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Uber die Bestimmung von Flichen
aus ihrer Normalkriimmung ldangs einer Schar
geodatischer Linien

Von SIEGFRIED GRUNBAUM, Ziirich

§ 1. Natiirliche Gleichungen von Flichen.

Der Begriff der natiirlichen Gleichungen einer Kurve hat allgemein in
die differentialgeometrische Literatur Eingang gefunden, und man ver-
steht in der Regel diejenigen Gleichungen darunter, durch die die
Kriimmung und Torsion der Kurve als Funktionen ihrer Bogenlinge aus-
gedriickt werden'). Demgegeniiber ist von natiirlichen Gleichungen von
Flachen nur sehr selten die Rede und dazu noch in sehr verschiedener
Weise. Bianchi nennt die beiden Gleichungen

f = Edu? 4 2Fdudv +Gdv?

und ¢ = Ldu? +2Mdudv + N dv?

natiirliche Gleichungen der Fliche, weil ,,alle aus der Gestalt und GroBe
der Fliche sich ergebenden Eigenschaften nur von den sechs Koeffizienten
der Fundamentalformen abhingen.‘‘?) Scheffers dagegen bezeichnet fiir
solche Fliachen, auf denen keine besondere Beziehung zwischen der
Gaufi’schen Kriimmung K und der mittleren Kriimmung H besteht, die
vier Gleichungen

Agg = ?,(K, H?), Agg = Qz(K: H?),

HAKH == (pa(K, Hz), VKK = ¢4(K, H2)

( A und ¥/ sind die Beltrami’schen Differentialoperatoren) als ihre natiir-
lichen Gleichungen, weil sie die Flache ohne Riicksicht auf ihre zufallige
Lage und Parameterdarstellung vollkommen charakterisieren. Er be-
maéngelt gleichzeitig die Bianchi’sche Definition natiirlicher Gleichungen,
weil sich die beiden Fundamentalformen bei Einfithrung neuer Parameter
andern®). Erwahnenswert ist ferner, daB3 Cesaro in seinen ,,Vorlesungen
iber natiirliche Geometrie*‘ ebenfalls nur einen unvollkommenen Ersatz
fiir die natiirlichen Gleichungen einer Fliache gibt. Schlieflich nennt
Rellich die Gleichung K = K (u,v) eine natiirliche Gleichung der Flache
(K ist ihre GauB’sche Kriimmung), falls # und v Asymptotenlinienpara-

1) Blaschke, § 13 u. a.
%) Bianchi, p. 91.
3) Scheffers, p. 433.
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meter (fiir K < 0) bzw. isotherm-konjugierte Parameter (fiir X > 0) der
Flache sind, weil dann durch K (u,v) die Fliche bis auf einen Anfangs-
streifen eindeutig bestimmt ist4).

Im Sinne einer Differentialgeometrie, die danach strebt, ihre Begriffe
moglichst allgemein oder zum mindesten verallgemeinerungsfahig zu
definieren, liegt es nahe, solche natiirliche Gleichungen fiir Flichen zu
suchen, die in der Differentialgeometrie des R, einfach eineVerallgemei-
nerung der natiirlichen Gleichungen von Kurven darstellen. Eine Kurve
hat im R, »—1 verschiedene Kriimmungen. Gibt man diese als Funk-
tionen der Bogenlinge, so erhialt man die natiirlichen Gleichungen der
Kurve, die diese bis auf die Anfangsbedingungen vollstéandig bestimmen.
Eine v-dimensionale Fliache hat im R, n—v» verschiedene Kriimmungen5),
und Herr Finsler hat in seiner Dissertation die Vermutung ausgesprochen,
,,daB} auch die Flachen durch die Angabe ihrer Kriimmungen und ge-
eigneter Anfangsbedingungen eindeutig bestimmt sind‘‘¢). Beschrankt
man sich nun auf zweidimensionale Flichen im euklidischen R,, so
miilte man demnach deren in diesem Falle einzige Kriimmung, die
Normalkriimmung?), nebst den Anfangsbedingungen vorgeben. Die
Normalkrimmung wére dann als Funktion der Bogenliange der Kurven
einer Schar und eines geometrischen Parameters der Schar darzustellen.
Vereinfacht wird das Problem dadurch, dal man die Kurven der Schar
als geodétisch annimmt, da dann ihre Kriimmung in jedem Linienelement
mit der Normalkriimmung der Fliche iibereinstimmt.

In der vorliegenden Arbeit soll jetzt gezeigt werden, daB eine analy-
tische Flache durch die Angabe ihrer Normalkrimmung lings eines
Feldes geodatischer Linien sowie geeigneter ‘Anfangsbedingungen ein-
deutig bestimmt ist. Dies gibt uns dann das Recht, die Beziehung
zwischen der Normalkriimmung und den beiden Parametern (Bogen-
lange der geodatischen Linien und Feldparameter) als natiirliche Glei-
chung der Flache zu bezeichnen. Der Beweis soll nun derart gefiihrt
werden, daf} aus der so vorgegebenen Kriimmung der geodéatischen Linien
ihre Torsion eindeutig berechnet wird ; denn damit sind die Kurven selbst
und auch die Flache als deren Enveloppe (wiederum bis auf die Anfangs-
bedingungen) eindeutig bestimmt. Ob auch zu jeder solchen natiirlichen
Gleichung eine Fliche existiert, mii8te allerdings noch besonders unter-
sucht werden.

4) Rellich, p. 619.
5) Finsler, p. 95.
8) Finsler, p. 8.

7y Finsler, p. 92.
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§ 2. Kriimmung und Torsion geoditischer Linien.

Wir bezeichnen die drei Einheitsvektoren des begleitenden Dreibeins
der geoditischen Linien mit &,, &, und &, und ihre Kriimmung und
Torsion mit x bzw. 7. Die Flache sei durch ihren Ortsvektor x = x(u,v)
dargestellt. Ihr Normaleneinheitsvektor sei & (u,v).

