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Zur Einheitentheorie der einfachen Algebren
Von M. Eichler, Gôttingen

Einleitung

Noch vor wenigen Jahren befand sich die Théorie der einfachen
Algebren in einem Zustand rapider Weiterentwicklung. Nachdem die
meisten Problème, die dieser Entwicklung Richtung und Kraft gaben,
gelôst wurden, scheint heute auf dem genannten Gebiet eine gewisse Ruhe
eingetreten zu sein. Allein die Einheitentheorie ist noch immer in keiner
Hinsicht abgerundet. Die folgenden Seiten enthalten mm einen Versuch,
an der SchlieBung dieser Lucke zu arbeiten. Da schon beim Aufsuchen
sinnvoller Problemstellungen unbekannter Boden betreten werden muB,
kann zur Einleitung nur wenig uber den Inhalt dieser Arbeit gesagt
werden1). Von der Ûberzeugung ausgehend, daB die Begriffswelt der
Zahlengeometrie die geeignete Grundlage fur den Aufbau eines tragenden
Geriistes fur die hyperkomplexe Einheitentheorie abgibt, beschàftige ich
mieh hier mit Darstellungen der Einheitengruppen durch affine Abbil-
dungen eines Raumes auf sich. In dieser geometrischen Gestalt trat sie

erstmalig in der analytischen Zahlentheorie2) auf und fiihrte auf geome-
trische Untersuchungen, die bis heute noch nicht in befriedigender Weise

abgeschlossen werden konnten. Die Hauptaufgabe der Einheitentheorie
sehe ich nun in der Auffindung von Invarianten dieser Abbildungs-
gruppen. Im Mittelpunkt der folgenden Seiten wird eine topologische
Invariante stehen, die im Falle eines algebraischen Zahlkôrpers mit der
Erzeugendenanzahl der Einheitengruppe identisch ist, und der Satz, der
dièse Invariante beschreibt, darf mit manchem Recht als die sinngemâBe
Ûbertragung des Dirichletschen Einheitensatzes auf einfache Algebren
bezeichnet werden.

Zur Orientierung sei noch bemerkt: Der § 1 hat mit der Einheitentheorie

selber noch nichts zu tun, er enthâlt einige Hilfssâtze liber gewisse
mit einfachen Algebren zusammenhàngende kontinuierliche Gruppen.
In § 2 wird die Einheitentheorie noch einmal soweit verfolgt, wie es ihre

x) Zwei frûhere Verôffentlichungen ùber die Einheitentheorie einfacher Algebren
(Eichler, a. a. O.3) und Neuere Ergebnisse der Théorie der einfachen Algebren, Jahresber.
Deutsche Math.-Verein. 47 (1937), S. 198, Nrn. 14—17, sollen, um das Verstândnis der
vorliegenden Arbeit zu erleichtern, im wesentlichen nicht vorausgesetzt werden, obwohl
ich in ihnen, besonders in der zuletzt genannten, die hier zugrunde gelegte Problem-
stellung bereits vorgezeichnet habe. AuBerdem ist ein Irrtum zu berichtigen.

2) K.Hey, Analytische Zahlentheorie in Systemen hyperkomplexei
Zahlen. Diss. Hamburg 1929.
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Anwendung in der analytischen Zahlentheorie erfordert, frûhere Behand-
lungen dièses Themas3) beschrânkten sich auf nullteilerfreie Algebren,
waren auch methodisch nicht ganz befriedigend. In § 3 wird der Haupt-
satz vorbereitet und fornmliert (Nr. 9), in § 4 wird er bewiesen. Der § 5

schlieBlich enthâlt Ausblicke auf eine Ausgestaltung der Einheiten-
theorie in der hier eingeschlagenen Richtung, darunter speziell eine Ver-
allgemeinerung des Hauptsatzes und die Behandlung gewisser Quater-
nionenalgebren.

