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Recherches sur les systèmes de tourbillons
ponctuels soumis à des liaisons et sur la notion
de configuration hydrodynamique stable

Par M. Marcel Godefroy, Poitiers
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I. Les équations exactes des mouvements de tourbillons ponctuels; les

équations linéarisées; obtention d'une condition nécessaire pour que les

mouvements définis par les équations linéarisées gardent une amplitude
finie; étude particulière d'une rue de tourbillons alternés. II. Relation
générale entre les solutions des systèmes exacts et les solutions des

systèmes linéarisés ; les deux types de petits mouvements définis par les

équations exactes; élargissement de la notion de stabilité.

Introduction

Ce mémoire a été rédigé à la suite d'une série de recherches que j'ai
effectuées sous la direction de M. Bouligand, professeur à la Sorbonne, et
de M. H. Poncin, professeur à la Faculté des Sciences de Poitiers. Dans
la première partie, j'expose des résultats qui apportent une contribution
nouvelle à l'étude théorique des files de tourbillons ponctuels soumis à des

liaisons et présentant certaines configurations d'un type général
comprenant, en particulier, les configurations classiques de Bénard et Karman.
Dans la deuxième partie, je précise la notion de configuration
hydrodynamique stable au voisinage d'un état stationnaire, lorsque son évolution

est susceptible d'une représentation effective à l'aide d'un nombre
fini de paramètres. Ces considérations sont d'ailleurs applicables, sans

changement notable, à certains problèmes de stabilité que pose la mécanique

des milieux indéformables ou la mécanique des milieux élastiques.
Certains des résultats qui sont développés dans ce travail ont été

présentés à l'Académie des Sciences de Paris, sous une forme d'ailleurs
un peu différente — cf. à ce sujet la note de M. Marcel Godefroy sur la
stabilité des files de tourbillons, publiée aux Comptes Rendus du 2

novembre 1938, et la note de MM. Marcel Godefroy et Henri Poncin sur la
notion de stabilité en mécanique rationnelle, publiée dans les comptes
rendus du 9 décembre 1938.

Pour l'historique du problème relatif aux recherches sur les tour-
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billons alternés, on consultera l'ouvrage de M. P. Schwarz publié par le
Service des recherches scientifiques et techniques du Ministère de l'Air
(No. 100, chapitre I). Je me contenterai donc de rappeler, en quelques
mots, ce qui sera essentiel dans l'étude que nous allons entreprendre : les
recherches théoriques sur les mouvements des files illimitées de
tourbillons ponctuels conduisent à introduire un ensemble non borné et
dénombrable de variables soumises à un ensemble équivalent de relations
différentielles. L'étude de ces systèmes n'a pu, jusqu'ici, être poursuivie
que moyennant d'importantes simplifications. On a considéré des

configurations voisines d'un état d'équilibre relatif, ce qui permet de
remplacer le système d'équations différentielles considéré comme exact par
un autre système approximatif, mais plus simple, auquel nous donnerons
le nom de «système des équations linéarisées», pour rappeler son origine.
Les variables forment encore une suite illimitée. Aussi a-t-on cherché à

obtenir des solutions particulières du système. Les méthodes employées

pour parvenir à ce résultat peuvent être rattachées à deux points de vue
assez différents. On peut d'abord considérer des petits mouvements d'un
type donné a priori, puis chercher à reconnaître ceux d'entre eux qui
satisfont aux équations linéarisées. Il ne reste plus, pour obtenir les
conditions nécessaires de stabilité, qu'à déterminer les cas pour lesquels les

petits mouvements reconnus possibles sont représentés par des fonctions
bornées du temps. Tel est le principe de la méthode utilisée pour la
première fois par H. Lamb1) qui a ainsi pu montrer que la stabilité n'a
jamais lieu dans le cas d'une rue symétrique de tourbillons mobiles au
sein d'un fluide illimité, et qu'elle dépend, pour une rue alternée, de la
condition nécessaire:

cWwA 2, (1)

où h représente la distance des deux files et l celle de deux tourbillons
consécutifs sur l'une ou l'autre d'entre elles.

Le second point de vue consiste à imposer à l'ensemble des tourbillons
un système de liaisons suffisant pour rendre fini le nombre des variables
indépendantes qui définissent son état. Ces liaisons ne sauraient d'ailleurs

être choisies au hasard, mais si nous les supposons satisfaites a un
instant donné, elles doivent continuer d'elle-même à être vérifiées dans

1)Hydrodynamics, 5e édition. Cambridge 1930, p. 208. — Voir aussi H. Villat,
Leçons sur la théorie des Tourbillons. Chapitre IV. — G.Durand, Sur les
petits mouvements d'un système infini de tourbillons autour d'une
position d'équilibre (Publications Scientifiques du Ministère de l'Air, No. 35),

p. 12 à 14.
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la suite. Cette condition, qui est essentielle, se réalise ttès simplement
dans le cas suivant, considéré par M. G. Durand2).

Etant donnée une rue tourbillonnaire en équilibre, numérotons
régulièrement les pôles de la première file, à l'aide des entiers positifs
ou négatifs écrits sous la forme kn-\-y (avec 0 fg y ^n — 1). Imposons
alors, à tous ceux de ces points qui correspondent à une même valeur de

y, des déplacements initiaux représentés par un même vecteur de petite
longueur, puis procédons de même avec la seconde file, en prenant un
nouveau système de n petits déplacements indépendant du précédent.
Dans ces conditions, il est clair que, sur chaque file, les tourbillons de
même rang y sont tous animés d'une même vitesse. Autrement dit, les
liaisons imposées au système subsistent d'elles-mêmes, et le nombre des

tourbillons à considérer comme libres est désormais réduit à 2n. Les
configurations ainsi définies sont les seules que nous nous proposions d'étudier,
et cette particularisation du problème nous permettra d'obtenir des

résultats précis sur le rôle de la condition (1) de stabilité.

2. Dans le mémoire cité, M. G. Durand ne donne à n que les valeurs
1 et 2, et obtient les résultats suivants: pour une configuration voisine
d'une rue alternée, les fonctions du temps qui définissent les petits
mouvements des tourbillons sont des sommes composées d'une constante,
d'un terme At, et de plusieurs autres tels que c^cos Gt, e~"m coa Gt.
Les paramètres A,E, G ne dépendent que de h et de Z. Lorsque la condition
(1) est satisfaite, E se réduit à un, mais A ne s'annule que dans certains
cas particuliers, et les sommes considérées n'ont pas, en général, de borne
supérieure lorsque t tend vers oo. Il semble donc, à première vue, très
légitime de conclure, avec M. G. Durand, qu'une rue tourbillonnaire
alternée est toujours instable 3).

