformer les 2 cercles non sécants C et c en
cercles concentriques par une inversion; il suffit de prendre comme centre
d'inversion l'un des 2 points Y ou Z, cercles de rayon nul du faisceau
ponctuel (C, c) ; tous les cercles de ce faisceau coupent orthogonalement
les cercles passant par Y et Z ; ces derniers se transforment en un faisceau
de droites; les premiers (C, c) se changeront donc en cercles concentriques.

Soient A, B et a, b, les points d'intersection de C et c avec la ligne
des centres; le birapport:

A a Odo b B „
I 1 1 1 1 1

(Flg* 1]

m Aa bB

est conservé par l'inversion, ainsi que les nombres u et n; mais pour les
cercles concentriques, ce birapport est

4Br g n '
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(R — r)2 — d2 2U7t n, /1Non a donc: —~ ta2— • C est la relation (1).4tRr & n v '

Exemple: R 9, r 2, w 1, n 6; il faut que d 5 pour que
la chaîne se ferme.

Si les cercles sont extérieurs, le birapport invariant est (fig. 2):

A O B b o a
I 1 f—M (Fig. 2)

R _J_ d 4- r\ (d, R r\ dï R -i- r\* UTZ
— tg2 —-' 2r-2R 4Rr

d'où

(R + r)2 + 4Rr tg2 — d2 • (1;)
n

Pour R — r et d 4r, on a tg2 — 3 ; donc w 1 et n 3.

II. Po^r des cercles tracés sur une sphère (ou des cônes de révolution
de même sommet), la suite des cercles i (ou des cônes i) se ferme si Von

a la relation :
ni irr

cos (R T r) ± 2 sin R sin r tg2 — cos d ; (2)
n

(les signes inférieurs correspondent au cas où les cercles donnés sont
extérieurs l'un à l'autre).

En effet, les cercles, les nombres u et n et le birapport (AbaB) sont
conservés par une projection stéréographique ; les 4 termes du birapport
sont maintenant les sinus de 4 angles inscrits, moitiés des angles au centre
ou des arcs correspondants; on a donc:

R + d — r R — d — rsin sin 7 .._,2 2 cos a—cos (ii — r) 2un
sin r sin R 2 sin r sin R n

d'où la relation cherchée 2) pour c intérieur à C.

III. Si l'on fait tourner chacun des cercles il9 i2, du n° 1 autour
d'un de ses diamètres, on a une série de sphères 8l9 s2, formant une
chaîne fermée lorsque:

tg2 —
^ ~T\ ~— (c intérieur à C) (\ff)& n 4Rr ' v
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Il existe alors une deuxième série de sphères 8l9 82, dont chacune
touche la précédente et toutes les sphères sx, s2, de la première série.

Si Vune des 2 chaînes se ferme après u tours avec la nme sphère, l'autre
se ferme nécessairement aussi après U tours avec la Nme sphère, les 4 nombres

u, n, U, N étant liés par la relation :

u_ U J_
n + N ~ 2

Dans les manuscrits de Steiner, on n'a pas trouvé la démonstration
de ce théorème; Geiser en a publié une à la fin de son livre: ,,Einleitung
in die synthetische Géométrie" (§ 28; p. 172—183); le calcul assez long
de Geiser peut être évité par la considération suivante :

Si l'on coupe toutes les sphères 8l9 82i par le plan perpendiculaire
au plan des cercles G, c mené par la ligne des centres, on a une série de
cercles tangents aux 2 cercles extérieurs de diamètres Aa R-\-d — r
et bB R — d — r (fig. 1) dont la distance des centres est R + r. Pour
avoir la condition de fermeture de la chaîne Sl9 S2, il faut donc

remplacer dans la formule ]/) R+r par ~ R — r, d par R + r,

iRr par Aa-bB (R — r)2 — d2, u par U et n par lY; on a ainsi:

C'est la valeur inverse de 1;/); donc les 2 angles —et —-sont cornplé-
n xV

un Un n u U 1
mentaires; f--—= —- et {-Tr —

n N 2 n N 2

Si l'on a, par exemple, 3 sphères sl9 s2, s3 qui se touchent (u — 1,

n 3), les sphères qui leur sont tangentes formeront une chaîne fermée
au premier tour avec la 6me sphère (U 1, N — 6). Ou bien, si l'on a
sur un plan 8t six sphères égales s±, s6 qui se touchent 2 à 2, la sphère
$2 de même rayon qui leur est inscrite forme avec le plan 8t et le second
plan tangent 89 parallèle à St une des secondes chaînes fermées, car
2 plans parallèles peuvent être considérés comme des sphères de rayons
infiniment grands se touchant à l'infini.