Dann gilt nach Frenet:

%Z_K§1+T§3
oder wegen:
51'53?—0:
1:53-%. (1)
Es ist nun:
632 Elx 52

oder, weil fiir geodatische Linien ihre Hauptnormale &, mit der Flachen-
normalen £ (abgesehen vom Richtungssinn) zusammenfallt?):

3=+ &, XE.
Wegen
dx du dv
NG TR TR
+

du dv
b= (n gt ) xe

=[x T + (5, x 8 21

ergibt sich:

(2)

Unter Beniitzung der iiblichen Bezeichnungen:

=K 1,-3x,=F, =@,
o bu=—Lx, ¢ =%¢6=—Mz%x,§=—N
und der Gleichung:

finden wir:

8) Blaschke, p. 94 (26).
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X, X &= X, X (%, X %,
§= e [ X (E X 8]
1 Fx, — Ex
= [(%, X,) ¥, — (X,- X,) %,] ?) = = z
VEG—T [( ) ( )%, °) o 7
und ferner:
1
I, X E= — [z, X (%, X %,
= 1 [(x, - %)%, — (3, %,)%,] = G, — F1,
T VEG—Fe LT RN T e
so daB sich nach (2) fiir &; ergibt:
du dv
§ . (qu_—Exv) "%"‘!‘ (Gxu——va)'“&?
’ VEG—F?
Da auflerdem gilt:
dé, d§

dv
ng—z:tds i(s“ ds+§ ds)
finden wir nach (1) fiir die Torsion der geoditischen Linie durch den

Punkt (u, v) in der Richtung %%—:

d
dv Eu“a% -+ Ev'"(’llsj'
T == [(Fx — Ex,) - "I_ (Gx, v) ds ]' Vm
1 du du dv dv
= s [(EM —FL) (ds) + EN—GL) 2. 2y FN—GH) (ds) ]
und schlie3lich wegen:
ds* = Edu? +2Fdudv +Gdv? :

(EM FL)du?+ (BN —GL)dudv+ (FN —G M) dv? 19) (3)

VEG—F? . (Edu® + 2F dudv + Gdv?)

Die Kriimmung derselben geodatischen Linie ist wegen &, = & gleich
der Normalkriimmung der Flache im Linienelement (u,v, %—) , also:

_ Ldu® 4 2Mdudv + Ndv® 4)
= Edu® + 2F dudv + Gdv?

9) Cf. Blaschke, p. 6 (43).
10) Bianchi, p. 164.
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§ 3. Geoditische Koordinaten.

Im Hinblick auf unsere spezielle Aufgabe und auf die weiteren Unter-
suchungen erweist es sich als zweckmafig, besondere Parameter auf der
Flache einzufiihren. Wir wahlen als Kurven v = const. die geodétischen
Linien eines Feldes und als Kurven % = const. ihre d4quidistanten Ortho-
gonaltrajektorien. # soll dabei die Bogenlinge auf den geodatischen
Linien angeben, von einer festen Orthogonaltrajektorie # = 0 aus
gemessen. Das Bogenelement nimmt dann die Gauf’sche Form an:

ds? = du? + Gdv? 1) .
In diesem Parametersystem gilt also:

E=x

a=1
und
F=x%,%=0,

so daf} sich fiir die geodatischen Linien » = const. nach (4) und (3)
ergibt:

k=L (5)
und

M
VG

Es ist nun unser Ziel, die FundamentalgroBen &, L und M zu eliminieren
und eine Beziehung zwischen « und 7, eventuell auch deren Ableitungen
nach % und v, aufzustellen, die es gestattet, v = 7(u,v) bei gegebenem
k = k(u,v) zu berechnen. Wir benutzen hierzu die erste der sogenannten
Grundformeln von Mainardi und Codazzi'?), die in unserm Spezialfall
(Z =1, F = 0) die Form annimmt:

(6)

T ==

2G(L,— M,)— MG, = 0. (7)
Setzen wir nun nach (5) und (6):
L,=k,,
M=1yV@
und
M, =, VT + —"Cs

2V G

11) Blaschke, p. 94 (28).
12) Blaschke, p. 79 (139).
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so finden wir aus (7):
2k, - G—27,- VB —27- V@ - G,=0
oder wegen G =£=0:

Gu K’D
W=t ye
und schlielich:
1
0log —
G Ko
L T (8)

Diese gewohnliche lineare Differentialgleichung 1. Ordnung fiir 7, in
der v nur als Parameter auftritt, 148t sich nach der Methode von Jacob I
Bernoulli’?) folgendermaflen integrieren:

Wir setzen:

T=17p-q, (9)
woraus folgt:

Tuzpu'q_l—p'Qu

und nach (8): 1
0 log a ‘.

Pud t Pl= ", P4+ T (10)

Wir setzen ferner: # Tog _é_

Po="%u P>
so daf} sich jetzt durch Integration nach w ergibt:
1

D= g (11)

wobei wir die fiir uns noch willkiirliche Integrationskonstante gleich Null
gesetzt haben.
Weiterhin gilt nach (10):

K 1
w e o VG
/-
oder:
q=fr, VG- -du-+c,
0
so dafl wir nach (9) und (11) finden:

1

T=—
G

O, &

x,-l/@'-du—}-c]

13) Bieberbach, p. 10.
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Man kann in dieser Gleichung © = 0 setzen und erhélt:
C = (T‘ G)u=0 )

so daB sich schlieBlich fiir die Torsion der geodatischen Linie » = const.
ergibt:

=[x V& 1t 6] (12)

oder in Worten:

1. Satz: Die Torsion der geoddtischen Linien einer Schar lift sich aus
threr Kriommung x und aus dem Maf G der Bogenlinge ihrer Orthogonal-
trajektorien durch Integration von einem gegebenen Amnfangswert an be-
rechnen, falls k und G als Funktionen der Bogenlinge w der geoditischen
Linven und des Scharparameters v bekannt sind.

In Formel (12) ist damit auch 7 im allgemeinen eine Funktion von »
und v. Das Auftreten der Quadratwurzel hat keine Zweideutigkeit zur
Folge, da das Vorzeichen von VG von vornherein als positiv festgesetzt
ist. Sollte es sich also erweisen, daBl man G eindeutig aus « und seinen
Ableitungen berechnen kann, so wire damit gezeigt, daB 7 eindeutig
bestimmt ist.

§ 4. Berechnung von G (u,v) (1. Teil).

