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La théorie de Galois et ses généralisations

Par Elie Cautan, Paris1)

I. Rappel des principes de la théorie de Galois

1. La théorie de Galois s'applique à certains systèmes automorphes ;

ce sont des systèmes (d'équations algébriques, d'équations différentielles,
d'équations aux dérivées partielles) tels qu'on passe d'une solution
particulière à une autre solution quelconque par les opérations d'un groupe G,

dit groupe fondamental. Etant donné un domaine de rationalité, on suppose
les équations du système rationnelles dans ce domaine; on suppose aussi
que les opérations du groupe G sont rationnelles. Dans la théorie classique
de Galois, on considère une équation algébrique à racines toutes distinctes,
une solution étant ici l'ensemble des racines rangées dans un certain
ordre: les opérations de G sont les permutations effectuées sur les
racines. Dans la théorie de Picard-Vessiot des équations différentielles
linéaires, une solution est formée par un système fondamental d'intégrales,

les opérations de G étant les substitutions linéaires effectuées sur
ces intégrales. Dans cette dernière théorie, le domaine de rationalité
comprend obligatoirement les coefficients de l'équation différentielle
donnée et toutes les fonctions qu'on en déduit par addition, multiplication,

division et différentiation, ainsi que toutes les constantes complexes.

2. Admettons que l'une des solutions x du système donné satisfasse
à un certain système rationnel irréductible £{x) qui est, soit le système
donné, soit ce système auquel on a adjoint une ou plusieurs équations
rationnelles nouvelles: cette hypothèse est réalisée dans les cas classiques.
Un système rationnel £ (x) est irréductible, d'après M. Drach, s'il est
impossible de lui adjoindre une équation nouvelle qui laisse le système
compatible et qui ne soit pas une conséquence rationnelle des équations
de £(x).

La théorie de Galois peut alors être traitée en quelques lignes; elle

repose sur les deux théorèmes fondamentaux suivants.

1° Les transformations s de G qui font passer de la solution particulière x
à une solution sx de £ forment un groupe g. En effet par hypothèse x
satisfait au système rationnel £{sx)\ donc £ (sx) est une conséquence
rationnelle de £(x), sans quoi le système £(x) ne serait pas irréductible.

*) Cet article a été rédigé il y a un certain nombre d'années; j'espère qu'il n'a pas perdu
son intérêt.



Par suite l'opération s appliquée à une solution quelconque de £ donne
encore une solution de £: l'ensemble des opérations de G qui font passer
de la solution particulière x aux différentes solutions de £ jouit de la
propriété de contenir ssr, dès qu'il contient s et s'. D'autre part, si
l'opération s fait passer de la solution particulière x de £ à la solution sx
de £, l'opération s*1 fait passer de la solution particulière sx à la solution
x et par suite s~l est une opération de l'ensemble considéré. Cet ensemble
forme donc un groupe g. C. Q.F.D. C'est le groupe de rationalité ou le

groupe de Oalois du système.

2° Tout système irréductible £ auquel satisfait une solution particulière

x du système donné est automorphe par rapport à un groupe g homologue

de g dans G. En effet soit t l'opération de G qui fait passer d'une
solution particulière x du système irréductible £ à une solution
particulière x du système irréductible £\ x satisfait au système irréductible
£(t~xx), dont le groupe g est évidemment le groupe tgt~x homologue
de g dans G.

3. Ajoutons la remarque importante que le système de toutes les
relations rationnelles auxquelles satisfait une solution particulière du système
donné est irréductible, puisque toute solution satisfait à un système
irréductible et ne peut par suite satisfaire à des équations rationnelles qui
n'en seraient pas des conséquences rationnelles.

Remarquons aussi que si l'on ne suppose pas l'existence d'un système
irréductible rationnel compatible avec le système donné et si l'on appelle
£ (x) l'ensemble des relations rationnelles auxquelles satisfait une solution

particulière x de ce système, la première partie de la démonstration
du premier théorème fondamental est encore valable: l'ensemble des

opérations de G qui font passer de x k une autre solution de £ (x) jouit
de la propriété de contenir le produit ss' dès qu'il contient s et s'; mais
la deuxième partie tombe, de sorte qu'on ne peut pas démontrer que cet
ensemble forme un groupe. La conclusion est cependant exacte si le

groupe G ne contient qu'un nombre fini d'opérations, ou si le système
£(x) ne contient qu'un nombre fini de solutions. Dans la théorie
classique de Galois, c'est ce qui se passe. L'irréductibilité du système £{x)
est dans ce cas assurée.

