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La théorie de Galois et ses généralisations

Par ELie CARTAN, Paris?)

I. Rappel des principes de la théorie de (Galois

1. La théorie de Galois s’applique & certains systémes automorphes;
ce sont des systémes (d’équations algébriques, d’équations différentielles,
d’équations aux dérivées partielles) tels qu’on passe d’une solution parti-
culiére & une autre solution quelconque par les opérations d’un groupe G,
dit groupe fondamental. Etant donné un domaine de rationalité, on suppose
les équations du systéme rationnelles dans ce domaine; on suppose ausss
que les opérations du groupe G sont rationnelles. Dans la théorie classique
de Galois, on considére une équation algébrique & racines toutes distinctes,
une solution étant ici ’ensemble des racines rangées dans un certain
ordre: les opérations de G sont les permutations effectuées sur les
racines. Dans la théorie de Picard-Vessiot des équations différentielles
linéaires, une solution est formée par un systéme fondamental d’inté-
grales, les opérations de G étant les substitutions linéaires effectuées sur
ces intégrales. Dans cette derniére théorie, le domaine de rationalité
comprend obligatoirement les coefficients de 1’équation différentielle
donnée et toutes les fonctions qu’on en déduit par addition, multiplica-
tion, division et différentiation, ainsi que toutes les constantes complexes.

2. Admettons que I'une des solutions x du systéme donné satisfasse
& un certain systéme rationnel irréductible 2 (x) qui est, soit le systéme
donné, soit ce systéme auquel on a adjoint une ou plusieurs équations
rationnelles nouvelles: cette hypothése est réalisée dans les cas classiques.
Un systéme rationnel X' (x) est irréductible, d’aprés M. Drach, §’il est
impossible de lui adjoindre une équation nouvelle qui laisse le systéme
compatible et qui ne soit pas une conséquence rationnelle des équations
de 2'(z).

La théorie de Galois peut alors étre traitée en quelques lignes; elle
repose sur les deux théorémes fondamentaux suivants.

1° Les transformations s de G qui font passer de la solution particuliére x
a une solution sx de 2’ forment un groupe g. En effet par hypothése z
satisfait au systéme rationnel 2'(sz); donc 2'(sx) est une conséquence
rationnelle de X' (x), sans quoi le systéme 2'(x) ne serait pas irréductible.

1) Cet article a été rédigé il y a un certain nombre d’années; j’espére qu’il n’a pas perdu
son intérét.



Par suite 'opération s appliquée & une solution quelconque de 2’ donne
encore une solution de 2': ’ensemble des opérations de @ qui font passer
de la solution particuliére x aux différentes solutions de 2’ jouit de la
propriété de contenir ss’, dés qu’il contient s et s’. D’autre part, si I'opé-
ration s fait passer de la solution particuliére x de 2’ & la solution sz
de 2, I'opération s fait passer de la solution particuliére sz & la solution
x et par suite s~! est une opération de I’ensemble considéré. Cet ensemble
forme donc un groupe g. C. Q.F.D. C’est le groupe de rationalité ou le
groupe de Galors du systéeme.

2° Tout systéme wrréductible 3 auquel satisfait une solution particu-
liere x du systéme donné est automorphe par rapport & un groupe g homo-
logue de g dans G. En effet soit ¢ I'opération de G qui fait passer d’'une
solution particuliére x du systéme irréductible 2’ & une solution parti-
culiére z du systéme irréductible X; = satisfait au systéme irréductible
2 (t1z), dont le groupe g est évidemment le groupe #gt-! homologue
de g dans G.

3. Ajoutons la remarque importante que le systéme de toutes les rela-
tions rationnelles auxquelles satisfait une solution particuliére du systéme
donné est irréductible, puisque toute solution satisfait & un systéme irré-
ductible et ne peut par suite satisfaire & des équations rationnelles qui
n’en seraient pas des conséquences rationnelles.

Remarquons aussi que si ’on ne suppose pas I’existence d’un systéme
irréductible rationnel compatible avec le systéme donné et si ’on appelle
2'(z) I'ensemble des relations rationnelles auxquelles satisfait une solu-
tion particuliere x de ce systeme, la premiére partie de la démonstration
du premier théoréme fondamental est encore valable: 1’ensemble des
opérations de @ qui font passer de = & une autre solution de 2'(z) jouit
de la propriété de contenir le produit ss’ dés qu’il contient s et s’; mais
la deuxiéme partie tombe, de sorte qu’on ne peut pas démontrer que cet
ensemble forme un groupe. La conclusion est cependant exacte si le
groupe G ne contient qu'un nombre fini d’opérations, ou si le systéme
2/ (x) ne contient qu’un nombre fini de solutions. Dans la théorie clas-
sique de Galois, c’est ce qui se passe. L’irréductibilité du systéme 2(z)
est dans ce cas assurée.

