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Ûber die Bestimmung von Flâchen

aus ihrer Normalkrummung lângs einer Schar
geodâtischer Linien
Von Siegfbied GRiiNBAUM, Zurich

§ 1. Natiirliche Gleichungen von Flâchen.

Der Begriff der naturlichen Gleichungen einer Kurve hat allgemein in
die differentialgeometrische Literatur Eingang gefunden, und man ver-
steht in der Regel diejenigen Gleichungen darunter, durch die die
Krûmmung und Torsion der Kurve als Funktionen ihrer Bogenlânge aus-
gedrûckt werden1). Demgegeniiber ist von naturlichen Gleichungen von
Flâchen nur sehr selten die Rede und dazu noch in sehr verschiedener
Weise. Bianchi nennt die beiden Gleichungen

/ Edu2+2Fdudv+Gdv2
Und

<p Ldu* +2Mdudv +Ndv*

natiirliche Gleichungen der Flâche, weil ,,alle aus der Gestalt und GrôBe
der Flàche sich ergebenden Eigenschaften nur von den sechs Koeffizienten
der Fundamentalformen abhàngen."2) Schefifers dagegen bezeichnet fur
solche Flâchen, auf denen keine besondere Beziehung zwischen der
GauB'schen Krummung K und der mittleren Krûmmung H besteht, die
vier Gleichungen

A und V sind die Beltrami'schen DifiEerentialoperatoren) als ihre natiir-
lichen Gleichungen, weil sie die Flâche ohne Rûcksicht auf ihre zufàllige
Lage und Parameterdarstellung vollkommen charakterisieren. Er be-

màngelt gleichzeitig die Bianchi'sche Définition natûrlicher Gleichungen,
weil sich die beiden Fundamentalformen bei Einfùhrung neuer Parameter
ândern3). Erwâhnenswert ist ferner, daB Cesàro in seinen ,,Vorlesungen
liber natiirliche Géométrie* ' ebenfalls nur einen unvollkommenen Ersatz
fur die naturlichen Gleichungen einer Flàche gibt. SchlieBlich nennt
Rellich die Gleichung K K(u,v) eine natiirlicheGleichung der Flàche

(K ist ihre GauB'sche Kriimmung), falls u und v Asymptotenlinienpara-
Blaschke, § 13 u. a.

2) Bianchi, p. 91.
8) Scheffers, p. 433.
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meter (fur K < 0) bzw. isotherm-konjugierte Parameter (fur K > 0) der
Flâche sind, weil dann durch K(u,v) die Flâche bis auf einenAnfangs-
streifen eindeutig bestimmt ist4).

Im Sinne einer Differentialgeometrie, die danach strebt, ihre Begriffe
môglichst allgemein oder zum mindesten verallgemeinerungsfâhig zu
definieren, liegt es nahe, solche natiirliche Gleichungen fur Flàchen zu
suchen, die in der Differentialgeometrie des 22neinfacheineVerallgemei-
nerung der natûrlichen Gleiehungen von Kurven darstellen. Eine Kurve
hat im Rn n—1 verschiedene Krûmmungen. Gibt man dièse als Funk-
tionen der Bogenlànge, so erhâlt man die natûrlichen Gleichungen der
Kurve, die dièse bis auf die Anfangsbedingungen vollstàndig bestimmen.
Eine y-dimensionale Flâche hat im Rn n—v verschiedene Krummungen5),
und Herr Finsler hat in seiner Dissertation die Vermutung ausgesprochen,
,,daB auch die Flàchen durch die Angabe ihrer Krummungen und ge-
eigneter Anfangsbedingungen eindeutig bestimmt sind"6). Beschrànkt
man sich nun auf zweidimensionale Flàchen im euklidischen 22 3, so
mûBte man demnach deren in diesem Falle einzige Krùmmung, die
Normalkrûmmung7), nebst den Anfangsbedingungen vorgeben. Die
Normalkrûmmung wâre dann als Funktion der Bogenlànge der Kurven
einer Schar und eines geometrischen Parameters der Schar darzustellen.
Vereinfacht wird das Problem dadurch, daB man die Kurven der Schar
als geodàtisch annimmt, da dann ihre Krùmmung in jedem Linienelement
mit der Normalkrûmmung der Flâche ûbereinstimmt.

In der vorliegenden Arbeit soll jetzt gezeigt werden, daB eine analy-
tische Flâche durch die Angabe ihrer Normalkrûmmung lângs eines
Feldes geodàtischer Linien sowie geeigneter Anfangsbedingungen
eindeutig bestimmt ist. Dies gibt uns dann das Recht, die Beziehung
zwischen der Normalkrûmmung und den beiden Parametern (Bogenlànge

der geodâtischen Linien und Feldparameter) als natûrliche Glei-
chung der Flâche zu bezeichnen. Der Beweis soll nun derart gefûhrt
werden, daB aus der so vorgegebenen Krùmmung der geodâtischen Linien
ihre Torsion eindeutig berechnet wird ; denn damit sind die Kurven selbst
und auch die Flâche als deren Enveloppe (wiederum bis auf die
Anfangsbedingungen) eindeutig bestimmt. Ob auch zu jeder solchen natûrlichen
Gleichung eine Flâche existiert, mûBte allerdings noch besonders unter-
sucht werden.

*) Rellich, p. 619.
5) Finsler, p. 95.
6) Finsler, p.

~

7) Finsler, p.
8.

p. 92.
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§ 2. Krummung und Torsion geodatischer Linien.