11° Cas où les opérations du groupe fondamental ne sont pas rationnelles

4. Dans l'exposé précédent, deux hypothèses jouent un rôle important,

à savoir l'existence d'un système rationnel irréductible compatible
avec le système donné et la propriété des opérations du groupe fondamen-
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tal d'être rationnelles. Cette seconde est la plus importante; du reste, la
première est une conséquence de la seconde si le groupe fondamental
est fini. Il est à présumer que si nous laissons tomber cette hypothèse de
la rationalité des opérations du groupe fondamental, tout ou partie de la
théorie de Galois tombera en défaut. Les exemples que nous allons
donner pourraient même conduire à la conclusion qu'en général rien ne
subsiste de cette théorie. Néanmoins les recherches de MM. Drach et
Vessiot2) sur le système formé d'une équation aux dérivées partielles
linéaire et homogène du premier ordre à une fonction inconnue z de n
variables indépendantes xl9 x2, • • -, %n, système automorphe par
rapport au groupe infini de toutes les transformations Z f(z), montrent
qu'au moins dans ce cas une partie des théorèmes de la théorie de Galois
subsiste. On sait en effet que dans ce cas

1° il existe un système rationnel U irréductible et automorphe par
rapport à un groupe g de transformations Z f(z);

2° les solutions de tout système rationnel Z compatible avec l'équation

aux dérivées partielles donnée se partagent en familles dans chacune
desquelles les solutions se déduisent de l'une d'entre elles par les opérations

d'un groupe, variable d'une famille à l'autre, homologue de g

(semblable à g).
Le groupe g est le groupe de rationalité, ou le groupe de Drach-Vessiot,

de l'équation donnée.

5. Il est intéressant de rechercher comment les choses se passent dans
des cas très simples.

Premier Exemple. Considérons l'équation

automorphe par rapport au groupe fondamental X4 xé (ce groupe,
comme tous ceux que nous considérerons dans la suite, a des équations
de définition rationnelles). Le domaine de rationalité est formé des nombres

rationnels.

2) J. Drach, Essai sur une théorie générale de l'intégration, etc. (Annales
Ecole Norm., 1898); Sur le problème logique de l'intégration des équations
différentielles (Annales Toulouse, 1908, 1912); — E. Vessiot, Sur la théorie de
Galois et ses diverses généralisations (Annales Ecole Norm., 1904); Sur la réduc-
tibilité et l'intégration des systèmes complets (Annales Ecole Norm., 1912);
Sur la réductibilité des équations aux dérivées partielles du premier ordre
(Annales Ecole Norm., 1915).
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Ici deux des racines de (1) satisfont à l'équation irréductible

x2 — 2 0 (2)

les deux autres à l'équation irréductible

x* + 2 0 (3)

Elles sont toutes les deux automorphes, et par rapport au même

groupe X ± x. La théorie de Galois subsiste, avec néanmoins la
différence que les irrationnelles définies par (2) et (3) ne sont pas de même
nature.

2me Exemple. Considérons maintenant l'équation
x6 — 8 0 (4)

automorphe par rapport au groupe fondamental Xe #6, avec le même
domaine de rationalité que dans le premier exemple. Les solutions de (4)
satisfont aux équations irréductibles

x2 — 2 0, (5)

x* + 2x* + 4 0; (6)

la première est automorphe par rapport au groupe X ± x ; la seconde

n'est pas atdomorphe. Néanmoins les solutions de la seconde équation se

partagent en deux familles dans chacune desquelles on passe d'une
solution à l'autre par les opérations du groupe X + x- Nous retrouvons

les deux propriétés fondamentales de la théorie de Drach-Vessiot ;

le groupe de Drach-Vessiot de l'équation (4) est X ± x.

