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Interpolationsverfahren
zur Integrationsmethode von MeiBner

Von E. VorLLm, Ziirich

1. Einleitung.

Der Integrationsmethode von Meifiner fir gewohnliche Differential-
gleichungen 1. und 2. Ordnung liegt die Deutung einer Funktion p = p(u)
als Stiitzfunktion einer Kurve zugrunde!). Ist eine Differentialgleichung
2. Ordnung

p” = f(u, p, p’) (1)

gegeben, so 146t sich das Linienbild der Losung zu gegebenen Anfangs-
werten dank der einfachen Beziehung

o(u) = p(u) + p”(u) ?) (2)

fir den Kriimmungsradius g (u) leicht durch Kreisbogen annidhern. Die
Methode gibt eine Naherung 2. Ordnung fiir p(%) und 1. Ordnung fiir
p’ (u). Das von Meifiner angegebene Interpolationsverfahren verbessert
die Genauigkeit wesentlich, ohne jedoch die Ordnung der Annédherung zu
erhohen. Im folgenden wird eine Modifikation des Interpolationsverfah-
rens geschildert, die den Grad der Anndherung je um 1 erhoht, also
3. Ordnung fiir p und 2. Ordnung fiir p’ ist. Beispiele zeigen, dafl das
abgeinderte Verfahren bei unerheblich gréBerer Zeichenarbeit hohere
Genauigkeit oder aber gleiche Genauigkeit bei geringerem Arbeits-
aufwand ergibt.

2. Herleitung des Interpolationsverfahrens.

In einer Funktion p = p(u) wird die Unabhéangige u aufgefafit als
Winkel eines Strahles mit der Nullrichtung 0z (Fig. 1), der Funktions-
wert als Entfernung 0¢) eines Lotes g(u) zu diesem Strahl vom Null-
punkt 0. g(u) umhiillt eine Kurve C, das Linienbild der Funktion p(u).

1) Meifiner, E., Uber die Integration von totalen Differentialgleichungen.
Erschienen in der Schweiz. Bauzeitung, Bd. 62 (1913), Nr. 15 und 16, oder

Meifiner, H., Graphische Analysis vermittelst des Linienbildes einer
Funktion. Verlag Schweiz. Bauzeitung, in Kommission bei Rascher & Cie., 1932. Die
folgenden Hinweise beziehen sich auf letztere Publikation.

2) Meifner, a.a. 0., Seite 9.
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Die Funktion heillt Stitzfunktion von C. Ist P der Berithrungspunkt der
Geraden g (u) mit dem Linienbild, so ergibt sich der Kriimmungsradius
PP’ = p aus (2) 3).
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Ist die Differentialgleichung (1) zu integrieren mit den Anfangswerten
p(0) = p,, p’(0) = pj, so hat das Integral ein Linienbild (Fig. 2) mit dem
Anfangspunkt P,, dessen Koordinaten z = p,, y = p, sind. Nach (1)
und (2) ist der Kriitmmungsradius hier

0o = Do + (0, Dy, DY)

und der Kriimmungsmittelpunkt P hat die Koordinaten z = — f(0, p,, pj)
= —py, Y =7p,. Von diesem Kreis nehmen wir einen Bogen von

3) Fur die Beweise und Einzelheiten, insbesondere beziiglich der Vorzeichendeutung,
siehe die zitierte 2. Publikation.
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willkiirlichem Zentriwinkel » als Néaherung des Linienbildes von p(u).
Bezeichnen wir mit P, seinen Endpunkt und mit @; den FuBpunkt des
Lotes von O auf den Radius PyP,, so sind P,Q; = p, und 0Q; = p}
Naherungswerte fiir p(u) und p’(u). Ihnen entspricht ein neuer, der
Differentialgleichung entnommener Wert

p;, = f(u: D1 p{) .

Zeichnen wir jetzt mit Py, P, = p, + p{ = 0, als Radius und P, als
Mittelpunkt einen zweiten Kreisbogen vom Zentriwinkel «, so erreichen
wir einen Punkt 9P,. Ist Q] der FuBpunkt des Lotes von O auf B, P}, so
konnen p, = P, Q] und p; = 0Q] als andere Niaherungswerte fiir p(u)
und p’(u) gelten. Fiir die vier erwahnten Naherungswerte findet man an
Hand der Fig. 2 folgende Ausdriicke:

P = P1Qy = PPy + PyQ) = py + pg + posinu— pg cos u
= Py + posinu + pg (1 — cos u) (3)

P =0Q, = p}cosu -+ pjsinu (4)