Pourtant, une remarque s'impose. La différence entre les déplacements
de deux tourbillons quelconques, appartenant ou non à la même file,
ne contient pas de terme linéaire en t. Il en est ainsi quel que soit n, comme
nous le montrerons dans la suite (No. 16 et 17). L'existence de ce terme
ne contribue donc pas à disloquer les configurations à nombre fini de

variables, mais simplement à modifier la translation dont elles sont animées.
A cela près, leur mouvement se réduit, lorsque (1) est vérifiée, à des oscillations

dyamplitude infiniment petite.
C'est du moins la conclusion à laquelle conduit l'emploi des équations

linéarisées, étudiées dans la première partie de cet exposé. Mais on peut
se demander dans quelle mesure les résultats obtenus grâce à cette simpli-

2) G. Durand, Loc. cit., p. 14 et suivantes.
8) Loc. cit. p. 7 et 21—22.
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fication sont comparables à ceux que donnerait Vétude directe des équations
exactes. Telle sera la question abordée dans la seconde partie. Un théorème
général sur les conditions de validité des équations linéarisées, que nous
établirons, permettra de préciser, dans des cas étendus, la notion de
stabilité des systèmes à un nombre fini de degrés de liberté. Nous pourrons

alors apprécier, en particulier, l'efficacité réelle de la condition (1) de

stabilité, pour une configuration tourbillonnaire satisfaisant aux liaisons
proposées par M. G. Durand.

PREMIÈRE PARTIE
Les équations linéarisées et leurs conséquences

3. Nous allons d'abord expliciter les relations exactes qui définissent
le mouvement des configurations susceptibles d'une représentation par
un nombre fini de variables. Nous les simplifierons ensuite, de manière à

obtenir un système d'équations différentielles linéaires dont les coefficients

dépendent seulement de la position relative des deux files. Nous
chercherons alors quelle doit être cette position relative, pour que les

petites oscillations des centres tourbillonnaires gardent une amplitude
bornée lorsque t tend vers oo. Enfin, le cas d'une rue alternée sera étudié
d'une façon plus particulière.

A. Les équations exactes

4. On sait4) que, pour un fluide parfait incompressible, mobile entre
deux plans parallèles, avec tourbillons cylindriques déliés et normaux aux
parois, les composantes u(xy) et v(xy) de la vitesse au point xy sont,
lorsque le système d'axes est rectangulaire, telles que u — vi soit une
fonction méromorphe de x + i y. Ses pôles, tous simples, sont les affixes
des tourbillons, et les résidus correspondants sont les quotients, par
2ni, des intensités tourbillonnaires.

Il est facile d'appliquer ce principe à la recherche des équations
différentielles qui régissent le mouvement des configurations définies par
M. G. Durand. Pour cela considérons, sur le plan de la figure, 2n suites
illimitées de tourbillons ponctuels. Nous supposerons que les n premières
sont constituées par des centres d'intensité + J situés aux points

Zt + knl Zn + knl

4) H. Villat, Théorie des Tourbillons (Gauthier-Villars édit. Paris), chapitre III.
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le étant l'entier le plus général, positif, négatif ou nul. De même, sur les n
dernières, les centres d'intensité —J occupent les positions

Xj^+knl Xn-\-knl
S'il en est ainsi, la fonction u — vi admet la période ni.

Sur le domaine fondamental 0< x< ni, elle doit être uniforme et
admettre pour pôles les 2n points Z1 ...Zn, Xx... Xn9 avec les résidus

+ et — -—r. Elle doit en outre, étant donnée la signification

physique du problème, rester bornée pour toute valeur de x, lorsque | y \

tend vers oo. Sa forme la plus générale est alors, en posant x + i y z

u — vi

à une constante complexe près, que nous pouvons négliger: lorsqu'elle
est nulle, le fluide est sensiblement au repos, à une distance suffisante des

deux files.

5. La vitesse d'un centre tourbillonnaire est celle qu'aurait le fluide au
même point, si ce centre n'existait pas. On a ainsi:

Z3) — 2*o\,—Az—X,)] — o ./' i ni 3/j 2ni(z—Zk))

Le signe * indiquera, d'une façon générale, qu'il faut prendre la grandeur
complexe conjuguée de la variable qu'il affecte. Compte tenu de relations
telles que

on obtient, en définitive,

2inl d „*
(2)

Dans chacune des sommes U, k est invariable, tandis que les entiers / et jf
sont soumis aux seules restrictions

n 1 < Y < n jf
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En remplaçant chaque terme par sa conjuguée complexe, on obtient 2n
nouvelles relations qui, jointes aux précédentes, forment en tout un
système ((£) de kn équations différentielles. Celui-ci définit complètement
le mouvement de la configuration tourbillonnaire, dont Fétat initial est
donné par les valeurs ZOk, Z*Qk, XQk, X\k que prennent, pour t 0, les
variables Zk, Z\, Xk, X*k Rien n'empêche de faire abstraction du sens
attribué au signe* et de considérer, d'une façon générale, Zk et Z\ comme
deux paramètres complexes indépendants. Il sera même commode, à

chaque instant, de se placer à ce point de vue. Mais seules méritent d'être
retenues les solutions de (<£) pour lesquelles les fonctions Z\(t), X\(t) et
Zk(t),Xk(t) sont conjugées, quel que soit t. Nous dirons que ce sont les
solutions réelles de ce système. On les obtient simplement en donnant aux
Z\k, X\k et aux ZOk, Xok des valeurs conjuguées.

6. Nous n'entreprendrons pas l'intégration complète de ((£), mais nous
allons mettre en évidence quelques-unes de ses solutions particulières.
Celles-ci correspondent à des configurations stationnaires, aussi bien pour
les rues tourbillonnaires illimitées que pour les configurations à nombre
fini de variables. Posons

)l (3)
Le paramètre complexe

co (o1-\-ia>2

restera, jusqu'à nouvel ordre, complètement arbitraire. En portant dans

(2) les valeurs (3), on obtient

2inl d „* 2inl d ^ »-* hn
-j-Ttz*= — ^Z*= f cotir

On voit que les -jr Z\ et -j? X\ ont tous la même valeur. Celle-ci doit

être indépendante de n, puisque la configuration définie par (3) présente
toujours le même aspect, quelle que soit la valeur de cet entier, lorsque l
et a* sont donnés. On a, pour n 1

d „* d vi, JZX
et cette formule est générale.