Fir das folgende ist es nun notwendig, die betrachtete Fliche als
analytisch vorauszusetzen. Der Ortsvektor der geodatischen Linie
v = const. 1Bt sich dann durch folgende Mac Laurin’sche Reihen-
entwicklung nach Potenzen von u darstellen:

% u? uk
x(u,v) = 3(0,'0) -+ 1_i' xu(O’v) + a’xuu(o:v) +' ° '+ m‘fuk(o,’v) + e,
wobei (13)
okx

EZ

gesetzt ist und wobei die Koeffizienten von «* noch von v abhéngen.
Lassen wir nun v in dem Bereich, fiir den es definiert ist, variieren, so
erhalten wir durch x(u,v) alle Punkte (u,v) der Flache. Wir haben somit
in (13) eine kanonische Darstellung unserer Fliche gefunden. Fiir diese
Darstellung miissen die Bedingungen gelten:

E=%£=1
und
F=z2,2=0.
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Die erste ist eo ipso durch die Wahl der Bogenlinge als Parameter u
erfiillt. Fiir F dagegen werden wir jetzt eine Potenzreihe nach » berechnen,
deren Koeffizienten einzeln verschwinden miissen. Diese Gleichungen
werden uns dann dazu dienen, die Koeffizienten von

G =z

zu bestimmen. Aus (13) finden wir:

u u2 uk
X, (us '2)) = xu(O, v)+ '—i—"xuu(oyv) 4= 'é‘""xuuu(oﬁv)‘!' Ak o 'I;"' * xuk‘*‘l(o’ ’I)) ey

X, (u,v) = x,(0,v)+

szu(ua ’U) °$,,('u, ’U) — (xu‘xv)O,v +eent uk ( 2 -—"——l‘—"“‘xui+l‘xuk—-iv)

k
Zoil(lo—s)!

u u2 uk
-1——!'3‘”,(0,’0) + 'é_!'xuuv(o"v)_‘_' b o '];—' °$uk”(0,’0) +eee,

. j_. ..,
(19
(15)

|
G =1xi(u,v) =2(0,v) + - - - +“k(2 '!(k_i)!x"‘"'x“"“‘”)o,v_!ﬂ N

t=0%!

Unter Beniitzung der oben eingefiihrten Einheitsvektoren &,, &,, &,
und der Frenet’schen Formeln:

d§,
du — K§2 3

d
dsz :——‘KEI +153s

du TG

gilt hier fiir die Ableitungen von x:

oooooooooooooooooooooooooooooooooooooooooooooooooooooooo

|

|

I

l

51 ’

K§2 ’

— k2§ i, 8+ TEy,

— Bk, &)+ (kyy — K — k1% &y + (2K, T +xT,) &3
511: ’

kyEa + K& gy,

“ 2KKv EI — x® glv +Kuv 52 +Ku 520 +(K,,,T +K‘U,v) 53 +
kt&,, ,

- (3Ku'cfv +3kky,) & — 3Kk, &y, + (Kyuo — 362 K, —
kT2 — 2k77,) E5 + (1, — K — k72) &5y (2K, T+
2x,7, + Ky Ty +KTy,) &5 + (20,7 + k7)) &3y

>

(16)
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Ferner ist:
I,,—':——-]/Cj‘fa, (17)

wenn die drei Vektoren x,= &, x,, £ und die drei Vektoren &,, £§,=2¢, &,
je ein orthogonales Rechtskreuz bilden sollen; denn dann ist %,||&;, aber
entgegengesetzt gerichtet. Sobald jetzt also die Werte von &,,, &,, und
&, fir u = 0 bekannt sind, ist es moglich, die aus der Bedingung F = 0
folgenden Gleichungen aufzustellen und mit ihrer Hilfe die Koeffizienten
von G zu berechnen.

§ 6. Geoditische Polarkoordinaten.

Bevor wir in der Behandlung des allgemeinen Problems fortfahren,
betrachten wir jetzt zuerst den Spezialfall, dafl alle geodatischen Linien
des Feldes durch einen Punkt gehen (der dann streng genommen nicht
zum Feld gehort). Wir fithren mit ihrer Hilfe geodéatische Polarkoordina-
ten ein und ersetzen in der iiblichen Weise 4 durch r und » durch ¢ ; r
bezeichne also jetzt die vom Pol des Systems (r = 0) aus gemessene
Bogenlange auf den geodéatischen Linien ¢ = const., wihrend ¢ den
Winkel zwischen der Ausgangsrichtung der Linie ¢ = const. und einer
festen Anfangsrichtung ¢ = 0 bezeichnet und zwischen 0 und 2 variiert.
Die Orthogonaltrajektorien » = const. werden jetzt geschlossene Kurven,
die sogenannten geodatischen Entfernungskreise um den Pol » = 0. Fiir
diesen Spezialfall konnen wir nun die Kriimmung «(r,p) der geodétischen
Linie ¢ = const. nur so vorgeben, daBl sich «(0, ¢) entsprechend der
Euler’schen Formel darstellen 1a8t:

k(0,) = «, cos® @ 4k, 8in2 @ , 14) (18)

wobei k; und x, die Hauptkrimmungen im Pol und ¢ = 0 die eine der
Hauptkriimmungsrichtungen bezeichnen.
In dieser Parameterdarstellung hat das Linienelement ebenfalls die

Gaul’sche Form: ds — dr 4 Gdg? .

Da dieses Koordinatensystem sich in der Umgebung des Poles in erster
Naherung wie ein ebenes Polarkoordinatensystem verhalten muf, fir
welches gilt:
ds? = dr? + ride?,

so folgt daraus:

G(r, ) = r2[1 +-g(r,9)]
mit

14) Blaschke, p. 57 (26)
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lim g(r,p) =0,

so daB also auch wird: r>0
lim G (r,p) = 0 1) (19)

und nach (17): r>0
£,(0,9) = 0. (20)

Im Punkte r = 0 fallen die Hauptnormalen &, aller geodatischen
Linien ¢ = const. mit der Flachennormalen & zusammen, sind also von ¢
unabhéngig. Die Tangentenvektoren &, und die Binormalenvektoren &,
liegen dort in der Tangentialebene der Fliache. Es bedeutet also keine Ein-
schrankung der Allgemeinheit, wenn wir fiir diese Vektoren folgende
Annahmen treffen:

£,(0,9) = (cosgp;0;sing),
£:(0,9) = (0;1;0),
£3(0,9) = (—sing;0;cos¢p).
Daraus folgt:
5199(0’90) = 53(0"?) ’ }
§2¢ 0,9) = 0, (21)
anz(oa‘p) = - 51(0:99) .
Unter Beriicksichtigung der Beziehungen:
1 fir e=kF%
§iér= 0 fir ik (22)

und der Gleichungen (16), (20) und (21) kénnen wir jetzt die Koeffizienten
der Reihe (14) fiir F einzeln gleich Null setzen und erhalten folgende
Bedingungen (die ersten drei Gleichungen liefern allerdings keine):

