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Recherches sur les systémes de tourbillons
ponctuels soumis a des liaisons et sur la notion
de configuration hydrodynamique stable

Par M. MarceEL GopEFROY, Poitiers

Sommaire

1. Les équations exactes des mouvements de tourbillons ponctuels; les
équations linéarisées; obtention d’une condition nécessaire pour que les
mouvements définis par les équations linéarisées gardent une amplitude
finie; étude particuliére d’'une rue de tourbillons alternés. 1I. Relation
générale entre les solutions des systémes exacts et les solutions des
systémes linéarisés ; les deux types de petits mouvements définis par les
équations exactes; élargissement de la notion de stabilité.

Introduection

Ce mémoire a été rédigé a la suite d’'une série de recherches que j’ai
effectuées sous la direction de M. Bouligand, professeur a la Sorbonne, et
de M. H. Poncin, professeur a la Faculté des Sciences de Poitiers. Dans
la premiére partie, j’expose des résultats qui apportent une contribution
nouvelle & I’étude théorique des files de tourbillons ponctuels soumis & des
liaisons et présentant certaines configurations d’'un type général com-
prenant, en particulier, les configurations classiques de Bénard et Karman.
Dans la deuxiéme partie, je précise la notion de configuration hydro-
dynamique stable au voisinage d’un état stationnaire, lorsque son évolu-
tion est susceptible d’'une représentation effective 4 'aide d’un nombre
fini de paramétres. Ces considérations sont d’ailleurs applicables, sans
changement notable, & certains problémes de stabilité que pose la méca-
nique des milieux indéformables ou la mécanique des milieux élastiques.

Certains des résultats qui sont développés dans ce travail ont été
présentés & 1’Académie des Sciences de Paris, sous une forme d’ailleurs
un peu différente — cf. & ce sujet la note de M. Marcel Godefroy sur la
stabilité des files de tourbillons, publiée aux Comptes Rendus du 2 no-
vembre 1938, et la note de MM. Marcel Godefroy et Henri Poncin sur la
notion de stabilité en mécanique rationnelle, publiée dans les comptes
rendus du 9 décembre 1938.

Pour Phistorique du probléme relatif aux recherches sur les tour-
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billons alternés, on consultera I'ouvrage de M. P.Schwarz publié par le
Service des recherches scientifiques et techniques du Ministére de I’Air
(No. 100, chapitre I). Je me contenterai donc de rappeler, en quelques
mots, ce qui sera essentiel dans I’étude que nous allons entreprendre: les
recherches théoriques sur les mouvements des files illimitées de tour-
billons ponctuels conduisent & introduire un ensemble non borné et
dénombrable de variables soumises & un ensemble équivalent de relations
différentielles. L’étude de ces systémes n’a pu, jusqu’ici, étre poursuivie
que moyennant d’importantes simplifications. On a considéré des con-
figurations voisines d’un état d’équilibre relatif, ce qui permet de rem-
placer le systéme d’équations différentielles considéré comme exact par
un autre systéme approximatif, mais plus simple, auquel nous donnerons
le nom de «ystéme des équations linéarisées», pour rappeler son origine.
Les variables forment encore une suite illimitée. Aussi a-t-on cherché a
obtenir des solutions particuliéres du systéme. Les méthodes employées
pour parvenir a ce résultat peuvent étre rattachées & deux points de vue
assez différents. On peut d’abord considérer des petits mouvements d’un
type donné a priori, puis chercher & reconnaitre ceux d’entre eux qui
satisfont aux équations linéarisées. Il ne reste plus, pour obtenir les con-
ditions nécessaires de stabilité, qu’a déterminer les cas pour lesquels les
petits mouvements reconnus possibles sont représentés par des fonctions
bornées du temps. Tel est le principe de la méthode utilisée pour la
premiére fois par H. Lamb!) qui a ainsi pu montrer que la stabilité n’a
jamais lieu dans le cas d’une rue symétrique de tourbillons mobiles au
sein d’'un fluide illimité, et qu’elle dépend, pour une rue alternée, de la
condition nécessaire:

chzﬂ—};—-: 2, (1)

ou % représente la distance des deux files et I celle de deux tourbillons
consécutifs sur I'une ou 'autre d’entre elles.

Le second point de vue consiste & imposer & I’ensemble des tourbillons
un systéme de liaisons suffisant pour rendre fini le nombre des variables
indépendantes qui définissent son état. Ces liaisons ne sauraient d’ail-
leurs étre choisies au hasard, mais si nous les supposons satisfaites a un
instant donné, elles doivent continuer d’elle-méme & étre vérifiées dans

1) Hydrodynamics, 5¢ édition. Cambridge 1930, p. 208. — Voir aussi H. Villat,
Lec¢ons sur la théorie des Tourbillons. Chapitre IV. — G@. Durand, Sur les
petits mouvements d’un systéme infini de tourbillons autour d’une
position d’équilibre (Publications Scientifiques du Ministére de 1'Air, No. 35),
p.-12 &4 14.
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la suite. Cette condition, qui est essentielle, se réalise trés simplement
dans le cas suivant, considéré par M. G. Durand 2).

Etant donnée une rue tourbillonnaire en équilibre, numérotons
réguliérement les podles de la premiére file, & 1’aide des entiers positifs
ou négatifs écrits sous la forme kn +y (avec 0 <y < n — 1). Imposons
alors, & tous ceux de ces points qui correspondent & une méme valeur de
y, des déplacements initiaux représentés par un méme vecteur de petite
longueur, puis procédons de méme avec la seconde file, en prenant un
nouveau systéme de n petits déplacements indépendant du précédent.
Dans ces conditions, il est clair que, sur chaque file, les tourbillons de
méme rang y sont tous animés d’une méme vitesse. Autrement dit, les
liaisons imposées au systéme subsistent d’elles-mémes, et le nombre des
tourbillons a considérer comme libres est désormais réduit @ 2n. Les con-
figurations ainsi définies sont les seules que nous nous proposions d’étudier,
et cette particularisation du probléme nous permettra d’obtenir des
résultats précis sur le role de la condition (1) de stabilité.

2. Dans le mémoire cité, M. G. Durand ne donne & » que les valeurs
1 et 2, et obtient les résultats suivants: pour une configuration voisine
d’'une rue alternée, les fonctions du temps qui définissent les petits
mouvements des tourbillons sont des sommes composées d’une constante,
d’un terme A¢, et de plusieurs autres tels que e® cos G't, e~ cos G't.
Les paramétres 4, F, G ne dépendent que de % et de I. Lorsque la condition
(1) est satisfaite, & se réduit & un, mais A ne s’annule que dans certains
cas particuliers, et les sommes considérées n’ont pas, en général, de borne
supérieure lorsque ¢ tend vers co. Il semble donc, & premiére vue, trés
légitime de conclure, avec M. G. Durand, qu'une rue tourbillonnaire
alternée est toujours instable 3).