Ainsi, les tourbillons des deux files se déplacent tous avec la même
vitesse. Dans un système d'axes animé d'une translation convenable, les
centres tourbillonnaires paraissent immobiles et le mouvement du fluide
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est indépendant du temps. On peut dire, en ce sens, qu'une configuration
du type (3) est toujours en équilibre, quel que soit co. Mais, comme l'a
montré M. P. Schwarz5), la vitesse des tourbillons n'est parallèle à la
direction des files que s'il s'agit d'une rue symétrique ou alternée (le
système d'axes étant tel que le fluide soit au repos pour j/~>oo). On a,
dans le premier cas,

cox 0 co2 —r- y

d 7* _ J
~dt k ~~2

et dans le second,

On retrouve ainsi les formules bien connues, obtenues pour la première
fois par Th. von Karman.

B. Les équations linéarisées

7. Dans ce paragraphe, nous ne développerons pas l'étude des équations
exactes, mais nous allons en déduire des systèmes d'équations différentielles

linéaires à coefficients constants, en considérant des configurations
voisines de (3).

Posons pour cela Jt

(5)

Xk l(k + co + gk) —-

En portant ces valeurs dans (S) on a, compte tenu de (4)

if'"*' +"«•«>^r+^.. if
— (k — y) sin2 — (k—j — co)

sin1— (A;—
71

5) P. Schwarz, Recherches sur les tourbillons alternés. Chapitre IV, p. 57.
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Les (pk et les %pk sont des fonctions des £, f régulières pour Ciz= '" Cn^
|x |n 0, dont les développements en séries entières commencent

par des termes d'ordre 2 au moins. C'est en les supprimant que notes
obtenons les systèmes linéarisés dont nous nous proposons Vétude. Nous
admettrons, dans toute la première partie de cet exposé, qu'une telle

simplification est légitime tant que les Çk et les f fc restent suffisamment petits,
en réservant pour la deuxième partie la détermination précise des cas où

il en est bien ainsi. En posant

puis, pour X ^k 0 (mod n)
Jn

et enfin

sm2 A —
n

n tt—1

E bx — E «a ao y

1 1

on obtient le système de in équations différentielles,

(E)

E ak

dt E bk_j

E bj_k

E a>j_k

h en inconnues. Tous les ak sont réels, sauf peut être aQ tandis que les bk

sont complexes, en général.

8. Le système (E) possède une propriété remarquable, qui donne lieu à

d'importantes simplifications: pris dans son ensemble, il est invariant
pour la substitution

£2 • • •

Or celle-ci conserve également, à un facteur près, chacune des formes
linéaires
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h
n

dans lesquelles

fv COS
2yn

% sm ——

Ces formes, au nombre de in, sont linéairement distinctes. Prenons-les

comme variables, à la place des ffc |fc Cl !&• En multipliant par rj; chacune
des n premières équations de (E) et en ajoutant membre à membre, on a

y — y y y ^y '

avec

Posons encore

«—1

E akr« E bkr-«

et remarquons que
«—1

E
0

g;
n—1

E b'k t*
0

En procédant avec les trois dernières séries de n équations qui constituent
(E) comme on vient de le faire avec la première, on obtient, en définitive,
n systèmes différentiels contenant chacun 4 équations et 4 fonctions de t

à déterminer. Ils se présentent sous la forme

i"2"

9. Il est facile d'évaluer, en fonction de co ou de

e " p,
les coefficients 3Iy 23y <&y. On a par définition
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*-n
27

i=18in^(*
Mais on peut écrire

n
On obtient alors

et on aurait de même

II est facile de simplifier les sommes S. On peut partir de l'identité

Les relations

permettent alors d'obtenir, de proche en proche, les formules définitives

pv (7)

Calculons maintenant 3Ï&. On a, par définition

*-n~l w-1 n-1
«y= 27 afcf*= 27&* + 27(a*rJ — ak)

*-o o i
On voit tout d'abord que

Pour évaluer le second terme, on peut remarquer que ak est la limite de bk

lorsque a> tend vers zéro ou p vers un. On a ainsi :

n-l Tn—1 n—1 1

Z (akrhy — ak) 2im 27 6*fi —27 6*
1 p-l L 0 0 J
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Un calcul élémentaire donne, à partir de (7),

lim (8,—©n) _2y(n —y)

On a donc en définitive

(9)

C. Obtention d'une condition nécessaire pour que les mouvements définis

par les équations linéarisées gardent une amplitude finie

10. Pour intégrer les systèmes (ey), on cherche à en déduire des relations
du type d

sJj- kv V ly ly y y) Ky k y \ ly ly y y) V /

avec k 1, 2, 3 ou 4. Elles ont pour solutions

q'\ p /„ J a fir \p r Ky c\\\y) k y V #0 y /0 y o y 0 y) * V

Les f&ky sont des formes linéaires des variables qu'elles contiennent,
tandis que les aKy sont les quatre racines de l'équation

*—»;«;) o (12)

caractéristique de (ey). On sait que si l'une de ces racines est d'ordre v,

on peut toujours lui associer une intégrale du type (11), parfois plusieurs,
mais jamais plus de v.

