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Quelques théorémes de géométrie

Par Louis KorLLros, Zurich

Dans les § 1—4 nous démontrerons trés simplement quelques théo-
rémes que Steiner a énoncés sans démonstration et nous ajouterons au
§ 5 une propriété de la congruence des tangentes & deux spheéres.

Nous considérerons 4 familles de coniques déterminées par 2 cercles
du plan (ou plus généralement par 2 coniques quelconques): le faisceau
ponctuel (§ 1), le faisceau tangentiel (§ 2), les cercles tangents aux 2
cercles donnés ¢ et ¢’ et les suites récurrentes qu’ils peuvent former (§ 3),
enfin les coniques bitangentes & ¢ et ¢/ qui se répartissent en 3 séries,
les coniques d’'une méme série touchant les 2 cercles en 4 points alignés
2 & 2 sur 'un des 3 sommets de leur triangle polaire commun; au § 4

nous n’envisagerons qu’une de ces séries, celle qui interviendra dans
le § 5.

§ 1. Faisceau ponctuel de cereles

Désignons par ¢ = o et ¢/ = o les équations ponctuelles des 2 cercles
donnés; toutes les coniques du faisceau ponctuel qu’ils déterminent sont
aussi des cercles ayant pour équation ¢ — Ac’ = o; nous appellerons c)

le cercle qui correspond & la valeur A du paramétre. L’équation %.—: A

montre que le cercle cy est le liew géométrique des points dont les puissances
par rapport aux 2 cercles donnés ont un rapport constant 2 = k%, ou dont
les tangentes & ¢ et ¢’ ont le rapport k.

Les cercles ¢ (centre 0), ¢’ (centre Q') et leur axe radical ¢, (centre O_)
correspondent respectivement & A = 0, oo, et 1; le centre M’ de ¢, aura
la. coordonnée projective A par rapport au point-unité O

au point-zéro
on?
O et au point-infini O’; done:

/
(M’ 0, 00") = Zﬂ”—% —J .  Ainsi:
/
Le centre M' de cy divise le segment OO’ dans le rapport A = %7(037

Le cercle c_, du faisceau est réel si c et ¢’ se coupent en 2 points réels;
son centre est le milieu M de 0O0’; c_, est le lieu des points P dont les
puissances par rapport & ¢ et ¢’ sont égales et de signes contraires; si
la perpendiculaire ¢ en P & la droite PO coupe le cercle ¢ aux points 4
et Bet ¢’ en A’ et B/, on aura:

PA-PB = — PA'-PB’ ou (ABA'B) = —1.
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Quand P varie sur le cercle c_,, la droite ¢ enveloppe une conique de
foyers O et O’ dont c_, est le cercle principal; cette conique (enveloppe
des droites ¢ qui sont coupées harmoniquement par ¢ et ¢’) touche aussi
les tangentes & ¢ et ¢’ en leurs 4 points communs. Cette propriété pro-
jective reste vraie si ¢ et ¢’ sont des coniques quelconques. On voit done
que:

L’enveloppe des droites coupant harmoniquement deux comiques c et ¢’
est une conique h qui touche les huit tangentes & ¢ et ¢’ en leurs points com-
muns.

h est la conique harmonique tangentielle ou comique contravariante de
cetc.

En particulier, si ¢/ dégénére en 2 droites isotropes issues d’un point F,
on a le théoréeme:

,,Les cordes d’une conique ¢ vues d’un point F sous un angle droit,
enveloppent une conique & ayant F pour foyer et sa polaire par rapport
a ¢ pour directrice.‘ :

Si F est le centre de c, I’enveloppe % est un cercle concentrique.

Corrélativement:

Le lieu des points tels que les tangentes menées ¢ deux coniques ¢ et ¢’
forment un groupe harmonique est ume conique h qui passe par les huil
points de contact des tangentes communes & c et ¢’. h est la conique harmo-
nique ponctuelle ou conique covariante de ¢ et ¢’ .

Si ¢’ se réduit aux 2 points cycliques du plan, 4 est le cercle orthop-
tique de la conique c.

Un autre cercle de la famille c) est celui qui a pour diamétre le segment
limité par les 2 centres de similitude I (intérieur) et £ (extérieur) des
2 cercles donnés; c’est le cercle de similitude s de ¢ et ¢’; il correspond &

r r\2 [
la valeur k= — ou 1= (;,-) , r et ' désignant les rayons des cercles
r

¢ et ¢’. Puisque les tangentes menées d’un point quelconque de s aux 2
cercles ¢ et ¢’ sont proportionnelles aux rayons, on voit que:

Le cercle de similitude de deux cercles donnés est le lieuw des points d’ou
Uon voit ces cercles sous le méme angle.