(a‘) [Ir'x‘}’]o»?’:() ’
(b) [xr'xrqo‘i‘xrr'xgolo,qﬁzo ’

1 .
(c) "2":{1-3"90“}‘xrrxrgo“l"'g'xrrrxgo]o,go:() ’

(d) ‘g'xrxrrﬂp + "'2—£rrxr790+ "2—xrrrxr90 + —-6—1""3@]0,9) =0,

1 1 1
(e) g Yr¥rrrry + B Xrr Xrrrp T g YrrrXreg + 6 Irrrrdrg

1
e §Z Xrrrer xw]o,qo =0,

ooooooooooooooooooooooooooo

18) Duschek-Mayer, p. 201.
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Aus (d) folgt:
1 1
[_E—KKW+‘—3_KT]O,¢:0 .

Setzen wir zuerst « (0, ¢) = 0, so ergibt sich:

2(0,¢) = —5 ks (0,9) | (23)

und speziell auch fiir «(0,¢) =0:

. 1
lim z(r,q) :"—"““é‘Ktp(O:(P)m) ’
r>0
sowie:
1
qu(O,fP):““Q"‘WP(O"P) . (24)

Aus (e) folgt:
1 1 - 1 1
l—é— K,.Kgp+—22Kk,9o+z—lc,'r+-—é—xtr]o,¢=0
und wegen (23):
1
77(0,99)2—"”5” quJ(O:(p) ’ (25)

sowie daraus:

' 1
1',99(0,(;7):—-—:—3—19.9999(0, ®) . (26)

Allgemein sieht man durch Vergleich von (14) und (16), da8 7, (0,¢)
zuerst im Koeffizienten von r*+3 guftritt. Setzt man diesen gleich Null, so
kommt 7,(0,p) unter Beriicksichtigung von (20) in der erhaltenen
Gleichung in folgenden Gliedern vor:

1 1
[*-(k—_lj—g)—r X, Xy k+3p + EF T ¥rb+3 Irgo] 0,9 »
und es hat darin entsprechend (21) und (22) folgenden Koeffizienten:

1 1 B k42
"(0"”)[(lc+2)!'“ (k+3):]“"(0"”) %+ 3)1

Fiir «(0, p) == 0 1aBt sich also 7,%(0,p) stets aus der Gleichung ¥ =0
berechnen, und daraus findet man dann auch 7, 41(0,9).

16) Finsler, p. 112 (125) und vorhergehende.
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Da nun in den Koeffizienten der Reihenentwicklung (15) fiir G keine
andern Groflen als «, 7 und deren Ableitungen nach r und ¢ im Punkte
(0, @) auftreten konnen, ist damit gezeigt, daBl sich G fiir unsere spezielle
Darstellung einer analytischen Flache eindeutig aus x« und seinen Ab-
leitungen berechnen 148t. Den gefundenen Wert fiir @ kann man dann in
(12) einsetzen, wo v wegen (19) jetzt die Form hat:

r

T(r,¢)=-@—(%—¢-5-fkgo(r,¢)~l/0(r,¢) ar . (27)

Die Torsion 7 der durch einen Punkt gehenden geoditischen Linien
laBt sich also eindeutig aus der Kriimmung « und ihren Ableitungen
berechnen. Durch « und v sind aber die Linien und ihre Enveloppe, die
Flache, von Bewegungen abgesehen, vollstindig bestimmt. Es gilt also
folgender

2. Satz: KHine analytische Fliche ist durch thre Normalkrimmung lings
aller durch einen Punkt gehenden geodiitischen Linien bis auf Bewegungen
eindeutig bestimmd.

Wir wollen jetzt noch die ersten Koeffizienten der Reihe (15) fiir @
berechnen. Unter Beriicksichtigung von (16) und (20) bis (22) finden wir
nacheinander:

(a’) 3;(0,?) =0,
(b) [22,%4]0,=0,
(c) [xgoxrrgo = xfy]o,tp =1,

1
(d) ["’3"£q>xrrrtp = xrszrrzp] 0,9 — 0,
1 1 1
(e) [E xgo xrrrrg) + —3— xrq)xrrrgo =} T xqz-rq:] 0,p

=-———1-K2+——-—K T+ — K‘v—l— ]90

=

und wegen (23) und (24):

T 1 1
= _—_K2+ 12 (p 3 qu,q,]o,qp .

G (r,p) hat also die Entwicklung:

1 1
G(r,p)=r2+rt. [___._._Kz +'i—2""9°'—'6—""909)]°'9°+ -
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Da x(0,¢) der Euler’schen Formel
k(0,) = K, cos? @ + Ky 8in? @ (18)

geniigen muB, wobei «, und «, die Hauptkriimmungen im Pol sind, ergibt
sich daraus:
Ky (0,9) = 2(ky—x;) Sing cos g, (28)

Kpp (0,9) = 2(ky — K;) (cos? p — sin® @) . (29)

Setzen wir die Werte aus (18), (28) und (29) in den Koeffizienten (e)
von @ ein, so finden wir:

1 1 1 2 x 1 . 1
[——§ x? 4 EK; —g X"y 9,]0,9,, =g KKy sm2(pcosz(p————§ KqKsg sm4¢p——§x1xzcos4cp
1
1
=—3 K,

wenn wir mit K, die GauB’sche Kriimmung der Flache im Pole » = 0
bezeichnen. Es ist also:

17)

1 1
Ky == [K2_ZK;+—§KK¢¢10,¢ . (30)

§ 6. Berechnung von G (u,v) (2. Teil).