3me Exemple. Prenons l'équation

x* + 27 0 (7)

automorphe par rapport au groupe fondamental X* a;6. Les différentes
racines de (7) satisfont aux trois équations irréductibles

#2+3 0, (8)

x2 + Zx + 3 0, (9)

xz — 3x + 3 0. (10)

L'équation (8) est automorphe par rapport au groupe X ~t: x, mais

aucune des deux autres n'est automorphe. Par exemple l'équation (10)

^ 3—^3 S + tf^S -.admet les racines et — ; les transformations du groupe
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3 i y'3
fondamental qui font passer de la racine à ces deux racines sont

/— JL

X x et X - x ; elles ne forment pas un groupe. De plus les ra-

cines de l'équation (10) ne forment pas une famille de racines se déduisant
de l'une d'entre elles par les opérations du groupe X i x °u d'un
groupe homologue, puisque cette équation n'est pas automorphe. Le
deuxième théorème fondamental de la théorie de Drach-Vessiot tombe en

défaut.

4™ Exemple. L'équation ^ + 4 Q

est automorphe par rapport au groupe fondamental X4 x4. Elle se

décompose en deux équations irréductibles

x2 — 2^ + 2 0, (12)

#2 + 2# + 2 0; (13)

aucune n'est automorphe. Tous les théorèmes de la théorie de Drach-
Vessiot tombent.

5me Exemple. Terminons par un dernier exemple, fourni par l'équation

différentielle -,

automorphe par rapport au groupe fondamental défini par l'équation

Xg *. (15)

Le domaine de rationalité est formé par les fonctions rationnelles
à coefficients rationnels de la variable indépendante t.

Les différentes solutions de (14) sont données par l'équation

Plusieurs cas sont à distinguer.
a) Si la constante G est rationnelle, l'équation (16) est irréductible

et automorphe, son groupe étant X i x.

b) Si la constante G est égale à ±^2, l'équation (16) fournit deux
couples de solutions satisfaisant respectivement aux équations rationnelles

irréductibles
^

-«•-^ 0, (17)

aucune, n'est automorphe.

13



c) Si la constante C est une irrationnelle algébrique autre que i V~2,

les solutions satisfont à une équation algébrique rationnelle irréductible

0, (19)

P étant un polynôme irréductible du second degré au moins ; cette équation

n'est pas automorphe.

d) Si la constante G est transcendante, les seules relations rationnelles
auxquelles satisfasse une des solutions de (16) se réduisent à l'équation (14).
On a là un exemple du cas où le système de toutes les équations rationnelles
auxquelles satisfait une solution particulière n'est pas irréductible.

En résumé, nous avons une infinité de systèmes rationnels irréductibles
automorphes (16) avec le même groupe X i x\ le premier théorème
fondamental de la théorie de Drach-Vessiot est vérifié, mais il n'en est

pas de même du second, comme le montre le système irréductible (17)
ou (18).

6. Comme on le voit, le cas le plus favorable qui puisse se présenter
est celui où il existe un système rationnel irréductible automorphe £ tel
que les solutions de tout système rationnel compatible avec le système
donné se partagent en familles dans chacune desquelles les différentes
solutions se déduisent par une même opération du groupe fondamental
des solutions du système £. Nous disons qu'un tel système est un système
de Drach- Vessiot, et le groupe de £ sera le groupe de Drach- Vessiot du
système donné.

On peut énoncer au sujet de ces systèmes le théorème suivant.

Théorème. Pour qu'un système automorphe par rapport à un groupe
fondamental G soit un système de Drach-Vessiot, il faut et il suffit qu'il
existe un système rationnel irréductible £ compatible avec le système donné
et jouissant de la propriété que si une solution de £, après avoir été soumise
à une opération, rationnelle ou irrationnelle, de G, satisfait à une certaine
équation rationnelle, la transformée par la même opération de G de toute

autre solution de £ satisfait à la même équation rationnelle.

La condition est évidemment nécessaire. Elle est suffisante, car si s
est une opération de G transformant une solution particulière ce de £ en
une autre solution sx de £, toutes les autres solutions xf de £ seront
changées elles aussi en des solutions sx; de £; d'autre part la solution
x de £ se déduisant de la solution sx par l'opération s-1, la transformée
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s~xxf de toute solution de E sera transformée encore en une solution
de 2J. Par suite, le système U est automorphe et le système donné est
un système de Drach-Vessiot.