§ 1. Yorbereitende Betrachtungen

2. A sei eine einfache Algebra ûber dem rationalen Zahlkôrper h und
il9 t2, eine Basis von A/le. Die Norm n(Ç) der allgemeinen Zahl

S^ZtiXi (1)

aus A ist ein Polynom in den Koordinaten xi von | mit rationalen
Koeffizienten, sie hat daher fur Koordinaten aus einem beliebigen
Zahlkôrper einen Sinn. Der Gegenstand der nun folgenden vorbereitenden
Betrachtungen ist die Grappe m aller Zahlen (1) mit beliebigen reellen
Koordinaten und mit der Norm 1. m ist eine kontinuierliche Grappe,
deren gruppentheoretische und topologische Eigenschaften zu beschreiben
sind. Die Einfachheit in der Ausdrucksweise erfordert es, die Zahlen (1)
der Algebra A neben ihrer ursprunglichen Bedeutung auch als Punkte mit
den Koordinaten xt eines affinen Raumes aufzufassen, der dann konse-
quenterweise ebenfalls mit A zu bezeichnen ist.

Es môgen R, K, Q den Kôrper der reellen Zahlen, den Kôrper der
komplexen Zahlen und das System der Hamiltonschen Quaternionen
bedeuten. Z sei das Zentrum von A; der Grad von A\Z sei n. Es gebe

ri + r3 réelle und 2r2 imaginâre zu Z konjugierte Zahlkôrper, A \Z sei an r3
(reellen) unendlichen Primstellen verzweigt (r3 ist bekanntlich hôchstens
dann ^0, wenn n gerade ist). Dann zerfâllt das direkte Produkt AxR
folgendermaBen in eine direkte Summe:

AxR At-\

wo Al9 •••, Ar± voile Matrixalgebren vom Grade n uber R, Ari+1,'-,
voile Matrixalgebren vom Grade n ûber K und Ari+Vi+1, • • •,

Ari+r2+rz voile Matrixalgebren vom Grade— ûberQ sind. Es môgenferner

8) K.Hey, a. a. O.2). M. Eichler, Ûber die Einheiten der Divisionsalgebren.
Math. Ann. 114 (1937), S. 635 (Sâtze 4 und 5).
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bezeichnen: m^ die Gruppe aller Zahlen aus At mit der Norm 1 bezûglich
J?, d irgendwelche Zahlen aus dem Zentrum von At und z die Gruppe
aller Zahlen

mit n{£)— II n(f<) 1 (2)

Dann ist m das folgende direkte Produkt:

m mlX x mrrHVKsx z (3)

und z ist das Zentrum von m.

3. Fur i > rx ist n(Q > 0. Es sei z+ die Gruppe aller Zahlen der Gestalt
(2) mit n(£*) > 0 fur^alle i. Ferner sei

m+ mxx x mrrHVH.8x z+ (4)
Es gilt offenbar

(m: m+) 2r>-1. (5)

m+ ist eine zusammenhangende Gruppe, und zwar die grôfite zusammenhangende

Untergruppe von m. Denn man verifiziert miihelos: 1. die m^ und
z+ sind zusammenhangende Gruppen; 2. dafûr, daB sich zwei in m

gelegene Punkte ju, E[ii und // £[/,[ mit jni und ii\ in A{ durch eine
stetige und ganz in m verlaufende Kurve verbinden lassen, ist

> 0 fur aile i

notwendig und hinreichend.
Die m^ brauchen im Gegensatz zu einer fruherx) ausgesprochenen

Behauptung nicht einfach zusammenhângend zu sein. Fur i ^rx
lassen sie sich als die Mannigfaltigkeit der n-dimensionalen orientierten
Parallelotope mit dem Volumen 1 und einer Spitze im Nullpunkt im
Euklidischen Raume deuten ; m€ ist dann das topologische Produkt
o^ ai} wobei o^ die Gruppenmannigfaltigkeit der n-dimensionalen
euklidischen Drehungen und at- die Mannigfaltigkeit der 7i-dimensionalen
orientierten Parallelotope mit dem Volumen 1 ohne Rucksicht auf die