IT° Cas ou les opérations du groupe fondamental ne sont pas rationnelles

4. Dans I'exposé précédent, deux hypothéses jouent un roéle impor-
tant, & savoir I'existence d’un systéme rationnel irréductible compatible
avec le systéeme donné et la propriété des opérations du groupe fondamen-

10



tal d’étre rationnelles. Cette seconde est la plus importante; du reste, la
premiere est une conséquence de la seconde si le groupe fondamental
est fini. Il est & présumer que si nous laissons tomber cette hypothése de
la rationalité des opérations du groupe fondamental, tout ou partie de la
théorie de Galois tombera en défaut. Les exemples que nous allons
donner pourraient méme conduire & la conclusion qu’en général rien ne
subsiste de cette théorie. Néanmoins les recherches de MM. Drach et
Vessiot?) sur le systéeme formé d’une équation aux dérivées partielles
linéaire et homogeéne du premier ordre & une fonction inconnue z de n
variables indépendantes x,, z,, ..., z,, systéme automorphe par rap-
port au groupe infini de toutes les transformations Z = f(z), montrent
qu’au moins dans ce cas une partie des théorémes de la théorie de Galois
subsiste. On sait en effet que dans ce cas

1° il existe un systéme rationnel 2 irréductible et automorphe par
rapport & un groupe g de transformations Z = f(z);

2° les solutions de tout systéme rationnel Y’ compatible avec I’équa-
tion aux dérivées partielles donnée se partagent en familles dans chacune
desquelles les solutions se déduisent de 'une d’entre elles par les opéra-
tions d’un groupe, variable d’'une famille & P’autre, homologue de g
(semblable & g).

Le groupe g est le groupe de rationalité, ou le groupe de Drach-Vessiot,
de I’équation donnée.

5. Il est intéressant de rechercher comment les choses se passent dans
des cas trés simples.

Premier Exemple. Considérons ’équation
xt—4 =0, (1)

automorphe par rapport au groupe fondamental X* = x* (ce groupe,
comme tous ceux que nous considérerons dans la suite, a des équations
de définition rationnelles). Le domaine de rationalité est formé des nom-
bres rationnels.

2) J. Drach, Essai sur une théorie générale de l'intégration, etc. (Annales
Ecole Norm., 1898); Sur le probléme logique de l'intégration des équations
différentielles (Annales Toulouse, 1908, 1912); — K. Vesstof, Sur la théorie de
Galois et ses diverses généralisations (Annales Ecole Norm., 1904); Sur laréduc-
tibilité et l'intégration des systémes complets (Annales Ecole Norm., 1912);
Sur la réductibilité des équations aux dérivées partielles du premier ordre
(Annales Ecole Norm., 1915).
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Ici deux des racines de (1) satisfont & 1’équation irréductible
x?—2=0, (2)
les deux autres & 1’équation irréductible

2+ 2=0. (3)

Elles sont toutes les deux automorphes, et par rapport au méme
groupe X = 4 z. La théorie de Galois subsiste, avec néanmoins la diffé-

rence que les irrationnelles définies par (2) et (3) ne sont pas de méme
nature.

2me Exemple. Considérons maintenant I’équation

26 —8=0, (4)
automorphe par rapport au groupe fondamental X® = «¢, avec le méme
domaine de rationalité que dans le premier exemple. Les solutions de (4)

satisfont aux équations irréductibles
2 —2 =0, (5)
xt + 222 + 4 = 0; (6)
la premiére est automorphe par rapport au groupe X = + x; la seconde
n’est pas automorphe. Néanmoins les solutions de la seconde équation se
partagent en deux familles dans chacune desquelles on passe d’une
solution & l'autre par les opérations du groupe X = -+ z. Nous retrou-

vons les deux propriétés fondamentales de la théorie de Drach-Vessiot;
le groupe de Drach-Vessiot de I’équation (4) est X = 4 .