Parmi les cercles ¢, il y en a 3 qui dégénérent en paires de droites:
I’'un se compose de ’axe radical et de la droite a I'infini, les 2 autres sont
des cercles de rayon nul (paires de droites isotropes) de centres Y et Z.
Si X désigne le point & l'infini de ’axe radical, X YZ est le triangle polaire
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commun a tous les cercles c¢y. En général, le lieu des centres des coniques
d’un faisceau ponctuel est une conique circonscrite au triangle polaire
commun; pour un faisceau de cercles, cette conique lieu des centres se
réduit & la droite OO’ et la droite & l'infini.

§ 2. Faisceau tangentiel déterminé par deux cercles

Cette famille comprend toutes les coniques c, inscrites au quadrilatére
des 4 tangentes communes aux 2 cercles donnés c et ¢’; il y en a 3 qui
dégénérent en paires de points. Le lieu des centres de ces coniques étant
la droite OO’, on pourra faire correspondre & chacun des cercles ¢, du
§ 1, la conique ¢y qui a le méme centre; au cercle de similitude correspond
la paire de points I et £; a ’axe radical ¢, correspondra la seule parabole
¢, du faisceau tangentiel; son foyer est le milieu M du segment 00’
Soit P un point quelconque de 'axe radical et ¢ la perpendiculaire en
P a la droite PM ; t détermine sur ¢ et ¢’ des cordes 2s et 2s’ (réelles ou
imaginaires). Si a et @’ sont les distances de P aux milieux de ces cordes,
on aura @ = a’ puisque M est le milieu de OO0’ et (a-+38) (@ —8) =
(0/’—}—8’) (a’———s’)

ou a2 —a’? = g2 —g'2
uisque P est sur ’axe radical; donc s — s’. Ainsi:
b

L’enveloppe des droites qui déterminent sur deux cercles donnés des cordes
égales est une parabole ayant pour tangente au sommet Uaxe radical des
deux cercles et pour foyer le miliew du segment limité par leurs centres.

En faisant tourner la figure autour de I'axe OO’, on voit que: ,,Tous
les plans coupant deux sphéres suivant des cercles égaux enveloppent un
paraboloide de révolution; son foyer est le milieu de la ligne des centres;
le plan tangent au sommet est le plan radical des deux sphéres.

Plus généralement, si F' et F/ sont les 2 points de Paxe OO0’ tels que:

/
%37 =k et %—,-%7 = —Fk,
le milieu de FF’ divisera le segment OO’ dans le rapport k? = A et sera
done le centre du cercle ¢, et de la conique c). Si l'on joint F (ou F’)
& 'un quelconque des points P’ de la circonférence c, et si 'on méne
par P’ la perpendiculaire & FP’, cette droite détermine sur les cercles
donnés ¢ et ¢’ des cordes 2s et 2s’ dont le rapport est égal & k.
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En effet, si @ et a’ sont les distances de P’ aux milieux de ces cordes,
on aura: a = ka’ puisque FO = k-FO’
v _(@t9)@—s)
(@' + ') (@' — &)
puisque P’ est sur le cercle c); donc a® — s* = k?a’? — k%s’? et par suite

8
—=k.
8/

Quand P’ varie sur le cercle c,, la perpendiculaire & P’F enveloppe
la conique c) dont c) est le cercle principal.

. r . - f 1o
Si k= pE la conique de seconde classe ¢ se réduit aux 2 centres de

similitude I et K.

Ainsi: Les droites qui coupent deux cercles donnés suivant des cordes
dont le rapport k est constant, enveloppent une conique du faisceau tangentiel
déterminé par les deux cercles.

Lorsque k varie, on obtient toutes les coniques du faisceau. Leurs
foyers forment une involution dont les points doubles sont les centres O
et O’ des 2 cercles; si ce sont les foyers imaginaires qui sont sur la ligne
des centres, les foyers réels correspondants sont sur le cercle de dia-
métre OO0’.

Ce théoréme, trouvé dans un manuscrit de février 1825, a été énoncé
sans démonstration par Steiner (O.c., t.1I, p. 467); il 'avait envoyé
en 1827 au rédacteur des Annales de Mathématiques de Montpellier,
qui le publia plus tard — peut-étre par erreur — sous un autre nom.