Ajoutons la remarque que si U' est un second système rationnel
irréductible jouissant des mêmes propriétés que U, 2Jf est automorphe et
son groupe g' est homologue de g dans le groupe fondamental. En effet,
si t est l'opération de G faisant passer d'une solution particulière x de
U h une solution particulière xf de £', toutes les opérations tgt"1
appartiennent à g' et réciproquement toutes les opérations t~xgft appartiennent
à g; les deux groupes sont donc homologues et g! — tgt-1. Enfin, si £ est
un système rationnel automorphe quelconque, chaque opération du
groupe g de Z est contenue dans un sous-groupe homologue de g.

111° Une classe de systèmes de Drach-Vessiot

7. J'ai posé depuis longtemps3) la question de savoir ce qui subsiste
de la théorie de Picard-Vessiot des équations différentielles linéaires
quand, dans le domaine de rationalité, on ne prend pas toutes les
constantes complexes, mais seulement par exemple les constantes rationnelles,
au cas où les coefficients de l'équation sont des fonctions rationnelles
à coefficients rationnels de la variable indépendante; les opérations du
groupe fondamental cessent alors d'être rationnelles.

Il y a un cas où l'on est sûr que l'équation différentielle est un système
de Drach-Vessiot: il suffit pour cela qu'à l'un des systèmes irréductibles
U considérés dans la théorie classique de Picard-Vessiot, rationnels dans
le domaine de rationalité R de cette théorie classique, on puisse faire
correspondre un système irréductible £r automorphe par rapport au
groupe de Galois g de l'équation ou par rapport à un groupe homologue,
et qui soit rationnel dans le domaine de rationalité Rr qui ne contient que
les constantes rationnelles (B se déduit de Rf par l'adjonction de toutes
les constantes). En effet, supposons qu'il en soit ainsi et soit x une solution

particulière de £'\ la solution sx, où s est une opération du groupe
fondamental, satisfera au système £ qui se déduit de £F par l'opération s.
Ce système £ est rationnel et irréductible dans R, mais il ne sera pas en
général rationnel dans Rr\ en tout cas toute équation F — 0 rationnelle
dans R! à laquelle satisfait sx est aussi rationnelle dans R et, à ce titre,
est une conséquence de £; par suite, l'opération s, appliquée à toute
solution de £f autre que x, donnant une solution de £, cette solution
satisfera à l'équation F 0 rationnelle dans Rf. D'après le théorème du

3) E. Cartan, La théorie des Groupes (Revue du Mois, 17, 1914, p. 465).
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n° 6, l'équation différentielle donnée constitue, dans le domaine de
rationalité Rf, un système de Drach-Vessiot.

8. Nous allons nous contenter de traiter un problème plus simple,
qui s'apparente au précédent. Nous allons montrer que l'équation
différentielle _ d%x

B(t) (20)

dt \ dt

où R(t) est une fonction rationnelle de t à coefficients rationnels, équation
automorphe par rapport au groupe homographique de la variable xy

est une équation de Drach-Vessiot, le domaine de rationalité Rf étant
formé des fonctions rationnelles de t à coefficients rationnels et ne
contenant pas les constantes irrationnelles. Les opérations du groupe fondamental

sont en général irrationnelles.
L'équation (20) serait justiciable de la théorie de Galois si le domaine

de rationalité était étendu en R par l'adjonction de toutes les constantes
complexes. Nous allons passer en revue tous les groupes de Galois
correspondants qui peuvent se présenter et vérifier que pour chacun d'eux g
il existe une solution de l'équation (20) satisfaisant à un système rationnel
irréductible dans Rf et automorphe par rapport à un groupe homologue
de g dans le groupe homographique total. Pour cela, nous utiliserons la

remarque que si, dans la théorie de Galois (groupe de rationalité R) on
a deux systèmes rationnels irréductibles correspondant au même groupe g,

on passe de l'un à l'autre par une transformation du groupe fondamental
laissant le groupe g invariant.

9. Les groupes de Galois possibles, dans le domaine de rationalité R
(contenant toutes les constantes complexes) sont homologues à l'un des

groupes suivants:

1° Le groupe homographique total;

II0 Le groupe continu à deux paramètres X ax + b défini par

IIP Le groupe continu à un paramètre X ax défini par

.«-I
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1V° Le groupe mixte à un paramètre X ax, X - défini parx

X I —j 1 — -A. J [*u]

V° Le groupe, continu ou mixte, à un paramètre X ex + a(en 1),
défini par

VI° Le groupe du dièdre X ex(sn 1), défini par

Xn xn (n > 1) ; (25)

VII° Le groupe défini par

x* + ^i=*n + ^i(">z) ; (26)

VIII° IX° X° Le groupe du tétraèdre, le groupe du cube et le groupe de
l'icosaèdre.