Pourtant, une remarque s’impose. La différence entre les déplacements
de deux tourbillons quelconques, appartenant ou non a la méme file,
ne contient pas de terme linéaire en t. Ilen est ainsi quel que soit », comme
nous le montrerons dans la suite (No. 16 et 17). L’existence de ce terme
ne contribue donc pas & disloquer les configurations & nombre fini de
variables, mais simplement @ modifier la translation dont elles sont animées.
A cela prés, leur mouvement se réduit, lorsque (1) est vérifiée, a des oscilla-
tions d’amplitude infintment petite.

C’est du moins la conclusion & laquelle conduit ’emploi des équations
linéarisées, étudiées dans la premiére partie de cet exposé. Mais on peut
se demander dans quelle mesure les résultats obtenus grdce d cette simpli-

%) Q. Durand, Loe. cit., p. 14 et suivantes.
3) Loc. cit. p. 7 et 21—22,
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fication sont comparables a ceux que donnerait Uétude directe des équations
exactes. Telle sera la question abordée dans la seconde partie. Un théoréme
général sur les conditions de validité des équations linéarisées, que nous
établirons, permettra de préciser, dans des cas étendus, la notion de
stabilité des systémes & un nombre fini de degrés de liberté. Nous pour-
rons alors apprécier, en particulier, I’efficacité réelle de la condition (1) de
stabilité, pour une configuration tourbillonnaire satisfaisant aux liaisons
proposées par M. G. Durand.

PREMIERE PARTIE

Les équations linéarisées et leurs conséquences

3. Nous allons d’abord expliciter les relations exactes qui définissent
le mouvement des configurations susceptibles d’une représentation par
un nombre fini de variables. Nous les simplifierons ensuite, de maniére &
obtenir un systéme d’équations différentielles linéaires dont les coeffi-
cients dépendent seulement de la position relative des deux files. Nous
chercherons alors quelle doit étre cette position relative, pour que les
petites oscillations des centres tourbillonnaires gardent une amplitude
bornée lorsque ¢ tend vers co. Enfin, le cas d’une rue alternée sera étudié
d’une fagon plus particuliére.

A. Les équations exactes

4. On sait4) que, pour un fluide parfait incompressible, mobile entre
deux plans paralléles, avec tourbillons cylindriques déliés et normaux aux
parois, les composantes u(xy) et v(xy) de la vitesse au point xy sont,
lorsque le systéme d’axes est rectangulaire, telles que u — vi soit une
fonction méromorphe de z +17y. Ses pdles, tous simples, sont les affixes
des tourbillons, et les résidus correspondants sont les quotients, par
271, des intensités tourbillonnaires. ‘

11 est facile d’appliquer ce principe & la recherche des équations diffé-
rentielles qui régissent le mouvement des configurations définies par
M. G. Durand. Pour cela considérons, sur le plan de la figure, 2n suites
illimitées de tourbillons ponctuels. Nous supposerons que les » premiéres
sont constituées par des centres d’intensité 4 J situés aux points

Zi+knl ... Z,+knl

4) H. Villat, Théorie des Tourbillons (Gauthier-Villars édit. Paris), chapitre III.

296



k étant ’entier le plus général, positif, négatif ou nul. De méme, sur les »
derniéres, les centres d’intensité —J occupent les positions

X, +knl, ... X,4+knl .

S’il en est ainsi, la fonction v — v7 admet la période nl.

Sur le domaine fondamental 0 < x < nl, elle doit étre uniforme et

admettre pour pdles les 2n points Z,...7Z,, X, ... X,, avec les résidus

-2-—;%7 et — 5%7 Elle doit en outre, étant donnée la signification
physique du probléme, rester bornée pour toute valeur de z, lorsque | y|

tend vers oo. Sa forme la plus générale est alors, en posant x4+1y = z,
u——vi_ [Zcot (z—Z,)— 2 coti(z—~X.)]
l ! 1 nl !

4 une constante complexe prés, que nous pouvons négliger: lorsqu’elle
est nulle, le fluide est sensiblement au repos, & une distance suffisante des
deux files.

5. La vitesse d’un centre tourbillonnaire est celle qu’aurait le fluide au
méme point, si ce centre n’existait pas. On a ainsi:

J

d (J
Z = lim Smi(e—Zy))

dt ez 121

: 7 n 7
[)lj'cot oy (r—Z;) ~—Zl,’ cot oy (z———X,-)] —=
Le signe * indiquera, d’une fagon générale, qu’il faut prendre la grandeur

complexe conjuguée de la variable qu’il affecte. Compte tenu de relations
telles que

; nl 1
tim ooty 6 —2) = T s—7] =0,

on obtient, en définitive,

2inl d 7
7 dtZk:-Z cob l(Zk——Zf')—ZCOtm(Zk——Xi)

2inl d *
in 7
—5 th = 3 cot (Xk Z;) — 2 cot o (X, — Xj) .

Dans chacune des sommes X, k est invariable, tandis que les entiers j et j’
sont soumis aux seules restrictions

1<j<n 1<i/'<n i' £k .
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En remplacant chaque terme par sa conjuguée complexe, on obtient 2n
nouvelles relations qui, jointes aux précédentes, forment en tout un
systéme (€) de 4n équations différentielles. Celui-ci définit complétement
le mouvement de la configuration tourbillonnaire, dont I’état initial est
donné par les valeurs Z,,, Z,,, X,., X, que prennent, pour £ = 0, les
variables Z,, Z; , X, X; . Rien n’empéche de faire abstraction du sens
attribué au signe* et de considérer, d’une fagon générale, Z, et Z; comme
deux paramétres complexes indépendants. Il sera méme commode, &
chaque instant, de se placer & ce point de vue. Mais seules méritent d’étre
retenues les solutions de () pour lesquelles les fonctions Z;(¢), X} (¢) et
Z,(t), X, (t) sont conjugées, quel que soit ¢{. Nous dirons que ce sont les
solutions réelles de ce systéme. On les obtient simplement en donnant aux
Zow> Xon 6 aux Zy, , X, des valeurs conjuguées.

6. Nous n’entreprendrons pas 'intégration compléte de (€), mais nous
allons mettre en évidence quelques-unes de ses solutions particuliéres.
Celles-ci correspondent & des configurations stationnaires, aussi bien pour
les rues tourbillonnaires illimitées que pour les configurations & nombre
fini de variables. Posons

Zy=kl, X =(k+ow)l (3)
Le paramétre complexe
w = wl“l‘iwz

restera, jusqu’a nouvel ordre, complétement arbitraire. En portant dans
(2) les valeurs (3), on obtient

2¢nl d . 2inl d . " kx 7
—TC—B—ka-—-—j—-d—t—Xk-— 2 Cot-r'b—’l—zl'cot(k—*-a»%— .

1

On voit que les % Z, et % X, ont tous la méme valeur. Celle-ci doit

étre indépendante de n, puisque la configuration définie par (3) présente
toujours le méme aspect, quelle que soit la valeur de cet entier, lorsque 7
et w sont donnés. On a, pour n =1,

d d

. . J

7 371 cot o , (4)

et cette formule est générale.