Seules nous intéressent les solutions réelles de (E) au sens défini au
No. 5. Posons donc

II est clair que si les 2Ky (rjQy r^y dQy Q!Qy) sont exprimés en fonction des

Xk&kPkPk » aucune des formes linéaires ainsi obtenues ne saurait être
identiquement nulle. On peut donc les rendre toutes différentes de zéro,
même si chacun des paramètres précédents doit rester réel. Dans ces

conditions, les seconds membres des relations (11) ne peuvent rester tous
bornés, lorsque t tend vers oo, que si, dans chacun des aKy, le coefficient
de i est nul ou du signe de —F. Mais il faut écarter aussitôt cette seconde

hypothèse, étant donnée la forme de (12). La réalité de tous les aKy est donc

nécessaire pour que, dans chacune des solutions réelles de (E) les fonctions
)> £*(0 restent toutes bornées.
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11. Pour que les quatre racines de l'équation bicarrée (12) soient réelles,
il faut, et cela suffit, que l'on ait

»,©; + <£,«; — 2%%^ 2 |SÇ —®y<Ey| (13)

Or, on déduit facilement de (8) (9) (10) que (51^ — 93y (£y) est une
expression réelle, supérieure ou égale à zéro. Si donc on pose

%=Ay + iAry »y By + iBfy <£y Cy + iC!y
il vient

A2y — A? — ByCy + B'yC'y > 0

2AyAfy — ByCry — CyB'y =0
L'inégalité (13) prend alors les formes successives

B\ + B'/ + C2y + C'2 — 2A) — 2A'yi ^2(Ay — A'y2) — 2ByCy + 2ByC'y

et s'écrit finalement

\*r + *Z\>\*y + %\. (14)

Remarque. Cette relation devra, naturellement, être vérifiée pour les n
valeurs possibles de y. Lorsqu'elle l'est pour l'une d'elles sans se réduire à

une égalité, les quatre racines de (12) sont réelles et distinctes, et on a bien
quatre formes Qky (rjy rjy 0y 0y) indépendantes, dont chacune donne lieu
à une intégrale du type (11). Celles-ci restent toutes bornées lorsque t
tend vers oo, et il est de même des quatre variables qu'elles contiennent.
Si pareil fait se produit pour les n valeurs possibles de y, tous les rjy

r)y 6y 6y ont une borne supérieure, et il en est de même des Çk et des Çk.

Les mouvements définis par les équations linéarisées sont alors ceux qui se

produisent dans les cas d'équilibre stable.

12. Il est évident qu'une condition nécessaire de stabilité obtenue pour
n nx doit être vérifiée également lorsque n est un multiple de nx. Ainsi,
l'étude des valeurs impaires de n ne saurait donner lieu à un système de
conditions plus restrictif que celle des valeurs paires. Il suffit donc de
considérer ces dernières pour tirer tout le parti possible des configurations
à nombre fini de variables, et les relations ainsi obtenues, à l'aide de (14),
doivent nécessairement être vérifiées dans le cas d'une rue tourbillon-
naire illimitée. Posons donc n 2nt et voyons, en particulier, pour
quelles valeurs de co la condition (14) est vérifiée, lorsque y nx.
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En remplaçant p par sa valeur e n on déduit immédiatement de
(7) (8) (9),

— vrni — n sin2

A l M

L'inégalité (14) se réduit alors à

cos
2sm2 co 7r sm2

1
2 (15)

Le signe 91 indique qu'il faut prendre la partie réelle de l'expression
mise entre parenthèses. Si 501 est le module de cos ton et oc son argument,
la relation précédente s'écrit

1-4) cos a an2—
an2

Elle n'est vérifiée que si 2R équivaut à un et elle se réduit, dans ce cas, à

une égalité. Une configuration du type (5) ne peut donc être stable, pour n
pair, que si co satisfait à la condition nécessaire (mais non suffisante peut-
être)

JCOS (O7t\ 1

et il en est de même, naturellement, pour une rue tourbillonnaire illimitée.
Cette relation se met sous la forme

sin2 (16)

Lorsque co1 est donné, elle n'est vérifiée que pour une seule valeur de co2-

Dans le cas d'une rue symétrique, cox est nul et il doit, d'après (16), en
être de même pour co2. On voit ainsi que la stabilité est impossible. On a

au contraire, pour une rue alternée,

et (16) se réduit à

(O27t 1 (17)

Cette relation équivaut à (1), puisque la valeur de co2 est y. Nous appellerons

désormais cof2 la valeur de | co2| qui satisfait à (17).
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D. Etude particulière d'une rue tourbillonnaire alternée

13. Si les équations linéarisées définissaient exactement les mouvements

des configurations (5), la discussion complète de la condition (16)
de stabilité se réduirait à Félucidation des deux points suivants:

1. L'inégalité (14) est-elle vérifiée pour les n valeurs de y, lorsque co

satisfait à (16)?

2. Quelle est la forme des solutions de (ey) lorsque, (14) se réduisant à

une égalité, l'équation (12) admet des racines multiples? S'il en est ainsi,
la remarque faite au numéro 11 risque, en effet, de ne plus s'appliquer.

Nous n'aborderons l'étude de ces deux questions que dans le cas d'une
rue alternée. La première se résoudra à l'aide d'une inégalité connue, et il
suffira de rappeler les résultats les plus importants de sa discussion. La
seconde méritera d'être examinée de plus près, car nous retrouverons
alors, sous une forme plus générale, l'argument de M. G. Durand contre
l'hypothèse de la stabilité, signalé déjà au numéro 2.

14. Posons donc

7T TT

p se réduit alors à e n e
%n

En portant ces valeurs dans (7) (8) (9), on obtient

7 ich2oû27z ncho)2n\

avec

' n
La relation (14) s'écrit alors

cho)2Xy cho>2{n — Xy)
ch2o)27t 7 ____Xy{2n_Xy) (18)

et, lorsque co2 satisfait à (17), elle se réduit à

JfL^zll. {i9)2 CJlO)2Xy TtXy
7C y „

"

y en ct/o \»v ¦¦" *Cy)
O #«' W2 71
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Cette inégalité est, aux notations près, celle qu'obtient M. H. Villat6)
comme condition nécessaire de stabilité, pour une rue alternée illimitée.
Sa discussion, exposée dans l'ouvrage cité7), montre qu'elle est satisfaite

pour toute valeur de x comprise entre 0 et 2jt, dès que co2 vérifie (17).
Si donc eo2 prend la valeur co2, Vinégalité (18) a lieu pour les n valeurs
possibles de y, et il en est de même de (14).

Remarque. Tant que xy est différent de n, l'inégalité (18) peut être
vérifiée sans que | co2j ait pour valeur o>2. Si donc n est impair, la
condition (17) est toujours suffisante pour que (14) ait lieu quel que soit y,
mais elle n'est plus nécessaire. Une étude plus complète de (18) montre
que, dans ce cas, | co2| peut rester compris entre deux limites contenant

cw2 >
mais l'intervalle qui les sépare tend vers zéro avec —

15. Revenons aux valeurs paires de n. Lorsque co2 égale a>2, l'égalité des

deux membres de (18) a lieu seulement pour y — et y n. Chacun de

ces deux cas fera l'objet d'une particulière. Bien qu'il ne s'agisse plus,
désormais, que d'une rue alternée, nous développerons les calculs de telle
sorte qu'ils restent valables pour toute valeur de co satisfaisant à (16).