Nachdem wir den Spezialfall, daB alle geodétischen Linien unseres
Feldes durch einen Punkt gehen, im vorigen Paragraphen erledigt haben,
kehren wir jetzt zum allgemeinen Problem zuriick. Wir kénnen nun an-
nehmen, daB die geodatischen Linien des Feldes von einer Orthogonal-
trajektorie % = 0 ausgehen. Diese Orthogonaltrajektorie sei etwa durch
ihre natiirlichen Gleichungen, d. h. durch ihre Kriimmung «* und ihre
Torsion 7* als Funktionen ihrer Bogenldnge gegeben, wobei wir ohne Ein-
schrinkung ihre Bogenlinge mit ihrem Parameter v identifizieren

konnen, so daB also gilt:
G(0,9) = 1. ' (31)

Ferner mufl aber noch in jedem ihrer Punkte die Tangentialebene an die
Fliache oder, was auf dasselbe herauskommt, die Flachennormale &(0,v)

17) Pinsler, p. 102 (105).
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gegeben sein, damit die Anfangsrichtung jeder geodatischen Linie
v = const. bekannt ist. Bezeichnen wir die drei Einheitsvektoren des be-
gleitenden Dreibeins von 4 = 0 mit £;, &, und &;, so ist £(0,v) nun be-
stimmt durch die Ebene (£;, &;) und den Winkel:

#(v) = arc cos (£(0,v) « £5(0,v)) . (32)
Aus (17) und (31) folgt:

£3(0,v) = —,(0,v)
oder: (33)

£5(0,9) = — £ (v) .

Die Vektoren &;(v), &3(v), &,(0,v) und &,(0,v) liegen also in einer
Ebene, und es gilt nach der Definition (32) und wegen &, = &:

£,(0,9) = —sind(v) - £3(v) 4 cosd(v) * §3(v), (34)
£2(0,9) =  cosd(v) - £3(v) +sind(v) - £3(v) . (35)

Wenden wir auf das Dreibein &7, &;, &5 die Frenet’schen Formeln an:

N Py

Elv: K 523

* « o * P
52@,:"‘"( 51 +T 53 ’
" * %

531):: —7T 52 ’

so ergibt sich aus (33) bis (35):
L * * dﬁl * * dﬂ . *
£1(0,v) = «ksind- & — (1: -+ %) cos #- &, — (‘L’ + 3—5) sind- &, ,
£,(0,v) = —«k"cosd. ] — (t' ~+ %g—) sin 9. &5 + (t' - %) cosd- &y , (36)
£3,(0,0) = —K" &
Unter Beriicksichtigung der Beziehungen

1 fiire==%k

SiCr= 0 fiir e 4 £k

und der Gleichungen (16) und (33) bis (36) konnen wir jetzt die Koeffi-
zienten der Reihe (14) fiir F' einzeln gleich Null setzen, wobei die beiden
ersten Gleichungen wiederum keine Bedingungen liefern. Wir erhalten:
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(a') [I“ ) %]o,v =0,
(b) [xuxuv +xuuxv] 0,0 — 0,

1 1
(C) [_2' Xy Xyuo T XuuZuo +§ xuuuxv] 0,0 — 0,

1 1 1 1
(d) [6 Xy Xuuuv +§ Xuu Xuuv + "2' Zuuu Xuo + 'éxuuuu xv] 0,0v — 0,

ooooooooooooooooooooooooooooooooooooooooooooooooooooo

oder fiir «(0,v) £ 0:

7(0,v) = — (z' I "Jv’) (37)

und daraus:

' . a2
700 =— (5 +%4) - (38)
Aus (d) finden wir:
[% KK”-—'—;' Ky, (1:' + -g—g) ———:1; (rex* sin & 4 k) ‘L’—--é K't'u]o’v =10
und wegen (37):
7,(0,9) = [xv + 2«" sin ¢ (r’—{— %)]G,v . (39)

Durch Vergleich von (14) und (16) sieht man wieder allgemein, daf3
7,%(0,v) zuerst im Koeffizienten von u*+2 auftritt. Setzt man diesen gleich
Null, so kommt 7,%(0,7) nur in folgendem Glied vor:

1
R

und dort hat es den Koeffizienten:
1

—K(O,v)'m .

Fiir «(0,v) =£ 0 kann man also alle Ableitungen 7,x(0,v) und daraus
Tk, (0,7) berechnen. Da in den Koeffizienten der Reihe (15) fiir G (u,v)
keine andern Groflen als k, v und deren Ableitungen an der Stelle (0,v)
auftreten konnen, ist damit der Beweis erbracht, daB3 sich G fiir eine
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analytische Flache eindeutig aus « und seinen Ableitungen, sowie aus den
Anfangsbedingungen «*, * und & berechnen laft. Diesen Wert fiir @
kann man in (12) einsetzen, woraus man die Torsion 7 (u,v) der geodati-
schen Linien v = const. eindeutig erhalt. Sie hat jetzt wegen (31) die
Form:

r(u,v)=—GT%:5)—[fxv(u,v)-l/G(u,v)-du+-;(O,v)]- (40)

0

Durch x(u,v) und 7(u,v), sowie durch den Anfangsstreifen aus «*, 7*
und ¥ ist die Flache als Enveloppe des Feldes der geodatischen Linien bis
auf Bewegungen bestimmt. Es gilt also:

3. Satz: Eine analytische Fliche ist durch ihre Normalkriimmung lings
etnes Feldes geoditischer Linien wund durch einen dazu orthogonalen
Anfangsstreifen eindeutig bestimmd.

Wir berechnen jetzt noch unter Beriicksichtigung von (16) und (33)
bis (36) die ersten Koeffizienten der Entwicklung (15) fiir G:

(a) x?,(O,v) =1,
(b) 2[3,,%,",]0,,,, = 2K* Sinﬁ )

(c) [x,,x,,,w—}— xfw]o,v = [K*2 sin? ¢ — kk* cos 4+ (r* -+ %)2]0,,, (41)

1
(d) ['é Xy Xuuuv + xuvxuuv] 0,v

1 1 dd
— | — = s2x* sin @ — =k xc* k2 g — *x 7
_[ g KK sin ¢ 3 Kuk cos ¥ — kx*2 sin ¥ cos ¢ :c,,,(w: +dv)

1 1
— gK,vT —'::}' KT, 0,v

und wegen (37) und (38):

1 1 2 dd
— | —Z k2k* sin 9— = k. K" — ki2 8i _ =z S Wahd
_.[ g K"K sin ¢ 3 Kuk cos & — kk*2 sin ¢ cos & 3K,,(r +dv)

1 (. d¥
<= g"(%‘l“(‘i{)—é‘)]o,v .