Ainsi, les tourbillons des deux files se déplacent tous avec la méme
vitesse. Dans un systéme d’axes animé d’une translation convenable, les
centres tourbillonnaires paraissent immobiles et le mouvement du fluide
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est indépendant du temps. On peut dire, en ce sens, qu’une configuration
du type (3) est toujours en équilibre, quel que soit w. Mais, comme I’a
montré M. P. Schwarz?), la vitesse des tourbillons n’est paralléle & la
direction des files que s’il s’agit d’une rue symétrique ou alternée (le
systéme d’axes étant tel que le fluide soit au repos pour y— o). On a,
dans le premier cas,

0)1———‘—0, w2:__lh’__,
d ,.
E{Zk ——2—l—cothn——l—,
et dans le second,
1 __h
wl‘—‘—2_ wz"—'Ta
d . J h

On retrouve ainsi les formules bien connues, obtenues pour la premiére
fois par Th. von Karman.

B. Les équations linéarisées

7. Dans ce paragraphe, nous ne développerons pas I’étude des équations
exactes, mais nous allons en déduire des systémes d’équations différen-
tielles linéaires & coefficients constants, en considérant des configurations
voisines de (3).

1
Posons pour cela Z,=1l(k+ &) — % cot mwo*

X.=1lk+ o+ E,c)—n-% cot mow* .

En portant ces valeurs dans (€) on a, compte tenu de (4) ,

2inl2 d 7 (Cx—Cir) (Cx — &)

J dt** L. (k— §') n 8in? — (k—j — o)
p n
e R

sinz% k—jtw) sin? - (k — ')

5) P. Schwarz, Recherches sur les tourbillons alternés. Chapitre IV, p. 57.
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Les ¢, et les v, sont des fonctions des £, & réguliéres pour ;= +*-{,=
& =---&, =0, dont les développements en séries entiéres commencent
par des termes d’ordre 2 au moins. C’est en les supprimant que mous
obtenons les systémes linéarisés dont mous nous proposons Uétude. Nous
admettrons, dans toute la premiére partie de cet exposé, qu'une telle
simplification est légitime tant que les £, et les &, restent suffisamment petits,
en réservant pour la deuxiéme partie la détermination précise des cas ol
il en est bien ainsi. En posant

2n2l?
Jn =1,
puis, pour 4 == 0 (mod n) ,
Y
sin? A -
n

et enfin
n, n—1
2 b A Z a), = Ay,
1 1
on obtient le systéme de 4n équations différentielles,

. d

PZ%C;= 2ay ; ;—2bi ¢
.d .
ﬂ'_ﬂ £, = 2 b ;G —Xa; &,

(&) d . .
Pizl—t-sz—zak—j C;+Z'bf—k§;

-d * * ®* *
F@‘(’Ef]@:—'zbk_j C,--I—Z'a,c_jé“,-

a 4 n inconnues. Tous les a, sont réels, sauf peut étre a, tandis que les b,
sont complexes, en général.

8. Le systéme (E) posséde une propriété remarquable, qui donne lieu &
d’importantes simplifications: pris dans son ensemble, il est invariant
pour la substitution

(cl...ck ..... Cpe e o bpennn. Ehsunas E.o.... 5;)
YN PR ST SN PR SR

Or celle-ci conserve également, a un facteur prés, chacune des formes
linéaires
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k=n ' , k=n P
0, =2 r,L 0, = 2 1
k=1 k=1
(6)
k=n , k=n .
n,= 215 & n, =218
k=1 k=1
dans lesquelles
. 29 . . 2yn
Ty = €08 —_ -+ % sin "

Ces formes, au nombre de 47, sont linédairement distinctes. Prenons-les
comme variables, 3 la place des {; &, ¢} &;. Enmultipliant par +§ chacune
des n premiéres équations de () et en ajoutant membre & membre, on a

.d
F"TZ? 6, =UA06,—C,,,
avec
k=0 k=0
Posons encore
k=n—1 .
B, = biry
k=0

et remarquons que

n—1 n—1

* ko * LA *
%'bkr,,——(ly Zo,’bkry “23?,

En procédant avec les trois derniéres séries de » équations qui constituent
(E) comme on vient de le faire avec la premiére, on obtient, en définitive,
n systémes différentiels contenant chacun 4 équations et 4 fonctions de ¢
a déterminer. Ils se presentent sous la forme

d
“&767,’3 U, 0, —C,m,

. d

FZ—C-Z-Z-T?;,
(Cy) d * N/ « 7
I‘z—(it— 07-'—‘-"——‘1[},0;,"!- %yT]},

d
ar

I

= B, 0 A

y Uy — Sy My

I

I

— G0, + W, .
\
9. 11 est facile d’évaluer, en fonction de w ou de

2T
n

e =P,

les coefficients A, B, €,. On a par définition
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k=n rk
%y _ 2 L

k=1 . o 7T
sin® — (k 4+ o)

Mais on peut écrire
__(re—p)? .

1 2.3‘.. =
sin - (k + w) = ipr,

On obtient alors

et on aurait de méme

11 est facile de simplifier les sommes 2. On peut partir de I’identité

k=n 1 _ npn—l
e
k=1 P — 7T 4

Les relations

permettent alors d’obtenir, de proche en proche, les formules définitives

+ (n —y)p"
"+ (n— -
6= 1n 22O gy @

Calculons maintenant %,. On a, par définition ,
k=n—1 n—1 n-—1
On voit tout d’abord que '

ﬂ—-lb % g pn
D

Pour évaluer le second terme, on peut remarquer que a, est la limite de b,
lorsque w tend vers zéro ou p vers un. On a ainsi:

n—1 n—1 n—1
1 p=1 0 0
= lim (B, —B,) .

pm=1
302



Un calcul élémentaire donne, & partir de (7),

lim (B, —B,)=—2y(rn—y) .
p=1
On a donc en définitive
2 2
€A — — 2 [ 2n2p

M—F?(n—w] . (9)

C. Obtention d’une condition nécessaire pour que les mouvements définis
par les équations linéarisées gardent une amplitude finie

10. Pour intégrer les systémes (e,), on cherche & en déduire des relations
du type d
. / 14
d dt Ly 0,15 0, 65) = 0, Ly (0, ;. 0, 67) (10)

avec k = 1, 2, 3 ou 4. Elles ont pour solutions
i
!/

— =0t
L, (1,7,6,6,) = L, (00,70, 00, 00,0e T 7. (11)

Les £, sont des formes linéaires des variables qu’elles contiennent,

tandis que les g, sont les quatre racines de ’équation

o'+ (2%, A, — B,B, —C.C)) o+ (W—B,C) (A2 —B,E) =0 (12)

caractéristique de (e,). On sait que si 'une de ces racines est d’ordre v,
on peut toujours lui associer une intégrale du type (11), parfois plusieurs,
mais jamais plus de ».

