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Invariantentheorie algebraischer Formen

Von CoNrAD LESER, Ziirich

Einleitung

Aufgabe der vorliegenden Arbeit ist es, die Invariantentheorie der
algebraischen Formen neu abzuleiten. Wahrend in den Lehrbiichern viel-
fach von formalen Prozessen Gebrauch gemacht wird, die mit dem Wesen
des Problems nichts zu tun haben, soll hierbei der gruppentheoretische
Kern etwas stérker zur Geltung kommen.

Die weiteste in Betracht kommende Verallgemeinerung des Begriffs
der Invariante ist der der Komitante. Eine solche enthélt Ausdriicke in
den Koeffizienten einer Form, auf die eine gewisse irreduzible Substitu-
tion induziert wird, wenn man auf die Variabeln die allgemeine lineare
Substitution ausiibt. Im binadren Fall sind diese irreduziblen Substitu-
tionen dadurch definiert, da8 sie auf die Koeffizienten der Formen in
gewohnlichem Sinn induziert werden.

Im Falle der n-aren Formen ist die Definition nicht so ohne weiteres
moglich. Eine solche liefert aber die Methode der Young’schen Symmetrie-
operatoren. Diese zerlegt die durch wiederholte Komposition der allge-
meinen linearen Substitution entstehende Matrix in irreduzible Bestand-
teile, und diese stimmen mit den gesuchten Substitutionen iiberein.
In §1 der Arbeit wird daher diese Methode in der fiir die Anwendung
brauchbaren Formulierung kurz wiedergegeben.

Komponiert man zwei solcher irreduziblen Substitutionen, so erhebt
sich die fiir die Invariantentheorie fundamentale Frage nach den Kompo-
sitionsregeln, welche angeben, wie sich das Resultat wieder in irreduzible
Teile zerlegen 1aBt. In § 2 wird diese Frage dadurch gelost, dafl alle
Kompositionsregeln auf ein System von Grundregeln zuriickgefiihrt
werden, die ihrerseits einer einfachen GesetzmaBigkeit geniigen.

In §3 werden die gewonnenen Ergebnisse invariantentheoretisch
gedeutet. Es wird gezeigt, wie sich die simultanen multilinearen Komi-
tanten mehrerer Formen angeben lassen und welche Schliisse daraus
auf die Komitanten von beliebigem Grad einer einzigen Form gezogen
werden konnen.

SchlieBlich werden in § 4 mit Hilfe der Methode der Gewichte Anzahl
und Ordnungen der Komitanten von gegebenem Grad berechnet. Als
Anwendung der in § 2 abgeleiteten Kompositionsregeln wird ein Satz
von Deruyts neu bewiesen, der diese Berechnung sehr vereinfacht.
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Der Fall der bindren Formen wird noch einer besonderen Betrachtung
unterzogen.

Die Arbeit verdankt ihre Entstehung einer Anregung von Prof. A.
Speiser und schlieflt sich an Kap. 16 seiner ,,Gruppentheorie*‘ (3. Aufl.) an.

§ 1. Die Young’schen Symmetrieoperatoren.
Gegeben seien k& Reihen von je » Variabeln

ooooooo

ooooooooooooo

die also in jeder Variabelnreihe linear sind, und betrachtet die auf diese
Produkte induzierte Substitution, so kommt dies offenbar darauf hinaus,
daB die Ausgangsmatrix (0‘ 5

11+ - “¥1n )

ccccc

“ﬂl. LN “nn

k—1 -mal mit sich selbst komponiert wird.

Die so entstehende Matrix ist fiir £ > 1 nicht mehr irreduzibel, 148t
sich aber vollstiandig in irreduzible Bestandteile zerlegen. Diese Bestand-
teile entsprechen, wie Frobenius!) bemerkt hat, eindeutig den Darstel-
lungen der vollen Permutationsgruppe vom Grade k, und sie lassen sich
nach Young?) folgendermaflen berechnen:

Man zeichnet ein Schema von % Feldern, ange- 1| 2 A
ordnet in hochstens n Zeilen, deren Langen von [;44
oben nach unten monoton abnehmen. In die Fel-
der schreibt man die Zahlen 1, 2, ..., k, wobei
man oben beginnt und innerhalb der Zeilen von
links nach rechts fortschreitet.

Zu jedem Schema, welches sich auf diese Art
bilden 1af3t, wird ein Operator wie folgt definiert: Man symmetrisiert

k

1) Uber die charakteristischen Einheiten der symmetrischen Gruppe,
Sitz. Ber. Berlin 1903, S. 328 ff.

%) On quantitative substitutional analysis, Proc. London Math. Soc. 1901,
S. 97 fi.
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zunichst liber die Zeilen, d. h. man bildet die Summe aller Permutationen,
die nur die Zahlen innerhalb der Zeilen vertauschen. Auf diese Summe
wendet man hierauf den Prozel der Alternation in bezug auf die Spalten
an, d. h. man summiert iiber alle Vertauschungen innerhalb der Spalten,
wobei jedoch die ungeraden Permutationen negatives Vorzeichen erhalten.

Den so gewonnenen Operator wendet man auf jedes der Variabeln-
produkte an, und zwar in dem Sinne, dafl die unteren Indizes derjenigen
Variabeln vertauscht werden, deren obere Indizes im Operator der Ver-
tauschung unterliegen. Dann erhalt man entweder 0 oder eine gewisse
lineare Kombination der Variabelnprodukte. Von den nicht verschwin-
denden Gliedern werden noch diejenigen weggestrichen, welche von
anderen Gliedern linear abhéngig sind. Eine gewisse Willkiir, die dabei
moglich ist, spielt keine Rolle.