G hat also die Darstellung:

do\ 2
G(u,v) =14+u-2«" sin §+t+u? . [K*z sin? 9—xk* cos 9 (r* -+ Eg) ]0,v+ “on

(42)
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Zum SchluB wollen wir noch fiir den hier hiufig auftretenden Ausdruck
., ad
a7

eine geometrische Bedeutung finden. Im Punkte (0,7) konnen wir auf alle
durch ihn gehenden geodétischen Linien die Euler’sche Formel (18) bzw.
(28) und die Gleichung (23) anwenden. Dann ist:

T(p) = — —;— K (23)

und
Ky = (k3 — Ky) 8in (2 9) , (28)

also:
T(p) = % (kg — x5) 8in (2 ¢) , (43)

wobei ¢ = 0 die eine der Hauptkriimmungsrichtungen bezeichnet. Ver-

. 7 : . . . :
mehren wir ¢ um 5 80 wechselt 7 das Vorzeichen. Die Torsionen zweier

zueinander senkrechter geodétischer Linien sind also im Schnittpunkte
entgegengesetzt gleich. Nun ist nach (37):

d
7(0,9) :———(r' -+ _d_?‘:—) .

Bezeichnen wir mit 7 die Torsion der zu » = const. in (0,v) senkrechten
geodatischen Linie, die also dort die Orthogonaltrajektorie = 0 be-
rithrt, so ist demnach wegen

7(0,v) = —7(0,v):

18)

%(O,v):r’-}—%. (44)

Diese Gleichung stellt hier den Zusammenhang zwischen der gewdhn-
lichen Torsion 7* und der geoditischen Torsion 7 (d.h.: Torsion der
geodatischen Tangente) der Orthogonaltrajektorie w = 0 dar. Da wir
aber als solche irgendeine Flachenkurve wahlen konnen, so gilt (44) auch
ganz allgemein fiir deren Torsion t*, geoditische Torsion 7 und den
Winkel & zwischen ihrer Hauptnormalen und der Flachennormalen, die
sich samtlich als Funktionen der Bogenlinge v dieser Flachenkurve
ausdriicken.

18) Bianchi, p. 166 (20).
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§ 7. Diskussion der Ergebnisse.

Die Satze der §§ 5 und 6 rechtfertigen es, die Gleichung « = «(u,v),
d. h.: die Beziehung zwischen der Normalkriimmung « langs einer Schar
geodatischer Linien, deren Bogenlinge u und der Bogenlinge v der
Anfangskurve fiir eine analytische Flache als natirliche Gleichung der
Fliche zu bezeichnen. Kennt man aufler x(u,v) noch geeignete An-
fangsbedingungen, so ist die Flache eindeutig bestimmt. Die Anfangs-
bedingungen sind im ersten Falle, wenn alle geodatischen Linien des
Feldes durch einen Punkt gehen, dieser Pol und seine Tangentialebene,
sowie darin eine Anfangsrichtung ¢ = 0, und im zweiten (allgemeinen)
Falle der Streifen u = 0 (bestimmt durch Kriimmung «*(v), Torsion
7*(v), Anfangspunkt und -richtung und den Winkel ¢ (v)). Man kann dann
in jedem Falle den Ortsvektor x(u,v) der geodatischen Linien » = const.
und somit der Flache berechnen 19).

Tatsachlich werden die Linien » = const. der so konstruierten Flache
geodatische Linien; denn nach Konstruktion wird £ =1 und F = 0.
Fiir ¥ = 0 wird nun die geodéatische Kriimmung «, der Linien v = const.:

WAL,
g V-E——é- ’

so dal} also fiir £ = 1 «, verschwindet. Dies ist aber eine hinreichende
Bedingung dafiir, dal die Kurven v = const. geodéatisch sind.

Eine notwendige Bedingung, der die vorzugebende Funktion «(u,v)
unterliegt, ist die, daB sie in beiden Variablen analytisch ist. Im Spezial-
falle der Polarkoordinaten kommt als weitere Bedingung die Euler’sche
Formel fiir «(0,¢) hinzu. Die Annahmen «(0,v) =0 bzw. «(0,¢)=£0
sind unwesentlich, wie sich durch Grenziiberginge in den einzelnen
Formeln, z. B. (23), erweist.

Uber die Verallgemeinerungsfahigkeit 148t sich sagen, daf das allge-
meine Ergebnis wahrscheinlich auf hohere Differentialgeometrien iiber-
tragen werden kann. Von den Beweismethoden wird man dies nicht in
gleichem Umfang erwarten diirfen, da sie zum grofien Teil der gewshn-
lichen Differentialgeometrie eigentiimlich sind und den Anforderungen
verallgemeinerter MalBbestimmungen nicht mehr geniigen. Immerhin
kann man bemerken, daB manche wihrend der Beweise erhaltene For-
meln auch fiir allgemeine Raume und MaBbestimmungen richtig bleiben,
z. B. (23) im Riemann’schen Raum?!) und (30)22).

19) Blaschke, p. 12 (77). 21y Finsler, p. 112 (125).
20) Blaschke, p. 89 (10). 22) Finsler, p. 102 (105).
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§ 8. Beispiele.
In diesem Paragraphen sollen folgende Spezialfille untersucht werden:

I. x(u,v) = const., v(u,v) = const.
A) fiir die geodatischen Linien durch einen Punkt,
B) fiir ein allgemeines geodatisches Feld.

II. k,(u,v) = 0, x = x(u), v (u,v) = const.
A) fiir die geodéatischen Linien durch einen Punkt,
B) fiir ein allgemeines geodatisches Feld.

IA) Setzen wir «(r,p) = const., so ergibt sich aus (27):
T(r,p) = 0.

Diese geodatischen Linien sind simtlich Kreise mit dem Radius —, die
K

die Tangentialebene des Poles dort von einer Seite her beriihren und
deren Ebenen senkrecht zu ihr stehen. Thre Enveloppe ist die Kugel, die
durch die Angabe «(r,¢) = const. demnach eindeutig bis auf Bewegungen
bestimmt ist. Es gilt also:

4. Satz: Die einzigen Flichen mit einer Schar durch einen reguliren
Punkt gehender geoddtischer Linien gleicher konstanter Kriimmung sind die
Kugel und thre Ausartung, die Ebene.

IB) Fiir «(u,v) = const. erhalten wir aus (40) und (37):

d
- G(u,v) ' (45)

Die Forderung 7= = const. kann erstens durch 7(0,v) = 0 erfiillt
werden. Dann unterliegt G (u,v) keiner weiteren Bedingung. Fiirz(0,v)+ 0
mull aber zweitens G (u,v) = const. sein; denn nur so kann iiberhaupt
nach (42) @ und damit v von % unabhingig werden.