3me Exemple. Prenons I’équation
8 27 =0, (7)

automorphe par rapport au groupe fondamental X¢ = x%. Les différentes
racines de (7) satisfont aux trois équations irréductibles

. x2+ 3 =0, (8)
2?2 + 3z + 3 =0, (9)
z?—3x + 3=0. (10)

L’équation (8) est automorphe par rapport au groupe X = -+ x, mais
aucune des deux autres n’est automorphe. Par exemple I’équation (10)
. —iV3 V3

admet les racines 3 ; 3 et 3+ ;

; les transformations du groupe
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fondamental qui font passer de la racine —3—_-—21—'{?- & ces deux racines sont
14+4V3
X=zxet X= —i%—'-/—:; z; elles ne forment pas un groupe. De plus les ra-
cines de ’équation (10) ne forment pas une famille de racines se déduisant
de T'une d’entre elles par les opérations du groupe X = 4 x ou d’un
groupe homologue, puisque cette équation n’est pas automorphe. Le
deuxiéme théoréme fondamental de la théorie de Drach-Vessiot tombe en
défaut.
4me * ’é i
Exemple. L’équation 24 =0 (11)

est automorphe par rapport au groupe fondamental X* = x%. Elle se
décompose en deux équations irréductibles

x? — 22 + 2 =0, (12)
x? 4 2x + 2 = 0; (13)

aucune n’est automorphe. Tous les théoremes de la théorie de Drach-
Vessiot tombent.

5me Exemple. Terminons par un dernier exemple, fourni par I’équa-
tion différentielle

dx 1
automorphe par rapport au groupe fondamental défini par 1'équation
dX

Le domaine de rationalité est formé par les fonctions rationnelles
a coefficients rationnels de la variable indépendante ¢.

Les différentes solutions de (14) sont données par 1’équation

1
x2::t2—[——2-—i§+0. (16)

Plusieurs cas sont & distinguer.

a) Si la constante C est rationnelle, ’équation (16) est irréductible
et automorphe, son groupe étant X = 4 x.

b) Si la constante C est égale & + V2, I'équation (16) fournit deux
couples de solutions satisfaisant respectivement aux équations ration-
nelles irréductibles

1
xL+%x+ﬁ~w;=O; (18)

aucune n’est automorphe.
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c) Si la constante C est une irrationnelle algébrique autre que -+ V2,
les solutions satisfont & une équation algébrique rationnelle irréductible

1
2__ 2~ ) —
P (x t 5 t2) 0, (19)
P étant un polynome irréductible du second degré au moins; cette équa-
tion n’est pas automorphe.

d) Sila constante C est transcendante, les seules relations rationnelles
auxquelles satisfasse une des solutions de (16) se réduisent & I’équation (14).
On a la un exemple du cas ou le systéme de toutes les équations rationnelles
auzquelles satisfait une solution particuliére n’est pas irréductible.

En résumé, nous avons une infinité de systémes rationnels irréductibles
automorphes (16) avec le méme groupe X = -+ z; le premier théoréme
fondamental de la théorie de Drach-Vessiot est vérifié, mais il n’en est
pas de méme du second, comme le montre le systéme irréductible (17)
ou (18).

6. Comme on le voit, le cas le plus favorable qui puisse se présenter
est celui ou il existe un systéme rationnel irréductible automorphe 2 tel
que les solutions de tout systéme rationnel compatible avec le systéme
donné se partagent en familles dans chacune desquelles les différentes
solutions se déduisent par une méme opération du groupe fondamental
des solutions du systéme 2. Nous disons qu’un tel systéme est un systéme
de Drach-Vessiot, et le groupe de 2 sera le groupe de Drach-Vessiot du
systéme donné.

On peut énoncer au sujet de ces systémes le théoréme suivant.

Théoréme. Pour qu’un systéme automorphe par rapport & un groupe
fondamental G soit un systéme de Drach-Vessiot, il faut et il suffit qu’il
existe un systéme rationnel irréductible 2’ compatible avec le systéme donné
et jousssant de la propridié que si une solution de 2, aprés avoir été soumise
& une opération, rationnelle ou irrationnelle, de G, satisfait & une certaine
équation rationnelle, la transformée par la méme opération de G de toute
autre solution de 2 satisfait a la méme équation rationnelle.

La condition est évidemment nécessaire. Elle est suffisante, car si s
est une opération de @ transformant une solution particuliére z de 2 en
une autre solution sz de 2, toutes les autres solutions z’ de 2 seront
changées elles aussi en des solutions sz’ de 2'; d’autre part la solution
x de X se déduisant de la solution sz par ’opération s—1, la transformée
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s71z’ de toute solution de X' sera transformée encore en une solution
de 2. Par suite, le systéme 2X'est automorphe et le systéme donné est
un systéeme de Drach-Vessiot.