Pr= BiQ) = By Pot+PoQ = pi+pi — Qo Bo cos w4 p, sin u
= Py + P{ — (P + P — Do) cos u + pg sin u (5)
= Po COS U - Py sin u + p; (1 — cos u) + py (1 — cos u)

P1= 1o €08 u + Qg By sin u = pg cos u + (py + i — Po) sin u
= Pp COS U + (P — Po) sin w + pj sin u (6)

Um die Ordnung der mit diesen Werten erzielten Annaéherung be-
urteilen zu kénnen, wollen wir sie nach Potenzen der Unabhingigen w
entwickeln und die Ergebnisse mit der Entwicklung des genauen Wertes
p (u) vergleichen. Fiir die beiden ersten GroBen erhalten wir zunéchst:

p“po+po(u—"”“ )+p (—“ *)
u? u3 7
= Po + Po¥ + Do 5 — Po—g- @
’ / u? "
P1=P0(1—'2_"‘)+p0('”'_"')
’ W o) u? . (8)
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Um auch p, und p] bis zur 3. bzw. 2. Ordnung zu entwickeln, betrachten
wir zunéichst

py = f(u, Py, DY)

und setzen voraus, dafl die Funktion f in der Umgebung des Tripels
(0, po, pi) nach Taylor entwickelbar sei. Da pY in (5) mit (1 — cos «) und
in (6) mit sin 4 multipliziert erscheint, wird es geniigen, f bis zur 1. Ord-

nung zu entwickeln, um fiir p, und p; die gewiinschte Ordnung zu er-
halten.

Mit den Abkiirzungen
of _ of _ of _
ou "_fu ap ’_‘ja) ap/_fp’ ’

wobei alle Werte der Ableitungen fiir das Tripel (0, py, py) zu nehmen
sind, und unter Beriicksichtigung von

f(0, po, o) = Do
erhalten wir:

P1 = D5 + fu %+ fp(Br— o) + for (P1— Do) + -
oder, nach Verwertung von (7) und (8) bis zur 1. Ordnung:
Py =Py + (fu -+ fo 00 + for - D6) u + -
Aus der Differentialgleichung (1) folgt aber, daf3

fu+ fo 2o+ fo po = P"(0) = Dy
so daf3

Pl =+ 0w
ist. Mit diesem Ergebnis und (7) ergibt sich aus (5) die Entwicklung

u? u?
p1=po(1’“"—‘2“ )+Po(u—— )+(p0+po )(_‘2‘)+
2
+ @+t ) (o)
/ " 3 (9)
= Po+ Pyu+ Py ——+(2po+ 3Po) 5+ -

und aus (6) die Entwicklung

p1-‘po(l"““‘“" )+(Z’o’“+ )(u—f—---)-{—(p{,’-{—pﬁ"u) (+---)

u? 10
=p+Pou+ (po+200) 5+ - 1o
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Nach (7) und (9) stimmen sowohl p, als auch p, mit dem genauen Wert
/ // u2 V//4 u3
p(u):p0+pou+po—2—+po--—6—+.

bis zur 2. Ordnung iiberein, wahrend das folgende gewogene Mittel

2 u2 __2p/+2p/+3p”/ u3
—&;£L=%+mw+mﬂg+( —— 1%

eine Naherung 3. Ordnung ist.

Entsprechend sind nach (8) und (10) p} und p] Naherungen 1. Ordnung
fiir den genauen Wert
"

u2
P () =P+ Pou + B0
wahrend der Mittelwert

7 7 7 7 V//4
P+ P — Py + Po+ 2y \ u?
BABL g gga 4 (SHEEE 2 8

bis zur 2. Ordnung richtig ist.

Sind in Fig. 2 7] und =’ die Punkte, welche die Strecke PjP; im
Verhiltnis 1:2 bzw. 1:1 teilen und «,7, das zwischen OQ] und P, P,
liegende Stiick der Parallelen zu P, P, durch n}, dann ist

2
und n{P‘):niﬂ'ﬁ:——@-gw .

Die durch i/ gehende Parallele zu P, P, hat von O den Abstand

_ Pt

O« 5

Ist n die Projektion von =, auf diese Parallele, so wird «zn = x7,.
Zusammenfassend erhalten wir also folgende

Konstruktion: Mit dem Radius g, = p, + f(0, po, p) und Mittel-
punkt P} zeichne man den Probebogen P,P, von willkiirlichem Zentri-
winkel . Aus den abgelesenen Naherungswerten p, und p; ergibt die
Differentialgleichung einen neuen Radius g, = p, + f(u, p;, p}), dem
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ein Kriimmungsmittelpunkt P; entspriche. Jetzt teile man P} P, im
Verhiltnis 1: 2, mache 77, = 1y P, und parallel zu P, P, und projiziere
endlich s7; auf die durch den Mittelpunkt =’ von P} P, gehende Parallele
zu Py P, nach n. Die Gerade mnm, mit Berithrungspunkt z ist dann ein
Element des gesuchten Linienbildes von p, und zwar naherungsweise
3. Ordnung fiir p und 2. Ordnung fiir p’. SchlieBen wir mit der Bemer-
kung, dafl nach dem Verfahren von Meilner in Fig. 2 an Stelle von =
der Punkt M treten wiirde.