Die iibrigbleibenden Terme bilden nun einen irreduziblen Bestandteil
der Basis, d. h. sie substituieren sich nur unter sich. Die zugehorige Matrix
bildet also einen der irreduziblen Bestandteile. Zu jedem Schema, das die
angegebenen Bedingungen erfiillt, gehort eine derartige Matrix. Diese
und nur diese treten als irreduzible Bestandteile auf, und zwar ein- oder
mehrmals.

Das Schema enthalte nun je k, t-zeilige Spalten (1 =1,2, ..., n).
Dann liefert die Alternation offenbar aus jedem Variabelnprodukt 0 oder
ein Produkt von je k, t-reihigen Determinanten; der gesamte Operator
also 0 oder eine Summe derartiger Produkte. Diese Determinanten lassen
sich als neue Variable auffassen. Andrerseits lassen sich die verschiedenen
Reihen von Variabeln gleicher Art identifizieren, da es hier nur auf die
Transformationseigenschaft, nicht auf die Gestalt der Basis ankommt.
Dieser Gedanke riihrt schon von Clebsch3) her.

Die zugehorige Matrix besitzt als Koeffizienten ebenfalls Summen von
Produkten je k, t-reihiger Determinanten der «;;. Sie moge I, & .. ..,
heiBen. Da es nur eine einzige n-reihige Determinante gibt, kann sich
diese hochstens als konstanter Faktor herausheben; die Zahl k, liefert
kein Unterscheidungsmerkmal und braucht daher im Index nicht ange-
geben zu werden.

Insbesondere sind I'y o ... o3 I'o,1,0,...,05 « - - 5 1,...,0,1 die Substitutionen,
die auf samtliche 1-, 2-, ..., n—1-reihigen Determinanten der Variabeln
ausgeiibt werden. I'; , ., ist nichts anderes als die Ausgangssubstitution.
Ferner stellt Iy , ... o die identische Substitution, d. h. die Multiplikation
mit einem konstanten Faktor dar.

3) Uber eine Fundamentalaufgabe der Invariantentheorie, Abh. G&t-
tingen 1872, S. 1 ff.
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Die Komposition von Matrizen werde durch ein -Zeichen angedeutet,
bei gleichartigen Matrizen auch durch Potenzierung; ferner die Zusammen-
setzung aus irreduziblen Bestandteilen durch das -Zeichen. Diese
Operationen sind nicht mit der ,,Multiplikation* und ,,Addition von
Matrizen zu verwechseln; sie erfiillen simtliche kommutativen, asso-
ziativen und distributiven Gesetze.

Somit 1aBt sich das Ergebnis in die Formel fassen:

Flvot'k"'oz 2 ckl»'--ykﬂ-l;Flno»-k-'!oPkly°--,kﬂ-1 :
ki,oooibna
Die Koeffizienten ¢ zeigen an, wie oft jeder Bestandteil auftritt. Sie
sind also ganze nicht negative Zahlen, und zwar positiv fiir alle Indizes

k-, k,—, fir welche ,_,
2 thk, =k
t=1

n—1
2 tk,=Fk (mod.n) .
t=1
Sie lassen sich iibrigens mit Hilfe der gleichen Methode auch zahlen-
m#Big berechnen, wovon aber kein Gebrauch gemacht werden soll.
Dagegen sei das Resultat noch einmal kurz in Worten zusammengefaf3t.

' 1. Satz: Die irreduziblen Bestandteile der durch wiederholte Komposition
einer Ausgangsmatrix entstehenden Matrix werden geliefert durch die
Methode der Young'schen Symmetrieoperatoren. Hierbei entspricht jedem
Young’schen Schema eineindeutiq ein irreduzibler Bestandteil, der aber
mehrmals auftreten kann. Die Anzahl der t-zeiligen Spalten im Schema
zeigt die Dimension in den t-reihigen Determinanten der Variabeln bzw.
der Matrixkoeffizienten an.

§ 2. Kompositionsregeln.

Bildet man I'y, *. , sukzessive fiir die Werte k = 1,2 ..., so erhalt
man eine n—1-dimensionale Schar von irreduziblen Bestandteilen. Kom-
poniert man zwei derartige Matrizen und bildet wieder die Zerlegung, so
bleibt man innerhalb der Schar. Denn sei

n—1 n—1 ]
S th,=k, I thl =¥
tml t=1
so ist %
Fkl,o..,kn_l « Pl,o,...,o
’ ’ k!
Pkl.ooo,kn—l C rl,o,-..'o

also ‘ ' E+k!
Pkl,"ukn—l ’ Pkl. conrkp—y CI‘l.O. ceey0 °

276



Es soll jetzt die Aufgabe behandelt werden, die irreduziblen Bestandteile

von I, I, ... &, anzugeben.

yorsrkn—1 n—1

1. Definition: Die t-reihigen Determinanten der Ausgangsvariabeln heiflen
Variable t. Art; die Matrixz der auf sie tnduzierten Substitution Grund-
matrix t. Art.

2. Definition: Eine Formel, welche die irreduziblen Bestandteile der
durch Komposition zweier irreduziblen Matrizen entstandenen Matrix angibt,
heift eine Kompositionsregel. Ist eine der beiden Matrizen eine Grund-
matriz, so heifft sie ( Kompositions-) Qrundregel.

2. Satz: Komponiert man eine beliebige irreduzible Matrix mit der
Grundmatrixz s. Art, so erhilt man alle irreduziblen Bestandteile, indem
man zu dem zur beliebigen Matrix gehorigen Young’schen Schema auf alle
moglichen Arten durch Hinzufiigen von s Feldern in verschiedenen Zeilen
neue Young’sche Schemata von hochstens n Zeilen bildet und dazu wieder
die entsprechenden Matrizen. Jeder Bestandteil tritt genau eimmal auf.