Ajoutons la remarque que si 2" est un second systéme rationnel irré-
ductible jouissant des mémes propriétés que 2, 2’ est automorphe et
son groupe g’ est homologue de g dans le groupe fondamental. En effet,
si ¢ est Vopération de @ faisant passer d’une solution particuliére x de
2’ & une solution particuliére x’ de 2", toutes les opérations gt appar-
tiennent & ¢’ et réciproquement toutes les opérations ¢~1¢’t appartiennent
& g; les deux groupes sont donc homologues et g’ = tgt-1. Enfin, si 3 est
un systéme rationnel automorphe quelconque, chaque opération du
groupe g de 3 est contenue dans un sous-groupe homologue de g.

IIT° Une classe de systémes de Drach-Vessiot

7. J’ai posé depuis longtemps3) la question de savoir ce qui subsiste
de la théorie de Picard-Vessiot des équations différentielles linéaires
quand, dans le domaine de rationalité, on ne prend pas toutes les cons-
tantes complexes, mais seulement par exemple les constantes rationnelles,
au cas ou les coefficients de 1’équation sont des fonctions rationnelles
a ccefficients rationnels de la variable indépendante; les opérations du
groupe fondamental cessent alors d’étre rationnelles.

11 y a un cas ol I'on est sir que I’équation différentielle est un systéme
de Drach-Vessiot: il suffit pour cela qu’a I'un des systémes irréductibles
2 considérés dans la théorie classique de Picard-Vessiot, rationnels dans
le domaine de rationalité R de cette théorie classique, on puisse faire
correspondre un systéme irréductible 2’ automorphe par rapport au
groupe de Galois g de I’équation ou par rapport 4 un groupe homologue,
et qui soit rationnel dans le domaine de rationalité R’ qui ne contient que
les conslantes rationnelles (R se déduit de R’ par I’adjonction de toutes
les constantes). En effet, supposons qu’il en soit ainsi et soit x une solu-
tion particuliére de 2”; la solution sz, ou s est une opération du groupe
fondamental, satisfera au systéme X' qui se déduit de X par I'opération s.
Ce systéme 3 est rationnel et irréductible dans R, mais il ne sera pas en
général rationnel dans R’; en tout cas toute équation F = 0 rationnelle
dans R’ & laquelle satisfait sz est aussi rationnelle dans R et, & ce titre,
est une conséquence de )'; par suite, I’opération s, appliquée & toute
solution de X’ autre que x, donnant une solution de }, cette solution
satisfera & 1’équation F = O rationnelle dans R’. D’aprés le théoréme du

- 3) K. Cartan, La théorie des Groupes (Revue du Mois, 17, 1914, p. 465).
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n° 6, 'équation différentielle donnée constitue, dans le domaine de
rationalité R’, un systéme de Drach-Vessiot.

8. Nous allons nous contenter de traiter un probléme plus simple,
qui s’apparente au précédent. Nous allons montrer que ’équation diffé-

rentielle B B\ 2
dr 3| de
& x|\ w | TR 0
dit di

ou R(f) est une fonction rationnelle de ¢ & coefficients rationnels, équation
automorphe par rapport au groupe homographique de la variable =z,
est une équation de Drach-Vessiot, le domaine de rationalité R’ étant
formé des fonctions rationnelles de ¢ & coefficients rationnels et ne con-
tenant pas les constantes irrationnelles. Les opérations du groupe fondamen-
tal sont en général irrationnelles.

L’équation (20) serait justiciable de la théorie de Galois si le domaine
de rationalité était étendu en R par ’adjonction de toutes les constantes
complexes. Nous allons passer en revue tous les groupes de Galois corres-
pondants qui peuvent se présenter et vérifier que pour chacun d’eux g
il existe une solution de I’équation (20) satisfaisant & un systéme rationnel
irréductible dans R’ et automorphe par rapport & un groupe homologue
de g dans le groupe homographique total. Pour cela, nous utiliserons la
remarque que si, dans la théorie de Galois (groupe de rationalité R) on
a deux systemes rationnels irréductibles correspondant au méme groupe g,
on passe de 'un & I'autre par une transformation du groupe fondamental
laissant le groupe g invariant.

9. Les groupes de Galois possibles, dans le domaine de rationalité R
(contenant toutes les constantes complexes) sont homologues & I'un des
groupes suivants:

I° Le groupe homographique total;
II° Le groupe continu & deux paramétres X = ax + b défini par

d2X
TE 0 ; (21)
ITI° Le groupe continu & un parameétre X = ax défini par

xQ—X;:X ;

dx ’ (22)

16



a

1V° Le groupe mixte 3 un paramétre X = az, X = o défini par
22 (‘%) — Xxe, (23)
V° Le groupe, continu ou mixte, & un parameétre X = ex +-a(e® = 1),
défini par (@)n . 24)
dx ’
VI° Le groupe du diédre X = gz (" = 1), défini par
XU = gt n=1); (25)

VII° Le groupe défini par
1 1
X +F:x +ﬁ(n>2)’ (26)
VIII° IX° X° Le groupe du tétraédre, le groupe du cube et le groupe de
Picosaedre.