§ 3. Chaines fermées de cercles et de sphéres

Les cercles tangents & 2 cercles donnés C et ¢ forment 2 séries distinctes
suivant que les points de contact sont alignés sur le centre intérieur 7/
ou sur le centre extérieur £ de similitude. Nous considérerons seulement
la série des cercles ¢ qui peut donner lieu & des chaines fermées. Il faut
pour cela que les points d’intersection des cercles C' et ¢ soient imagi-
naires; en outre les points de contact doivent étre alignés sur I si I'un
des cercles est intérieur & I'autre, et sur & si les 2 cercles sont extérieurs.

Voici les démonstrations les plus simples des théorémes énoncés par
Steiner (O. c., t. I, p. 135, n® 11, 160, 225 et 455—457, n®% 80-—83), mais
qu’il n’a démontrés ni dans ses publications, ni dans ses manuscrits?):

1) Des démonstrations plus compliquées ont été trouvées par Clausen (Crelle, t. 6, 7
et 11); Ostwalds Klassiker, Nr. 123, p. 112 & 123, et par Biitzberger : Uber bizentrische
Polygone, Steinersche Kreis- und Kugelreihen (Teubner 1914; p. 33 & 48).
Voir aussi mon premier travail sur cette question: Comm. math. helv. vol. 4, p. 97—101.
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1. On donne dans le plan deux cercles C et ¢ (c intérieur & C); on trace
un cercle 1, tangent a C et ¢, puis un deuxiéme cercle ¢, tangent & i,, C et c;
un troisiéme i, tangent & 1,, C et c, etc. . .. St, aprés u révolutions autour
de ¢, on trouve un cercle i, tangent au premier v,, la chaine des cercles
inscrits se fermera toujours, quelle que soit la position du cercle initial <,;
pour qu’il en soit ainst, il faut et il suffit qu’il existe entre les rayons R
et r des deux cercles donnés et la distance d de leurs centres, la relation :

(R —17)t — 4 Rr tgﬂnf:av . (1)

En effet, la relation est évidente dans le cas de 2 cercles concentriques

;T ; ils doivent

A : 2un
étre vus du centre commun des 2 cercles donnés sous l’angle-—;z—— pour

(d = 0); tous les cercles ¢ ont alors le méme rayon

que la chaine se ferme aprés u tours avec le n™ cercle; un triangle rec-

tangle dont le coté opposé a l'angle —Q%—z est R—z——r et le coté adjacent
VRr, donne la condition de fermeture:
unr R—r un (R —r)?
t = = tg? = .
8% Teavre " B TW T 4Re

Or, on peut toujours transformer les 2 cercles non sécants C et ¢ en
cercles concentriques par une inversion; il suffit de prendre comme centre
d’inversion 1’'un des 2 points ¥ ou Z, cercles de rayon nul du faisceau
ponctuel (C, ¢); tous les cercles de ce faisceau coupent orthogonalement
les cercles passant par Y et Z; ces derniers se transforment en un faisceau
de droites; les premiers (C, c) se changeront donc en cercles concentriques.

Soient 4, B et a, b, les points d’intersection de C et ¢ avec la ligne
des centres; le birapport:

4 g Qde v ¥ (Fig. 1)

_Aa bB _(R+d—r)(R—d—r) (R—r)2—d
~ba AB 2r-2R *" 4Rr

(Aba B)

est conservé par I’inversion, ainsi que les nombres u et n; mais pour les
cercles concentriques, ce birapport est

R —r)? uUn

( ) — tg2 ®

4 Rr n
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(R—r)—d?

on a donc: iRy

== tg2y§ . C’est la relation (1).

Exemple: R =9, r =2, u =1, n = 6; il faut que d = 5 pour que
la chaine se ferme.
Si les cercles sont extérieurs, le birapport invariant est (fig. 2):

A 0 B b o a
{ { —t— (Fig. 2)
_(R4+-d+r)d—R—r) d*—(R+471)? un
(dbaB) = or-2R =aRr &
d’ou
(R -+ r)2 + 4 Rr tg? %’f:—.cp : (1)

Pour R=r et d = 4r, onatg”—g: 3; donc u=1.etn=3.

II. Pour des cercles tracés sur une sphére (ou des cones de révolution
de méme sommet), la suite des cercles © (ou des cones i) se ferme st U'on
a la relation :

cos (RFr)+2 sin R sinr tg2q—t~z:cos d; (2)
n

(les signes inférieurs correspondent au cas ol les cercles donnés sont
extérieurs 'un a P'autre).