Lage ist. Entsprechendes gilt fur i>rl9 nur mu8 jetzt ot- die unitâre

Gruppe mit Koeffizienten aus K bzw. Q in n bzw. — Dimensionen sein.

m+ ist wegen (4) das topologische Produkt der m^ und i+ ; die at- und z+

sind einfach zusammenhângend.
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§ 2. Die Einheitengruppen als diskontinuierliche Abbildungsgruppen

4. Zu einer Einheit e gehôrt eindeutig eine solche affine Abbildung

<=Z«®x* (6)
von A auf sich, daB

le (E hxi)£ £hxi

ist. Wir wollen uns im folgenden auf die Betrachtung der Einheiten mit der
Norm + 1 beschrânken, diesen entsprechen solche affine Abbildungen (6),
welche m fest lassen. Das Ziel dièses Paragraphen ist es, die Existenz
eines stetig berandeten Diskontinuitâtsbereiehes d der Gruppe e der
Abbildungen (6) in m zu beweisen, wenn e aile Einheiten (mit der Norm
+ 1) aus einer Maximalordnung I von A durchlâuft. Ich liefere diesen
Existenznachweis auf zwei Wegen. Der erste geht auf die Dissertation
von K. Hey2) zuruck und ist zweifellos der einfachere; er ist jedoch fur
nullteilerhaltige Algebren nicht durchfuhrbar. Der zweite stûtzt sich auf
einen tiefliegenden Satz von Minkowski.

Der erste Existenznachweis fur Diskontinuitàtsbereiche d fur die
Gruppe e in m geht von den beiden folgenden Hilfssàtzen aus3) :

I. Ist B irgend ein endlicher Bereich in m (d. h haben aile Punkte von B

beschrànkte Koordinaten), so gibt es hôchstens endlich viele Einheiten e in I

von der Art, dafi mit einer Zahl p aus B auch (Sein B liegt.

II. Enthâlt A keine Nullteiler, so gibt es einen endlichen Bereich A m m,

so da/3 fur jede Zahl £ aus m mindestens eine Einheit e in I existiert, fur
welche £e~x in A liegt.

Dieser zweite Hilfssatz gilt nicht, sobald A Nullteiler enthâlt.

Es sei A ein stetig berandeter Bereich von der in II. beschriebenen Art.
Der Bereich, dessen Punkte aus denen von A durch die Substitution (6)
hervorgehen, werde mit Ae bezeichnet. Nachl.gibt es nur endlich viele
Einheiten sly e8 von der Art, daB A mit Ae{ Punkte gemeinsam hat.
Ich setze nun

A1== A — A^Afii-f" A <^ Aetr\ Ae\ —^+ • • • ;

in diesem Ausdruck kônnen hôchstens endlich viele Glieder wirklich auf-
treten, denn nur dann kann A ^ ••• r% Ae{ ^ 0 sein, wenn e{ unter den

elt ...,es vorkommt. Folglich ist At auch ein stetig berandeter und
endlicher Bereich.
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Nun ist erstens

Ai ^ Ai H 0

und zweitens

Ai + A1e1 + A1e21 + -- A + A et + A e\ + •••

Beide Gleichungen lassen sich unmittelbar durch Anwendung der
bekannten Reehengesetze der mengentheoretischen Addition, Sub-
traktion und Durchschnittsbildung (dièse entspricht der Multiplikation),
ohne Zuruckgreifen auf die Anschauung, verifizieren. Aus der zweiten
folgt

JT AiC 2J Ae m
e e

und wegen der ersten kann A1 hochstens noch mit A1e2, Axes Punkte
gemeinsam haben. Der gleiehe Prozefi wird darauf auf den Bereich Ax
und die Einheit s2 angewendet, und man erhalt einen Bereich A2, der
stetig berandet ist, die Relation

2J A2e m
e

erfullt und hochstens mit A2e3, A2es Punkte gemeinsam hat. Hochstens

endlich viele Operationen dieser Art fuhren schliefilich zu einem
endlichen und stetig berandeten Bereich d mit den beiden Eigenschaften :

1. fur jedes e aus I ist d ^ d e 0. 2. Uô e m. d ist also ein stetig
berandeter Diskontinuitatsbereich von e in m, denn fur jeden Punkt f
aus m gibt es genau eine Einheit e, so daB le"1 in d liegt.