10. La question ne se pose pas pour le cas I, ou ’équation (20) est
générale. Dans le cas II, le systéme irréductible dans R automorphe par
rapport au groupe (21) est de la forme

d*x dx

= A() dt

de? (27)

A(t) étant une fonction rationnelle de ¢ & coefficients quelconques. Ces
coefficients satisfont aux équations algébriques & coefficients rationnels
qui expriment que les solutions de (27) satisfont & I’équation donnée (20);
ces équations s’obtiennent en exprimant qu’on a identiquement

A'(t) —3 A%¢) = R@) . (28)

Appelons conjuguée de A(t) et désignons par A () une fonction rationnelle
dont les coefficients satisfont aux mémes relations algébriques que A(t),
c’est-a-dire qui vérifie 'identité (28). L’équation (27), ol 'on remplace
A(¢t) par A(t), est encore une équation rationnelle dans le domaine R et
automorphe par rapport au groupe (21); elle est d’autre part irréductible,
sinon le groupe de Galois de 1’équation (20) serait un vrai sous-groupe
du groupe (21); par suite on passe de I'une de ces équations & ’autre par
une transformation homographique laissant invariant le groupe (21).
Or ce groupe n’est invariant que dans lui-méme (toute homographie le
laissant invariant laisserait invariant le point x = oo). Par suite on a
identiquement A4 (t) = A(t). Les relations algébriques entre les coefficients

2 Commentarii Mathematici Helvetici 17



de A(¢) qui résultent de l'identité (28) n’admettent donc pas d’autre
solution que celle fournie par les coefficients de A(f); ces coefficients

sont donc rationnels, et 1’équation (27) est rationnelle et irréductible
dans le domaine R’%). C.Q.F.D.

11. Passons au cas III du groupe X = ax; toute équation irréductible
automorphe par rapport & ce groupe dans le domaine de rationalité R
est de la forme doe
A(t) étant une fonction rationnelle. On peut, comme dans le cas précé-
dent, définir les fonctions rationnelles A4 (f) conjuguées de A(t). On passera
de I’équation (29) & toute équation conjuguée par une homographie
effectuée sur z et laissant invariant le groupe (22) X = ax. Ces homogra-
phies laissant invariant le couple des points doubles (z = 0, x = oo)

du groupe (22), sont soit de 1a forme X — ax, soit de la forme X = Z— :

>

dans le premier cas on a A(f) = A(t), dans le second cason a A(t) = — A(¥).

Si c’est le premier cas qui se présente pour toutes les fonctions conju-
guées A(t), c’est que la fonction A(¢) est & coefficients rationnels et ’équa-
tion (29) est rationnelle dans le domaine R’. Si au contraire le second
cas se présente pour une des fonctions conjuguées A(t) de A(t), c’est que,
au moins pour une certaine valeur rationnelle ¢, de ¢, A(¢,) est un nombre
irrationnel algébrique qui, d’aprés ce qui précéde, est de degré 2 et est
égal et opposé & son conjugué; il est donc de la forme VD, D étant
rationnel. Si ’on adjoint maintenant VD au domaine de rationalité R’,
tous les conjugués de A(t), par rapport @ ce nouveau domaine de rationalité,
sont identiques & A(t), puisque 1’égalité A(f) = — A(f) est impossible
& cause de A(t,) = A(t,) =V D. Par conséquent les coefficients de A(t)
appartiennent au corps quadratique défini par VD ; on a méme A(f) =
VDH(t), H(t) étant & coefficients rationnels. Cela posé, si 'on remplace

dans 1’équation (29) x par ?..::1/_9 , on obtient I’équation irréductible &

+ vD
coefficients rationnels dans R’

4) Cela ne veut pas dire que l'identité (28) ne puisse pas étre vérifiée par des fonctions

rationnelles 4 (2) & coefficients irrationnels: mais c’est qu’alors le groupe de Galois de

1
Péquation donnée (20) est un vrai sous-groupe de (21). C’est ainsi que si B(t) = —

_ 262’
on peut prendre A4 (t) = y2—1 ; ’équation (27) admet alors la solution = = £'2 qui
2 2
satisfait & 1’équation irréductible (g-::-’) = —2—3— , dont le groupe est le groupe (23).