Seules nous intéressent les solutions réelles de (E) au sens défini au
No. 5. Posons donc

. / . nt
Cor = 04 + 1By Sor = o3 + 70
» . * / Y
Cor = &x—1 By Sor =03 — 1P -

Il est clair que si les £, (7, 79, 0y, b5,) sont exprimés en fonction des
o0 frBr» aucune des formes linéaires ainsi obtenues ne saurait étre
identiquement nulle. On peut donc les rendre toutes différentes de zéro,
méme si chacun des paramétres précédents doit rester réel. Dans ces
conditions, les seconds membres des relations (11) ne peuvent rester tous
bornés, lorsque ¢ tend vers oo, que si, dans chacun des o,,,, le coefficient
de 7 est nul ou du signe de —I'. Mais il faut écarter aussitot cette seconde
hypothése, étant donnée la forme de (12). La réalité de tous les o,.,, est donc
nécessaire pour que, dans chacune des solutions réelles de (E) les fonctions
Ci(t), &x(t) restent toutes bornées.

303



11. Pour que les quatre racines de ’équation bicarrée (12) soient réelles,
il faut, et cela suffit, que I'on ait

8,8, +CC —2AWL>2|AU—B,C| . (13)

Or, on déduit facilement de (8) (9) (10) que (A; —B,E,) est une
expression réelle, supérieure ou égale a zéro. Si donc on pose

QI,,::A,,—!—iA;,, 23,,-—-=B},+iB', (5,,=C;,+'i03’,,
il vient
Aaz""‘A;z_ByOy"" B)”C?”>

0
24,4, — B,C, —C,B, 0.

I

L’inégalité (13) prend alors les formes successives
B+ B! O} +0C}—247—2432>2(A3— A} —2B,C,+2B,C,
(B, + C,)* + (B, — O} > 442

et s’écrit finalement

1B, + € >, + % . (14)

Remarque. Cette relation devra, naturellement, étre vérifiée pour les »
valeurs possibles de y. Lorsqu’elle 1’est pour I’'une d’elles sans se réduire &
une égalité, les quatre racines de (12) sont réelles et distinctes, et on a bien
quatre formes £, (9, 7, 0, 0;) indépendantes, dont chacune donne lieu
& une intégrale du type (11). Celles-ci restent toutes bornées lorsque ¢
tend vers oo, et il est de méme des quatre variables qu’elles contiennent.
Si pareil fait se produit pour les n valeurs possibles de y, tous les 7,
77)’, 6, 0;, ont une borne supérieure, et il en est de méme des {; et des &;.
Les mouvements définis par les équations linéarisées sont alors ceux qur se
produisent dans les cas d’équilibre stable.

12. Il est évident qu’une condition nécessaire de stabilité obtenue pour
n = n, doit étre vérifiée également lorsque n est un multiple de n,. Ainsi,
I’étude des valeurs impaires de n ne saurait donner lieu & un systéme de
conditions plus restrictif que celle des valeurs paires. Il suffit donc de
considérer ces derniéres pour tirer tout le parti possible des configurations
4 nombre fini de variables, et les relations ainsi obtenues, a ’aide de (14),
doivent nécessairement étre vérifiées dans le cas d’une rue tourbillon-
naire illimitée. Posons donc n = 2n, et voyons, en particulier, pour
quelles valeurs de w la condition (14) est vérifiée, lorsque y = n, .

304



LW
24—

En remplagant p par sa valeur e " on déduit immédiatement de

(7) (8) (9),

cos w7
— — ,2 > W
B, =Gy, =n sin? o
1 1

QI"]._:— n2 _'__.‘_—2__—"——‘_—'_' *
sin? wnx 2

L’inégalité (14) se réduit alors &

Im(%)|>|m(ﬁ‘“%)] (15)

Le signe R indique qu’il faut prendre la partie réelle de 1’expression
mise entre parenthéses. Si It est le module de cos wn et & son argument,
la relation précédente s’écrit

1

==

1
2{(931————97{) coS o M2

Elle n’est vérifiée que si M équivaut & un et elle se réduit, dans ce cas, &
une égalité. Une configuration du type (5) ne peut donc étre stable, pour n
pair, que st w satisfait a la condition nécessaire (mais non suffisante peut-
étre)

|cos wm| =1

et il en est de méme, naturellement, pour une rue tourbillonnaire illimitée.
Cette relation se met sous la forme

sin? w,w = shiw,n (16)

Lorsque w, est donné, elle n’est vérifiée que pour une seule valeur de w,.
Dans le cas d’une rue symétrique, w, est nul et il doit, d’aprés (16), en
étre de méme pour w,. On voit ainsi que la stabilité est impossible. On a
au contraire, pour une rue alternée,

0, = %, sinfw,m =1,
et (16) se réduit a
8h2 (X)2n - 1 o (]‘7)

Cette relation équivaut & (1), puisque la valeur de w, est!-;- . Nous appelle-

rons désormais wj la valeur de | w,| qui satisfait & (17).
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D. Etude particuliére d’une rue tourbillonnaire alternée

13. Si les équations linéarisées définissaient exactement les mouve-
ments des configurations (5), la discussion compléte de la condition (16)
de stabilité se réduirait & I’élucidation des deux points suivants:

1. L’inégalité (14) est-elle vérifiée pour les n valeurs de y, lorsque
satisfait a (16)?

2. Quelle est la forme des solutions de (e,) lorsque, (14) se réduisant &
une égalité, I’équation (12) admet des racines multiples? S’il en est ainsi,
la remarque faite au numéro 11 risque, en effet, de ne plus s’appliquer.

Nous n’aborderons I’étude de ces deux questions que dans le cas d’une
rue alternée. La premiére se résoudra & ’aide d’une inégalité connue, et il
suffira de rappeler les résultats les plus importants de sa discussion. La
seconde méritera d’étre examinée de plus prés, car nous retrouverons
alors, sous une forme plus générale, ’'argument de M. G. Durand contre
I’hypothése de la stabilité, signalé déja au numéro 2.

14. Posons donc 1 5
wl _— g w2 = ’l—‘ .

- ':_T_f_ 2w E

p se réduit alors 4 ¢ ne 7

En portant ces valeurs dans (7) (8) (9), on obtient

¢ —w
B. — n2e 5%y engy 1 _ mye zﬂ]
4 chfw,m nchw,x

' Wy T
2,20 T 2%y 1 wye ]
Cy=mie? e [chzwzn mchwym
n? 4 m2
U, = 4 72 [chzwzn — (2n_—xy)]
avec
2ym
xy ~——-—-—n—- .
La relation (14) s’écrit alors
o| Chwyzy  chwy(m—a,) 4n® . i
dn o, T mchwgn “lehPw,m Zy(2z—z) | (18)
et, lorsque w, satisfait & (17), elle se réduit &
2 chwzxy - thy — > (ﬂ—xy)z . l
T ch®w,n chcuzndbwz(yz %) | = 2 (19)
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Cette inégalité est, aux notations preés, celle qu’obtient M. H. Villat?®)
comme condition nécessaire de stabilité, pour une rue alternée illimitée.
Sa discussion, exposée dans 'ouvrage cité?), montre qu’elle est satisfaite
pour toute valeur de xz comprise entre 0 et 25, dés que w, vérifie (17).
St donc w, prend la valeur w,, U'inégalité (18) a liew pour les m valeurs
possibles de y, et il en est de méme de (14).