En effet, les cercles, les nombres u et » et le birapport (4baB) sont
conservés par une projection stéréographique; les 4 termes du birapport
sont maintenant les sinus de 4 angles inscrits, moitiés des angles au centre
ou des arcs correspondants; on a donc:

sinRW—}_d“rsianwd*T
(AbaB) — 2 2 ____cosd———cos(R———r)__t L, UT
)= sin r sin R =~ " 3sinr sin R &

d’ol la relation cherchée 2) pour ¢ intérieur a C.

II1. Si I’on fait tourner chacun des cercles %,, 7,5, ... du n® 1 autour
d’un de ses diamétres, on a une série de sphéres 8,, 8,, ... formant une
chaine fermée lorsque:

un  (R—r)*—d?

2
tg n 4 Rr

(¢ intérieur & O) . (1)
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11 existe alors une deuxiéme série de sphéres S,, S,, ... dont chacune
touche la précédente et toutes les sphéres s,, s,, . . . de la premiére série.

St Pune des 2 chaines se ferme aprés w tours avec la n™ sphére, Vautre
se ferme mécessairement ausst aprés U tours avec la N™¢ sphére, les 4 nom-
bres u, n, U, N étant liés par la relation :

u U 1
W T NT S

Dans les manuscrits de Steiner, on n’a pas trouvé la démonstration
de ce théoréme; Geiser en a publié une a la fin de son livre: ,,Einleitung
in die synthetische Geometrie*“ (§ 28; p. 172—183); le calcul assez long
de Geiser peut étre évité par la considération suivante:

Si 'on coupe toutes les sphéres S;, S,, . . . par le plan perpendiculaire
au plan des cercles C, ¢ mené par la ligne des centres, on a une série de
cercles tangents aux 2 cercles extérieurs de diamétres da = R-+d —r
et bB = R —d —r (fig. 1) dont la distance des centres est R -+ r. Pour
avoir la condition de fermeture de la chaine 8,, S,, ..., il faut donc
Aa + bB

2
4 Rr par Aa-bB = (R —1r)2 —d?, w par U et n par N ; on a ainsi:

remplacer dans la formule 1’) R4 r par = R—r,d par R+,

2Uaz__ 4 Rr .
N (R—r)—d?

tg

. , un , Un ,
C’est la valeur inverse de 1’/); donc les 2 angles — et 5a sont complé-

U U 1
TN T

. ur Un =n
mentaires ; " —+ N =9
Si Pon a, par exemple, 3 sphéres s;, s,, 8, qui se touchent (u = 1,
n = 3), les sphéres qui leur sont tangentes formeront une chaine fermée
au premier tour avec la 6™ sphére (U = 1, N = 6). Ou bien, si 'on a
sur un plan 8, six sphéres égales s;, . . ., 8¢ qui se touchent 2 & 2, la sphére
S, de méme rayon qui leur est inscrite forme avec le plan S, et le second
plan tangent S, paralléle & S, une des secondes chaines fermées, car
2 plans paralléles peuvent étre considérés comme des sphéres de rayons
infiniment grands se touchant & P'infini.

IV. Soient 8,, 8, deux sphéres non conceniriques (S, intérieure & 8,);
dans la couronne comprise entre S, et Sy, il y a une double infinité de
Sphéres tangentes & S, et 8y; soit S, Uune de ces sphéres. On considére alors
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une suite de sphéres s,, 8,, 83, ... dont la premiére 8, doit étre seulement
tangente a S,, S, et Sy; 8, devra toucher les 4 sphéres S,, S,, S; et 8;; s,
sera tangente @ S,, S,, S et 8,; efc. . . .

Alors, la chaine de sphéres s pourra se prolonger indéfiniment, ou bien,
aprés u révolutions autour de S,, il y aura une derniére sphére s, tangente
a la premiére s,; dans ce cas, la chaine se fermera toujours, quelles que soient
les positions initiales de chacune des deux sphéres S, et 8,; pour qu’il en
soit ainst, ©l faut et il suffit qu'on ait entre les rayons R et r des deux
sphéres données et la distance d de leurs centres, la relation :

(R 4+ 7)2 F 16 Rr sin? 2% — g2 (3)
n

(les signes inférieurs correspondant au cas ou les sphéres données sont
extérieures 1'une a P'autre).