Dans ce cas, (14) se réduit toujours à une égalité pour y —, mais

ce fait riest jamais une cause d'instabilité. En effet, les deux membres de

(15) s'annulent. 3In est purement imaginaire, et il en est de même pour

93n_ et(£n, qui sont égaux. On peut donc poser, a et 6 étant réels,
2* 2"

93n <£* =bi %n=di
2 2 2

Dans ces conditions, (en) se décompose en deux systèmes partiels

4t{6'+ iï]f)=a{e ~i7?/) + bi{6'+ ir>)

^ —irf)

—ir/)

•) E. Villat, Théorie des tourbillons, chap. IV, p. 69, équ. 14.

7) Ibid.,p. 70 et 71.

307



dans lesquels on a supprimé l'indice — Chacun d'eux équivaut à deux

équations distinctes du type (10), ce qui, en vertu de la remarque faite
au No. 11, justifie l'affirmation précédente.

16. Plus délicate sera la discussion du cas où y n. C'est ici en effet

que nous aurons à examiner, quel que soit n, l'argument contre la
stabilité mis en lumière, pour n= 2, par M. G. Durand. On a d'abord

et (en) se réduit à

n4rK^Kn(0n — Vn)dt " " " '"

ai

dt

Dès lors, 0n et ^w sont donnés par les formules

n 0n —K(Kn — Von)i + ^»0n
— Von)* + ri

et ces fonctions de t ne restent bornées que si (dOn — rjOn) est nul. Faut-il
conclure de là que, dans tout autre cas, la configuration étudiée a
tendance à modifier profondément son aspect initial?

Nous allons montrer qu'il n'en est pas ainsi lorsque, pour 1 < y < n— 1,

les solutions des (ey) restent toutes bornées. Pour cela, il faut préciser la
forme des fonctions C(£)> f (0 qui satisfont à (E). Les formules inverses
de (6) sont

f _ y rn—j a'"»'-¦'" (21,

On voit que 0n et rjn ont, dans tous les £fc et les £fc le même coefficient ~.
Par ailleurs, dans les formules (20), le coefficient de t est le même pour 0n

et rjn. Si donc nous remplaçons, dans (21), les 0y, rjy par les fonctions de t
obtenues en intégrant les (cy), nous obtiendrons des sommes composées
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d'une constante, de plusieurs exponentielles, et d'un terme linéaire en t
dont le coefficient sera partout le même. Dès lors, si les solutions des (ey)
restent toutes bornées pour 1 < y < n— 1, le mouvement des tourbillons,
considérés comme soumis sans restriction aux équations linéarisées,
résulte de la superposition de diverses oscillations d'amplitude constante à

une translation uniforme subie par tout le système.

17. En réalité, l'emploi des équations linéarisées est inacceptable, dès

que les variables ne sont plus toutes très petites. Revenons donc, un
instant, au système ((£) exact. Les en formes linéaires

1

U.z {Zt-Z1),... Un= (Zn -ZJ Ul (Z\-Z\),... u: {Z\-Z\)
v, (Xi—zj ,...vn= (xn—z1) v\ (x\-z\),... f; (xi-z\)
sont indépendantes. On peut les prendre comme variables et isoler, dans

((£), la dérivée par rapport à t de chacune d'elles. Deux des équations

différentielles ainsi obtenues définissent -^-et-^r-. Les in—2 autres
dt do

contiennent seulement les UVU*V* et leurs dérivées: elles forment un
nouveau système ((£') qui régit le mouvement relatif de la configuration
tourbillonnaire. A l'aide des formules (5) et (21) on exprime les SUV
#* U* V* en fonction des rjrj'OO', et ceux-ci n'interviennent, dans les

UV U*V*, que par l'intermédiaire de

0x...0n_i &[.. .d'n_x

Si nous linéarisons (©'), le système (Ef) ainsi formé s'exprime au moyen
de ces seules combinaisons. Sa solution générale s'obtient de suite en

remplaçant les r]0rj'df par un système quelconque de fonctions vérifiant
les (ey). Le terme linéaire en t s'élimine alors de 6n — r\n et de 6!n — r[n,

et il disparait ainsi complètement des solutions de (E'). Si donc les

intégrales des (ey) restent toutes bornées (pour l<y<n — 1), lorsque t

tend vers oo, nous pouvons présumer que la linéarisation de ((E;) est

légitime, et admettre que Yéquilibre relatif de la configuration considérée

est stable. Les résultats qui seront obtenus dans la seconde partie
confirmeront cette manière de voir et permettront d'en préciser le sens.
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Remarque. On peut considérer le point d'affixe— comme le centre de

la figure formée par les 2n tourbillons du domaine fondamental. Il est

facile de voir que -=- s'exprime en fonction des £7* F* seulement. Si donc

((£') a pu être intégré, S s'obtient par une quadrature, et le mouvement de
la configuration (5) est complètement déterminé. Avec les variables

dy, on a l'équation exacte

Le premier terme du seconde membre, qui ne dépend pas de t, correspond
à la translation obtenue pour un équilibre exactement réalisé. Le
deuxième est constant, lui aussi, car O'n — rfn est une intégrale première

n
de ((£), au même titre que 2J {Z\ — X*k). Sa présence contribue seulement à

1

modifier un peu les composantes de la translation précédente. Ainsi, une
configuration voisine de la rue symétrique ou alternée peut être animée
d'un mouvement transversal très lent. Le troisième terme est une fonction

régulière des variables rj', 0f dont le développement en série entière
commence par une forme d'ordre 2 au moins. Il ne correspond plus à une
translation, mais il intervient d'autant moins, par rapport aux deux
précédents, que l'état du système est plus voisin de l'équilibre. Remarquons

que cette étude suppose la quantité de fluide intéressée par le
mouvement infiniment grande, ou tout au moins de largeur suffisante

pour que, dans les limites de l'observation, la translation transversale
n'ait pas d'influence sensible.