Remarque. Tant que z, est différent de =, I'inégalité (18) peut étre
vérifiée sans que | w,| ait pour valeur w}. Si done 7 est impair, la con-
dition (17) est toujours suffisante pour que (14) ait lieu quel que soit y,
mais elle n’est plus nécessaire. Une étude plus compléte de (18) montre

que, dans ce cas, | w,| peut rester compris entre deux limites contenant

13 . . 7 4 ]'
w}, mais l'intervalle qui les sépare tend vers zéro avec P

15. Revenons aux valeurs paires de n. Lorsque w, égale w,, ’égalité des

deux membres de (18) a lieu seulement pour y = —g'- et y = n. Chacun de

ces deux cas fera 'objet d’'une particuliére. Bien qu’il ne s’agisse plus,
désormais, que d’une rue alternée, nous développerons les calculs de telle
sorte qu’ils restent valables pour toute valeur de w satisfaisant a (16).
Dans ce cas, (14) se réduit toujours & une égalité pour y = 5> Mais
ce fait n’est jamais une cause d’instabilité. En effet, les deux membres de

(15) s’annulent. U, est purement imaginaire, et il en est de méme pour
2

B, et C,, qui sont égaux. On peut donc poser, a et b étant réels,
2 2

2 2 2

Dans ces conditions, (e%) se décompose en deux systémes partiels
PO +in)=a® —in)) +bi@ +in)
P—%-(G —in)=a(0 4+ in)—>bi(0 —i7’)
rdo—in)=a@ +in)—bi@ —in)

%) H. Villat, Théorie des tourbillons, chap. IV, p. 69, équ. 14.
7) Ibid., p. 70 et 71.
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dans lesquels on a supprimé l’indice—g—. Chacun d’eux équivaut & deux

équations distinctes du type (10), ce qui, en vertu de la remarque faite
au No. 11, justifie I'affirmation précédente.

16. Plus délicate sera la discussion du cas ol y = n. C’est ici en effet
que nous aurons & examiner, quel que soit n, 'argument contre la
stabilité mis en lumiére, pour n =2, par M. G. Durand. On a d’abord

€A, =B, =C,,
et (e,) se réduit a
n%—@’ o, (6, — 7,
d
—Pz; 6, =W (6, —n.)
d * n/ /
— e dt nn_%n(en_nn) .

Des lors, 6, et 7, sont donnés par les formules

I's en = _QI;(G(’)n—n(,)n)t + F";Bofl

(20)
I Nn = "’"QI:;(G(,M'—' 77(,)n)t + Pin(m

et ces fonctions de ¢ ne restent bornées que si (0,, — 7,,) est nul. Faut-il
conclure de la que, dans tout autre cas, la configuration étudiée a ten-

dance & modifier profondément son aspect initial?
Nous allons montrer qu’il n’en est pas ainst lorsque, pour 1 <y < n—1,
les solutions des (e,) restent toutes bornées. Pour cela, il faut préciser la
forme des fonctions {(t), £(f) qui satisfont & (). Les formules inverses

de (6) sont
1 y=<n

g, -——=—2 r"“’ﬂ
1;: (21)
— n— f
§ = o y)]l r,

On voit que 0, et 7, ont, dans tous les {, et les &, le méme coefficient %
Par ailleurs, dans les formules (20), le coefficient de ¢ est le méme pour 0,
et 7,. Si donc nous remplagons, dans (21), les 6,, 5, par les fonctions de ¢
obtenues en intégrant les (e,), nous obtiendrons des sommes composées
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d’une constante, de plusieurs exponentielles, et d’un terme linéaire en ¢
dont le coefficient sera partout le méme. Dés lors, st les solutions des (e,)
restent toutes bornées pour 1 <y < n— 1, le mouvement des tourbillons,
considérés comme soumis sans restriction aux équations linéarisées,
résulte de la superposition de diverses oscillations d’amplitude constante d
une translation uniforme subie par tout le systéme.

17. En réalité, I’emploi des équations linéarisées est inacceptable, dés
que les variables ne sont plus toutes trés petites. Revenons donc, un
instant, au systéme (€) exact. Les 4n formes linéaires

n

S =3 (X, +2) 8 =X (X, +2Z)

1
U,=(Zy—2y),... U,=(Z2, —Z,) U; = (Z;““Z;) LR U; = (Z;z—“z;)
V,= (Xl'_—Zl) oo Vo= (X, —2Z) V; = (X;'—‘Z;) 1e . V; = (X;*_Z;)

sont indépendantes. On peut les prendre comme variables et isoler, dans
(€), la dérivée par rapport & ¢ de chacune d’elles. Deux des équations

E 3
différentielles ainsi obtenues définissent (—iﬁ et @—-

dt db

contiennent seulement les UVU*V* et leurs dérivées: elles forment un
nouveau systéme (€') qui régit le mouvement relatif de la configuration
tourbillonnaire. A 'aide des formules (5) et (21) on exprime les SUV
S* U* V* en fonction des 77’06’, et ceux-ci n’interviennent, dans les
UV U*V*, que par l'intermédiaire de

. Les 4m — 2 autres

N1 e eMpa 77;' . ‘771’;-1
01 s 0 0 6’""-1 01 o o . 0:‘__1
en — N 0;_ 77’,1 .

Si nous linéarisons (€’), le systéme (£') ainsi formé s’exprime au moyen
de ces seules combinaisons. Sa solution générale s’obtient de suite en
remplacant les 607’0’ par un systéme quelconque de fonctions vérifiant
les (¢,). Le terme linéaire en ¢ g’élimine alors de 6, — 7, et de 0, — 7.,
et il disparait ainsi complétement des solutions de (E’). Si donc les
intégrales des (e,) restent toutes bornées (pour 1 <y << n — 1), lorsque ¢
tend vers oo, nous pouvons présumer que la linéarisation de (€') est
1égitime, et admettre que I'équilibre relatit de la configuration considérée
est stable. Les résultats qui seront obtenus dans la seconde partie con-

firmeront cette maniére de voir et permettront d’en préciser le sens.
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Remarque. On peut considérer le point d’afﬁxez—S,,-b— comme le centre de

la figure formée par les 2n tourbillons du domaine fondamental. Il est

facile de voir que—— s’exprime en fonction des U* V* seulement. Si donc

dt
(€') a pu étre intégré, S s’obtient par une quadrature, et le mouvement de
la conﬁguration (5) est complétement déterminé. Avec les variables

7, 7,0,0,, on a ’équation exacte

-d_(_s_ __J
dt \2n)] 2il

Le premier terme du seconde membre, qui ne dépend pas de ¢, correspond
& la translation obtenue pour un équilibre exactement réalisé. Le
deuxiéme est constant, lui aussi, car 6, — 7, est une intégrale premiére

19
nl (61’1'—777,3) + ¢(‘ . 'G;a 773,;‘ . ') :

de (€), au méme titre que 2 (Z, — X;). Sa présence contribue seulement &

modifier un peu les composantes de la translation précédente. Ainsi, une
configuration voisine de la rue symétrique ou alternée peut étre animée
d’un mouvement transversal trés lent. Le troisiéme terme est une fonc-
tion réguliére des variables 7/, 6’ dont le développement en série entiére
commence par une forme d’ordre 2 au moins. Il ne correspond plus & une
translation, mais il intervient d’autant moins, par rapport aux deux
précédents, que I’état du systéme est plus voisin de I’équilibre. Remar-
quons que cette étude suppose la quantité de fluide intéressée par le
mouvement infiniment grande, ou tout au moins de largeur suffisante
pour que, dans les limites de 1’observation, la translation transversale
n’ait pas d’influence sensible.