18



de 1 ,
= @—D)H(), (29')
automorphe par rapport & un groupe homologue du groupe (21).

Dans le cas III on a donc certainement une équation irréductible
automorphe, rationnelle dans le domaine de rationalité R’ , soit de la
forme (29), soit de la forme (29’).

12. Le groupe (23) du cas IV donne lieu & un raisonnement identique
a celul qui a été fait pour le cas II; cela tient & ce que ce groupe n’est
invariant que dans lui-méme. Toute équation irréductible rationnelle
dans R et automorphe par rapport au groupe (23), supposé le groupe
de Galois de I’équation (20), est de la forme

.\ 2
=) = 22
(dt) 2 A (30)
A(t) étant & coefficients rationnels.

13. Passons au cas V. Au groupe (24), supposé groupe de Galois de
I'équation (20), correspond une équation irréductible, rationnelle dans
R, de la forme

(-”(%)nz At) , (31)

A(t) étant une fonction rationnelle de ¢. Ici on doit modifier un peu le
raisonnement; on peut multiplier # par une constante de maniére que
la fonction rationnelle 4(t) prenne la valeur 1 pour une valeur particu-
liére rationnelle ¢, de t. C’est seulement pour les fonctions jouissant de
cette propriété qu’on définira les fonctions conjuguées, qui naturellement
prendront aussi la valeur 1 pour ¢ = ¢,. Le groupe qui laisse invariant
le groupe (24) est le groupe X = ax 4 b; par suite ’homographie qui
fait passer de ’équation (31) & une équation conjuguée multipliera A(t)
par a": A(t) = a®A(t); mais comme A(t,) = A(t,) = 1, c’est qu'on a
A(t) = A(t). Par conséquent la fonction rationnelle A (¢) est & coefficients
rationnels.

14. Dans le cas VI on a le groupe du diédre (25) qui correspond & une
équation irréductible, rationnelle dans R, de la forme

a® = A(¢); (32)

on peut 14 encore supposer A(t,) = 1. Si n > 1, toute homographie qui
laisse invariant le groupe (25) est soit de la forme X = ax, soit de la
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forme X = %. Par suite si A(t) est une fonction rationnelle conjuguée
de A(t), on aura, & cause de A(f,) = A(t,) = 1,

o o 1
soit A(t) = A() , soit A(t) = A0

Si ¢’est le premier cas qui se présente pour toutes les fonctions conju-
guées A(t), c’est que A(t) est & coefficients rationnels. Si le second cas se
présente, soit £, un nombre rationnel pour lequel A(¢,) 5= A(t,); le nombre
A(t,) est un nombre algébrique, nécessairement de degré 2; il appartient
donc & un corps quadratique défini par une irrationnelle ¥ D. On montre,
comme dans le cas III, que les coefficients de A(¢) appartiennent tous &

1

ce corps, le changement de ¥'D en — VD changeant A(t) en YI0k Cela
posé, 'équation irréductible

(” Vﬂ)==Aa),

x +VD

dont le groupe est homologue du groupe (25), est invariante par le chan-

gement de ¥ D en — VD . On pourra ’écrire sous la forme, rationnelle
dans R/,

2" 4 C2 Dam* 4 CL Dot + . ..
Cra" 1+ C2 D™ + - - -

= H(t) , (32%)

H(t) étant & coefficients rationnels.

Ce qui précede suppose » > 1. Si »n = 1, I'équation (20) admet la
. . . . . xA(t) + B
solution rationnelle x = A(f) et par suite aussi la solution r = ————~.
Heve yAQD + 6
On peut disposer des constantes «, f#, ¥, 6 de maniére & avoir, pour une
valeur rationnelle ¢, de ¢,

A(ty) =0, Al(tg) =1, A”(to) =0 3

le passage de A(f) & une fonction conjuguée A(¢) ne pourra alors se faire
que par I’homographie identique, de sorte que A(t) est a coefficients
rationnels.

16. Passons au groupe (26) et supposons d’abord n > 2 (pour n = 1,
le groupe est semblable au groupe X2 = z2). Il lui correspond une équa-
tion irréductible de la forme

1
S =A() . (33)

x" 4
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Le groupe (26) est invariant par les homographies X = ¢x et X = —%

avec ¢2" = 1. Par suite toute fonction conjuguée de A(t) est égale soit &
A(t), soit & —A(#). Un raisonnement déja fait montre que les coefficients
de A(t) sont rationnels ou appartiennent & un corps quadratique défini
par VD ; le changement de VD en — VD change alors A(t) en —A(t).
Dans le premier cas, I’équation (33) est rationnelle dans le domaine de
rationalité R’; dans le second cas 1’équation

2n
ﬁj}BZHm, (33)
ou H(t) = l—/—ll—j A(t), est a coefficients rationnels, et automorphe par
rapport & un groupe homologue du groupe (26).