10. La question ne se pose pas pour le cas I, où l'équation (20) est
générale. Dans le cas II, le système irréductible dans R automorphe par
rapport au groupe (21) est de la forme

A(t) étant une fonction rationnelle de t à coefficients quelconques. Ces

coefficients satisfont aux équations algébriques à coefficients rationnels
qui expriment que les solutions de (27) satisfont à l'équation donnée (20) ;

ces équations s'obtiennent en exprimant qu'on a identiquement

A'(t)—$A*{t) R(t) (28)

Appelons conjuguée de A(t) et désignons par A(t) une fonction rationnelle
dont les coefficients satisfont aux mêmes relations algébriques que A(t),
c'est-à-dire qui vérifie l'identité (28). L'équation (27), où l'on remplace
A(t) par A(t), est encore une équation rationnelle dans le domaine R et
automorphe par rapport au groupe (21) ; elle est d'autre part irréductible,
sinon le groupe de Galois de l'équation (20) serait un vrai sous-groupe
du groupe (21); par suite on passe de l'une de ces équations à l'autre par
une transformation homographique laissant invariant le groupe (21).
Or ce groupe n'est invariant que dans lui-même (toute homographie le
laissant invariant laisserait invariant le point x oo). Par suite on a
identiquement A(t) A(t). Les relations algébriques entre les coefficients

2 Commentarii Mathematici Helvetici * '



de A(t) qui résultent de l'identité (28) n'admettent donc pas d'autre
solution que celle fournie par les coefficients de A(t); ces coefficients
sont donc rationnels, et l'équation (27) est rationnelle et irréductible
dans le domaine JB'4). C.Q.F.D.

11. Passons au cas III du groupe X ax, toute équation irréductible
automorphe par rapport à ce groupe dans le domaine de rationalité R
est de la forme

£ (29)

A(t) étant une fonction rationnelle. On peut, comme dans le cas précédent,

définir les fonctions rationnelles A(t) conjuguées de A(t). On passera
de l'équation (29) à toute équation conjuguée par une homographie
effectuée sur x et laissant invariant le groupe (22) X ax. Ces homographies

laissant invariant le couple des points doubles (x 0, x - oo)

du groupe (22), sont soit de la forme X ax, soit de la forme X —
x

dans le premier cas on a A(t) A(t), dans le second cas on a A(t) —A(t)
Si c'est le premier cas qui se présente pour toutes les fonctions conjuguées

A(t), c'est que la fonction A(t) est à coefficients rationnels et l'équation

(29) est rationnelle dans le domaine Rr. Si au contraire le second

cas se présente pour une des fonctions conjuguées A(t) de A(t), c'est que,
au moins pour une certaine valeur rationnelle t0 de t, A(t0) est un nombre
irrationnel algébrique qui, d'après ce qui précède, est de degré 2 et est
égal et opposé à son conjugué, il est donc de la forme VD, D étant
rationnel. Si l'on adjoint maintenant VD au domaine de rationalité Rr,
tous les conjugués de A(t), par rapport à ce nouveau domaine de rationalité,
sont identiques à A{t), puisque l'égalité Â{t) —A(t) est impossible
à cause de A(t0) A(t0) VD. Par conséquent les coefficients de A(t)
appartiennent au corps quadratique défini par VD ; on a même A(t)
VDH{t), H(t) étant à coefficients rationnels. Cela posé, si l'on remplace

x yjr)
dans l'équation (29) x par — on obtient l'équation irréductible à

x -f- y JD

coefficients rationnels dans Rr

4) Cela ne veut pas dire que l'identité (28) ne puisse pas être vérifiée par des fonctions
rationnelles A(t) à coefficients irrationnels: mais c'est qu'alors le groupe de Galois de

l'équation donnée (20) est un vrai sous-groupe de (21). C'est ainsi que si R[t) — ^i>

on peut prendre A{t) — ; l'équation (27) admet alors la solution x — t 2
qui

/d5a;\2 2 a;2
satisfait à l'équation irréductible I -=- I —y-, dont le groupe est le groupe (23).