Wir bezeichnen die drei Einheitsvektoren des begleitenden Dreibeins
der geodàtischen Linien mit fx, £2 und £3 und ihre Krummung und
Torsion mit k bzw. t. Die Flâche sei durch ihren Ortsvektor x x(u,v)
dargestellt. Ihr Normaleneinheitsvektor sei Ç(u,v),

Dann gilt nach Frenet:

oder wegen:

ii ¦ h 0 :

Es ist nun :

oder, weil fur geodâtische Linien ihre Hauptnormale £2 mit der Flâchen-
normalen | (abgesehen vom Richtungssinn) zusammenfàllt8) :

Wegen

ergibt sich:

£3

* _dt _ds ~~~ *

difiXf
dv

du dv

(2)
[" du dv "I

Unter Benutzung der ublichen Bezeichnungen :

T t T. r t — r £ — M r • £ ~ N*m Su — -"> *u *v — *i? Su — JXL^ xv $v — xv

und der Gleichung:
Y V T

VEG —
finden wir:

8) Blaschke, p. 94 (26).
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x (*" x

und ferner:
*

[x, x (s* x tv)]

» LX * v/ u x tt v/ VJ VËG — F2

so daB sich nach (2) fur f3 ergibt :

v' ds

Da auBerdem gilt:

finden wir nach (1) fur die Torsion der geodâtisehen Linie durch den

Punkt (u, v) in der Richtung -=— :

fc du _ dv

und schlieBlich wegen:
ds2 Edu*+2Fdudv +Gdv* :

(JBJf — jPjL) ^2 + (UN — GL)dudv + (FN — G M) dv210) /QX

]/EG F2 (JEd2 + 2Fduâv + Gdv2)

Die Krûmmung derselben geodâtisehen Linie ist wegen |2 f
der Normalkriimmung der Flàche im Linienelement Iw,?;,--^-1 also:

+ 2Mdudv + Ndv2
Edu2 + 2Fdudv + Gdv2

(4)

9) Cf. Blaschke, p. 6 (43).
10) Bianchi, p. 164.
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§ 3. Geodâtische Koordinaten.

Im Hinblick auf unsere spezielle Aufgabe und auf die weiteren Unter-
suchungen erweist es sich als zweckmàBig, besondere Parameter auf der
Flàche einzufûhren. Wir wàhlen als Kurven v const. die geodàtischen
Linien eines Feldes und als Kurven u const. ihre âquidistanten Ortho-
gonaltrajektorien. u soll dabei die Bogenlànge auf den geodàtischen
Linien angeben, von einer festen Orthogonaltrajektorie u 0 aus

gemessen. Das Bogenelement nimmt dann die GauB'sche Form an:

ds2 àv? + Gdv* n)

In diesem Parametersystem gilt also :

und
F xu • xv 0

so daB sich fur die geodàtischen Linien v const. nach (4) und (3)
ergibt :

K L (5)
und

Es ist nun unser Ziel, die FundamentalgrôBen G, L und M zu eliminieren
und eine Beziehung zwischen k und t, eventuell auch deren Ableitungen
nach u und v9 aufzustellen, die es gestattet, r r(u,v) bei gegebenem
k k(u,v) zu berechnen.Wir benutzen hierzu die erste der sogenannten
Grundformeln von Mainardi und Codazzi12), die in unserm Spezialfall
(E 1, F 0) die Form annimmt:

— JfJ— MGU^ 0. (7)

Setzen wir nun nach (5) und (6) :

Lv kv

M
und

2VW '

u) Blaschke, p. 94 (28).
12) Blaschke, p. 79 (139).
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so finden wir aus (7) :

2«,. G —2T.-1/G» —2T-J/3". 0a

oder wegen 0 =£ 0 :

0

und schlieBlich:

Dièse gewôhnliche lineare Differentialgleichung 1. Ordnung fur t, in
der v nur als Parameter auftritt, Iâ8t sich nach der Méthode von Jacob I
Bernoulli13) folgendermaBen integrieren:

Wir setzen:
r p-q, (9)

woraus folgt:
t« pu • q + P • q»

und nach (8): 31og —

Wir setzen ferner :

so da8 sich jetzt durch Intégration nach u ergibt :

wobei wir die fiir uns iloch willkurliche Integrationskonstante gleich Null
gesetzt haben.

Weiterhin gilt nach (10):

y p
oder:

u

q §kv']/CT> du + c

so daB wir nach (9) und (11) finden:

18) Bieberbach, p. 10.
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Man kann in dieser Gleichung u 0 setzen und erhàlt :

so daB sich schlieBlich fur die Torsion der geodàtischen Linie v const.
ergibt :

T 4 f ïKm l/Ô". du + (tG)u-o\ (12)

oder in Worten:
1. Satz: Die Torsion der geodàtischen Linien einer Schar lâfit sich aus

ihrer Krûmmung k und aus dem Map G der Bogenlange ihrer Orthogonal-
trajektorien durch Intégration von einem gegebenen Anfangswert an be-

rechnen, falls k und G als Funktionen der Bogenlange u der geodàtischen
Linien und des Scharparameters v bekannt sind.

In Formel (12) ist damit auch r im allgemeinen eine Funktion von u
und v. Das Auftreten der Quadratwurzel hat keine Zweideutigkeit zur
Folge, da das Vorzeichen von VO von vornherein als positiv festgesetzt
ist. Sollte es sich also erweisen, daB man G eindeutig aus k und seinen

Ableitungen berechnen kann, so wàre damit gezeigt, daB r eindeutig
bestimmt ist.

