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Sur les rotations barotropes
des masses fluides hétérogènes

Par R. Wavre, Genève

Considérons une masse fluide en rotation autour d'un axe OZ. Les
différentes particules s'attirent suivant la loi de Newton et décrivent
des circonférences perpendiculaires à OZ et centrée sur cet axe. La
vitesse angulaire co peut varier d'un parallèle à un autre. L'équilibre
relatif n'est qu'un cas particulier. Ces mouvements, nous les appelons
des rotations permanentes1). Elles seront dites barotropes s'il existe
une relation entre la densité q et la pression, de la forme o g (p).
Alors, en posant

les équations du mouvement s'écrivent, U étant le potentiel newtonien,

^-BU + mm)x d(P-dU +<o*a)v d(p-dU ¦

la vitesse angulaire ne dépend dans ce cas que de la distance à l'axe.
En dérivant encore une fois pour former le laplacien de <p, on trouvera
facilement après usage de l'équation de Poisson

A<p — *niQ{<p) + 2o>2(A) + 2A^ (1)

i étant la constante de la gravitation universelle.
Or g ne dépend que de <p et oo que de A ; de sorte que l'équation

précédente s'écrit
(2)

On pourra supposer W(0) 0, car une constante peut toujours être
incorporée à f(cp)

Cette équation (2) est donc une conséquence des équations
fondamentales. Elle est insuffisante pour les remplacer, bien entendu.

Mais, comme M. Volterra2) l'indiquait déjà, elle permet d'exclure
certaines répartitions des surfaces d'égale densité. En 1903, l'illustre auteur

1) M. Wavre, Figures planétaires et géodésie, p. 27 et suivantes.
2) F. Volterra, Aeta Mathematica, t. 27, p. 105.
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démontrait qu'une figure d'équilibre hétérogène ne pouvait pas être
stratifiée en ellipsoïdes homothétiques.

Nous voulons étendre à des cas plus généraux cette méthode. Si les
surfaces d'égale densité, ou mieux d'égale q> (car g peut être constant
quand <p varie) sont données par

F(z, y, z,V) 0 (3)

on a, par un calcul élémentaire,

d'où en dégageant A cp et en le remplaçant par f -\- W

Cette dernière équation doit être satisfaite quelles que soient les

variables x, y, z, cp liées par (3). L'élimination de l'une d'elles, z par
exemple, conduit à une nouvelle relation O(x, y, <p) 0 qui doit être
identiquement vérifiée, dans toute la masse fluide.

Envisageons alors des ellipsoïdes concentriques de forme quelconque

oc(<p)x* + P(<p)y* + z* h(<p) (3')

L'équation (4) revêt la forme suivante où les termes en /S et y non
écrits sont semblables à ceux en oc et x

2 (oc + fi + 1) (oc'x*+ • —Wf— 8 (*'#2H h') (ococfx2+ •) (40

+ 4t(<x"z*-\ h")(ot2x2+-+z2) + (oc'x2 + -—h')*(f + W) 0

En éliminant z entre (30 et (40 on trouve facilement:

2 (oc + p+1) ipc'X + j8T- ft')2- 8(<x'X + p'Y- W) (ococ1X + pp'Y)
(5)

+ ±(<*nX+pnY-h") [oc(oc- l)Z+/î(jff-l)r+ A]+(^c/Z+ pfY-KrY(i+W) 0,

On a posé x2 X et y2 Y.

1° Examinons tout d'abord le cas de Véquilibre relatif : co const.,
W(X) 0. Alors, les trois premiers termes de (5) sont d'ordre 2 en
X et Y, le dernier d'ordre 3; donc on doit avoir

m! 0 pf 0 d'où a constante /? constante
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Alors, les ellipsoïdes sont homothétiques et l'on retombe dans le cas

envisagé par M. Volterra. La démonstration s'achève d'ailleurs facilement;

Ton aurait

2{oc + $+ l)h'*—ih"[oc(oc—l)X + P(P—l)Y + h] h'3f

D'où oc 1 et fi 1 qui donneraient des sphères ou h"=- 0 et /
constante.

La masse serait homogène.

Une figure d'équilibre hétérogène ne peut être stratifiée en ellipsoïdes
concentriques. (Théorème de Hamy et Véronnet, démontré par ces

auteurs en faisant usage des formules de l'attraction des ellipsoïdes.)

2° Cas des rotations barotropes W(X) =£ 0

Le problème ici ne se pose que si le corps est de révolution. Donc
oc fi et les ellipsoïdes ont maintenant l'équation simplifiée :

*(<p) X + z2 h(cp)

Il suffit de remplacer dans (5) X par X et de supprimer les termes
en fi et Y.

L'équation (5) est alors de la forme

P2 est un polynôme de degré 2 en X.

Eliminons W en donnant à ç> des valeurs (p et <p0 quelconques:

Supposons la masse hétérogène, alors / ^ /0. En A le second terme
est d'ordre 6 le premier d'ordre 5 à moins que l'on ait

a! 0 oc — constante

Les ellipsoïdes seraient de nouveau homothétiques. Il paraît difficile
de poursuivre sans invoquer, pour : W ^k 0, le potentiel lui-même et
non seulement son laplacien.

Il faudra donc achever la démonstration dans ce cas par le calcul du
potentiel3). M. Dive y est parvenu comme l'on sait.

Donc: Une masse hétérogène en rotation barotrope ne peut être stratifiée
en ellipsoïde concentrique.

3) Voir note page suivante.
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Signalons enfin un cas plus général de surface de révolution oii
l'élimination d'une des variables se fait facilement. C'est celui où l'on aurait

Pn(X, <p) +Z* 0 avec Pn ao(<p) + a(<p)X + +an(<p)kn

Alors l'équation (5) revêt la forme

Le polynôme Q étant de degré 3 n—1. On peut encore ici exclure
toute stratification de cette forme où le coefficient an ne serait pas
constant.

3) On pourrait encore aller plus loin par la méthode précédente et réduire la difficulté
qui résulte de l'emploi des formules du potentiel des ellipsoïdes homothétiques à un cas
très spécial.

L'équation (5) s'écrit maintenant:

Le coefficient de X ne peut dépendre de cp

On devrait donc avoir
h"

— 77g — a — constante et Ion peut intégrer.

Comme on le vérifie facilement, la densité serait une fonction linéaire du carré du
rayon polaire t de la surface de paramètre cp.

On aurait

£ (6, !£-(.!$)+•,. pr,

L'indice zéro se rapporte à t — 0. Il suffit donc d'envisager cette loi (6) des densité»
et de la montrer incompatible avec (7) sur l'axe polaire, cp étant alors le potentiel new-
tonien.

(Reçu le 23 août 1938.)
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