Beweis: Sei Iy, . ;. , ein irreduzibler Bestandteil von I';, F ,; dann
ist I%, .. . ke Lo,...0140,..0 €N reduzibler Bestandteil von Iy gk+e .
Wendet man auf diesen einen Young’schen Operator an, so ergibt sich
0, wenn der Operator keinem darin enthaltenen irreduziblen Bestand-
teil entspricht; andernfalls der betr. Bestandteil. Andrerseits liefert der
Operator dann und nur dann 0, wenn im Schema zwei Ziffern, die im zu
Iy... k., oder zu Iy  o,0 o gehorenden Schema in einer Spalte
stehen, in die gleiche Zeile zu stehen kommen oder umgekehrt. Dafiir,
daB dies nicht der Fall ist, ist aber notwendig und hinreichend, da8 sich
das Schema auf die im Satz angegebene Art herstellen 1aBt. Folglich
liefert ein solches Schema und nur ein solches einen irreduziblen Be-
standteil.

Es bleibt noch zu zeigen, daB jeder Bestandteil nur einmal auftreten
kann. Dies folgt indes sofort daraus, daB man die eine Variabelnreihe in
der zu der Grundmatrix gehoérenden Basis nur mit je einer Variabeln-
reihe 1., 2., ..., n—1. Art zu symmetrisieren bzw. zu alternieren braucht,
um sdmtliche Bildungen zu erhalten. Damit ist der Satz bewiesen.

Im allgemeinen gibt es (?) verschiedene Moglichkeiten, die s Felder
hinzuzufiigen, und daher (?) Bestandteile. Die Anzahl reduziert sich
jedoch, wenn im Ausgangsschema mehrere Zeilen die gleiche Lange
besitzen; denn dann sind diejenigen Schemata zu streichen, in welchen
eine Zeile langer wiirde als die iiber ihr stehende.

Der Satz soll nunmehr in eine Formel gefaBt werden. Das Ausgangs-
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schema moge je k,, ein erweitertes Schema je I, t-zeilige Spalten besitzen

(=1, ..., n). Dann enthalt die r. Zeile von oben %k, bzw. J'l, Felder,
und es ergibt sich das Gleichungssystem t=r t=r

thZZkt‘*“ar (7‘=1,2,...,n)

t=r t=r
wobei von den Zahlen &, s den Wert 1 und n—s den Wert 0 besitzen.
Durch Subtraktion je zweier aufeinanderfolgender Gleichungen findet

man: L=k, + 6, — 8,y (r=1,...,n—1)
Daraus folgt:

rk;,...,kn_l . 110,...,0, 1(s),0,...,0 = l’..{',s"rk1+81—83,--.,kw.1+8n-1"'8n
Ojy=+++=05=1, 04, =---=20;,=0 .
Hierbei ist zu summieren iiber alle Verteilungen der Werte 1 und 0,
fir welche @ 4 5 5.,.20 (r=1,...,a—1)
Das heif3t falls k, =0

so sind nur diejenigen Verteilungen zu beriicksichtigen, in welchen
0, = 6r+1
Im Falle n = 2 gibt es nur eine einzige Kompositionsgrundregel, und
diese lautet
Iy-I'' =Ty + 1,
wobei das zweite Glied nur dann wegfallt, wenn k¢ = 0.
Fiir » = 3 lauten die beiden Grundregeln:
Liyky * 0 = Diyi 16y + Toy—1, k541 + Ty 11
Iy by Dop = Ty ig1 + Dyt k0—1+ D18, -

3. Satz (Ubertragungsprinzip) : Streicht man in einer Grundregel fiir den
Fall n > 2 jeweils den letzten Index sowie die Verteilungen, in denen 8,=1,
80 ergibt sich eine Qrund- oder triviale Regel fiir n-1 Variable.

Beweis: Durch die Streichung erhalt man, jenachdem

s<n—1: Fkl, covy g " Fo,...,o,x(,,,,o,.. o O(n—2) — 2 Pk1+81-82,--nkn—rf'Sn-z"'sn—l

1ye ¢ s ON—-1

0y =---=20d;; =1, Oigis ="'::65n—120

s=mn—1: I, . . tp,Lo,....0=Th,. by, -
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4. Satz (Dualitdtsprinzip) : Zu jeder Regel erhilt man eine duale, indem
man alle Indizes in umgekehrter Reihenfolge schreibt. Diese kann ber
geradem n und muf ber n=2 mit der urspringlichen zusammenfallen.

Beweis :

Fkl yo sy Bn—1 : FO,...,O,](s),o,...,o =8 Z Fk1+81—8g,...,kn_1+8n_1——8ﬂ
LreH»On

0y =++-=0;, =1, 0y, =-++=206;,=0 .

1 n

Vertauscht man auf der linken Seite die Reihenfolge der Indizes, so
kann man schreiben

. r e roo
Pﬁn—-l N I'Ov‘ <10, 1(n-g),0,...,0 7 8’ 2 ’ F’Cn-1+ n—dn-1,-. ., k1+82—81
Nye 901

Blmem8]=0, 8/ —-..=8=1.

1541

Laft man jeder Verteilung der 4, die Verteilung entsprechen

6 =1—9, (r=1,...,n)
so folgt
kr + 61-{;.1 - a; = kr + (1 ""'6r+1) —(1— 61‘)
= kr + 4, — 61‘+1
Fkﬂ»l v-wkl ) PO,.,.,D,I(n_s),O,...,O = 28 Pkn—-1+3n—1—5nv--:k1+81-8:
e o +101
O, =-o=0, =1, 8 =-=8 =0.