16. Prenons maintenant le cas du groupe (26) avec » = 2. Nous pou-
vons écrire ’équation (33) sous la forme

— (@ 1) (a2 —1)?  da?
AA@) — wuB@) T vC@)° (34)

A(t), B(t), C(t) étant des polynomes entiers en {, qu’'on peut toujours
supposer égaux & 1 pour une valeur particuliére rationnelle ¢, de ¢. On
a du reste entre ces polynomes la relation identique

AA(t) + wB(t) + »O(t) = 0,

et on peut prendre pour 4, u, » les valeurs

A=f—y, wu=yp—a v=o—4
ou 'on a posé

& = A(tl)’ ﬁ = B(tl)v V= C(t,),

i, étant une valeur rationnelle de ¢ convenablement choisie, assujettie
du reste & la seule condition qu’on n’ait pas A(t;) = B(t,) = C(¢,). Les
équations (34) s’écrivent alors

— @412 @—1)2  4g
B—p)A@®t)  (y—x)B@Et) (x—p)C@1) °

Le groupe (26) fait intervenir trois couples de valeurs de z: (7, —¢),
(1,—1), (0, o0); ce sont les couples de racines des polynomes x%-1,
x* — 1, z dont les carrés figurent aux numérateurs de (34). Toute trans-
formation homographique qui laisse invariant le groupe (26) échangera

(34)
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entre eux ces trois couples. Il en résulte que si A(t), B(t), C(t) constituent
un systéme de polynomes conjugués de A(t), B(t), C(t), 'homographie
qui transforme le systéme (34) dans le systéme conjugué effectuera sur
A(t), B(t), C(t) une certaine permutation: c’est une simple permutation
parce qu’on a A(t,) = B(t,) = O(t,) = A(t,) = Bl(t,) = C(t,). Cette méme
permutation sera naturellement effectuée sur «, 8, y.

Cela posé, «, B, ¥ sont racines d’'une équation du troisitme degré
& coefficients rationnels puisque dans le corps algébrique auquel ils appar-
tiennent, le passage de «, f, y & leurs conjugués se fait toujours par une
simple permutation. Soit

ut + pu? +qu +r=20

Péquation qui a pour racines «, 8, y. Considérons les trois polynomes

P(z) = 2 —20x+p ,
Qx) =2 —2fx+0 ,
R(z) = o> —2yx+ 7,

ou p, o, T sont choisis par la condition que les racines de deux quelconques
de ces trois polynomes se divisent harmoniquement. On aura

o+ 1=28y, 1T+o=2px, o+0=2u«f,

d’olr
0 = — 202 — 2px —q ,
c=—28"—2pf—q,
T=—2y*—2py—q .

On vérifie facilement 'identité
(B— y)P2(x) + (y — x)@*(2) + (x — B)R2(x) = O .
Cela posé, le systéeme irréductible

Pix) @) _ R)
At Bty C@)

qui admet un groupe homologue au groupe (26), est rationnel dans le
domaine de rationalité R’, car le passage de A(¢), B(t), C(t) & A(¢), B(t),
C(t) effectue sur «, B, ¥ une certaine permutation, la méme que celle qui
fait passer de 4, B, C 4 4, B, 0, et c’est aussi la permutation que subissent
les numérateurs P2(x), Q%(x), R%*(x). Ce systéme peut donc s’écrire de
maniére & ne contenir aucune irrationnelle.

On vérifie en effet facilement qu’on a

Aty = «H(t) + K(t) ,  B() = BH®) + K@), C(t) = yH() + K@) ,
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les polynomes H(t) et K(t) étant a coefficients rationnels. Le systéme
prend alors la forme rationnelle en R’

#—292 —8ra+ @ —4pr _ K@) (34)
B p gz tr CHED

17. Il ne nous reste plus & examiner que les trois groupes des polyédres
réguliers?®).

Dans le cas VIII du groupe du tétraédre, dont les équations de définition
peuvent étre ramenées a la forme

(X*+2X) (4X3—1)F (2X°—10X2— 1)

@ F 22)°  (42° — 1) (22° — 102° — 1) °

tout systéme irréductible correspondant, rationnel en R, est de la forme

— 4 (2t 4 22 (423 —1)® (228 — 1023 — 1)?
B—p)Al) (y—)B(t)  (x—p)C®)

(35)

On peut supposer A(t,) = B(t,) = C(t,) = 1 pour ¢, rationnel, ainsi
que « = A(t,), B = B(t,), y = C(t,) pour ¢, rationnel. La somme des
numérateurs de (35) est identiquement nulle, ainsi que celle des dénomi-
nateurs.