5. Wenn A nicht nullteilerfrei ist, kann der Existenzbeweis fur d auch
folgendermaBen gefuhrt werden: Es sei m der Rang von Ajk. Die Zahlen
aus A werden dann durch Matrizen m-ten Grades dargestellt, und zwar
speziell so, daB die Zahlen der vorgelegten Maximalordnung I durch
ganzzahlige Matrizen dargestellt werden ; die Einheiten aus I erscheinen
dann als ganzzahlige unimodulare Matrizen.

Ist em die Gruppe aller ganzzahligen unimodularen Substitutionen
m-ten Grades, so existiert nach Minkowski4) ein durch endlich viele
Ebenen begrenzter Diskontinuitatsbereich rm fur em im Raume 8m der
Koeffizienten der definiten quadratischen Formen. Nun entsteht 8m aus
dem Raume Am aller m-reihigen Matrizen so : ist | eine beliebige m-reihige
Matrix und |; ihre transponierte, so ist cp £'£ die Koeffizientenmatrix
einer definiten quadratischen Form, und umgekehrt laBt sich jede
Koeffizientenmatrix <p in dieser Gestalt erhalten. Es sei d^ der Bereich in

4) Diskontinuitatsbereiche fur anthmetische Aquivalenz, J. reine angew. Math. 129
Ges. Abh. II, Leipzig und Berlin 1911, S. 53.
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Am, der bei der Abbildung Am->Sm auf rm abgebildet wird. Er wird von
den Mannigfaltigkeiten begrenzt, deren Bilder in Sm die Grenzebenen
von rm sind, wegen des Bildungsgesetzes von Sm sind erstere Flàchen
zweiten Grades; d^ ist mithin stetig berandet. Zu jeder Zahl £ aus Am
gibt es jetzt genau ein Einheitenpaar s und — e, so dafi le*1 und —f e"1

in d^ liegen. Unter Benutzung dieser Tatsache zeigt man leicht, da8 es

einen stetig berandeten Diskontinuitâtsbereich dw von em in Am inner-
halb von d^ gibt. Nun ist aber A ein linearer Teilraum von Am und
A ^ dTO ist ein Diskontinuitâtsbereich von e A ^ em ; er wird eben-
falls durch endlich viele Flâchen zweiten Grades begrenzt und ist daher
stetig berandet. Schliefiïich ist d m ^ dm m ^ (A ^ 6m) ein stetig
berandeter Diskontinuitâtsbereich von e in m.

6. Fur spâter wichtig ist noch die folgende Feststellung, die aus beiden
Beweisen fur die Existenz von d fast unmittelbar hervorgeht: d stôfit
langs seines Randes nur an endlich viele andere ,,mit d âquivalente" Dis-
kontinuitâtsbereiche de an.

§ 3. Die Einheitengruppen als Fundamentalgruppen topologischer

Mannigfaltigkeiten

7. In 4 wurde die Grappe der Abbildungen (6), die zu Einheiten aus
einer Maximalordnung I von A gehôren, mit e bezeichnet; von jetzt ab
soll die Gruppe dieser Einheiten selbst mit e bezeichnet werden. MiB-
verstândnisse sind nicht zu befurchten, da von jetzt ab auf die Koordi-
natendarstellung (1) der Zahlen von A kaum mehr zuriickgegrifïen zu
werden braucht.

Nicht die ganze Gruppe e ist der Gegenstand der nun folgenden
Betrachtungen, sondern irgend eine Untergruppe é von e mit den drei
Eigenschaften: 1. Der Index (e : é) ist endlich. 2. é enthalt keine Einheiten
von endlicher Ordnung. 3. é C m+.