SECONDE PARTIE
Comparaison entre les conséquences des systèmes linéarisés et celles

des systèmes exacts

18. Nous n'avons étudié, jusqu'ici, que les systèmes (E) d'équations
linéaires à coefficients constants déduits de ((£) par suppression des termes
d'ordre supérieur à 1. Il s'agit maintenant d'apprécier la portée réelle des

résultats que cette simplification permet d'obtenir. Pour cela, nous
chercherons d'abord, d'une façon aussi générale que possible, dans quelles
conditions et dans quelle mesure les solutions de (Ê) sont comparables à
celles de (E). Nous distinguerons ensuite deux types de mouvements
définis par ((£), suivant que les solutions de (E) restent ou non bornées
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lorsque t tend vers -f-°°- Enfin, nous préciserons le sens qu'il convient de
donner à la notion de stabilité, lorsqu'il s'agit d'une configuration tour-
billonnaire dont l'état dépend d'un nombre fini de variables.

A. Relation générale entre les solutions de (E) et celles de ((£)

19. Soit ((£) un système de n équations différentielles

où les akj sont des constantes. Afin de donner plus de généralité aux
développements ultérieurs, nous supposerons seulement que les fonctions
t)fc remplissent les conditions suivantes:

1. Elles sont continues et vérifient l'inégalité de Cauchy-Lipschitz
sur un domaine défini, pour une certaine valeur de M, par l'inégalité

Z\zk\<M. (22)
1

2. A toute valeur positive de e, on peut associer un nombre rj tel que la
relation

Z\xk\<n (23)
1

ait pour conséquence n n

Z\\)k\<ei:\xk\ (24)
î î

Ces deux hypothèses sont satisfaites, en particulier, lorsque les \)k sont
des fonctions régulières des xx... xn dont les développements en séries

entières commencent par des termes d'ordre 2 au moins.

Il sera commode7) de considérer l'évolution du système ((£) comme
définie, dans un espace à n dimensions, par le mouvement d'un point ^ (t)
de coordonnées x±(t), xn(t). L'origine fi des axes est une position
d'équilibre de ce point. En vertu de la première condition imposée aux
ï)fc, on peut associer, à toute valeur positive de 0, un nombre m inférieur à

M, tel que ty (t) soit correspondance biunivoque avec ty (t0) et vérifie (22)

sur tout l'intervalle (£0 — 0, to + 0), dès que l'inégalité

E\xk{Q\<m (25)
i

7) On trouvera l'exposé des résultats que nous obtenons ici analytiquement, présenté
sous une forme géométrique, dans la note de M. Godefroy et H. Ponein signalée dans
l'introduction.
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est satisfaite. Autrement dit, la transformation %(t —10) définie,
lorsqu'on a fixé la valeur de t, par la relation symbolique

est biunivoque sur tout le domaine défini par (25), chaque fois que t
vérifie

\t — to\<0. (26)

Le système (E) s'obtient en supprimant de ((£) les t)fc. Il définit, dans

l'espace considéré, le mouvement d'un point ¥(t) de coordonnées

Xj^) Xn(t). Il est facile de voir que la transformation T(t— tQ)9

définie par la relation
T(t — to)V(to),

est toujours biunivoque, sans qu'il y ait lieu d'imposer aucune restriction
à \t — to\ ou à P(J0).

20. Dans le but d'établir une relation entre T(t— tQ) et Z(t— t0),

nous supposerons désormais que ces deux transformations sont, pour
toute valeur de t satisfaisant à (26), appliquées au même point II dont les

coordonnées <xt ...ocn vérifient l'inégalité
n

U\(xk\<m
î

Ces deux transformations conservent le point Q, et la relation qui existe
entre elles, en son voisinage, se traduit par l'énoncé suivant:

Pour toute valeur finie de t, T (t — t0) est la transformation linéaire
tangente en Q à %(t — £0).

Tout d'abord, T(£ — £0) est linéaire, car si les deux systèmes de fonctions

Xk(t) et X'k(t) satisfont à (E), il en est de même pour [Xk{t) + -Sl£($)]«

Les coordonnées de P (t) s'expriment donc, en fonction de celles de II, par
des formules du type ;.Œn

Xk(t)= Z***, (27)

dans lesquelles les ukj dépendent seulement des t et des coefficients akj
de ((£).

La tangence de deux transformations peut être définie de différentes
façons, et la position adoptée ici sera la suivante : après avoir posé

#fc(*i...«», t) xk(t) — Xk(t) (28)
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nous montrerons qu'iZ est possible d'associer, à tout couple de valeurs
positives données à 0 et e\ un nombre r\' inférieur à m, tel que les hypothèses

(26) et n

Z\ock\<rjf (29)

aient pour conséquence

2\Ht\<e'Z\Xk\ (30)

21. Pour y parvenir, remarquons d'abord que les Hk sont nuls pour
t t0 et qu'ils vérifient, quel que soit t, les relations

[Xn + Hn]), (31)

dans lesquelles les Xk sont exprimés en fonction de ocx... ocn et de t.
n

On peut en déduire une inégalité liant 2J \Hk\ à sa dérivée. On a
1

— idt i dt

puis, en donnant à R une valeur assez grande,

H

Enfin, d'après la seconde condition imposée aux \)k, on peut lier rj à e

de telle sorte que n

r, (32)

(33)

ait pour conséquence
M tl

1
0 3

^

En faisant alors appel à l'inégalité évidente

n n

1 1

on déduit de (31) que la relation

±y\H i<
dt

(34)

(35)

a lieu dès que (32) est vérifiée.
Etant donnée la forme des fonctions Xk(<x1... ocn, t), on peut trouver

un nombre K tel que la double inégalité
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soit toujours satisfaite. Si donc on pose

l'inégalité (26) entraîne
G Z\Xk\> Z\ock\ (36)

Z\Xk\<G2\»*\ • (37)

Dans ces conditions, on a, d'après (35),

^ k\ (38)

chaque fois que (32) et (26) sont vérifiées simultanément. Sachant alors

que Z\Hk\ est nul pour t t0, on déduit facilement de (38) que l'inégalité

a lieu sur tout intervalle (t0—tl9 t0 + y intérieur à (t0 — 0, to + 0),
le long duquel (32) est constamment vérifiée. D'ailleurs, les relations (34)
(37) et (39) ont pour conséquence

II en résulte immédiatement que (39) est vérifiée sur tout l'intervalle
(£0 — 0, to-{-0)} lorsque E\ock\ satisfait à

D'après (36), l'inégalité

^ 1] bZ\ Xk | (41)

a lieu, a fortiori, dans les mêmes conditions.
Dès lors, après avoir choisi arbitrairement er et 0, nous définirons e

par la relation ^2

puis nous fixerons rj de telle sorte que (23) entraîne (24). Nous poserons
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Dans ces conditions, les hypothèses (26) et (29) ont pour conséquences
(40), (41), et finalement (30).