§ 4. Berechnung von G (u, v) (1. Teil).

Fur das folgende ist es nun notwendig, die betrachtete Flâehe als

analytisch vorauszusetzen. Der Ortsvektor der geodàtischen Linie
v const. lâBt sich dann durch folgende Mac Laurin'sche Reihen-
entwicklung nach Potenzen von u darstellen :

wobei

duk u

gesetzt ist und wobei die Koeffizienten von uk noch von v abhângen.
Lassen wir nun v in dem Bereich, fur den es definiert ist, variieren, so

erhalten wir durch x(u,v) aile Punkte (u,v) der Flàche. Wir haben somit
in (13) eine kanonische Darstellung unserer Flàche gefunden. Fur dièse

Darstellung miissen die Bedingungen gelten:

E £ 1

und
F xu • xv 0
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Die erste ist eo ipso durch die Wahl der Bogenlânge als Parameter u
erfullt. Fur F dagegen werden wir jetzt eine Potenzreihe nach u berechnen,
deren Koeffizienten einzeln verschwinden mtissen. Dièse Gleichungen
werden uns dann dazu dienen, die Koeffizienten von

zu bestimmen. Aus (13) finden wir:

xu(u,v) xu(0,v)+

*,(«,») xv(0,v)+ iL.3£.,(o,») + fj-*.,,,(O,t>)+ ••• +

F xu(u,v)-xv(u,v) (xu'Xv)0,vH h uk S .uh

>, v) H

+ •••,
(14)

(15)

Unter Benûtzung der oben eingefuhrten Einheitsvektoren |l5 f2, |3
und der Frenet'sehen Formeln:

du

du

du

¦ —k^

gilt hier fur die Ableitungen von x :

^ £2 >

kvt2 — 2kttv) g2 + (kuu —
ctt|11? +{kuuv — 3k2 kv

— kt2) f 2î, + 2kuv x
WT + ICTtt) |3t?

(16)
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Ferner ist:
*v — VG'h> (17)

wenn die drei Vektoren xu= i1,Xv, £ und die drei Vektoren £l9 f 2 f, |3
je ein orthogonales Rechtskreuz bilden sollen; denn dann ist Xv|||3, aber
entgegengesetzt gerichtet. Sobald jetzt also die Werte von £lvJ |2v und
£3v fur u 0 bekannt sind, ist es môglich, die aus der Bedingung F 0

folgenden Gleichungen aufzustellen und mit ihrer Hilfe die Koeffizienten
von G zu berechnen.

§ 5. Geodâtische Polarkoordinaten.

Bevor wir in der Behandlung des allgemeinen Problems fortfahren,
betrachten wir jetzt zuerst den Spezialfall, da8 aile geodâtischen Linien
des Feldes durch einen Punkt gehen (der dann streng genommen nicht
zum Feld gehôrt). Wir fiihren mit ihrer Hilfe geodâtische Polarkoordinaten

ein und ersetzen in der ûblichen Weise u durch r und v durch <p ; r
bezeichne also jetzt die vom Pol des Systems (r 0) aus gemessene
Bogenlânge auf den geodâtischen Linien <p const., wàhrend cp den
Winkel zwischen der Ausgangsrichtung der Linie ç? const. und einer
festen Anfangsrichtung q> 0 bezeichnet und zwischen 0 und 2tz variiert.
Die Orthogonaltrajektorien r const. werden jetzt geschlossene Kurven,
die sogenannten geodâtischen Entfernungskreise um den Pol r 0. Fur
diesen Spezialfall kônnen wir nun die Krummung /c(r,ç?) der geodâtischen
Linie ç? const. nur so vorgeben, da8 sich /c(0, <p) entsprechend der
Euler'schen Formel darstellen làBt :

^(0,^) kx cos2 cp +k2 sin2 tp 14) (18)

wobei kx und k2 die Hauptkrummungen im Pol und <p 0 die eine der
Hauptkrummungsrichtungen bezeichnen.

In dieser Parameterdarstellung hat das Linienelement ebenfalls die
GauB'sche Form:

ds2 dr2 + Gd<p2.

Da dièses Koordinatensystem sich in der Umgebung des Pôles in erster
Nâherung wie ein ebenes Polarkoordinatensystem verhalten muB, fur
welches gilt:

ds2 dr2 + r2dq>2,

so folgt daraus:

0(r,y) r»[
mit

u) Blaachke, p. 57 (20)
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so da6 also auch wird:

und nach (17):

lim g(r,(p) 0

lim G (r,<p) 0 15)

0

(19)

(20)

Im Punkte r 0 fallen die Hauptnormalen f 2 aller geodâtischen
Linien tp const. mit der Màchennormalen | zusammen, sind also von <p

unabhàngig. Die Tangentenvektoren fx und die Binormalenvektoren £3

liegen dort in der Tangentialebene der Flâche. Es bedeutet also keine Ein-
schrânkung der Allgemeinheit, wenn wir fur dièse Vektoren folgende
Annahmen treffen:

<p ; 0 ; sin y),

Daraus folgt:
(— sin ç? ; 0 ; cos

0,

Unter Berûcksichtigung der Beziehungen:

1 fur i k

0 fur i^Jc

(21)

(22)

und der Gleichungen (16), (20) und (21) kônnen wir jetzt die Koeffizienten
der Reihe (14) fur F einzeln gleieh Null setzen und erhalten folgende
Bedingungen (die ersten drei Gleichungen liefern allerdings keine) :

(a) [xr.%]o,y O

(c) l-^Xr

H g"^rrrr% |0,90
0

+ T' 1 ~j^~

2424 *rrrrr

XTrrrXr<p

Duschek-Mayer, p. 201.