Damit ist das Dualitatsprinzip bewiesen.

5. Satz: Aus den Grundregeln und der trivialen Regel I, . Ty o=

Ly, .. &, W8Pt sich jede beliebige Kompositionsregel ableiten.

1res

Beweis: Man teilt jeder Matrix eine Ordnungszahl zu in folgender

Weise: I'y 4, , besitze eine hohere Ordnungszahl als I3 ..’ wenn
entweder

n—1 n—1

2thk,> 2 tk;

{1 t=1
oder

n—1 n—1 ,

2 th,= 2tk

t=1 t=1

kn—-—l = kn.f.l 3 s e kr+1 = r‘{l—l
k, <k (r=n—1, n—2,...,2) .
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Iy

Die niedrigste Ordnungszahl hat I, ,; es folgt I}, ,. Die weitere
Reihenfolge ist je nach der Grofle von n verschieden.
Von den Gliedern auf der rechten Seite der Gleichung

ka,---,kn-l ' FO,-n,O,](s),ov 8 2 Fk1+31—32, ykn—1+8n-1—08n
«-yOn

heiBle dasjenige das Hauptglied, welches die hochste Ordnungszahl hat.
Nun besitzt
n—1

"tk + 0, — O = Ttk + 28, — (0 — 19,

{=1 t=1
”—_
=tk, +8—nd,
t=1

den groBten Wert, wenn 0, =0

in diesem Fall &, , + 6, — 6, = k,—; + 0,

den kleinsten Wert, wenn §,_, = 0 usw.
Das Hauptglied ist also dadurch charakterisiert, daf3

612...268:1’68+1=".=6n:()
und lautet
Iy,,.. ket 1, kgtrsen s bny

Es besitzt offenbar auch eine hohere Ordnungszahl als I, . .
Da seine Indizes nicht negativ werden konnen, fallt es niemals weg.

Jede Matrix auller I,  , ist aber Hauptglied in mindestens einer
Grundregel. Sei etwa k, > 0, so folgt daraus

’ ’ - ’ ’ ’ .
1assey kn_l : kl,...,kn_l - 'I-'kl,.. kn_ { lcl, ks..l,ks—-l k8+1a kn_ FO,...,O,I(g),O,..

/ ’
—— 2 k1+51—32 8—1+88'—88+1s "n—1+8n~1—3n}
s ON

wobei der Strich am Summenzeichen anzeigt, dal sich die Summation
nicht iiber das Hauptglied erstreckt.

Samtliche Ausdriicke in der Klammer haben niedrigere Ordnungs-
zahlen als I',) ' . Wendet man auf sie den gleichen Prozel an und
setzt dieses Verfahren fort, so ist die Komposition nach einer endlichen
Anzahl von Schritten auf wiederholte Komposition von [} - ;.  mit
Grundmatrizen und der identischen Matrix zuriickgefiihrt. Dies ist im
allgemeinen auf verschiedene Arten moglich.

Damit ist diese Aufgabe gelost. Wie leicht ersichtlich, lassen sich das
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fiir die Grundregeln angegebene Ubertragungs- und Dualitatsprinzip auch
sinngemaf auf beliebige Kompositionsregeln anwenden.

Fiir n = 2 liefert das Verfahren die Rekursionsformel
Iy I =T, {Ty—y Iy — Iy}

mit deren Hilfe sich durch vollstandige Induktion die allgemeine Kompo-
sitionsregel beweisen laf3t. Diese lautet:

k=k: I'Tw=TITtp + Thsxr—2+ -+ Th—rrio+ Di—pr
Speziell :
Fl%zrzk + Ty +---+ 1 + Iy .

Fir » > 2 ist noch ein Spezialfall von besonderer Bedeutung:

6. Satz: Enthalten die zu den zu komponierenden Matrizen gehorigen
Schemata nur r < n— 1 Zeilen bzw. 1 Zeile, so konnen im Ergebnis nur
solche Bestandteile auftreten, deren Schemata hichstens r 41 Zeilen besitzen.

Der Beweis verlauft genau gleich wie der des ersten Teils der Grund-
regel. Wiirde namlich ein Schema mehr als -1 Zeilen besitzen, so
kdamen Ziffern, die urspriinglich in der gleichen Zeile standen, in die
gleiche Spalte, und das zugehorige Glied miiite verschwinden.

Die Bedingung, dafl das Schema nur r Zeilen enthélt, ist gleichwertig
damit, daB nur die ersten r Indizes von 0 verschieden sein kénnen. Somit
lautet der Satz, in die Formelsprache iibersetzt:

iy 0,0 Lt o= 2 ¢y, . tpiy0,....000, . 1r41,0,....0
lyseeslytq

r+1 r

Stl, = Sth, + k' .
t=1 t=1

§ 3. Anwendung auf die Invariantentheorie.

Es soll nun mit Hilfe dieser Satze eine neue Herleitung der Invarianten-
theorie m-drer Formen auf gruppentheoretischer Grundlage gegeben
werden. Fiir binire Formen hat Speiser?) diese Aufgabe bereits durch-
gefiihrt.

In der zu I, ,, . gehorigen Basis seien alle Reihen von Variabeln
1., ...,n—1. Art jeweils identifiziert. Versieht man jedes Glied mit
einem symbolischen Koeffizienten und bildet formal die Summe, so
erhilt man eine n-ire Form im verallgemeinerten Sinne. Die Zahlen

4) Die Theorie der Gruppen von endlicher Ordnung, 3. Aufl. 1937,
S. 230 ff.
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ky, ..., k,_;, d. h. die Dimensionen in den Variabeln 1.,..., n—1. Art
heiflen ihre Ordnungen.