SECONDE PARTIE

Comparaison entre les conséquences des systémes linéarisés et celles
des systémes exacts '

18. Nous n’avons étudié, jusqu’ici, que les systémes (Z) d’équations
linéaires & coefficients constants déduits de (€) par suppression des termes
d’ordre supérieur & 1. Il s’agit maintenant d’apprécier la portée réelle des
résultats que cette simplification permet d’obtenir. Pour cela, nous
chercherons d’abord, d’une fagon aussi générale que possible, dans quelles
conditions et dans quelle mesure les solutions de (€) sont comparables a
celles de (Z). Nous distinguerons ensuite deux types de mouvements
définis par (€), suivant que les solutions de (X) restent ou non bornées
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lorsque ¢ tend vers - oco. Enfin, nous préciserons le sens qu’il convient de
donner & la notion de stabilité, lorsqu’il s’agit d’une configuration tour-
billonnaire dont I'état dépend d’un nombre fini de variables.

A. Relation générale entre les solutions de (E) et celles de (€)

19. Soit (€) un systéme de n équations différentielles

dx, 70

—r = 2 ;% + hrl. .. 2) (€)

dt =
ou les a,; sont des constantes. Afin de donner plus de généralité aux
développements ultérieurs, nous supposerons seulement que les fonctions
b, remplissent les conditions suivantes:

1. Elles sont continues et vérifient 'inégalité de Cauchy-Lipschitz
sur un domaine défini, pour une certaine valeur de M, par 'inégalité

2z <M. (22)
1

2. A toute valeur positive de ¢, on peut associer un nombre 7 tel que la
relation

2@l < (23)
ait pour conséquence n n
Zlvlbkl<8§lxk| . (24)

Ces deux hypothéses sont satisfaites, en particulier, lorsque les [, sont
des fonctions réguliéres des z, ... x, dont les développements en séries
entiéres commencent par des termes d’ordre 2 au moins.

Il sera commode?) de considérer 1’évolution du systéme () comme
définie, dans un espace & n dimensions, par le mouvement d’un point 9 (t)
de coordonnées z,(t), ... x,(t). L’origine 2 des axes est une position
d’équilibre de ce point. En vertu de la premiére condition imposée aux
b, on peut associer, & toute valeur positive de @, un nombre m inférieur &
M, tel que P (t) soit correspondance biunivoque avec P (t,) et vérifie (22)
sur tout lintervalle (t, — 0, {,+ @), dés que I'inégalité

3 | zy(te)| < m (25)
1

7) On trouvera l’exposé des résultats que nous obtenons ici analytiquement, présenté
sous une forme géométrique, dans la note de M. Godefroy et H. Ponein signalée dans
Pintroduction.
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est satisfaite. Autrement dit, la transformation I (¢ —¢,) définie, lors-
qu’on a fixé la valeur de ¢, par la relation symbolique

‘B(t) = 2:(t“’to) gB(tu) >

est biunivoque sur tout le domaine défini par (25), chaque fois que ¢
vérifie

Le systéme (X)) s’obtient en supprimant de (€) les §,. Il définit, dans
Iespace considéré, le mouvement d’un point P(t) de coordonnées
X, @) ... X,(t). Il est facile de voir que la transformation 7' (t —¢,),

définie par la relation
P(t) =T —t) P() ,

est toujours biunivoque, sans qu’il y ait lieu d’imposer aucune restriction

20. Dans le but d’établir une relation entre T(t—1¢,) et T (t—1,),
nous supposerons désormais que ces deux transformations sont, pour
toute valeur de ¢ satisfaisant & (26), appliquées au méme point /7 dont les
coordonnées «, ...«, vérifient 1’'inégalité

n
2‘“k|<m .
1

Ces deux transformations conservent le point £, et la relation qui existe
entre elles, en son voisinage, se traduit par ’énoncé suivant:

Pour toute valeur finie de t,T(t—t,) est la transformation linéaire
tangente en 2 a T(t — t,).

Tout d’abord, T(t — t,) est linéaire, car si les deux systémes de fonc-
tions X, (t) et X}, (t) satisfont & (E), il en est de méme pour [ X, (¢) + X (¢)].
Les coordonnées de P () s’expriment done, en fonction de celles de 17, par

des formules du type j=n
Xk(t) - .Z‘Iuk’-aj ) (27)

7=

dans lesquelles les u,; dépendent seulement des ¢ et des coefficients a,;
de (€).

La tangence de deux transformations peut étre définie de différentes
fagons, et la position adoptée ici sera la suivante: aprés avoir posé

Hy(og ... 00, 8) = 2, (1) — X, (2) (28)
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nous montrerons qu’:dl est possible d’associer, a tout couple de valeurs

positives données a& O et &', un nombre n’ inférieur a m, tel que les hypo-
théses (26) et

2ol <9’ (29)
1
aient pour conséquence
2IH, <& 21X, . (30)
1

21. Pour y parvenir, remarquons d’abord que les H, sont nuls pour
t = t, et qu’ils vérifient, quel que soit ¢, les relations

_%szzakjﬂi_i'bk([xl+Hl]”'[Xn+H"])’ (31)

dans lesquelles les X, sont exprimés en fonction de «, ... x, et de ¢.

n
On peut en déduire une inégalité liant 3’ | H, | & sa dérivée. On a
1

n

<3

9H,
a1

an
ki

puis, en donnant & R une valeur assez grande,

R n

j=n

2 ak:'Hi

P,

H,

Enfin, d’aprés la seconde condition imposée aux },, on peut lier & ¢
de telle sorte que

%’IHk+XkI<77 (32)
ait pour conséquence
S0 X+ Bl ) |<eZ|Hy+ Kl - (33

En faisant alors appel & I'inégalité évidente

S\Hy+ X T Hyl + X1 X4 (34
on déduit de (31) que la relation
2 SIH| <R+ EIH,| +eZI X, (35
a lieu dés que (32) est vérifiée.