18



™ -(x*-D)H(t), (29')

automorphe par rapport à un groupe homologue du groupe (21).

Dans le cas III on a donc certainement une équation irréductible
automorphe, rationnelle dans le domaine de rationalité R\ soit de la
forme (29), soit de la forme (29').

12. Le groupe (23) du cas IV donne lieu à un raisonnement identique
à celui qui a été fait pour le cas II; cela tient à ce que ce groupe n'est
invariant que dans lui-même. Toute équation irréductible rationnelle
dans R et automorphe par rapport au groupe (23), supposé le groupe
de Galois de l'équation (20), est de la forme

(30)

A(t) étant à coefficients rationnels.

13. Passons au cas V. Au groupe (24), supposé groupe de Galois de
l'équation (20), correspond une équation irréductible, rationnelle dans
R, de la forme

A(t) étant une fonction rationnelle de t. Ici on doit modifier un peu le
raisonnement; on peut multiplier x par une constante de manière que
la fonction rationnelle A(t) prenne la valeur 1 pour une valeur particulière

rationnelle t0 de t. C'est seulement pour les fonctions jouissant de
cette propriété qu'on définira les fonctions conjuguées, qui naturellement
prendront aussi la valeur 1 pour t — t0. Le groupe qui laisse invariant
le groupe (24) est le groupe X ax + b ; par suite l'homographie qui
fait passer de l'équation (31) à une équation conjuguée multipliera A(t)
par an: ~Â(t) anA(t); mais comme ^Â(t0) A(t0) 1, c'est qu'on a
A(t) A(t). Par conséquent la fonction rationnelle A(t) est à coefficients
rationnels.

14. Dans le cas VI on a le groupe du dièdre (25) qui correspond à une
équation irréductible, rationnelle dans R, de la forme

(32)

on peut là encore supposer A(t0) 1. Si n > 1, toute homographie qui
laisse invariant le groupe (25) est soit de la forme X ax, soit de la
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forme X —. Par suite si A(t) est une fonction rationnelle conjuguée

de A(t), on aura, à cause de A(t0) A(t0) 1,

soit Â(t) A(t) soit

Si c'est le premier cas qui se présente pour toutes les fonctions conjuguées

A(t), c'est que A(t) est à coefficients rationnels. Si le second cas se

présente, soit tx un nombre rationnel pour lequel Aty^) ^ A(tx) ; le nombre
A(tt) est un nombre algébrique, nécessairement de degré 2; il appartient
donc à un corps quadratique défini par une irrationnelle VD. On montre,
comme dans le cas III, que les coefficients de A(t) appartiennent tous à

\
ce corps, le changement de VD en —VD changeant A(t) en-jr-r. Cela

posé, l'équation irréductible

dont le groupe est homologue du groupe (25), est invariante par le
changement de VD en — VD. On pourra l'écrire sous la forme, rationnelle
dans Rr,

H(t) étant à coefficients rationnels.

Ce qui précède suppose n> 1. Si n 1, l'équation (20) admet la

solution rationnelle x A(t) et par suite aussi la solution x ^.
On peut disposer des constantes oc, /S, y, à de manière à avoir, pour une
valeur rationnelle t0 de t,

A(t0) 0 A'(t0) 1 A'%) 0 ;

le passage de A(t) à une fonction conjuguée A(t) ne pourra alors se faire
que par l'homographie identique, de sorte que A(t) est à coefficients
rationnels.

15. Passons au groupe (26) et supposons d'abord n > 2 (pour n 1,

le groupe est semblable au groupe X2 x2). Il lui correspond une équation

irréductible de la forme

(33)
je
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Le groupe (26) est invariant par les homographies X ex et X —
x

avec s2n 1. Par suite toute fonction conjuguée de A(t) est égale soit à

A(t), soit à —A(t). Un raisonnement déjà fait montre que les coefficients
de A(t) sont rationnels ou appartiennent à un corps quadratique défini
par VD ; le changement de VD en —VD change alors A(t) en —A(t).
Dans le premier cas, l'équation (33) est rationnelle dans le domaine de
rationalité Rf\ dans le second cas l'équation

^*(*) (33')

où H(t) -j=~ A(t), est à coefficients rationnels, et automorphe par

rapport à un groupe homologue du groupe (26).