345



Aus (d) folgt:

Setzen wir zuerst #c (0, <p) =fi 0, so ergibt sich :

(23)

und speziell auch fur #c (0, y) 0 :

lim r(r,ç?) —

sowie :

(24)

Aus (e) folgt:

24 KK*<P + "^lcrT + -^'cTr 0,^ 0

und wegen (23):

sowie daraus:

(25)

(26)

Allgemein sieht man durch Vergleich von (14) und (16), daB rfk(0,(p)
zuerst im Koeffizienten von rk+z auftritt. Setzt man diesen gleich Null, so

kommt rrk(0,<p) unter Berucksichtigung von (20) in der erhaltenen
Gleichung in folgenden Gliedern vor:

L(i + 3)!

und es hat darin entsprechend (21) und (22) folgenden Koeffizienten:

Fur #c(0, <p)=£0 Ià8t sich also TTk(0,<p) stets aus der Gleichung F 0

berechnen, und daraus findet man dann auch rrk ,(0,ç?).

16) Fin8lert p. 112 (125) und vorhergehende.
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Da nun in den Koeffizienten der Reihenentwicklung (15) fur G keine
andern GrôBen als k, t und deren Ableitungen nach r und <p im Punkte
(0, (p) auftreten kônnen, ist damit gezeigt, daB sich G fur unsere spezielle
Darstellung einer analytischen Flâche eindeutig aus k und seinen
Ableitungen berechnen làBt. Den gefundenen Wert fur G kann man dann in
(12) einsetzen, wo r wegen (19) jetzt die Form hat:

(27)

Die Torsion t der durch einen Punkt gehenden geodàtischen Linien
lâBt sich also eindeutig aus der Krummung k und ihren Ableitungen
berechnen. Durch k und r sind aber die Linien und ihre Enveloppe, die
Flâche, von Bewegungen abgesehen, vollstàndig bestimmt. Es gilt also

folgender
2. Satz: Eine analytische Flâche ist durch ihre Normalkriimmung lângs

aller durch einen Punkt gehenden geodàtischen Linien bis auf Bewegungen
eindeutig bestimmt.

Wir wollen jetzt noch die ersten Koeffizienten der Reihe (15) fur G

berechnen. Unter Berucksichtigung von (16) und (20) bis (22) finden wir
nacheinander :

(a) ^(O.y) 0,
(b)

Ve) I Y2 ^9°*TTTTtp "T" "g" *r<p*rrT<p "t" "^"^rry I 0,

_r 1
2

1 ,1
und wegen (23) und (24) :

G(r,<p) hat also die Entwicklung:
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Da #c(O,ç>) der Euler'schen Formel

ic(O,ç?) «! cos2 <p + k2 sin2 q> (18)

genûgen mu8, wobei kx und k2 die Hauptkrûmmungen im Pol sind, ergibt
sieh daraus:

"v (°>9>) 2 ("2 — *1) sin ç> cos q>, (28)

***(<>,?>) 2(*2 — kJ (cos2 ç? — sin2 <p). (29)

Setzen wir die Werte aus (18), (28) und (29) in den Koeffizienten (e)

von G ein, so fînden wir :

r i 2 i 2 î i 2
— 3* +12**— 6KKvv\0^ — 3

2 î î
Sin2^cos29? — -K^sm4?? — -

1

— 3Ao}

wenn wir mit Ko die Gaufi'sehe Kriimmung der Flâche im Pôle r 0

bezeichnen. Es ist also :

— I K 2TK<p ' flT KKW I °»9° •

17)

(30)

§ 6. Berechnung von G(u,v) (2. Teil).

Nachdem wir den Spezialfall, da8 aile geodâtischen Linien unseres
Feldes durch einen Punkt gehen, im vorigen Paragraphen erledigt haben,
kehren wir jetzt zum allgemeinen Problem zurûck. Wir kônnen nun an-
nehmen, da8 die geodâtischen Linien des Feldes von einer Orthogonal-
trajektorie u 0 ausgehen. Dièse Orthogonaltrajektorie sei etwa durch
ihre naturlichen Gleichungen, d. h. durch ihre Krûmmung k* und ihre
Torsion t* als Funktionen ihrer Bogenlânge gegeben, wobei wir ohne Ein-
schrânkung ihre Bogenlânge mit ihrem Parameter v identifizieren
kônnen, so daB also eilt :

G(09v) 1 (31)

Ferner mu6 aber noch in jedem ihrer Punkte die Tangentialebene an die
Flàche oder, was auf dasselbe herauskommt, die Flâchennormale f (0, v)

17) Fmsler, p. 102 (105).