Im allgemeinen enthélt eine solche Form nicht alle méglichen Varia-
belnprodukte von gegebenen Ordnungen, sondern nur eine gewisse Anzahl
linearer Aggregate von ihnen. Wohl aber kommen in der zu Ly, 0,150,....0
gehorenden ,,Grundform s. Art‘‘ alle Variabeln s. Art linear vor. Ebenso
enthilt die zu I o, , gehorige Form alle Produkte k. Ordnung der
Variabeln 1. Art; eine derartige ,,Form im speziellen Sinne‘“ entspricht

dem iiblichen Begriff der Form.

Wird auf die urspriinglichen Variabeln z,, ..., z, die Substitution
I, o,....o ausgeiibt, so erfahren die Variabelnaggregate der Form von den
Ordnungen k,, ..., k,, die Substitution I . . Ubt man gleich-

zeitig auf die Koeffizienten der Form die dazu adjungierte Substitution
Iy X ., aus, so bleibt die Form ungeéndert, d. h. sie multipliziert sich
bloB mit einem konstanten Faktor. Oder umgekehrt: Ubt man auf die
Formkoeffizienten I,  , ~ und auf die urspriinglichen Variabeln
I'i 7 . o aus, so bleibt die Form ungeandert.

Komponiert mannun I, ;. mit [}’ ;' und erhilt im Ergebnis
den Bestandteil I, , so besagt das folgendes: Ubt man auf die
Koeffizienten der Formen von den Ordnungen k,,. . .,k,_, bzw. k},...,k,_,
die Substitutionen I, .  bzw. I} ' aus, so gibt es eine Reihe
in den Koeffizienten beider Formen linearer Funktionen, welche dabei
die Transformation I'. , erfahren. Kombiniert man diese Glieder
mit den Variabelnaggregaten der Form von den Ordnungen I,..., 1, _,,
so erhialt man eine Funktion, die sich nicht &dndert, wenn man gleich-
zeitig auf die urspriinglichen Variabeln I'i 5 , ausiibt. I,  zeigb
also die Existenz einer simultanen bilinearen Komitante der beiden
Formen an.

Die Zahlen 7,,...,l,_; heien die Ordnungen der Komitante. Ins-
besondere liefert

I, ..o eine Kovariante

Iy ... o,; eine Kontravariante

I'y o, eine Invariante

d. h. eine Komitante, die auBBer den Koeffizienten nur Variable 1. bzw.
n—1. Art bzw. gar keine Variabeln enthilt.

Tritt I3 .., , c-mal auf, so gibt es ¢ linear unabhéngige Komitanten
dieser Art. Entsprechendes gilt natiirlich auch, wenn das Verfahren auf
mehr als zwei Formen ausgedehnt wird.
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7. Satz: Die Kompositionsregeln liefern unmittelbar die simultanen biline-
aren Komitanten zwerer und mattelbar die simultanen multilinearen Komi-
tanten mehrerer Formen.

Den folgenden Betrachtungen sollen der Einfachheit halber nur
Formen im iiblichen, speziellen Sinn zugrundegelegt werden. Diese wer-
den durch eine Ordnung allein charakterisiert. Besonders wichtig ist der

Fall, daB} alle Formen von gleicher Ordnung sind.
Da
Lio,....o € L1050
so ist auch
Fk,o,’.’f.,o < Fl,o,’.c.'fl,o
und folglich

R m
o™ 0= 2 ¢ 1pr:reo.™ ol 1,
lyyeinln—y

n—1

- n—1
2t < km, Y tl,=km(mod.n) .
=1

t=1 t

Wie erwahnt, lassen sich die Zahlenkoeffizienten mit Hilfe der Kompo-
sitionsregeln ohne weiteres berechnen. Speziell ist nach dem 6. Satz

Fkyov'%'so = 2 cl11l2,0y"'90;Fk120y-'-90 Fllslmoy--'vo
llsl2
m<n: Ito™ o= 2 € tmen0n.0: 120,00 Lhe oo tmgns0,.. 0
lh' . -,lm+1
m+1
t=1
Daraus folgt z. B., als Bedingung dafiir, daB I,  , als Bestandteil

auftreten kann: m=n.
Ferner: km= 0 (mod. n)

Von den simultanen multilinearen Komitanten von m Formen k. Ord-
nung gelangt man zu den Komitanten m. Grades in den Koeffizienten
einer einzigen Form k. Ordnung, indem man die entsprechenden Koeffi-
zienten der m Formen identifiziert. Dabei konnen keine neuen Komi-
tanten hinzukommen ; dagegen verschwinden einige identisch und kénnen
gestrichen werden. Die so entstehende Substitution werde mit (I 4™ )
bezeichnet. Es gilt also:

m — m
(Fk,o,...,o) - 2 cll"“)lﬂ—-l;(kauv-nvo) Fll)ﬂ"lﬂ—l
Uy e lpn—a

m m
clli---:lﬂ—-l ;(F’c ,0,...,0) é cllv'--vln-—l H Pk,o,...,o
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8. Satz: Die Komstanten m. Grades einer Form sind unter den simul-
tanen multilinearen Komatanten von m Formen enthalten.

9. Satz: Die n-dre Form k. Ordnung kann nur dann Invarianten m. Gra-
des besitzen, wenn

m=n, km= 0 (mod. n) .