Cette dernière inégalité s'écrit encore, en vertu de (28),

S\Xh — xh\
2*1*1 <e (42)

et, sous cette forme, son interprétation est immédiate. Son premier
membre peut, en effet, être considéré comme l'expression de l'erreur
relative commise en utilisant (E) à la place de ((£). Le théorème précédent
montre alors qu'il est possible de rendre cette erreur arbitrairement petite,
pendant un intervalle de temps fixé d'avance, à la seule condition de partir
d'un état initial suffisamment voisin de l'équilibre.

Remarque. Si les \)k sont des fonctions régulières des xk, les Hk s'expriment

par des séries entières des ock dont les coefficients dépendent de t.
Le théorème qui vient d'être établi suffit alors à montrer que leurs

développements commencent tous par une forme d'ordre 2 au moins. Nous
aurions donc pu, sans inconvénient, définir par cette propriété des Hk la
tangence de %{t — t0) à T(t — t0), si nous nous étions bornés à raisonner
sur des transformations analytiques.

B. Les deux types de petits mouvements définis par les équations exactes

22. Lorsqu'on fait varier les coefficients akj de (E), il arrive que, pour
certaines de leurs valeurs, les fonctions Xk(t) restent toutes bornées

lorsque t tend vers + oo, quelle que soit la position de 77. Convenons

d'appeler «condition N» l'ensemble des conditions nécessaires et suffisantes

pour qu'il en soit ainsi. Suivant qu'elle est ou non réalisée, les petits
mouvements définis directement par ((£) possèdent, dans leur ensemble,
des propriétés opposées. Avant de les mettre en évidence, précisons quelques

conventions d'écriture.
D'une façon générale, nous représenterons par [Q] un domaine caractérisé

par la propriété suivante: il existe deux nombres positifs Ix et I2

tels que les hypothèses,
n

T?(x1... xn) appartient à [Q] £ \xrk\ < lx
î

aient pour conséquences respectives

U\xk\ < l2 P(*J... xrn) appartient à [Q]

Le symbole A [Q] désignera le domaine déduit de [Q] par une homothétie
de centre Q et de module A.
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23. Plaçons nous, d'abord, dans le cas où la condition N n'est pas
réalisée. Après avoir choisi arbitrairement un nombre réel A et un domaine
[Q] du type précédent, on peut trouver deux nombres positifs 0 etV tels que
les hypothèses

aPPartient à l &1
n'appartient pas à Al [D]

puissent être vérifiées simultanément pour toute valeur de I moindre que lf,
moyennant un choix convenable de

On peut, en effet, après avoir introduit un nombre L> \A\, donner
aux ock des valeurs telles que 2^|Xfc| tende vers oo avec t, puis fixer © de
manière à avoir simultanément

0< t — t <0 P^ aPPartient a
0

P(£) n'appartient pas à L[Q]

Or, si tous les ock sont multipliés par un même facteur I, il en est de même
des Xk{t), d'après (27). Le point Y(t0) peut alors appartenir à l[Q], tandis
que ¥(t) est extérieur à L\[Q]. Mais pour un choix convenable de L et de
er, les hypothèses

V(X1...Xn) extérieur à U[Q] Z\xk —Xk\<e' Z\Xk\

ont pour conséquence nécessaire, lorsque A est donné,

^P {xx... xn) extérieur à Al [Q]

Si donc on fixe r\r de telle sorte que (26) et (29) entraînent (42), puis V de
manière à vérifier (29) pour tout point 77 intérieur à V[Q], on peut, pour
toute valeur de I inférieure à V, satisfaire à la fois aux trois conditions (43).

24. Plaçons nous, maintenant, dans le cas où la condition N est satisfaite.

Il existe alors un système de variables yx... yn tel que ((£) prenne
la forme

Dans chacun des sk, le coefficient de i est positif ou nul. D'ailleurs, (E)
s'obtient toujours en supprimant de (C) les hk. En appelant yk{t) les

nouvelles coordonnées de S$ (t) et Yk(t) celles de P(£), on a, pour t t0,

Tous les résultats généraux précédemment établis subsistent, au remplacement

près des X, x, oc par les Y, y, fi. On peut, en particulier, associer à
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tout couple de valeurs positives prises par © et s', un nombre rj' tel que
les hypothèses

0<t — to<0 Z\pk\<t)' (44)

271 yfc — Yk
aient pour conséquence

<E ' (45)Z\Yk\
ou encore

Mais comme les Yk sont de la forme /?fce***('~'o), on a, pour 0< t — to<&,

Z\Yk\ £Z\pk\
Les inégalités (44) ont alors pour conséquence

Pour interpréter ce résultat, appelons [Q] le domaine défini par la relation

On voit qu'il est "possible d'associer, à tout couple de valeurs prises par ef et 0,
un nombre r\' tel que les hypothèses

S$(tQ) appartient à r\! [Q] 0<t — to< \&\

aient pour conséquence

appartient à (l + e/)rjf [Q]

Pareil fait ne pouvait avoir lieu dans le cas précédent, car on pouvait
alors, après avoir fixé arbitrairement A et le domaine [Q], donner à 0
une valeur qui permît, si petit que fût I, de satisfaire à la fois aux trois
conditions (43).

25. Même si la condition N est satisfaite et le domaine [Q] défini par
(46), il arrive qu'il soit possible d'avoir simultanément, quel que soit le

couple de valeurs données à A et à I,

appartient à I [Q]

n'appartient pas à Al[Q],

pourvu que \t — £0| soit assez grand. Ainsi les équations
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forment bien un système ((£) donnant lieu à N. On a cependant une
intégrale

z°z°zz* — z°z
— 2tz0z*0

dont le second membre finit par dépasser tout nombre donné, quel que
soit z0 zl. Ce fait n'est pas en contradiction avec les résultats du n°

précédent puisque, si & et e! sont donnés a priori, il suffit déposer

Z°Zo< 20(1 + 60

pour avoir, sur tout l'intervalle (t0) to-\- &), la relation

zz

C. Elargissement de la notion de stabilité

26. Si nous voulons préciser davantage le rôle de la condition N, il est

opportun de revenir, un instant, sur la notion classique de stabilité, telle
qu'elle est comprise, par exemple, en Mécanique des solides. Considérons

un système de solides soumis à des liaisons holonomes indépendantes du
temps. Soit n le nombre de ses degrés de liberté. Sa position et son état
cinétique peuvent être représentés par un point ^} mobile dans un espace
à 2 n dimensions. Lorsqu'on fait abstraction des frottements, le mouvement

de ce point est régi, au voisinage d'une position d'équilibre Q, par
un système d'équations différentielles susceptible d'être mis sous la
forme (©). Les coordonnées cinétiques de ty sont toutes nulles en Q.