348



gegeben sein, damit die Anfangsrichtung jeder geodàtisehen Linie
v const. bekannt ist. Bezeichnen wir die drei Einheitsvektoren des be~

gleitenden Dreibeins von u 0 mit Ç\, I-\ und I3, so ist f (0,v) nun be-
*2, £3)stimmt dxirch die Ebene (Ç*2, £3) und den Winkel :

#(v) arc cos (£(0,t;) • fJ(0,v)) (32)

Aus (17) und (31)folgt:

f8(O,t0 —MO,*)
oder: (33)

Die Vektoren fî(t?), £si(v)> fi(^>v) un(i S%(09v) liegen also in einer
Ebene, und es gilt nach der Définition (32) und wegen f2 |:

Ç2(0,v) cos^(v) • %\(v) +sin^(v) • £\{v) (35)

Wenden wir auf das Dreibein è\, Ç*2, f 3 die Frenet'schen Formeln an:

-• * t.»

t* * f * t*

t* * t*

so ergibt sich aus (33) bis (35) :

(36)

Unter Berucksichtigung der Beziehungen

A £**'** 0 fur i ^ Jfc

und der Gleichungen (16) und (33) bis (36) kônnen wir jetzt die Koeffi-
zienten der Reihe (14) fiir F einzeln gleich Null setzen, wobei die beiden

ersten Gleichungen wiederum keine Bedingungen liefern. Wir erhalten:
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(a) [xu • xv]QiV 0

0) [u
(C)

£

I lk u uuuv '2 M 2 g t«M %v I o, t» ==:

Aus (c) folgt:

oder fur k(0}v) =£ 0:

und daraus:

i
Aus (d) finden wir:

n i

(37)

(38)

und wegen (37):

[kv + 2** sin # (r* + ^ (39)

Durch Vergleich von (14) und (16) sieht man wieder allgemein, da8
ruk(Q,v) zuerst im Koeffizienten von uk+2 auftritt. Setzt man diesen gleich
Null, so kommt ruk(0,v) nur in folgendem Glied vor:

und dort hat es den Koeffizienten:

Fur k(0,v) =?à 0 kann man also aile Ableitungen ruk(0,v) und daraus

tukj(0,v) berechnen. Da in den Koeffizienten der Reihe (15) fur G(u,v)
keine andern Grôfien als k,t und deren Ableitungen an der Stelle (0,v)
auftreten kônnen, ist damit der Beweis erbracht, daB sich G fur eine
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analytische Flâche eindeutig aus k und seinen Ableitungen, sowie ans den
Anfangsbedingungen **, t* und ê berechnen lâBt. Diesen Wert fur G
kann man in (12) einsetzen, woraus man die Torsion r(u,v) der geodâti-
schen Linien v const. eindeutig erhâlt. Sie hat jetzt wegen (31) die
Form:

Durch k(u,v) und r(u,v), sowie durch den Anfangsstreifen aus k*, t*
und & ist die Flàche als Enveloppe des Feldes der geodâtisehen Linien bis
auf Bewegungen bestimmt. Es gilt also:

3. Satz: Eine analytische Floche ist durch ihre Normalkrûmmung lângs
eines Feldes geodàtischer Linien und durch einen dazu orthogonalen
Anfangsstreifen eindeutig bestimmt.

Wir berechnen jetzt noch unter Berucksichtigung von (16) und (33)
bis (36) die ersten Koeffizienten der Entwicklung (15) fur G:

(a) xï(0,v) 1

(b) 2[

(f\\ \-r r _1_ r r 1
\ / I Q V UUUV I *"UV *MU1? I 0, V

r l 2 * • q * i *2 • a « / * ¦ d^\
I — — #c* k sm t/1 — — k.. k cos tr — kk sm x/1 cos it — km I x H—?— IL3 3W v\ ^ dv)

"3/CvT~3/cTt?J°'v
und wegen (37) und (38) :

— —-k2k* sin i9 — - kuk* cos^?—kk*2 sin # cos i? — ô** IT*+:r"l
L " o 3 \ dv J

G hat also die Darstellung:

>,,v) K*2sin2^—kk* cos i?+lT* + -r-) 0,t>+
1 dv ' '

(42)
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Zum SchluB wollen wir noch fur den hier hàufig auftretenden Ausdruck

dv

eine geometrische Bedeutung finden. Im Punkte (0, v) kônnen wir auf aile
durch ihn gehenden geodàtischen Linien die Euler'sche Formel (18) bzw.
(28) und die Gleichung (23) anwenden. Dann ist :

*(?>) — -g** (23)

und
K<p=(K2 — K1)8in{2<p), (28)

also:

r(<p) ô («i — *2) sin (2 <p) (43)

wobei <p 0 die eine der Hauptkrûmmungsrichtungen bezeichnet. Ver-

mehren wir tp um-, so wechselt r das Vorzeichen. Die Torsionen zweier

zueinander senkrechter geodâtischer Linien sind also im Schnittpunkte
entgegengesetzt gleich. Nun ist nach (37) :

Bezeichnen wir mit r die Torsion der zu v const. in (0,v) senkrechten
geodàtischen Linie, die also dort die Orthogonaltrajektorie u 0 be-

riihrt, so ist demnach wegen

18)

(44)

Dièse Gleichung stellt hier den Zusammenhang zwischen der gewôhn-
lichen Torsion r* und der geodàtischen Torsion r (d. h. : Torsion der
geodàtischen Tangente) der Orthogonaltrajektorie u 0 dar. Da wir
aber als solche irgendeine Plàchenkurve wàhlen kônnen, so gilt (44) auch

ganz allgemein fur deren Torsion t*, geodâtische Torsion r und den
Winkel ê zwischen ihrer Hauptnormalen und der Flâchennormalen, die
sich sâmtlich als Funktionen der Bogenlânge v dieser Flâchenkurve
ausdrûcken.

18) Bianchi, p. 166 (20).
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§ 7. Diskussion der Ergebnisse.