16. Prenons maintenant le cas du groupe (26) avec n — 2. Nous
pouvons écrire l'équation (33) sous la forme

{ }XA(t) fiB(t) ~vC(t)'
A(t), B(t), C(t) étant des polynômes entiers en t, qu'on peut toujours
supposer égaux à 1 pour une valeur particulière rationnelle t0 de t. On
a du reste entre ces polynômes la relation identique

XA{t) + fiB(t) + vC(t) 0,

et on peut prendre pour A, ju, v les valeurs

A /S — y, ju> y — oc, v oc — ft,
où l'on a posé

p Bit,), y C(h),

t, étant une valeur rationnelle de t convenablement choisie, assujettie
du reste à la seule condition qu'on n'ait pas Ait,) Bit,) C(t,). Les
équations (34) s'écrivent alors

- (»»+!)»_ (*2-l)2 _ 4»'
" (y—») B{t) ~ (oc — /* ™« * y '

Le groupe (26) fait intervenir trois couples de valeurs de x: (i,—i),
(1,— 1), (0, oo); ce sont les couples de racines des polynômes #2 + l,
x2 — l, x dont les carrés figurent aux numérateurs de (34). Toute
transformation homographique qui laisse invariant le groupe (26) échangera
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entre eux ces trois couples. Il en résulte que si A(t), B(t), C(t) constituent
un système de polynômes conjugués de A(t), B(t), C(t), l'homographie
qui transforme le système (34) dans le système conjugué effectuera sur
A(t), B(t), C(t) une certaine permutation: c'est une simple permutation
parce qu'on a A(t0) B(t0) C(t0) Â(t0) B(t0) C(t0). Cette même
permutation sera naturellement effectuée sur oc, /?, y.

Cela posé, oc, P, y sont racines d'une équation du troisième degré
à coefficients rationnels puisque dans le corps algébrique auquel ils
appartiennent, le passage de oc, fi, y à leurs conjugués se fait toujours par une
simple permutation. Soit

us + pu2 + qu + r 0

l'équation qui a pour racines oc, ft, y. Considérons les trois polynômes

P(x) x2 —
Q(x) x2 —
B(x) x2 —

où q, a, x sont choisis par la condition que les racines de deux quelconques
de ces trois polynômes se divisent harmoniquement. On aura

r+Q 2ya, g + a
d'où

g — 2oc2 — 2poc — q

T _ 2y2 — 2py — q

On vérifie facilement l'identité

dî — y)P*(x) + (y — *)Q2(x) + (* — P)&{x) o

Cela posé, le système irréductible

P2(x) Q2(x) ^ B2(x)
A(t) ~ B(t) ~ C(t) '

qui admet un groupe homologue au groupe (26), est rationnel dans le
domaine de rationalité Bf, car le passage de A(t), B(t), C(t) à A(t), B(t)f
G(t) effectue sur oc, fi, y une certaine permutation, la même que celle qui
fait passer de A, B, C à A, 5, C, et c'est aussi la permutation que subissent
les numérateurs P2(x),Q2(x), B2(x). Ce système peut donc s'écrire de
manière à ne contenir aucune irrationnelle.

On vérifie en effet facilement qu'on a

A(t) *H(t) + K(t) B(t) fiH(t) + K(t) C(t) yH(t) + K(t)
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les polynômes H(t) et K(t) étant à coefficients rationnels. Le système
prend alors la forme rationnelle en Rr

__ _ K^
x* + px* + qx + r ~~ H(t) ' { }

17. Il ne nous reste plus à examiner que les trois groupes des polyèdres
réguliers5).

Dans le cas VIII du groupe du tétraèdre, dont les équations de définition
peuvent être ramenées à la forme

(X4 + 2X)3 _ (4Z3—l)3 __
(2X6 — 10X3 — l)2

(a;4 + 2#)3 (4a;3 — l)3 (2a;6—10a?—l)2 '

tout système irréductible correspondant, rationnel en M, est de la forme

— 4t(xi + 2x)s (4a;3—l)3 (2x«—10a?—l)2 ên— —- —- (35)
(P — y)A(t) (y — <x)B(t) (ot — p)C{t) v ;

On peut supposer A(t0) B(t0) C(t0) 1 pour t0 rationnel, ainsi

que oc A{ti}, p ^B(^i), y C(t^) pour t1 rationnel. La somme des

numérateurs de (35) est identiquement nulle, ainsi que celle des
dénominateurs.