Etant donnée la forme des fonctions X, (x; ... «,,t), on peut trouver
un nombre K tel que la double inégalité
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e~Eli—tol X | < X Xy| < eElt=tl 3| o |

soit toujours satisfaite. Si donc on pose

eEl® =@ ,
Pinégalité (26) entraine
G 2| X, > 2o (36)
2N X <@ Xlog| . (37)

Dans ces conditions, on a, d’aprés (35),

‘?%2111,,|<(R+s)2|ﬂk|+sGZlakl - (38)

chaque fois que (32) et (26) sont vérifiées simultanément. Sachant alors
que 2’| H,| est nul pour ¢ = ¢,, on déduit facilement de (38) que 1'inégalité
Ge

DN Hy | < o ROl — 1] X o | (39)

&

a lieu sur tout intervalle (¢{,—¢,, ¢, -+ ¢,) intérieur & (¢, — @, ¢, + O),
le long duquel (32) est constamment vérifiée. D’ailleurs, les relations (34)
(37) et (39) ont pour conséquence

R e(R+e) [ t—to |
X+ B <6 S

Il en résulte immédiatement que (39) est vérifiée sur tout l'intervalle
(to — O, to,+ 0), lorsque 2'|x, | satisfait &

R - ce(B+¢8)|8]
R+ ¢

GZlow|<n. (40)
D’aprés (36), I'inégalité
ZHl<

2

7 [F 0101 — 1] e T| X, | (41)

a lieu, a fortiori, dans les mémes conditions.
Dés lors, aprés avoir choisi arbitrairement ¢’ et @, nous définirons ¢

par la relation @ niorel ,
—1le =
o [e le=¢,
puis nous fixerons 7 de telle sorte que (23) entraine (24). Nous poserons
enfin '@ R 1 ce(B+9)8]
n R _+_ € =1n.
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Dans ces conditions, les hypothéses (26) et (29) ont pour conséquences
(40), (41), et finalement (30).

Cette derniére inégalité s’écrit encore, en vertu de (28),

2| Xy —x | ’
X, | <€ (42)

et, sous cette forme, son interprétation est immédiate. Son premier
membre peut, en effet, étre considéré comme l’expression de l’erreur
relative commise en utilisant (£) & la place de (€). Le théoréme précédent
montre alors qu’:l est possible de rendre cette erreur arbitrairement petite,
pendant un intervalle de temps fixé d’avance, a la seule condition de partir
d’un état initial suffisamment voisin de Uéquilibre.

Remarque. Siles ), sont des fonctions réguliéres des z,, les H, s’expri-
ment par des séries entiéres des «, dont les coefficients dépendent de ¢.
Le théoréme qui vient d’étre établi suffit alors & montrer que leurs
développemenis commencent tous par une forme d’ordre 2 au moins. Nous
aurions donc pu, sans inconvénient, définir par cette propriété des H, la
tangence de I (t —t,) & 7' (! — ¢,), si nous nous étions bornés a raisonner
sur des transformations analytiques.

B. Les deux types de petits mouvements définis par les équations exactes

22. Lorsqu’on fait varier les coefficients a,; de (%), il arrive que, pour
certaines de leurs valeurs, les fonctions X,(f) restent toutes bornées
lorsque ¢ tend vers - oo, quelle que soit la position de II. Convenons
d’appeler «condition N» I'ensemble des conditions nécessaires et suffisan-
tes pour qu’il en soit ainsi. Suivant qu’elle est ou non réalisée, les petits
mouvements définis directement par (€) possédent, dans leur ensemble,
des propriétés opposées. Avant de les mettre en évidence, précisons quel-
ques conventions d’écriture.

D’une facon générale, nous représenterons par [£2] un domaine carac-
térisé par la propriété suivante: il existe deux nombres positifs [, et [,
tels que les hypothéses,

n
P(x, ... x,) appartient & [Q] , 2l <1y,
1
aient pour conséquences respectives
Xlx,| <1, P(x] ... x}) appartient & [Q] .

Le symbole A [2] désignera le domaine déduit de [£2] par une homothétie
de centre 2 et de module 4.
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23. Plagons nous, d’abord, dans le cas ol la condition N n’est pas
réalisée. Aprés avoir choisi arbitrairement un nombre réel A et un domaine
[22] du type précédent, on peut trouver deux nombres positifs @ et 1’ tels que
les hypothéses
B (t,) appartient & [[2] (43)

O<t—t,< O
< 0 ‘B (t) n’appartient pas & Al [£]

puissent étre vérifiées simultanément pour toute valeur de | moindre que 1,
moyennant un choix convenable de P (t,).

On peut, en effet, aprés avoir introduit un nombre L > |A|, donner
aux «, des valeurs telles que 2'|X,| tende vers oo avec ¢, puis fixer @ de
maniére & avoir simultanément

P(t,) appartient a [2]

O0<t—t,< O
= 0 P(¢) n’appartient pas a& L[Q].

Or, si tous les «; sont multipliés par un méme facteur [, il en est de méme
des X, (t), d’aprés (27). Le point P(¢,) peut alors appartenir a [[2], tandis
que P(t) est extérieur & LI[2]. Mais pour un choix convenable de L et de
¢’, les hypothéses

P(X, ... X,) extérieur & L{[Q] 2o, — X, |<e’ XX,
‘ont pour conséquence nécessaire, lorsque A est donné,
Pz, ... x,) extérieur & A[[2] .

Si done on fixe %’ de telle sorte que (26) et (29) entrainent (42), puis [/ de
maniére & vérifier (29) pour tout point /7 intérieur a ['[2], on peut, pour
toute valeur de [ inférieure a [/, satisfaire & la fois aux trois conditions (43).

24. Plagons nous, maintenant, dans le cas ou la condition N est satis-
faite. Il existe alors un systéme de variables v, ... y, tel que (€) prenne
la forme ’

d .
""%E: 18: Y + Dr(Y1. - ¥a) -

Dans chacun des s,,, le coefficient de ¢ est positif ou nul. D’ailleurs, ()
s’obtient toujours en supprimant de (&) les %,. En appelant y,(t) les
nouvelles coordonnées de P (¢) et Y, () celles de P (¢), on a, pour t = ¢,,

Y, =y,= B -

Tous les résultats généraux précédemment établis subsistent, au rempla-
cement prés des X, x, x par les Y, y,8. On peut, en particulier, associer &
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tout couple de valeurs positives prises par @ et ¢/, un nombre %’ tel que
les hypothéses

0<t—t,< O 2Bl < n' (44)

aient pour conséquence

2y — Y| ’
> 7, <é, (45)

ou encore

2yl < (14¢) 217, .
Mais comme les Y, sont de la forme B,e**“=%) on a, pour 0< t —¢,<@,
21 Yl = 2Bl -

Les inégalités (44) ont alors pour conséquence

Lyl <(1+e)n".
Pour interpréter ce résultat, appelons [22]le domaine défini par la relation
») 1Bl =1 . (46)

On voit qu’il est possible d’associer, a tout couple de valeurs prises par ¢’ et @,
un nombre n' tel que les hypothéses

‘B (¢,) appartient & n’ [2] 0<t—t,< ||
atent pour comséquence

B (t) appartient & (1+¢') ' [2] .

Pareil fait ne pouvait avoir lieu dans le cas précédent, car on pouvait
alors, aprés avoir fixé arbitrairement A et le domaine [2], donner & @
une valeur qui permit, si petit que fit [, de satisfaire & la fois aux trois
conditions (43).

25. Méme si la condition N est satisfaite et le domaine [2] défini par
(46), il arrive qu’il soit possible d’avoir simultanément, quel que soit le
couple de valeurs données & A et a I,

‘B (t,) appartient & [[2]
‘B(t) n’appartient pas & A[[2],

pourvu que | — t,| soit assez grand. Ainsi les équations

dz az'

= —1t2z 4 222" 7 = 42" 4 2"22

e
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forment bien un systéme (&) donnant lieu & N. On a cependant une
intégrale .