Transformons, comme dans le n° 1, les 2 sphéres données en sphéres
S! et S, de méme centre O et de rayons R’ et »’ (par une inversion).
Soient S; une sphére quelconque (de centre L) tangente a S; et S;; s la

premiére sphére (de centre M) de la chaine s;, s, s;, ... Les sphéres
Rl /

S, 81, S5, 85 ,... ont toutes le méme rayon —— . Les centres des

sphéres s’ sont sur un cercle de rayon x 1ié & R’ et r’ par la relation:

/ /
x 1——3—-%_-—1: (R'— ) VR ¢
(qui exprime de 2 maniéres la surface du triangle OLM), d’ou:
R,—‘T,_R/ + 7./ .
22  4VR'y

Pour que la chaine des sphéres s’ se ferme aprés u tours avec la n™
spheére, il faut que:

unx R —¢ R 47

" 2¢  4VR 1
ou
. yun_ (R4 ,
Sin n 16 R’ (3°)

C’est la relation (3) pour d==0 .

Si d est différent de zéro, on sait que le birapport:

_(R—n)?—ad?
(Aba B) == Y
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est conservé par linversion; mais pour les sphéres concentriques ce
birapport est égal a

LY
%,—)——_—.4@112 unnml , d’aprés (3') .
On a donc:
(R—1)2—d?

un
4 sin? : N : :
iRy + 1=4 sin —- qui est la relation (3)

(BR+r)?—16 Rr sin2’l—b7—:—’—lzzol2 .

Exemples: w=1, n=3; R*4r2—10 Rr=d?; pour R=12, r=1;d=5.
u=1,n=4; R2+r*— 6 Rr=d?; pour R=15,r=2; d=T1.

Pour d = 0, on a ainsi les relations entre les rayons r et R des 2 sphéres,
I'une inscrite et ’autre circonscrite aux 4 (ou 6) sphéres égales ayant
pour centres les sommets d’un tétraédre (ou d’un octaédre) régulier et
pour rayon la moitié de la longueur d’une aréte.

Si R = oo, on a aussi d = oo; l'une des sphéres se réduit & un plan
P; soit A la distance du centre de la sphére de rayon r & ce plan. Le bi-
rapport:

_Aa  _h—r
~ ba 27

(Aba B.) —4q sinz%’f—-l :
d’ou

__}_&_ — 8 Sin?.’.‘_‘ﬁ_ 1 .

r n

On a donc le théoréme:

Sotent P un plan et S une sphére de rayon r dont le centre est a la distance
h du plan P, S8’ une sphére quelconque tangente a S et P; s, sy, S5, . . .
une chaine de sphéres tangentes a@ S, 8', P et dont chacune touche la précé-
dente extérieurement, la premiére s, étant arbitraire. Cette chaine se fermera
aprés u tours avec la n™® sphére, si 'on a:

. JUT
— =8 sin2 — —1 .
r n

S’ pourra étre, par exemple, le plan paralléle &4 P et tangent & S.
En particulier, on aura les conditions de fermeture:

h= rpouru=1etn=26
h=3rpouru=1etn=4
h = 5r pour u = 1 et n = 3.
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> Les 2 racines de ’équation:
h%* — 8hr 4 1172 = 0 correspondent & » = 5 et w = 1 ou 2?)

h? —6hr+ 1r2=20 . an= 8etu=1o0u3
h2 —6hr+ 4r2=0 . an=10et u=1 ou 3
h?2 — 6hr— 372 =0 . an=12et wu=1 ou 5.

Pour n = 15, il y a 4 solutions v = 1, 2, 4 et 7 qui correspondent
aux 4 pentédécagones réguliers, etc. ...

§ 4. Coniques bitangentes & deux cercles

Par un point quelconque du plan on meéne les tangentes T et t a chacun
des deux cercles donnés C et c; le liew géométrique de tous les points pour
lesquels la somme T + t ou la différence T —t (ou t — T') est constante
(= 1) est une conique bitangente a chacun des deux cercles.

Si les points de contact sont réels, ils divisent la conique en 4 arcs;
pour 2 des arcs, c’est la somme, et pour les 2 autres, c’est la différence
des tangentes qui est égale & la constante .

Désignons par R et r les rayons des 2 cercles et par d la distance de
leurs centres. Prenons le milieu M de cette distance comme origine d’un
systéme de coordonnées rectangulaires dont ’axe des x est la ligne des
centres. On peut alors mettre I’équation du lieu cherché sous I'une des
2 formes suivantes:

g [(x+"§l)2+ y? — R?] = (241> — R® + 2da)

ou 412 [(x-—-g)2 +y2— ] =P+ R*— r>— 2dx)? .
On voit donc que les cordes de contact:
R:—p2 2
*="%d T

de la conique avec chacun des 2 cercles sont symétriques par rapport a
P’axe radical dont I’équation est:
R2 R ,r‘...’