3. Kontrollbeispiel.

Die Giite der Methode wurde an derselben Differentialgleichung von
bekannter Losung erprobt wie bei Meillner?), namlich an der Gleichung

p"(u) = p(u).

Mit den Anfangswerten p(0) = p’(0) = A besitzt sie die Losung p(u) =
A - e*. Der Kriimmungsradius des Linienbildes wird gemaB (2) o(u) =
p(u) 4+ p"(u) = 2 p(u).

Ohne die Zeichnungen wiederzugeben, stellen wir die aus ihnen ge-
wonnenen Messungsergebnisse zusammen und vergleichen sie mit den
nach MeiBner erhaltenen Werten. In den beiden folgenden Tabellen stehen
die letzteren Zahlen in der Spalte ,,interpoliert M‘‘, die dem eben dar-
gelegten gewogenen Verfahren entsprungenen in der Spalte ,,inter-

poliert V. Mit 4 = 8 cm und dem Intervall du = Z~150 ergaben

12
sich:
Funktionswerte p Ableitung p’
o |Berechnet . . . .
u , interpoliert interpoliert
=P
V Fehler M Fehler | 4 Fehler M Fehler
0| 800 | 800 — | 800 — | 800 — | 8,00 —

15 | 10,39 | 10,38 |—0,01| 10,40 |+0,01| 10,38 |—0,01| 10,39 | —
30 | 13,50 | 13,51 |+0,01| 183,58 |-0,08| 13,49 |—0,01| 13,57 |[40,07
45 | 17,65 | 17,568 |—0,03| 17,70 |[4+-0,15| 17,55 | — | 17,66 |+0,11
60 | 22,80 | 22,80 | — |23,07|+0,27|22,80| — |23,01|+0,21

4) Meifner, a. a. O., Seite 42/44.
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Wir stellen also fest, dafl die sehr guten Naherungswerte nach Meifiner
durch das neue Interpolationsverfahren noch erheblich verbessert werden.
Waihrend namlich nach 4 Schritten der kumulative Fehler beim alten
Verfahren 0,27 cm erreicht, bleibt er beim neuen im Bereich der Ab-
lesegenauigkeit weniger Zehntelsmillimeter. Um die GroBenordnung der
Verbesserung gegeniiber dem alten Verfahren besser abschitzen zu
konnen, mufite darum ein Beispiel gewahlt werden, das auch beim neuen
Verfahren etwas groflere, iiber der Ablesegenauigkeit liegende Fehler
ergab. Zu diesem Zwecke wurde dieselbe Differentialgleichung mit

A =5 cm und dem groflen Intervall Au = _ag_ ~ 30° intergriert. Dies

sind die Ergebnisse:

Funktionswerte p Ableitung p’
u° |Berechnet interpoliert interpoliert

| 4 Fehler M Fehler |4 Fehler M Fehler

0 5,00 | 5,00 — 500 — 5,00 — 5,00 —

30 8,44 | 8,43 |—0,01| 8,58 |+0,14| 8,36 —0,08| 8,36 |—0,08
60 | 14,25 | 14,21 |—0,04| 14,64 (40,39 14,18 |—0,07| 14,27 |4 0,02
90 | 24,05 | 24,01 |—O0,04| 24,98 | 40,93 23,86 |—0,19| 24,22 |+ 0,17

Der Vergleich zeigt, dal die gewogene Interpolation einen mindestens
zehnmal kleineren Fehler ergibt als die ungewogene. Trotz dem groflen
Intervall von 30° liefert sie noch sehr gute Werte, wihrend das alte
Verfahren betrichtliche Fehler aufweist. Bei der Ableitung p’ zeigt sich
kein solcher Unterschied der Methoden. Hier ist der Fehler bei beiden
Verfahren von gleicher GroBSenordnung. Die Erklirung ist darin zu
suchen, daf3 das neue beim einzelnen Schritt nur fiir die Ermittlung von p,
nicht aber von p’, vom alten abweicht.

(Eingegangen den 24. Mai 1939.)
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