Toute homographie laissant invariante le groupe du tétraèdre laisse
invariante l'équation 2a;6 — 10a;3 — 1 — 0. Deux cas sont alors possibles:

% _j_ 2x
ou bien l'homographie laisse invariant le rapport — à un facteur

4 X X

constant près, ou bien elle le remplace par son inverse à un facteur constant

près. Il en résulte que si A(t), B(t), C(t) constituent un système de

polynômes conjugués de A(t), B(t), C(t), on a G(t) C(t) et en outre

ou bien Â(t) A(t), B(t) B(t)9 avec * a, ]5 /S

ou bien A(t) B(t), B(t) A(t), avec * p,]} oc

Si c'est le premier cas qui se présente toujours, les polynômes A(t),
B(t), C(t) sont à coefficients rationnels et le système (35) est rationnel
dans R\ Si le second cas se présente, y est rationnel, oc et f$ sont des

nombres conjugués d'un corps algébrique du second degré défini par une
irrationnelle Vl)- II suffit alors de remplacer les numérateurs de (35)

respectivement par les polynômes

6) Voir sur ces groupes les Leçons sur Tlcosaèdre de F. Klein.
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— {x*+ %VDx2 — 3D)3 (a:4 — %VDx2 — 3D)3 36|/D (x* +

dont la somme est identiquement nulle, pour obtenir un nouveau système
invariant par le changement de signe de VD. On peut donc l'écrire de
manière qu'il ne contienne aucune irrationnelle. Sa nouvelle forme sera

(a4 — 3 Df + 108 Dx* (a4 — 3 D)

ou encore, en remplaçant 3D par D,

(35}

H(t) étant une fonction rationnelle à coefficients rationnels.

18. Passons au groupe du cube, dont on peut ramener les équations
de définition à la forme

[P(X)f
[P(x)f

où P(x), Q(x), R(x) sont trois polynômes respectivement de degrés 8,
6 et 12 6)

P(x) x* + Ux* + 1,

Q(x) x* — x,
R(x) x12 — 33a:8 — 33a;4 + 1,

liés par la relation identique

ps _ 108 Q4 __ ^2 0 t

Tout système irréductible correspondant sera de la forme

— P3 108 Ç4 R2

(fi — y) A(t) (y- *)B(t) (* — fi)C(t) ' (36)

avec les mêmes conventions que dans les cas précédents.
Toute homographie qui laisse invariant le groupe du cube, laisse

invariante chacune des équations P 0, Q 0, JB 0. Par suite, tout
système de polynômes 3(£), B(t), G(t) conjugués de A(t), B(t), C(t) redonne
les mêmes polynômes, qui sont ainsi à coefficients rationnels.

8) Le polynôme Q(x) doit être regardé comme étant du sixième degré avec la racine
x oo.
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19. La démonstration est la même pour le groupe de l'icosaèdre défini
par les équations

\P(x)f [Q{x)f ~

où les polynômes P(x), Q{x), R(x), de degrés respectifs 12, 20, 30, sont

P(x) x11 + lia:6 — x

Q(x) x20 — 228a;15 + 494a:10 + 228a:5 + 1

R{x) a:30 + 522a;25 — 10.005a:20 — 10.005a:10 — 522a:5 + 1 ;

ces polynômes sont liés par la relation

1728 P5 + Q3 — R2 0

Le système irréductible correspondant est de la forme

1728 P5 Ç3

— y)A(t) (y- oc) B(t) (oc — p) C(t)
(37)

et on démontre, comme pour le groupe du cube, qu'il est à coefficients
rationnels.

La démonstration est ainsi achevée. Le système rationnel irréductible
dans le domaine de rationalité R', qui est automorphe par rapport au

groupe de Drach-Vessiot de l'équation (20), est réductible à l'une des
formes (29), (29^, (30), (31), (32), (32'), (33), (33;), (34), (34'), (35), (35'),
(36), (37), du moins si l'équation (20) n'est pas générale.

(Reçu le 27 juillet 1938.)
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