Die Sâtze der §§5 und 6 rechtfertigen es, die Gleichung k k(u,v),
d. h. : die Beziehung zwischen der Normalkrummung k lângs einer Schar
geodâtischer Linien, deren Bogenlânge u und der Bogenlânge v der
Anfangskurve fur eine analytische Flâche als natûrliche Gleichung der
Fldche zu bezeichnen. Kennt man auBer k(u,v) noch geeignete An-
fangsbedingungen, so ist die Flâche eindeutig bestimmt. Die Anfangs-
bedingungen sind im ersten Falle, wenn aile geodâtischen Linien des

Feldes durch einen Punkt gehen, dieser Pol und seine Tangentialebene,
sowie darin eine Anfangsrichtung ç> 0, und im zweiten (allgemeinen)
Falle der Streifen u=0 (bestimmt durch Krummung k*(v), Torsion
r* (v), Anfangspunkt und -richtung und denWinkel û(v)). Mankanndann
in jedem Falle den Ortsvektor x(u,v) der geodâtischen Linien v const.
und somit der Flâche berechnen19).

Tatsâchlich werden die Linien v const. der so konstruierten Flâche
geodâtische Linien; denn nach Konstruktion wird E 1 und F 0.

Fur F 0 wird nun die geodâtische Kriïmmung Kg der Linien v const. :

(VË)V 20)

VÊÔ

so daB also fur E 1 Kg verschwindet. Dies ist aber eine hinreichende
Bedingung dafiir, daB die Kurven v const. geodâtisch sind.

Eine notwendige Bedingung, der die vorzugebende Funktion k(u,v)
unterliegt, ist die, daB sie in beiden Variablen analytisch ist. Im Spezial-
falle der Polarkoordinaten kommt als weitere Bedingung die Euler'sche
Formel fur #c(O,ç?) hinzu. Die Annahmen k(0,v)^0 bzw. k(0,ç?)^0
sind unwesentlich, wie sich durch Grenzubergânge in den einzelnen
Formeln, z. B. (23), erweist.

Ùber die Verallgemeinerungsfâhigkeit làBt sich sagen, daB das allge-
meine Ergebnis wahrscheinlich auf hôhere Differentialgeometrien iiber-
tragen werden kann. Von den Beweismethoden wird man dies nicht in
gleichem Umfang erwarten durfen, da sie zum groBen Teil der gewôhn-
lichen Diflferentialgeometrie eigentumlich sind und den Anforderungen
verallgemeinerter MaBbestimmungen nicht mehr geniigen. Immerhin
kann man bemerken, daB manche wâhrend der Beweise erhaltene
Formeln auch fur allgemeine Ràume und MaBbestimmungen richtig bleiben,
z. B. (23) im Riemann'schen Raum21) und (30)22).

19) Blaschke, p. 12 (77). 21) Finsler, p. 112 (125).
20) Blaschke, p. 89 (10). 22) Finsler, p. 102 (105).
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§ 8. Beispiele.

In diesem Paragraphen sollen folgende Spezialfaile untersucht werden :

I. k(u,v) const., r(u,v) const.
A) fur die geodâtischen Linien durch einen Punkt,
B) fur ein allgemeines geodàtisches Feld.

II. kv(u,v) 0, k k(u), r(u,v) const.
A) fur die geodâtischen Linien durch einen Punkt,
B) fur ein allgemeines geodàtisches Feld.

IA) Setzen wir K(r,<p) const., so ergibt sich aus (27):

r(r,ç>) 0.

Dièse geodâtischen Linien sind sàmtlichKreise mit dem Radius —, die

die Tangentialebene des Pôles dort von einer Seite her berlihren und
deren Ebenen senkrecht zu ihr stehen. Ihre Enveloppe ist die Kugel, die
durch die Angabe K(r,(p) const. demnach eindeutig bis auf Bewegungen
bestimmt ist. Es gilt also :

4. Satz: Die einzigen Flàchen mit einer Schar durch einen regulàren
Punkt gehender geodâtischer Linien gleicher honstanter Krûmmung sind die

Kugel und ihre Ausartung, die Ebene.

IB) Fur k(u,v) — const. erhalten wir aus (40) und (37):

T(0,t>)
r(u,v) G(u,v)

* ~ (45)~ G(u,v)

Die Forderung r const. kann erstens durch r(O,v) 0 erfiillt
werden. Dann unterliegt G (u, v) keiner weiteren Bedingung. Fur r (0, v) + 0

mu8 aber zweitens G(u,v) const. sein; denn nur so kann ûberhaupt
nach (42) G und damit r von u unabhângig werden.

1. Wir betrachten also zuerst den Fall r(0,v) 0. Dann verschwindet
nach (44) die geodâtische Torsion der Anfangskurve u 0. Eine Kurve
mit verschwindender geodâtischer Torsion ist aber notwendig eine

Krummungslinie23), wie man auch sofort aus (43) erkennt, wo die Torsion

*) Blanchi, p. 165.
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der geodâtischen Linien fur cp 0 und q> — d. h. fur die Haupt-

krummungsrichtungen verschwindet.

Gibt man also die Anfangskurve u 0 durch ** (v) und t* (v) vor, so

ist damit auch & (v) bis auf eine additive willkiirliche Konstante bestimmt :

0(t>) _ ]r*(v)dv+&(0).
o

Fur die zu u 0 orthogonalen geodâtischen Linien v const. gilt
k const. und r 0. Sie sind also fur k ^Q sâmtlich Kreise mit dem

Radius —, die den Anfangsstreifen beruhren und deren Ebenen normal
K

zur Anfangskurve sind. Dièse Bedingung liefert uns die Rôhrenflàchen,
bei denen auch tatsàchlich aile Orthogonaltrajektorien dieser Kreise, der
sogenannten Charakteristiken, Krûmmungslinien sind24).