2d

Il en résulte que les 4 points de contact (réels ou imaginaires) sont
toujours sur un cercle de centre M ; les droites qui les joignent 2 & 2

(et ne sont pas perpendiculaires & la ligne des centres) sont donc tangentes
a la parabole du § 2.

X —

2) L’équation h%2 — 4hr — 16 72 = 0 citée par Steiner pour n = 5 (O.c., t. I, p. 160)
est inexacte.
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2
A chaque valeur de [ ou de A = Lol correspond une conique bitangente.

2d
La parabole (4 = 4 ou | =d) sépare les ellipses (/> d) des hyperboles

2
(< d).

Pour [/ = 0, on a 'axe radical compté doublement; I = oo correspond
a la droite a l'infini; les 2 paires de tangentes (intérieures et extérieures)
sont 2 coniques dégénérées de la famille.

Les foyers de toutes ces coniques bitangentes & 2 cercles forment une
involution dont les points doubles sont les 2 centres de similitude des
cercles donnés; si les foyers imaginaires sont sur la ligne des centres, les
foyers réels correspondants sont sur le cercle de similitude dont le centre
est le foyer de la seule parabole bitangente.

Steiner a consacré un grand mémoire & cette famille de coniques bitan-
gentes a deux cercles!) (O.c., t. II, p. 445—468). Il a trouvé que les
4 points d’intersection de 2 quelconques de ces coniques sont toujours
sur un cercle de centre M, et que leurs 8 points de contact avec les 2 cer-
cles donnés sont sur une conique. Pour les 2 paires de tangentes communes,
c’est la conique covariante du § 1.

§ 6. Quadriques circonscrites 4 deux sphéres

Faisons tourner les 2 cercles du § 4 et leurs coniques bitangentes autour
de la ligne des centres; on aura 2 sphéres S, S’ et les quadriques de révo-
lution @ qui leur sont circonscrites le long de 2 cercles dont les plans sont
équidistants du plan radical des 2 sphéres. Parmi ces quadriques, il y a
les 2 cones de révolution circonscrits & S et S/, puis celles qui sont dégé-
nérées en: le cercle ¢ commun & S et 8’ d’une part et 'ombilicale d’autre
part. Soit d Pune quelconque des oo? tangentes communes & S et S’; les
paires de plans langents menés de d a toutes les quadriques @ circonscrites
aux deux sphéres forment une involution dont les plans doubles passent
par les deux centres de similitude I et E, sommets (points doubles) des
deux cones circonscrits & S et S’. Mais, comme les 2 plans isotropes
issus de d se correspondent dans cette involution, celle-ci sera symétrique;
les 2 plans doubles dI et dE doivent donc étre perpendiculaires entre
eux et sont les plans bissecteurs de tous les diédres formés par les
paires de plans tangents menés de la droite d & toutes les quadriques
@, en particulier au cercle ¢ commun aux 2 sphéres.

Or il est facile de voir que si la tangente varie, le diédre formé par les
2 plans tangents au cercle ¢ est constant et égal & Uangle des 2 sphéres.

®) ou & 2 coniques quelconques (p. 469—483).
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En effet, soit P le point de contact de la droite d avec la sphére 8.
Une inversion de centre P transforme § en un plan S paralléle & la droite
d qui ne change pas; & la sphére S’ correspond une autre sphére S’
tangente a d. Les 2 plans tangents menés par d au cercle ¢ commun a S
et 8’ ne changent pas puisqu’ils passent par le centre d’inversion P;
ils sont aussi tangents au cercle ¢ commun & la sphére S’ et au plan S.

Une projection orthogonale de la figure sur un plan perpendiculaire
a la droite d montre que 1’angle des deux plans tangents a ¢ est égal a
I’angle de la sphére S’ et du plan S, donc aussi & I'angle des 2 sphéres
données S et S’.

Le théoréme est encore vrai si I’on remplace le cercle ¢ par 1'une quel-
conque des quadriques ¢. Donc:

St Uon méne par une quelconque des tangentes & deux sphéres les plans
tangents o une quadrique circonscrite & ces sphéres, les diédres formés par
les deux plans tangents ont une grandeur constante; les plans bissecteurs
de ces diédres passent toujours par les centres de similitude des deux sphéres.

(Recu le 25 aolit 1938.)
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