IV. Soient 8l9 Sz deux sphères non concentriques (S3 intérieure à $x);
dans la couronne comprise entre S1 et $3, il y a une double infinité de
sphères tangentes à 8X et $3; soit 82 Vune de ces sphères. On considère alors
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une suite de sphères s19 s2, s$, dont la première st doit être seulement

tangente à 8l9 S2 et S3; s2 devra toucher les 4 sphères 8l9 82, $3 et sx; s%

sera tangente à 8l9 82, $3 et s2; etc.

Alors, la chaîne de sphères s pourra se prolonger indéfiniment, ou bien,
après u révolutions autour de 82, il y aura une dernière sphère sn tangente
à la première sx ; dans ce cas, la chaîne se fermera toujours, quelles que soient
les positions initiales de chacune des deux sphères 82 et st; pour qu'il en
soit ainsi, il faut et il suffit qu'on ait entre les rayons R et r des deux
sphères données et la distance d de leurs centres, la relation :

(R ± r)2 =F 16 Rr sin2 — d2 (3)
n

(les signes inférieurs correspondant au cas où les sphères données sont
extérieures l'une à l'autre).

Transformons, comme dans le n° 1, les 2 sphères données en sphères
Si et $3 de même centre O et de rayons R; et r1 (par une inversion).
Soient 82 une sphère quelconque (de centre L) tangente à S'x et 8'z ; s[ la
première sphère (de centre M) de la chaîne s[, s2, sfs, Les sphères

$2> si> 52> sz ' • • • oirk toutes le même rayon — Les centres des

sphères s' sont sur un cercle de rayon x lié à R' et r' par la relation:

x
R' + r'

(R> — r')VW?

(qui exprime de 2 manières la surface du triangle OLM), d'où :

R'—r' R> + r'
2x ±VRfrf

Pour que la chaîne des sphères sr se ferme après u tours avec la nm

sphère, il faut que:
un Rr — r' R1 + rr

aîrj
n 2x

ou

n WK'r'
C'est la relation (S) pour d 0

Si d est différent de zéro, on sait que le birapport:

JR-r)*-d*
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est conservé par l'inversion; mais pour les sphères concentriques ce

birapport est égal à

^_=Jpf 4sin^-l d'après (3')

On a donc:
/Jg y\2 ^2 ^j£

—— |~l 4 sin2 — qui est la relation (3) :

n

Exemples: w=l, n 3; J22 + r2—10 Rr d2; pour 72=12, r=l; d 5.

w=l, n 4; jR2-fr2— 6 JRr d2; pour 12=15, r —2; ci 7.

Pour d 0, on a ainsi les relations entre les rayons r et R des 2 sphères,
l'une inscrite et l'autre circonscrite aux 4 (ou 6) sphères égales ayant
pour centres les sommets d'un tétraèdre (ou d'un octaèdre) régulier et
pour rayon la moitié de la longueur d'une arête.

Si R oo, on a aussi d oo; Tune des sphères se réduit à un plan
P; soit h la distance du centre de la sphère de rayon r à ce plan. Le
birapport :

(AbaBoo) -t—= —— 4 sin2 1
ba 2r n

d'où
h un— =8 sm2 1 •

r n
On a donc le théorème:

Soient P un plan et S une sphère de rayon r dont le centre est à la distance
h du plan P, Sr une sphère quelconque tangente à S et P; 8l9 s2, s3,
une chaîne de sphères tangentes à S, $', P et dont chacune touche la précédente

extérieurement, la première s± étant arbitraire. Cette chaîne se fermera
après u tours avec la nme sphère, si Von a :

h „ oU7l— =8 sin2 1
r n

S7 pourra être, par exemple, le plan parallèle à P et tangent à S.
En particulier, on aura les conditions de fermeture:

h r pour u 1 et n 6

h 3r pour u 1 et n 4

h 5r pour u 1 et n 3.
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Les 2 racines de l'équation:
h2 — Shr + llr2 0 correspondent à n 5 et u 1 ou 22)

h2 — 6hr + r2 0 „ à % 8 et % 1 ou 3

A2— 6Ar+ 4r2 0 „ à n 10 et ^ 1 ou 3

A2 — 6ftr— 3r2 0 „ à n 12 et u 1 ou 5.

Pour 7i 15, il y a 4 solutions u 1, 2, 4 et 7 qui correspondent
aux 4 pentédécagones réguliers, etc.

§ 4. Coniques bitangentes à deux cercles

Par un point quelconque du plan on mène les tangentes T et t à chacun
des deux cercles donnés C et c; le lieu géométrique de tous les points pour
lesquels la somme T + t ou la différence T — t (ou t — T) est constante

l) est une conique bitangente à chacun des deux cercles.

Si les points de contact sont réels, ils divisent la conique en 4 arcs;
pour 2 des arcs, c'est la somme, et pour les 2 autres, c'est la différence
des tangentes qui est égale à la constante l.