Im Falle n = 2 sind alle Komitanten zugleich Kovarianten und Kontra-
varianten, darunter als Spezialfall die Invarianten. Es gilt die Formel:

Co.cr™ I _0
(Pz') zckm;([?:) Pkm""ckm_z;(F;n) ka_2+ . '+ 0’(115") Po km: 1 (mOd. 2)
Cr;rg) 11

10. Satz: Bindre Formen von gerader Ordnung besitzen nur Kovarianten
gerader Ordnung. Bet Formen ungerader Ordnung sind Grad und Ordnung
der Kovarianten zugleich gerade oder ungerade; insbesondere nur Inva-
rianten von geradem Grad maglich.

Die Zahlenkoeffizienten ¢, = ;  .(r. .M ¢ lassen sich mit den bisher
eingefiihrten Methoden nicht berechnen; vielmehr mufl man dazu die
Methode der Gewichte anwenden, die im néichsten Paragraphen kurz
entwickelt werden soll. Sind sie aber einmal bekannt, so macht auch die
Berechnung der simultanen Komitanten beliebigen Grades von mehreren
Formen keine Schwierigkeit; denn

(Fkl,o,?ﬁ,o) * (sz,o,..".‘,zo) toeee (Fk,,o,.fy.‘fo)

ergibt samtliche simultane Komitanten der Formen von den Ordnungen
ki, ks, ..., k,, deren Grad in den Koeffizienten der {. Form m, betragt.

§ 4. Die Komitanten von gegebenem Grad.

Die Aufgabe lautet jetzt, zu einer Form von gegebener Ordnung
Anzahl und Ordnungen der linear unabhéngigen Komitanten von gege-
benem Grad zu berechnen. Fiir bindre Formen wurde sie zuerst gelost
von Cayley®) und allgemein von Deruyts®).

Bei der speziellen Substitution

Ly —> 0171, Ly —> &gy « o oy Ty —> 0Ty

5) Second memoir upon quantics, Phil. Transact. London 1856, S. 101 ff.
%) Essai d’'une théorie générale des formes algébriques, 1891, S. 131 ff.
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bzw. der durch sie induzierten multipliziert sich jeder Koeffizient der
Form k. Ordnung mit einem Faktor

oo L " (t21 ve = k)
Die Zahlen y,, ¥5,...,%,., die ganz und nicht negativ sind, heien die
Gewichte des Koeffizienten. Zu vorgegebenen Gewichten gehért genau
ein Koeffizient.
Bildet man nun alle verschiedenen Koeffizientenprodukte m. Grades,
so besitzt analog jeder Term die n Gewichte

n
915925 -+« 9n (t‘-;'lgt:km)
Die Anzahl der Terme von den Gewichten g¢,, g,, ..., ¢, ist gleich der
Anzahl der verschiedenen Zerlegungen des Zahlenkomplexes g,, g, . . ., ¢,

in m Komplexe von n ganzen nicht negativen Zahlen, deren Summe %
betragt. Oder: sie ist gleich der Anzahl der Zerlegungen des Komplexes
g2 -9, iIn m Komplexe von n—1 ganzen nicht negativen Zahlen,
deren Summe & nicht iibersteigt. Diese Anzahl werde mit Z,
bezeichnet. Derartige Anzahlen heillen Partitionszahlen.

Andrerseits besitzt diezu I;, ;= gehorige Komitante eine bestimmte
Anzahl von Termen mit den Gewichten g¢,, ¢g,, ..., 9,. Diese Anzahl
heie eine Gewichtszahl und werde mit 2z, , ., .  bezeichnet.
Sie ist unabhéngig davon, in welcher Zerlegung die Komitante auftritt.
Fiir eine Invariante, Kovariante oder Kontravariante kann sie nicht
grofer als 1 werden.

Insgesamt miissen die Komitanten m. Grades soviel Glieder von gege-
benen Gewichten besitzen, als es Koeffizientenprodukte m. Grades von
diesen Gewichten gibt. Daraus folgt das Gleichungssystem:

e 9qﬂ(m|k)

m
. Z; zﬂlaﬂzy---yﬂnﬂh---:ln-l cll,...,ln_.‘;(l’k,o,...,O) - Zﬂz.---,ﬂn(‘mqk) *
1reo 09 ifi—1

Hierbei geniigt es, die Gleichungen zu beriicksichtigen, in denen
G1=292= " =G>

da die iibrigen nichts neues mehr bringen. Dann besitzt das System
soviel Gleichungen, als es verschiedene Verteilungen der Gewichte oder
verschiedene Zerlegungen der Zahl km in n ganze nicht negative Sum-
manden gibt. Dies ist aber die Anzahl der moglichen Young’schen
Schemata und somit der in Betracht kommenden Komitanten. Folglich
liegen ebensoviel Gleichungen wie Unbekannte vor.
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Ferner ist, wie man sich leicht iiberlegt:

LB PR MRS PR M 1, wenn ll =g1—F25 o) ln-l =G@n-1"—9n

=0 , wenn Fll,---,ln

_, von niedrigerer Ordnungszahl

zﬂhﬂza- codn sl oo ln—

a']'s er"ﬂa seensIn—1—0n

Demnach hat das Gleichungssystem bei zweckmaBiger Anordnung
Diagonalform und die Determinante 1. Also ist es eindeutig und durch
ganze Zahlen auflosbar, und die linear unabhingigen Komitanten
m. Grades der Form %. Ordnung lassen sich bestimmen.