Toute homographie laissant invariante le groupe du tétraédre laisse
invariante I’équation 228 — 1022 — 1 = 0. Deux cas sont alors possibles:
gx;——z_?l— a un facteur
constant pres, ou bien elle le remplace par son inverse & un facteur cons-
tant prés. Il en résulte que si A(¢), B(t), C(t) constituent un systéme de
polynomes conjugués de A(t), B(t), C(t), on a C(¢) = C(t) et en outre

ou bien ’homographie laisse invariant le rapport

ou bien A(t) = A(t), B(t)= B(t),aveca =a,f =48,
ou bien A(t) = B(t), B(t)= A(t),aveca =8, =« .

Si c’est le premier cas qui se présente toujours, les polynomes A(t),
B(t), C(t) sont & coefficients rationnels et le systéme (35) est rationnel
dans R’. Si le second cas se présente, y est rationnel, x et g sont des
nombres conjugués d’un corps algébrique du second degré défini par une
irrationnelle ¥'D. 11 suffit alors de remplacer les numérateurs de (35)
respectivement par les polynomes

$) Voir sur ces groupes les Legons sur 'Icosaddre de F. Klein.



— (x4+ 6V Dx2—3D)3, (x*— 6VDx2—3D)3, 36VD (2°-+ 3Dx)?,

dont la somme est identiquement nulle, pour obtenir un nouveau systéme
invariant par le changement de signe de ¥.D. On peut donc ’écrire de
maniére qu’il ne contienne aucune irrationnelle. Sa nouvelle forme sera

(x* —3D)® + 108 Dat (x* —3D)

(@ £ 3D)? =H{) ,
ou encore, en remplagant 3D par D,
—_ 4 2
(x* — D) (2® + 34 Dx* + D?) — H{) | (35)

x%(xt -+ D)?
H(t) étant une fonction rationnelle & coefficients rationnels.

18. Passons au groupe du cube, dont on peut ramener les équations
de définition & la forme

[PX)F__[QX))_ [RX)]
[P@F ~ 1@~ [R@F

o P(x), Q(x), R(x) sont trois polynomes respectivement de degrés 8,
6 et 12 9)

P(x) = x8 4+ 142* + 1,

Qx) = 2° — =,

B(x) = x1%2 — 3328 — 33z + 1,

liés par la relation identique
P3—108Q*— R2=0 .
Tout systéme irréductible correspondant sera de la forme

— P 108Q*  Re
B—1A@®)  (—xB@O) («—HCE’

avec les mémes conventions que dans les cas précédents.

(36)

Toute homographie qui laisse invariant le groupe du cube, laisse inva-
riante chacune des équations P = 0, @ = 0, R = 0. Par suite, tout
systéme de polynomes A(t), B(t), C(t) conjugués de A(¢), B(t), C(t) redonne
les mémes polynomes, qui sont ainsi & coefficients rationnels.

8) Le polynome @ (x) doit étre regardé comme étant du sixidme degré avec la racine
T == OQ.
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19. La démonstration est la méme pour le groupe de I'icosaédre défini
par les équations
[PX)P__[QX)FP_[RX)T
[P@) P [Q@]P [R@] "’

ou les polynomes P(z), Q@(x), B(x), de degrés respectifs 12, 20, 30, sont

Plx) = o2t 4 11a® — a
Q(x) = 220 — 228215 | 49410 | 228x° 4 1
R(x) = x3° + 52222° — 10.005x2° — 10.00521° — 52225 + 1 ;

ces polynomes sont liés par la relation
1728 P> + @Q* — R* =0 .
Le systéme irréductible correspondant est de la forme

1728 Ps Q R

B—p)A@®)~ (y—a)Blt) (x—pC@E) °

(37)

et on démontre, comme pour le groupe du cube, qu’il est & coefficients
rationnels.

La démonstration est ainsi achevée. Le systéme rationnel irréductible
dans le domaine de rationalité R’, qui est automorphe par rapport au
groupe de Drach-Vessiot de 1’équation (20), est réductible & 1'une des
formes (29), (297), (30), (31), (32), (32), (33), (33), (34), (34’), (35), (35),
(36), (37), du moins si I’équation (20) n’est pas générale.

(Regu le 27 juillet 1938.)
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