1. Wir betrachten also zuerst den Fall 7(0,v) = 0. Dann verschwindet
nach (44) die geodétische Torsion der Anfangskurve 4 = 0. Eine Kurve
mit verschwindender geoditischer Torsion ist aber notwendig eine
Kriimmungslinie??), wie man auch sofort aus (43) erkennt, wo die Torsion

) Bianchi, p. 166.
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der geodatischen Linien fiir ¢ =0 und ¢= —g— , d.h. fiir die Haupt-
kriimmungsrichtungen verschwindet.

Gibt man also die Anfangskurve 4 = 0 durch «*(v) und z*(v) vor, so
ist damit auch ¢ (v) bis auf eine additive willkiirliche Konstante bestimmt :

P (v) = — }r* (v)dv +9(0) .

Fiir die zu # = 0 orthogonalen geodéatischen Linien v = const. gilt
x = const. und 7 = 0. Sie sind also fiir « + 0 simtlich Kreise mit dem

Radius-—l— , die den Anfangsstreifen beriihren und deren Ebenen normal
K

zur Anfangskurve sind. Diese Bedingung liefert uns die Rohrenflachen,
bei denen auch tatsachlich alle Orthogonaltrajektorien dieser Kreise, der
sogenannten Charakteristiken, Kriimmungslinien sind?%).

Speziell erhalten wir hier:

a) fiir «* = 0 den Kreiszylinder,
b) fiir x* = const. £ 0, t* = 0, «* > «, ¥ = 0 den Torus und
c) fir k* =k +£0, 7* = 0, 9 = 0 die Kugel.

Ist aber neben 7 = 0 auch « = 0, so ergibt sich als Grenzfall der
Rohrenflache eine Regelfliche aus einer einparametrigen Schar von
Geraden, etwa fiir ¥ = 0 die Fliche aus den Binormalen der Anfangs-
kurve. Wir wollen diese Regelflache noch kurz untersuchen und beweisen,
daf} sie abwickelbar ist. Ist die Anfangskurve # = 0 durch den Ortsvektor
x(0,v) dargestellt, so hat die Regelflache offenbar die Gleichung:

x(u,v) = x(0,v) + 51(0:?)) U, (46)

wo &, wie bisher der Tangentenvektor der geodatischen Linien v = const.
ist. Wir betrachten nun die Determinante:

D = [510(0”0) > 51 (0,’0) > x,,(O,v)] .

Setzen wir hier die entsprechenden Werte aus (34) und (36) ein, so er-
halten wir:

D —_—[K* sin - & — (r' + %) cos 9. &, — (r’ + %) sin & & ;

— sin 9 £; + cos 9 & ; 5;]

24) Scheffers, p. 220.
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und wegen: [61; &35 &3] = 1
dd
D =— (r -+ I )
Die notwendige und hinreichende Bedingung dafiir, daB die Regel-

flache (46) abwickelbar ist, ist:
D = 02) .

Diese Bedingung ist hier nun wirklich erfiillt, da die Anfangskurve v = 0
Kriimmungslinie sein muf, damit nach (45) 7(0,v) verschwindet. Die
Forderung 7(u,v) = 0 und «(u,v) = 0 liefert uns also als Grenzfall der
Rohrenflachen alle Torsen, und es gilt, dal} eine Regelflache dann und nur
dann eine Torse (d. h. abwickelbar) ist, wenn die Orthogonaltrajektorien
ihrer Erzeugenden Kriimmungslinien sind. Diese Tatsache ist auch auf
andere Weise einzusehen, wenn man bedenkt, daf3 die Erzeugenden der
Regelflache, die ja immer Asymptotenlinien sind, unter der gemachten
Voraussetzung auch Kriimmungslinien werden und dafl die Fliche daher
durchweg parabolisch gekriimmt sein muf.

Nehmen wir aber von vornherein die geodatischen Linien als Geraden
an, also k = 0, so wird ihre Torsion 7 unbestimmt. (45) ergibt dann keine
Bedingung fiir den Anfangsstreifen, der demnach beliebig sein kann.
Ebenso wird D unbestimmt. Die Forderung « = 0 allein liefert also
samtliche Regelflachen.

2. Wir gehen jetzt zum zweiten Fall iiber:
G (u,v) = const. = 1.

In (42) miissen dann alle hoheren Glieder der Entwicklung verschwinden.
Wir erhalten fiir « = const. + 0 zunichst aus (41b bis d):

(b) 2«*sind =0,

() [K*2 sin?  — k' cos & + (1:' + %%)2]0,1: =0,

| g s 1 a9
(d) [—-——-?;sz sin 19‘—-—-KK2$111 ? cos 79+§K( —+- dv2)]oD=0.
Aus diesen drei Gleichungen ergeben sich als notwendige Bedingungen
entweder:

a) x-~0?:—{-—d0 0

oder
b) & =0, 7* = }/ kx* = const. wegen 7, = 0, also «* = const.
28) Blaschke, p. 73 (110).
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a) Dieser Fall liefert uns fiir « + 0 wiederum den Kreiszylinder. Nach
(45) wird T = 0. Die Anfangskurve u = 0 ist eine Mantellinie, und die
zu ihr orthogonalen geoditischen Linien sind Kreise, deren Ebenen
normal zu ihr sind. Es ist evident, daf3 hier G@ = const. wird, so daB also
das Verschwinden der hoheren Glieder der Reihe fiir G nicht mehr be-
wiesen zu werden braucht. Fiir «k = 0 artet der Kreiszylinder in die
Ebene aus.

b) Im zweiten Falle finden wir nach (45):
T = —7* = — }/kx* = const. (47)

Die geodatischen Linien » = const. und ihre Orthogonaltrajektorie u =0
sind also fiir « + 0 und 7 + 0 gewohnliche Schraubenlinien. Wir werden
nun zeigen, da} der Kreiszylinder die einzige Flache ist, die diesen Be-
dingungen geniigt. Dazu stellen wir die Kurve % = 0 in der Form dar:

x*(q) = (a cos q; asin q; b*q) . (48)

Wir betrachten weiter alle zu ihr orthogonalen, auf dem gleichen Kreis-
zylinder liegenden Schraubenlinien :

x(9) = (@ cosq;asing; bg + const.) . (49)
Wegen der Orthogonalitit miissen die Vektoren:

%,(9) = (—asing;acosq;b)
und :
%,(¢) = (—asin g; a cos g ; b¥)

aufeinander senkrecht stehen, also:

a® 4+ bb* =0
. 2
oder: b— t;* . (50)
Fiir (49) ergibt sich jetzt :
2
x(¢) = (acosq;asing; — (IL)* q + const.) . (51)
Fiir diese Schraubenlinie gilt 2¢):
. a . b*2
= at  a(a®+ 0%’

a* + 75

26) Blaschke, p. 14.
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. — b* =t
T at a? 4 b2 ’
@* + +
ebenso fiir (48):
. a
“ a? + b2 ’
T = ¥
a? 4 b
Demnach ist also:
T=—71%,
1*2
K= Pt

wie nach (47) fir die Schraubenlinien v = const. verlangt war. Da
neben diesen natiirlichen Gleichungen auch die Anfangsbedingungen
fiir die Schraubenlinien (51) und » = const. iibereinstimmen (fiir (48)
ist auch @ = 0 erfiillt), sind demnach die beiden Scharen identisch.
Damit ist unsere Behauptung bewiesen, dal der Kreiszylinder die
einzige Flache ist, die sich aus dem Falle b) ergibt. Aus der Abwicklung
des Zylinders ist klar, dal auch G = const. wird. Die Spezialfille, in
denen eine oder mehrere der Groflen «*, t*, k, v verschwinden, liefern
ebenfalls den Kreiszylinder oder seine Ausartung, die Ebene.

Wir finden also folgenden

b. Satz: Die einzigen Flichen mit einem Feld geoddtischer Linien gleicher
konstanter Kriommung und Torsion sind die Kugel, der Kreiszylinder, die
allgemeinen Rohrenflichen und die Regelflichen, wobei sich speziell die
Torsen als Grenzfall der Riohrenflichen fiir verschwindende Krivmmung der
geoditischen Linien ergeben. Die geoditischen Linien des Feldes konnen auf
dem Kreiszylinder Schraubenlinien sein; sonst sind es auf den Rohren-
flichen Kreise und auf den Regelflichen Geraden.

ITA) Setzen wir x = «(r), also «,(r,¢) = 0, so ergibt sich aus (27):

7(r,p) = 0.

Diese geodatischen Linien sind also kongruente ebene Kurven, die die
Tangentialebene des Poles r = 0 dort beriihren und deren Ebenen normal
zu ihr stehen. Ihre Enveloppe ist eine Rotationsfliche. Demnach gilt:
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6. Satz: Die einzigen Flichen mit einer Schar durch einen reguliren
Punkt gehender geoddtischer Linien gleicher Krismmung als Funktion threr
Bogenlinge von diesem Punkte aus sind die Rotationsfliichen, die von ithrer
Rotationsachse in diesem Punkte getroffen werden. Die Meridiankurven der
Fliche sind dann die geoditischen Linien der Schar.

I11B) Fir «,(u,v) = 0 finden wir aus (40) und (37) wiederum:

7(0,9)
Q(u,v)
52
T._I_gg (52)
T Gu,v)

T(u,v) =

Soll nun 7(u,v) konstant werden, so bestehen wieder die beiden
Moglichkeiten :

1. 7(0,v) =0
und
2. G(u,v) = 1.

1. Aus (52) ergibt sich:
. dg
Tty =0

Die Anfangskurve ¥ = 0 muf} also Kriimmungslinie sein (cf. IB). Dann
ergeben « = k() und 7(u,v) = 0 dazu orthogonale ebene kongruente
geodatische Linien v = const., die ebenso wie alle Kurven % = const.
Kriimmungslinien werden. Wird besonders die Anfangskurve # = 0
eben, also 7* = 0, dann ergeben sich die Gesimsflichen??), und wird

u = 0 eine Gerade, also «* = 0, so erhalten wir den allgemeinen Zylinder

mit den Mantellinien « = const. und den dazu senkrechten Parallel-
kurven v = const.

2. Soll G(u,v) = 1 sein, so miissen in (42) die hoheren Glieder ver-
schwinden ; also ergibt sich zunéchst aus (41b, ¢):

(b) 2k*sind = 0,

*g o3 . . dd \2
(e) [Kzsmzﬁ——xx cos ¥ + ('L’ +7l7)]°’”20 .

27) Scheffers, p. 219.
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Daraus resultieren als notwendige Bedingungen entweder:

. . ad
a) K -————O,‘l’ + -%———O
oder:
b) P = 0,7* =V« .
a) ergibt nach (52):
T(u,v) = 0.

Wir erhalten somit wieder den allgemeinen Zylinder mit % = 0 als
Mantellinie, fiir den offenbar auch G'(u,v) = const. wird.

b) Dieser Fall ist, da «* und t* nur von » abhingen, fiir x, = 0 nur
durch « = const. zu erfiillen, und diese Annahme ist bereits unter IB)
behandelt worden.

Wir finden also:

7. Satz: Haben auf etner Fliche die geoditischen Linien eines Feldes die
gleiche wichtkonstante Kriimmung als Funktion ihrer Bogenlinge von einer
festen Orthogonaltrajektorie aus sowie gleiche konstante Torsion, so sind sie
eben und kongruent und ebenso wie ihre Orthogonaltrajektorien Krivmmungs-
linien der Fliche. Ist die Orthogonaltrajektorie eben, so ist die Fliche eine
Gesimsfliche, ist sie eine Gerade, so ist die Fliche ein allgemeiner Zylinder.

In diesem Satze ist die Voraussetzung nichtkonstanter Kriimmung
notwendig, um den Spezialfall der Schraubenlinien auf dem Kreis-
zylinder (cf. IB) auszuschliefen.

Machen wir neben «,(u,v) = 0 nur die Voraussetzung, dal die Kurve
u = 0 Kriimmungslinie ist, so verschwindet also ihre geodatische Torsion
7(v) und damit auch nach (44) und (52) 7(u,v). Dann sind wieder wie
vorher alle Kurven = const. und v = const. Kriimmungslinien, und
es gilt:

8. Satz: Haben auf etner Fliche die geoditischen Linien eines Feldes eine
Kriammungslinie als Orthogonaltrajektorie und aupferdem die gleiche Krivm-
mung als Funktion ihrer Bogenlinge von dieser Krimmungslinie aus, so
sind sie eben und ebenso wie ihre Orthogonaltrajekiorien Kriimmungslinien
der Fliche.
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