Bei der praktischen Berechnung wirken die Gewichtszahlen storend.
Es gelingt jedoch, sie durch einen Kunstgriff auszuschalten, indem man
in geeigneter Weise mehrere Gleichungen zusammenfaBt. Zu diesem
Zweck definiert man:

4 291,021 0n 3 b1y sl = 2 + 29,46y, 00—1+¢5, ., on—(—1)+eq s lye ey Ina
81,‘...,€”

wobei iiber alle Verteilungen der Werte 0, 1, ..., n—1 auf die Zahlen
£, &3, - . ., £, Summiert wird und das Vorzeichen jenachdem positiv oder
negativ ist, ob die Permutation

81 82 s s sn
0O 1...n—1

gerade oder ungerade ist. Die Bildung ist analog der Determinante

g1 g+ 1 vee g1t (R—1)
gs—1 g cer go+ (m—2)
gn“(n'—'l) 9n — (n—'—2) 9n

Ebenso wie eine Determinante mit zwei gleichen Zeilen verschwindet,
so wird auch
4 201, 030- st 3 Byeenylneg = 0 5 WEND gy == Gy g — 1.

Es soll nun ein Hilfssatz bewiesen werden.
Voraussetzung : a) 120 = ... =g, =0
b) 5, =0 (¢t=1,...,n—1)

n—1 n

c) Xitl, =2Xg,
t=1 t=1
n—1 n

d) Jitl,= g, (mod.n) .
t==1 t=1
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Behauptung :

Azh,h’" 1 11391""92,...,lﬂ_l—_—g"_l_gn %

v gn i lige. ol =
'yn 1 n-1 0 Sonst

Beweis: Zunéchst ist zu zeigen, dall der Satz firl, = --- =1,_, =0
giltig ist. Fiir e, = 0,6, =1, ..., ¢, =n—1

wird 2g1+€1, 05— 1484,...,gn—(n—1)+€n; 0,...,0 = Zg1,93,...,9n;0,...,0

1 g1 =@y =-"=—={¢n .
0 sonst

Fiir andere Werte der ¢, gibt es ein r, derart, dal

Ep > €rn1

da andrerseits Jr = Griq
8o ist gr— (r—1)+ &> gy — 7 + &y

u Ry +ese s r—(r—1)FEp, Ort1—T+Er41,0 o, On—(n—1)+ 03 0,...,0 0
Also

A ANl 0=g1—02;-0., 0=¢g4 11—,
9108003 0,...,0 7 4 sonst
. i i R 14 / .
Die Behauptung sei nun bewiesen fiir ;,...,1,_,,wenn I}, ,...,; eine

niedrigere Ordnungszahl besitzt als I
wobei I, > 0.

I,

lny > Zu beweisen fir [;,...,1, ;,

l!"':lﬂ—l = Pllv-~-rl&—1’l8—‘1118+1v°'vl‘n—l ) PO,...,O, 1(3),0,...,0

/
_ 2 F11+3 1—8250 ¢ 0y lg—14+85—8g+11: - o2 In-1+On41—8n °
81+:-430n

Aus dieser Grundregel folgt leicht:

:20

+
8

zﬂla g29+ 0200 ll [ -'l‘n—l 1""'11"'1 08_1’ g8+1y-+y0n ;lb'- '128—1’l8""1a ls+1’- '-)lﬂ—-l

!/
2 zgl"'slv--’01’&"873;lh-n’ls"'l’---:lﬂ—l
JERERERY (]

- 2 zﬂx vooos O s i +81=825e oy Ig~14+85-88+1r0 + +5 In—-1+8n-1-0n
$1y0.4,0n

a4z 1==Azg

0119220280 3 1150005 lp 1=Liee s 98—1, Gg+1se e er O 5 l1ye v oo lgm1, Is—1, lgt 150 - o Ina

!
+ 2 4 Bg1=81ree s On—0n 3ty ey ls—=1sn s In-1
811---s sﬂ

/
_..-.8 2 5 Vi zgl'“,,gn;ll+81—82;--nlﬂ"1+8r83+1,u..ln—1+8n—1-8n
1yeees N
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Fir die Differenzen auf der rechten Seite ist nach Annahme der Satz
bewiesen, wenn sie der Voraussetzung geniigen. Dies ist sicher der Fall
in bezug auf die Bedingungen c) und d). Ein Glied, das b) nicht erfiillt,
verschwindet offenbar; das gleiche gilt, wenn a) nicht befriedigt:

gr — ar < Iry1 — 6r+1
denn da  ¢,=g,,

soist g, — 4, = (gr+1 - ar+1) —1.

Somit :
1 L=(g1)—(ger1-1) (8<8) ;1-1=(9~1)Gss1
b=0:-9+1(>8) ;9,1 =ge11

u—_

A Zﬂlvﬂm--u(m ;ll goue l/n_l

0 sonst
s 1 li=1=(90)—(gsr1=05+1) 5 Li=(9:=0,) —(9¢11—0¢+1) (E£8)
+ 2 o r"ar ggﬂ-l_ar-{»l ;gn—an =0
8"""84 0 sonst
1 l~14-00,1=9;Fet1; l;+00,01=9 G 41 (t+3)
— 2 li-146,0,41 20 ; 1, +0,0;41 = 0(t%9)
Bu--ndnf g sonst

Samtliche Ungleichungs-Bedingungen sind aber schon in den Glei-
chungs-Bedingungen enthalten. So folgt aus

n—1 n n
Ztlt”—'8= gt“ngn"—zat—}'nan
t=1 t=1 t=1
n n—1
2 9. — 2t
_y =l . =zo0.
g — 9, - =

Folglich heben sich die beiden Summen weg, und es ergibt sich:

1 Li=¢,— ¢ (t=1,...,m—1)

Az i1 lpy =
T11 02000900 5 l19e e oy inay 0 sonst

Damit ist der Hilfssatz durch vollstandige Induktion bewiesen. Wendet
man ihn an auf das System der Gewichtsgleichungen und bildet in ana-
loger Weise
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AZy,,...;¢ompy = 2 £ Zg—14e,...,gn—(n—1)+2q (mk)
£2y.009En

so folgt:

m —
cﬂl'—aﬁv' e  In-1—0n; (Fk,ﬂ,. . -90) - A ZUQ’- oy dn (myk)

oder:
m o—
Clly- . 'flﬂ—l H (Fkvov- . -,0) — A Zﬂzy- . "Vﬁ(m:k)

n—1
gr — =1 + 2 lt .
n t=r

Das ist die Formel von Deruyts. Sie besagt:

11, Satz: Amnzahl und Ordnungen der linear unabhingigen Komitanten
von gegebenem Grad zu einer Form von gegebener Ordnung lassen sich rein
mat Hilfe der Partitionszahlen berechnen.

Im Falle n — 3 lautet die Formel :

Cly 15 (Tn0) = Zgy gy m k) T Lgyi1,g5—20my + Lgg—1, g3—1(m, k)

— Zg2+1s 93""1 (m$ k) - 02_'1! g3 (mr k) - Z027 03—2("‘1‘7)
o En—lbth o Ea—h—2h
2 3 ’ 3 3

Fiir » = 2 erhalt man die Formel von Cayley:

km—1
cl;(Pw]:) = Zg(m,k) '—Zg—um,k) > g ""‘"“"2““" ‘

Die Partitionszahl Z,,, ;) stellt hier einfach die Anzahl der Zerle-
gungen der Zahl ¢ in m Summanden dar, welche ganzzahlig, nicht negativ
und nicht gréBer als k sind. Sie besitzt einige besondere Eigenschaften,
die fiir die Theorie der bindren Formen Bedeutung haben.

So ist Zyim0 = Zgix,m
Beweis: Sei g=8+ -+ +8,(0=8,=k)
eine der Zerlegungen 1. Art. Dann schreibt man
k
=14 euuvns 4+ 14+0+4.--4+0
Sp=1-+ - 41404 ccv0....- + 0
g =8 4 e +s,’c(0§,s£§_m)
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und erhélt durch Summation von oben nach unten eine Zerlegung 2. Art.
Die Zuordnung zwischen den beiden Zerlegungen ist eineindeutig.

Daraus folgt: ¢, /% = ¢. 0k, .

12. Satz (Hermaite’sches Reziprozititsgesetz) : Jeder Kovariante m. Grades

der bindren Form k. Ordnung entspricht eine Kovariante gleicher Ordnung
und k. Grades der Form m. Ordnung.

Weiterhin lassen sich die Zerlegungen danach einteilen, ob die groBt-
moglichste Zahl k als Summand tatsédchlich vorkommt oder nicht:

Zympy =Zgmi-1y T Ly rm-1p
Ebenso
Zg—l(m,k) =Z —1(m, k—1) + Zg-—k—l(m—l,k) .
Nun sei _
km—1
g= D)
sodaB
Zc(m,k) ""Zo—l(m,k)z Cr; (I )
Ferner
Cik—1) m—2g ; (T'g"2) < (b—1)m+1
— C(k—1) m— 2 ((k=1) m—g+1) ; (Tn)
Clm s (M) >
== 0 = m—1
— m—~l-—2;(1’1:?-x) <
SchlieBlich
0 <
Z —A = g k
g~k(m-1,k) g—k-1(m-1,k)
Crim—1)—2(g—k); (L% ) >
0 >
aul PP my L k(m—2)
HE; (g ) <
Also
Clem; Ty o >
iy = 0 l=m—1)+ I k(m—2)
— Cpmim2 (T < Cur;ay ) =
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Ebenso ist eine Einteilung der Zerlegungen moglich danach, ob 0 als
Summand auftritt oder nicht:

Zg(m,k) = Zy(m—l,k) = Zg"m(m,k-l)

Das gleiche Verfahren liefert die Formel

Ck; (') > 0 >
—Cri—2; (F"Z’l) < Crim; (Fkinl) =

Speziell folgt daraus, dafl alle Kovarianten m. Grades, deren Ordnung
> (k — 2)m ist, Produkte von Kovarianten m—1. Grades mit der Form
sind.

Berechnet man aus der 1. Formel ¢, ,,,, ™, und setzt diesen Wert in
die 2. Formel ein, so ergibt sich als Resultat:

0 > Cl_k;(p”;“l) >
G, ) = I (k—2)ym)+ 0 l=k—1
Clyom;(I) = G2 ) <
14 0 >
— I (k—2)(m—2)—+4

Clismik; I ) =

Diese Rekursionsformel erlaubt es, ohne Zuhilfenahme der Partitions-
zahlen die Kovarianten m. Grades der binidren Form k. Ordnung anzu-
geben, wenn die Kovarianten m—1. Grades der Form bekannt sind. Es
gibt aber nur eine Kovariante 1. Grades, namlich die Form selbst.

13. Satz: Fir jede bindre Form lassen sich Anzahl und Ordnung der
linear unabhingigen Kovarianten vom Grade 1, 2, 3,... ohne weiteres suk-
zesstve anschreiben.

Damit sei diese Arbeit abgeschlossen. Eine weitere Aufgabe bestiinde
darin, die Methode der Kompositionsregeln auf die Fragen anzuwenden,
die mit der Endlichkeit des Komitantensystems in Zusammenhang
stehen. Hier geniige es, einige schone Sitze der Invariantentheorie auf
sehr einfache Art neu abgeleitet zu haben.

(Eingegangen den 25. Januar 1939.)
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