Désignons par R et r les rayons des 2 cercles et par d la distance de

leurs centres. Prenons le milieu M de cette distance comme origine d'un
système de coordonnées rectangulaires dont l'axe des x est la ligne des

centres. On peut alors mettre l'équation du lieu cherché sous l'une des
2 formes suivantes:

4*2 [(* + i)2 + V% — R*] (l* + r2—E2 + 2dx)2

ou U2 [{x—%2 + y2— r2] (l2 + R2— r2 — 2dx)2

On voit donc que les cordes de contact:

R2 — r2 V^X~ 2d ±2d

de la conique avec chacun des 2 cercles sont symétriques par rapport à

l'axe radical dont l'équation est:

X 2d

II en résulte que les 4 points de contact (réels ou imaginaires) sont
toujours sur un cercle de centre M ; les droites qui les joignent 2 à 2

(et ne sont pas perpendiculaires à la ligne des centres) sont donc tangentes
à la parabole du § 2.

2) L'équation h2 — 4thr — 16 r2 0 citée par Steiner pour n 5 (O. c, t. I, p. 160)
est inexacte.
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A chaque valeur de l ou de A ^ correspond une conique bitangente.

La parabole (A — ou l d) sépare les ellipses (l>d) des hyperboles

(l<d).
Pour l 0, on a l'axe radical compté doublement ; Z oo correspond

à la droite à l'infini; les 2 paires de tangentes (intérieures et extérieures)
sont 2 coniques dégénérées de la famille.

Les foyers de toutes ces coniques bitangentes à 2 cercles forment une
involution dont les points doubles sont les 2 centres de similitude des
cercles donnés; si les foyers imaginaires sont sur la ligne des centres, les
foyers réels correspondants sont sur le cercle de similitude dont le centre
est le foyer de la seule parabole bitangente.

Steiner a consacré un grand mémoire à cette famille de coniques
bitangentes à deux cercles1) (O. c, t. II, p. 445—468). Il a trouvé que les
4 points d'intersection de 2 quelconques de ces coniques sont toujours
sur un cercle de centre M, et que leurs 8 points de contact avec les 2 cercles

donnés sont sur une conique. Pour les 2 paires de tangentes communes,
c'est la conique covariante du § 1.

§ 5. Quadriques circonscrites à deux sphères

Faisons tourner les 2 cercles du § 4 et leurs coniques bitangentes autour
de la ligne des centres; on aura 2 sphères 8, Sf et les quadriques de
révolution Q qui leur sont circonscrites le long de 2 cercles dont les plans sont
équidistants du plan radical des 2 sphères. Parmi ces quadriques, il y a
les 2 cônes de révolution circonscrits à 8 et S ', puis celles qui sont
dégénérées en: le cercle c commun à S et S' d'une part et l'ombilicale d'autre
part. Soit d Vune quelconque des oo2 tangentes communes à S et 8f; les

paires de plans tangents menés de d à toutes les quadriques Q circonscrites
aux deux sphères forment une involution dont les plans doubles passent
par les deux centres de similitude I et E, sommets (points doubles) des
deux cônes circonscrits à S et 8'. Mais, comme les 2 plans isotropes
issus de d se correspondent dans cette involution, celle-ci sera symétrique ;

les 2 plans doubles dl et dE doivent donc être perpendiculaires entre
eux et sont les plans bissecteurs de tous les dièdres formés par les
paires de plans tangents menés de la droite d à toutes les quadriques
Q, en particulier au cercle c commun aux 2 sphères.

Or il est facile de voir que si la tangente varie, le dièdre formé par les
2 plans tangents au cercle c est constant et égal à l'angle des 2 sphères.

8) ou à 2 coniques quelconques (p. 469—483).

47



En effet, soit P le point de contact de la droite d avec la sphère S.

Une inversion de centre P transforme S en un plan 8 parallèle à la droite
d qui ne change pas; à la sphère 8f correspond une autre sphère S'
tangente à d. Les 2 plans tangents menés par d au cercle c commun à S
et 8f ne changent pas puisqu'ils passent par le centre d'inversion P;
ils sont aussi tangents au cercle c commun à la sphère 8f et au plan S,

Une projection orthogonale de la figure sur un plan perpendiculaire
à la droite d montre que l'angle des deux plans tangents à c est égal à

l'angle de la sphère Sf et du plan 8, donc aussi à l'angle des 2 sphères
données 8 et S'.

Le théorème est encore vrai si l'on remplace le cercle c par l'une
quelconque des quadriques Q. Donc:

Si l'on mène par une quelconque des tangentes à deux sphères les plans
tangents à une quadrique circonscrite à ces sphères, les dièdres formés par
les deux plans tangents ont une grandeur constante) les plans bissecteurs
de ces dièdres passent toujours par les centres de similitude des deux sphères.

(Reçu le 25 août 1938.)
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