
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 11 (1938-1939)

Artikel: Interpolationsverfahren zur Integrationsmethode von Meißner.

Autor: Völlm, E.

DOI: https://doi.org/10.5169/seals-11895

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-11895
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Interpolationsverfahren
zur Integrationsmethode von MeiBner

Von E. Vollm, Zurich

1. Einleitung.
Der Integrationsmethode von MeiBner fur gewôhnliche Dififerential-

gleichungen 1. und 2. Ordnung liegt die Deutung einer Funktion p p(u)
als Stûtzfunktion einer Kurve zugrunde1). Ist eine Differentialgleichung
2. Ordnung

p" f(u,P,p') (1)

gegeben, so làfit sich das Linienbild der Lôsung zu gegebenen Anfangs-
werten dank der einfachen Beziehung

Q(u) p(u) + p»(u)*) (2)

fur den Krûmmungsradius q{u) leicht durch Kreisbôgen annàhern. Die
Méthode gibt eine Nàherung 2. Ordnung fur p{u) und 1. Ordnung fur
p' (u). Das von MeiBner angegebene Interpolationsverfahren verbessert
die Genauigkeit wesentlich, ohne jedoch die Ordnung der Annàherung zu
erhôhen. Im folgenden wird eine Modifikation des Interpolationsverfah-
rens geschildert, die den Grad der Annàherung je um 1 erhôht, also
3. Ordnung fur p und 2. Ordnung fur p! ist. Beispiele zeigen, daB das

abgeânderte Verfahren bei unerheblich grôBerer Zeichenarbeit hôhere
Genauigkeit oder aber gleiche Genauigkeit bei geringerem Arbeits-
aufwand ergibt.

2. Herleitung des Interpolationsverfahrens.
In einer Funktion p p(u) wird die Unabhângige u aufgefaBt als

Winkel eines Strahles mit der Nullrichtung Ox (Fig. 1), der Funktions-
wert als Entfernung QQ eines Lotes g(u) zu diesem Strahl vom Null-
punkt 0. g(u) umhullt eine Kurve (7, das Linienbild der Funktion p(u).

x) Meifiner, E,, t^ber die Intégration von totalen Differentialgleichungen.
Erschienen in der Schweiz. Bauzeitung, Bd. 62 (1913), Nr. 15 und 16, oder

Meifiner, E., Graphische Analysis vermittelst des Linienbildes einer
Funktion. Verlag Schweiz. Bauzeitung, in Kommission bei Rascher & Cie., 1932. Die
folgenden Hinweise beziehen sich auf letztere Publikation.

2) Meifiner, a. a. O., Seite 9.
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Die Funktion heifit Stûtzfunktion von C. Ist P der Beruhrungspunkt der
Geraden g(u) mit dem Linienbild, so ergibt sich der Krûmmungsradius
PP1 q aus (2) 3).

Q.'

Fig. 1

Ist die Differentialgleichung (1) zu integrieren mit den Anfangswerten
(°) Po, p'(0) Po, so hat das Intégral ein Linienbild (Fig. 2) mit dem

Anfangspunkt Po, dessen Koordinaten x p0, y p'o sind. Nach (1)
nnd (2) ist der Krummungsradius hier

undder Krummungsmittelpunkt Pr0 hat die Koordinaten x — f (0, p0, p'Q)

~ — Po y V Po - Von diesem Kreis nehmen wir einen Bogen von

8) Fur die Beweise und Einzelheiten, insbesondere bezûglich der Vorzeichendeutung,
eiehe die zitierte 2. Publikation.
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willkiirliehem Zentriwinkel u als Nàherung des Linienbildes von p(u).
Bezeichnen wir mit P1 seinen Endpunkt und mit Qfx den FuBpunkt des

Lotes von 0 auf den Radius P'QP1, so sind PXQ( px und 0 Q[ p[
Nàherungswerte fur p(u) und pf(u). Ihnen entspricht ein neuer, der
Differentialgleiehung entnommener Wert

Pi =/(^,Pi>Pi)-

Zeichnen wir jetzt mit Po ty'Q px -f- p![ Qi als Radius und *p£ als

Mittelpunkt einen zweiten Kreisbogen vom Zentriwinkel u, so erreichen
wir einen Punkt *px. Ist Q£ der FuBpunkt des Lotes von 0 auf ^ *pJ, so
kônnen px= ^PiQ( und p£ OSt[ als andere Nàherungswerte fur p(u)
und pr{u) gelten. Fiir die vier erwâhnten Nàherungswerte findet man an
Hand der Fig. 2 folgende Ausdrucke:

Pi PiQÏ PiP'o + P'oQÏ Po + Po + p'0*mu — PZ cosu
Po + Po sin u + Po C1 — cos u) (3)

Pi O Q{ po cos u + pi sin u (4)

Pi ^ % ^Po+ %^ Pi+Pi — Qo $0 cos u + p'o sin u

Pi + PÏ — (Pi + PÏ — Po) cos u + p'o sin ^ (5)

pQ cos tt + Po sin ^ + ^Pi (1 — cos u) + Pi (1 — cos ^)

Pi ^o cos ^ + Qo^o sin ^ Po cos ^ + (Pi + Pi — Po) sin ^
pf0 cos ^ + (^ — £>o) sin ^ + Pi sin ^ (^)

Um die Ordnung der mit diesen Werten erzielten Annâherung be-
urteilen zu kônnen, wollen wir sie nach Potenzen der Unabhàngigen u
entwickeln und die Ergebnisse mit der Entwicklung des genauen Wertes

p(u) vergleichen. Fur die beiden ersten GrôBen erhalten wir zunàchst :

Pi= Po + Po{^ — \-"-) + Pro{^

/ // ^2 i ^ (7)
Po + Po^ +Po ~2 Po-q

/ 1 // f J_ '
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Um auch px und p£ bis zur 3. bzw. 2. Ordnung zu entwickeln, betrachten
wir zunâchst

PÏ f(u,Pi,p[)

und setzen voraus, daB die Funktion / in der Umgebung des Tripels
(0, p0, p'o) nach Taylor entwickelbar sei. Da pr[ in (5) mit (1 — cos u) und
in (6) mit sin u multipliziert erscheint, wird es genugen, / bis zur 1.

Ordnung zu entwickeln, um fur px und p^ die gewunschte Ordnung zu er-
halten.

Mit den Abkurzungen

JL-* JL-* M—f.
du ~~u dp~~ lp dp' ~lp '

wobei aile Werte der Ableitungen fiir das Tripel (0, p'o, p'j,) zu nehmen
sind, und unter Berûcksichtigung von

erhalten wir:

PÏ Po +/„•« + UPi — Po) + U' (Pi —Pi) + • • •

oder, nach Verwertung von (7) und (8) bis zur 1. Ordnung:

Px PÔ + (/. + /,Pi + h'-PÔ) « + • ¦ •

Aus der Difïerentialgleichung (1) folgt aber, daB

so daB
• Pi

ist. Mit diesem Ergebnis und (7) ergibt sich aus (5) die Entwicklung

und aus (6) die Entwicklung

pi pi(i
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Nach (7) und (9) stimmen sowohl px als auch ipx mit dem genauen Wert

Po + p'o™ + PÎ-y + Po • ^-

bis zur 2. Ordnung ûberein, wàhrend das folgende gewogene Mittel

eine Nàherung 3. Ordnung ist.

Entsprechend sind nach (8) und (10) p[ und p[ Nâherungen 1. Ordnung
fur den genauen Wert

wàhrend der Mittelwert

bis zur 2. Ordnung richtig ist.

Sind in Fig. 2 n[ und nf die Punkte, welche die Strecke Pj
Verhâltnis 1: 2 bzw. 1: 1 teilen und ac^ das zwischen O£i[ und
liegende Stûck der Parallelen zu PqPi durch n'x, dann ist

Die dureh nf gehende Parallèle zu PqPi hat von 0 den Abstand

PÏ + VÏ

Ist 7t die Projektion von nx auf dièse Parallèle, so wird ktc —* ^1^1.
Zusammenfassend erhalten wir also folgende

Konstruktion : Mit dem Radius ^0 p0 + /(0, ^o» Po) un(l Mittel-
punkt Pq zeichne man den Probebogen P0Pi von willkûrlichem Zentri-
winkel u. Aus den abgelesenen Nàherungswerten px und p[ ergibt die

Differentialgleichung einen neuen Radius gt p0 -f- f(u, pl9 p[), dem
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ein Krammungsmittelpunkt ^ entspràche. Jetzt teile man Pq^Pq ™-
Verhâltnis 1:2, mâche 7ixnx n[P0 und parallel zu PfQP1 und projiziere
endlich nx auf die durch den Mittelpunkt n' von Pfoty'o gehendeParallèle
zu PqPx nach n. Die Gerade tt^ mit Beruhrungspunkt n ist dann ein
Elément des gesuchten Linienbildes von p, und zwar nâherungsweise
3. Ordnung fur p und 2. Ordnung fur pf'. SchlieBen wir mit der Bemer-
kung, dafi nach dem Verfahren von MeiBner in Fig. 2 an Stelle von n
der Punkt M treten wurde.