Supposons alors, avec Lejeune-Dirichlet, qu'il existe une fonction de
force U, indépendante du temps, et que û soit pour elle un maximum
au sens strict. Dans ces conditions, la fonction (T — U) admet en Q la
valeur minima strictement dite (TQ— C70). L'inégalité

T — U<T0— U0 + fz*

définit alors, pour toute valeur de fi positive et suffisamment petite, un
domaine [Q]^ du type défini au n° 22. D'ailleurs (T— U) est une intégrale
première de ((£). Si donc ty(t0) appartient à [Q]^, il en est de même de
^P (t), quel que soit t.

L'expression T— U—(To— Uo) est, en général, une fonction des

2n variables régulière en Q, et son développement en série commence par

une forme quadratique. Ce fait suggère l'idée que — [û]^ tend vers un
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domaine limite si jj, tend vers zéro, et qu'il est possible de trouver deux
domaines [Q]f et [42]" tels que [Q]^ contienne fi[Q]' et fasse partie de

f/, [Oyf, pour toute valeur suffisamment petite de fx.

27. Revenons alors aux systèmes ((£) du type le plus général et
considérons une famille à un paramètre ju, de domaines définis, d'une façon
univoque, pour toute valeur positive et suffisamment petite de fi. Nous
appelerons domaines [Q]^, relativement à l'intervalle 0< [i<[xx, ceux

pour lesquels existent deux domaines [Q]' et [42]/; tels que, sur cet intervalle,

[Q]^ contienne /Lt[Q]f et fasse partie de fi[QY. L'introduction de
cette notion permet de définir simplement les deux cas suivants:

1. On peut trouver une famille de domaines [Q]^ telle que Vappartenance
de ^? (t0) à Vun quelconque d'entre eux entraîne, quel que soit t, celle de ty (t).
D'après le n° 25, la condition N n'est pas suffisante pour qu'il en soit
ainsi. Nous dirons alors que l'équilibre est stable en Q au sens strict.

2. Après avoir choisi convenablement une famille de domaines [Q]^,
on peut associer, à tout couple de valeurs positives données à 0 et s\ un
nombre [xr tel que les hypothèses

O<t — to<0, iKyJ, <P (t0) appartient à [Û]^, (47)

aient pour conséquence

% (t) appartient à (1 + «') [Q\ (48)

Nous dirons, cette fois, que l'équilibre est stable au sens large ou semi-
stable. Les résultat du n° 24 montrent, maintenant, que la condition N
est suffisante. On peut, en effet, définir [Q] par (46) et prendre pour [£?]^
le domaine fi[Q].

Il est clair que la première éventualité est un cas particulier de la
seconde. Pour que l'une ou l'autre ait lieu, la condition N est nécessaire.

On peut, en effet, donner à A une valeur telle qaeA[Q]f contienne 2[i2]/;.
Mais lorsque N n'est pas réalisée, il existe, d'après (43), deux nombres 0
et fi" tels que les trois relations

aPPartient à
0 < t — t < 00 ' <$(t) n'appartient pas à 2fi [£];/,
puissent avoir lieu simultanément, pour toute valeur de fi moindre que
li". Il en est de même, a fortiori, si les deux dernières sont remplacées par

$(*0) appartient à \Q\,
^î (t) n'appartient pas à 2 [O]^

Dès lors, (48) ne saurait être une conséquence nécessaire de (47).
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En résumé, la condition N est nécessaire et suffisante pwir assurer la
semi-stabilité. La stabilité au sens strict exige aussi sa réalisation, mais n'en
résulte pas inéluctablement,

28. Dans nombre de problèmes régis par des équations du type ((£), il
serait illusoire de poursuivre Fétude théorique des mouvements considérés,

pour de trop grandes valeurs de (t — t0). C'est ce qui a lieu en
hydrodynamique, chaque fois que la viscosité du fluide est négligée; un
tourbillon sensiblement ponctuel à un instant donné finit par ne plus l'être
du tout. D'ailleurs, aucune vérification physique d'un résultat
mathématique ne peut durer indéfiniment. Ajoutons que l'état d'un système
matériel n'est jamais donné avec une exactitude parfaite. Dans ces
conditions, il est impossible, en toute rigueur, de reconnaître expérimentalement

si la stabilité au sens strict est ou non réalisée. C'est donc à la
notion de semi-stabilité, liée comme on vient de le voir à la vérification de
la condition N, qu'il semble normal d'attacher le plus d'importance.

Conclusion

Les résultats obtenus au cours de la première partie mettent en lumière
certains cas dans lesquels la condition JV peut être satisfaite. Parmi tous
les systèmes de tourbillons du type (5), il faut exclure, pour n pair, ceux
qui ne vérifient pas (16). En particulier, une configuration alternée doit
donner lieu à (1). Lorsqu'il en est ainsi, la condition N est effectivement
réalisée pour le système différentiel ((£') qui définit le mouvement relatif des

tourbillons. On est alors dans un cas de semi-stabilité. Naturellement, ce

résultat ne suffit pas à prouver que la rue illimitée correspondante
possède une propriété du même genre, mais il milite en faveur de cette
hypothèse. Tout d'abord, aucun argument ne s'oppose plus à cette
possibilité, puisque celui de M. G. Durand a pu être écarté. On prévoit,
en outre, que la notion de semi-stabilité, précisée ici dans le cas d'un
système à nombre fini de variables, pourra être définie dans des circonstances

moins restrictives. Ce point sera traité ultérieurement, je l'espère
bien, comme application d'un problème plus général dont je poursuis
actuellement l'étude.

(Reçu le 30 janvier 1939.)
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