Speziell erhalten wir hier :

a) fur k* 0 den Kreiszylinder,
b) fur ie* const. £ 0, r* 0, k* > /c, & 0 den Torus und
c) fur k* k £ 0, r* 0, & 0 die Kugel.

Ist aber neben t 0 auch k 0, so ergibt sich als Grenzfall der
Rôhrenflâche eine Regelflàche aus einer einparametrigen Schar von
Geraden, etwa fin* # 0 die Flàche aus den Binormalen der Anfangskurve.

Wir wollen dièse Regelflàche noch kurz untersuchen und beweisen,
daB sie abwickelbar ist. Ist die Anfangskurve u 0 durch den Ortsvektor
x(0,v) dargestellt, so hat die Regelflàche offenbar die Gleichung:

x(u,v) x(0,v) + SAO9v) - u (46)

wo it wie bisher der Tangentenvektor der geodâtischen Linien v const.
ist. Wir betrachten nun die Déterminante :

Setzen wir hier die entsprechenden Werte aus (34) und (36) ein, so
erhalten wir:

nD

— sin 0.£; + cos

24) Scheffers, p. 220.
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und wegen: [f *
; |* ; f 3] l :

Die notwendige und hinreichende Bedingung dafur, daB die Regel-
flàche (46) abwickelbar ist, ist :

D 025)

Dièse Bedingung ist hier nun wirklich erfiillt, da die Anfangskurve u 0

Kriïmmungslinie sein muB, damit nach (45) r(0,v) verschwindet. Die
Forderung r(u,v) 0 und k(u,v) 0 liefert uns also als Grenzfall der
Rôhrenflâchen aile Torsen, und es gilt, daB eine Regelflàche dann und nur
dann eine Torse (d. h. abwickelbar) ist, wenn die Orthogonaltrajektorien
ihrer Erzeugenden Krummungslinien sind. Dièse Tatsache ist auch auf
andere Weise einzusehen, wenn man bedenkt, daB die Erzeugenden der
Regelflàche, die ja immer Asymptotenlinien sind, unter der gemachten
Voraussetzung auch Krummungslinien werden und daB die Flàche daher
durchweg parabolisch gekrûmmt sein muB.

Nehmen wir aber von vornherein die geodâtischen Linien als Geraden

an, also k 0, so wird ihre Torsion r unbestimmt. (45) ergibt dann keine
Bedingung fur den Anfangsstreifen, der demnach beliebig sein kann.
Ebenso wird D unbestimmt. Die Forderung k 0 allein liefert also
sâmtliche Regelflâchen.

2. Wir gehen jetzt zum zweiten Fall uber :

0(u,v) const. 1

In (42) miissen dann aile hôheren Glieder der Entwicklung verschwinden.
Wir erhalten fur k const. £ 0 zunâchst aus (41b bis d) :

(b) 2/c

(c) [k*2 sin^-KK* cos fi + (t* + ~^0,, 0

(d) \-\*%k sin ê—kk** sin fi cos fi + 1
k fo + ^)]o,, 0.

Aus diesen drei Gleichungen ergeben sich als notwendige Bedingungen
entweder :

a) •_..<•+.* _o
oder

b) ê 0, r* ]/*,<*= const. wegen r* 0, also #c* const.

26j Bla8chk6f p 73
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a) Dieser Fall liefert uns fur k $ 0 wiederum den Kreiszylinder. Nach
(45) wird r 0. Die Anfangskurve u 0 ist eine Mantellinie, und die
zu ihr orthogonalen geodâtischen Linien sind Kreise, deren Ebenen
normal zu ihr sind. Es ist évident, da6 hier G const. wird, so da6 also
das Verschwinden der hôheren Glieder der Reihe fur G nicht mehr be-
wiesen zu werden braucht. Fur k 0 artet der Kreiszylinder in die
Ebene aus.

b) Im zweiten Falle finden wir nach (45) :

r — r* — |/kic* const. (47)

Die geodâtischen Linien v const. und ihre Orthogonaltrajektorie u 0
sind also fin* k £ 0 und x + 0 gewôhnliche Schraubenlinien. Wir werden
nun zeigen, da6 der Kreiszylinder die einzige Flâche ist, die diesen Be-
dingungen geniigt. Dazu stellen wir die Kurve u 0 in der Form dar:

x* (q) (a cos q ; a sin q ; 6* q) (48)

Wir betrachten weiter aile zu ihr orthogonalen, auf dem gleichen
Kreiszylinder liegenden Schraubenlinien :

x(q) (a cos q; a sin q ; bq + const.) (49)

Wegen der Orthogonalitât mussen die Vektoren:

M?) (— a sin 2 ;a cos ;6)
und:

*£(?) (— « sin ^ ; a cos g ; 6*)

aufeinander senkrecht stehen, also :

a2 +66* 0

* —£• (50)

Fur (49) ergibt sich jetzt :

a2
x(g) (a cos q ; a sin q ; r-*- ï + const.) (51)

Fur dièse Schraubenlinie gilt26) :

a

26) Blaschke, p. 14.
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ebenso fur

Demnach

(48)

ist

T —-

*

T*

also:

r

K

a*
V

a

b*

a* + fti

— T*

T*2

— 6*

wie nach (47) fur die Schraubenlinien v const. verlangt war. Da
neben diesen natûrlichen Gleichungen auch die Anfangsbedingungen
fur die Schraubenlinien (51) und v const. ubereinstimmen (fur (48)
ist auch # 0 erfullt), sind demnach die beiden Scharen identisch.
Damit ist unsere Behauptung bewiesen, daB der Kreiszylinder die
einzige Flâehe ist, die sich aus dem Falle b) ergibt. Aus der Abwicklung
des Zylinders ist klar, daB auch 0 const. wird. Die Spezialfâlle, in
denen eine oder mehrere der GrôBen k*, t*, k, t verschwinden, liefern
ebenfalls den Kreiszylinder oder seine Ausartung, die Ebene.