3. Kontrollbeispiel.

Die Glite der Méthode wurde an derselben Differentialgleichung von
bekannter Lôsung erprobt wie bei MeiBner4), nâmlich an der Gleichung

p"{u) p(u)

Mit den Anfangswerten p(0) p'(0) A besitzt sie die Lôsung p(u)
A -eu. Der Krûmmungsradius des Linienbildes wird gemàB (2) q(u)
p(u) + p"(u) 2p(u).

Ohne die Zeichnungen wiederzugeben, stellen wir die aus ihnen ge-
wonnenen Messungsergebnisse zusammen und vergleichen sie mit den
nach MeiBner erhaltenen Werten. In den beiden folgenden Tabellen stehen
die letzteren Zahlen in der Spalte ,,interpoliert M", die dem eben dar-
gelegten gewogenen Verfahren entsprungenen in der Spalte ,,inter-

poliert F". Mit .4 8 cm und dem Intervall Au —~15° ergaben

sich:

0

15

30

45

60

Berechnet

p p'

8,00

10,39

13,50

17,55

22,80

Funktionswerte p

interpoliert

V

8,00

10,38

13,51

17,58

22,80

Fehler

—0,01

+ 0,01

—0,03

M

8,00

10,40

13,58

17,70

23,07

Fehler

+0,01

+ 0,08

+ 0,15

+0,27

Ableitung pr

interpoliert

V

8,00

10,38

13,49

17,55

22,80

Fehler

—0,01

—0,01

M

8,00

10,39

13,57

17,66

23,01

Fehler

+ 0,07

+ 0,11

+ 0,21

4) Meifiner, a. a. O., Seite 42/44.
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Wir stellen also fest, daB die sehr guten Nâherungswerte nach MeiBner
durcli das neue Interpolationsverfahren noch erheblich verbessert werden.
Wâhrend nâmlich nach 4 Schritten der kumulative Fehler beim alten
Verfahren 0,27 cm erreicht, bleibt er beim neuen im Bereich der Ab-
lesegenauigkeit weniger Zehntelsmillimeter. Um die GrôBenordnung der
Verbesserung gegeniiber dem alten Verfahren besser abschàtzen zu
kônnen, mufite darum ein Beispiel gewàhlt werden, das auch beim neuen
Verfahren etwas grôBere, uber der Ablesegenauigkeit liegende Fehler
ergab. Zu diesem Zwecke wurde dieselbe Differentialgleichung mit

A =5 cm und dem groBen Intervall Au — ~30° intergriert. Dies

sind die Ergebnisse:

0

30

60

90

Bereehnet

5,00

8,44

14,25

24,05

V

5,00

8,43

14,21

24,01

Funktionswerte

interpoliert

Fehler

___

—0,01

—0,04

—0,04

M

5,00

8,58

14,64

24,98

V

Fehler

——

+0,14
+0,39
+0,93

V

5,00

8,36

14,18

23,86

Ableitung pf

interpoliert

Fehler

—0,08

—0,07

—0,19

M

5,00

8,36

14,27

24,22

Fehler

—0,08

+0,02
+0,17

Der Vergleich zeigt, daB die gewogene Interpolation einen mindestens
zehnmal kleineren Fehler ergibt als die ungewogene. Trotz dem groBen
Intervall von 30° Hefert sie noch sehr gute Werte, wàhrend das alte
Verfahren betrâchtliche Fehler aufweist. Bei der Ableitung pf zeigt sich
kein solcher Unterschied der Methoden. Hier ist der Fehler bei beiden
Verfahren von gleicher GrôBenordnung. Die Erklàrung ist darin zu
suchen, daB das neue beim einzelnen Schritt nur fur die Ermittlung von p,
nicht aber von pf, vom alten abweicht.

(Eingegangen den 24. Mai 1939.)
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