L %9 %9

 1—2tz,2;

*

z22

dont le second membre finit par dépasser tout nombre donné, quel que
svit 2, 2z5. Ce fait n’est pas en contradiction avec les résultats du n°
précédent puisque, si @ et ¢’ sont donnés a priori, il suffit de poser

8,

20(1 4 &)

*

pour avoir, sur tout I'intervalle (¢,, {,+ @), la relation

22 < (1+¢") 27 -

C. Elargissement de la notion de stabilité

26. Si nous voulons préciser davantage le role de la condition N, il est
opportun de revenir, un instant, sur la notion classique de stabilité, telle
qu’elle est comprise, par exemple, en Mécanique des solides. Considérons
un systéme de solides soumis & des liaisons holonomes indépendantes du
temps. Soit n le nombre de ses degrés de liberté. Sa position et son état
cinétique peuvent étre représentés par un point  mobile dans un espace
a 2 n dimensions. Lorsqu’on fait abstraction des frottements, le mouve-
ment de ce point est régi, au voisinage d’une position d’équilibre £2, par
un systéme d’équations différentielles susceptible d’étre mis sous la
forme (€). Les coordonnées cinétiques de ‘B sont toutes nulles en £.
Supposons alors, avec Lejeune-Dirichlet, qu’il existe une fonction de
force U, indépendante du temps, et que 2 soit pour elle un maximum
au sens strict. Dans ces conditions, la fonction (7' — U) admet en 2 la
valeur minima strictement dite (7', — U,). L’inégalité

T—U<Ty—U,+ p?

définit alors, pour toute valeur de u positive et suffisamment petite, un
domaine [2], du type défini au n® 22. D’ailleurs (7'— U) est une intégrale
premiére de (€). Si donc B (¢,) appartient & [2],, il en est de méme de
B (t), quel que soit ¢.

L’expression 7' — U — (T'y,— U,) est, en général, une fonction des
2n variables réguliére en 2, et son développement en série commence par

une forme quadratique. Ce fait suggére 'idée que —l—i— [€2], tend vers un
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domaine limite si x4 tend vers zéro, et qu’il est possible de trouver deux
domaines [©2]" et [2]" tels que [2], contienne u[2]’ et fasse partie de
u [2]7, pour toute valeur suffisamment petite de pu.

27. Revenons alors aux systémes (€) du type le plus général et con-
sidérons une famille & un paramétre 4 de domaines définis, d’une fagon
univoque, pour toute valeur positive et suffisamment petite de u. Nous
appelerons domaines [Q],, relativement & l'intervalle 0 < u < pu,, ceux
pour lesquels existent deux domaines [Q2]" et [2]” tels que, sur cet inter-
valle, [©2], contienne u[22] et fasse partie de u[Q]". L’introduction de
cette notion permet de définir simplement les deux cas suivants:

1. On peut trouver une famille de domaines [2], telle que Uappartenance
de P (t,) & Vun quelconque d’entre eux entraine, quel que soit t, celle de P (2).
D’aprés le n® 25, la condition N n’est pas suffisante pour qu’il en soit
ainsi. Nous dirons alors que I’équilibre est stable en 2 au sens strict.

2. Aprés avoir choisi convenablement une famille de domaines [2],,
on peut associer, a tout couple de valeurs positives données ¢ O et &', un
nombre u' tel que les hypothéses

O<t—t, <O, u<y, B (t,) appartient & [2],, (47)
arent pour conséquence
B (¢) appartient & (14 ¢') [Q], . (48)

Nous dirons, cette fois, que I’équilibre est stable au sens large ou sem:-
stable. Les résultat du n® 24 montrent, maintenant, que la condition N
est suffisante. On peut, en effet, définir [2] par (46) et prendre pour [2],
le domaine u[2].

Il est clair que la premiére éventualité est un cas particulier de la
seconde. Pour que I’'une ou l'autre ait lieu, la condition N est nécessaire.
On peut, en effet, donner & A une valeur telle que A4 [2]’ contienne 2[Q]".
Mais lorsque N n’est pas réalisée, il existe, d’aprés (43), deux nombres &
et u” tels que les trois relations

0<t—t,< O, B (to) a:ppartie‘nt a u[QY,
‘B () n’appartient pas & 2u (21,

puissent avoir lieu simultanément, pour toute valeur de y moindre que
u”. 11 en est de méme, a fortiori, si les deux derniéres sont remplacées par

B (t,) appartient & [Q],,
B (¢) n’appartient pas & 2[2], .

Dés lors, (48) ne saurait étre une conséquence nécessaire de (47).
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En résumé, la condition N est nécessaire et suffisante pour assurer la
semi-stabilité. La stabilité au sens strict exige ausst sa réalisation, mais n'en
résulte pas inéluctablement.

28. Dans nombre de problémes régis par des équations du type (€), il
serait illusoire de poursuivre I’étude théorique des mouvements considérés,
pour de trop grandes valeurs de (¢ — ¢;). C’est ce qui a lieu en hydro-
dynamique, chaque fois que la viscosité du fluide est négligée; un tour-
billon sensiblement ponctuel & un instant donné finit par ne plus 1’étre
du tout. D’ailleurs, aucune vérification physique d’un résultat mathé-
matique ne peut durer indéfiniment. Ajoutons que I'état d’un systéme
matériel n’est jamais donné avec une exactitude parfaite. Dans ces con-
ditions, il est impossible, en toute rigueur, de reconnaitre expérimentale-
ment si la stabilité au sens strict est ou non réalisée. C’est donc a la
notion de semi-stabilité, liée comme on vient de le voir & la vérification de
la condition N, qu’il semble normal d’attacher le plus d’importance.

Conclusion

Les résultats obtenus au cours de la premiére partie mettent en lumiére
certains cas dans lesquels la condition N peut étre satisfaite. Parmi tous
les systémes de tourbillons du type (5), il faut exclure, pour » pair, ceux
qui ne vérifient pas (16). En particulier, une configuration alternée doit
donner liew & (1). Lorsqu’il en est ainsi, la condition N est effectivement
réalisée pour le systéme différentiel (€') qui définit le mouvement relatif des
tourbillons. On est alors dans un cas de semi-stabilité. Naturellement, ce
résultat ne suffit pas & prouver que la rue illimitée correspondante
posséde une propriété du méme genre, mais il milite en faveur de cette
hypothése. Tout d’abord, aucun argument ne s’oppose plus & cette
possibilité, puisque celui de M. G. Durand a pu étre écarté. On prévoit,
en outre, que la notion de semi-stabilité, précisée ici dans le cas d’un
systéme & nombre fini de variables, pourra étre définie dans des circons-
tances moins restrictives. Ce point sera traité ultérieurement, je 1’espére
bien, comme application d'un probléme plus général dont je poursuis
actuellement 1’étude.

(Recu le 30 janvier 1939.)
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