Wir finden also folgenden

5. Satz: Die einzigen Flachen mit einem Feld geodâtischer Linien gleicher
konstanter Krummung und Torsion sind die Kugel, der Kreiszylinder, die
allgerneinen Bôhrenfldchen und die Begelflâchen, wobei sich speziell die
Torsen als Orenzfall der Rôhrenflâchen fur verschwindende Krummung der
geodâtischen Linien ergeben. Die geodâtischen Linien des Feldes Jcônnen auf
dem Kreiszylinder Schraubenlinien sein; sonst sind es auf den Rôhren-

pichen Kreise und auf den Regelflachen Geraden.

IIA) Setzen wir k /c(r), also K9(r,(p) 0, so ergibt sich aus (27):

r(r,<p) 0

Dièse geodâtischen Linien sind also kongruente ebene Kurven, die die
Tangentialebene des Pôles r 0 dort berlihren und deren Ebenen normal
zu ihr stehen. Ihre Enveloppe ist eine Rotationsflàche. Demnach gilt :
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6. Satz: Die einzigen Flachen mit einer Schar durch einen regularen
Punkt gehender geodàtischer Linien gleicher Krûmmung als Funktion ihrer
Bogenlânge von diesem Punkte aus sind die Rotationsflachen, die von ihrer
Eotationsachse in diesem Punkte getroffen werden. Die Meridiankurven der
Floche sind dann die geodâtischen Linien der Schar.

IIB) Pur kv(u,v) 0 finden wir aus (40) und (37) wiederum:

r(0,t;)
T (U V) =¦ O(u,v)

M (52)

G(u,v)

Soll nun r(uyv) konstant werden, so bestehen wieder die beiden
Môglichkeiten :

1. T(0,v) 0

und
2. G(u,v) 1.

1. Aus (52) ergibt sich:

dv

Die Anfangskurve u 0 mufi also Krummungslinie sein (cf. IB). Dann
ergeben k k(u) und r(u,v) 0 dazu orthogonale ebene kongruente
geodàtische Linien v const., die ebenso wie aile Kurven u const.
Kjummungslinien werden. Wird besonders die Anfangskurve u 0

eben, also r* 0, dann ergeben sich die Gesimsflâchen27), und wird
u 0 eine Gerade, also k* — 0, so erhalten wir den allgemeinen Zylinder
mit den Mantellinien u const. und den dazu senkrechten Parallel-
kurven v const.

2. Soll G(u,v) 1 sein, so mûssen in (42) die hôheren Glieder ver-
schwinden; also ergibt sich zunâchst aus (41b, c):

(b) 2**sin# 0,

(c) p2 sin2 ê — kk cos # + (t* + -^-)2] o,. 0

27) Scheffers, p. 219.
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Daraus resultieren als notwendige Bedingungen entweder:

a) K* 0,r* + -^- 0
dv

oder:

b) #=0,t*= j/W

a) ergibt nach (52):
r(u,v) 0

Wir erhalten somit wieder den allgemeinen Zylinder mit u 0 als

Mantellinie, fur den offenbar auch G(u,v) const. wird.

b) Dieser Fall ist, da k* und t* nur von v abhângen, fur kv 0 nur
durch /c const. zu erfullen, und dièse Annahme ist bereits unter IB)
behandelt worden.

Wir finden also :

7. Satz: Haben auf einer Flâche die geodâtischen Linien eines Feldes die
gleiche nichtkonsiante Krummung als Funktion ihrer Bogenlânge von einer
festen Orthogonaltrajektorie aus sowie gleiche konstante Torsion, so sind sie
eben und kongruent und ebenso wie ihre Orthogonaltrajektorien Krummungslinien

der Flâche. Ist die Orthogonaltrajektorie eben, so ist die Flâche eine

Gesimsflâche, ist sie eine Gerade, so ist die Flâche ein allgemeiner Zylinder.

In diesem Satze ist die Voraussetzung nichtkonstanter Krummung
notwendig, um den Spezialfall der Schraubenlinien auf dem Kreis-
zylinder (cf. IB) auszuschlieBen.

Machen wir neben kv(u,v) 0 nur die Voraussetzung, daB die Kurve
u — 0 Krummungslinie ist, so verschwindet also ihre geodàtische Torsion
r(v) und damit auch nach (44) und (52) r(u,v). Dann sind wieder wie
vorher aile Kurven u const. und v — const. Krummungslinien, und
es gilt:

8. Satz: Haben auf einer Flâche die geodâtischen Linien eines Feldes eine

Krummungslinie als Orthogonaltrajektorie und aufierdem die gleiche Krummung

als Funktion ihrer Bogenlânge von dieser Krummungslinie aus, so

sind sie eben und ebenso wie ihre Orthogonaltrajektorien Krummungslinien
der Flâche.
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