Unter Umstânden kann bereits der Durchschnitt

e+ e r, m+ (7)

dièse Eigenschaften haben. Der Index von e+ in e ist wegen (5) eine
Potenz von 2:

(e : e+) 28 mit 0 ^ s ^ rt — 1 (8)

und zwar lâBt sich dieser Index bereits im Zentrum Z von A berechnen,
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ist nâmlich ez die Gruppe der Einheiten aus Z, die an den unendlichen
Verzweigungsprimstellen von AjZ positiv sind, so ist5)

(e : e+) (êz : e ~ z+) (9)

Wenn aber die Gruppe (7) noch Einheiten von endlicher Ordnung
enthàlt, so kann man eine Untergruppe é mit den geforderten Eigen-
schaften folgendermaBen finden : Die als Ordnungen von Elementen von
Einheiten aus A auftretenden Zahlen haben ein (endliches) gemeinsames
Vielfaches e. Ist p ein nicht in 2 e aufgehendes Primideal aus Z, so haben
aile Einheiten e aus I mit

e 1 (mod I p) (10)

unendliche Ordnung. Denn wâre ee 1, e ^ 1, so wàre

1 ^ I *¦* I I ° I A v J

doch hieraus und aus (10) wiirde die unrichtige Kongruenz e 0 (mod p)

folgen. Daraus, daB p ungerade sein sollte, ergibt sich ferner : die Gruppe
e(p) aller Einheiten mit der Eigenschaft (10) aus I ist in m+ enthalten.
SchlieBlich ist der Index (e : e(p)) endlich, denn die Nebengruppen von
e(p) in e verteilen sich auf die endlich vielen Restklassen von Einheiten
aus e mod I p. (Im Falle rx r2 0, n 2 liegt eine total definite
Quaternionenalgebra vor. Dann sind aile maximalen kommutativen
Unterkôrper von A total imaginàre Erweiterungen zweiten Grades des

total reellen Zahlkôrpers Z. Unter Benutzung des Dirichletschen Ein-
heitensatzes bestâtigt man dann leicht nacheinander: 1. Aile Einheiten
aus e(p) liegen in Z. 2. Der Index (e o Z : e(p)) ist endlich. 3. Der
Index (e : e <^Z) ist endlich6)). Sonst aber, wenn nicht rx — r2 0, n— 2

ist, lâBt sich der Index (e : e(p)) leicht direkt berechnen5) ; ich gebe das

Résultat fur den Fall an, wo p in der Diskriminante von A\Z nicht
aufgeht: Ist ez die Gruppe aller Einheiten aus Z und ép die Gruppe
der Einheiten aus Z mit der Eigenschaft (10), und ist schlieBlich

(ez:êz) q-l
5) Die Rechnung lâBt sich durchfûhren auf Grund von Satz 5 in: M. Eichler, A lige-

meine Kongruenzklasseneinteilungen, J. reine angew. Math. 179 (1938), S. 227.

e) Ein Beweis dieser Tatsache findet sich auch in: M. Eichler, Ûber die Idéal-
klassenzahl total definitiver Quaternionenalgebren, Math.Z.43 (1937), S. 102.
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8. Fur die in 7 genannten Gruppen é an Stelle von e bleiben, wegen
der Endlichkeit des Index (e : é), die Ergebnisse des § 2 ûber die Existenz
eines Diskontinuitàtsbereiches von e in m wôrtlich in Geltung. Jetzt
greifen gruppentheoretische und geometrische Vorstellungen in charak-
teristischer Weise ineinander: die Formeln aus 4:

2J d e m d^de O,
£

welche einen Diskontinuitâtsbereich d charakterisieren, lassen sich noch
anders schreiben: Durchlaufen à und à' die Gesamtheit aller als Gruppen-
elemente aufgefaBten Punkte aus d, so làBt sich der Inhalt beider Formeln
auch so ausdrûcken:

Uô e m ô e ^ ô' e (fur ô ^ ô')

Dièse Formeln geben aber die Zerlegung von m in linksseitige Neben-

gruppen nach e wieder. d ist also gleichzeitig ein Reprâsentantensystem
fur die linksseitigen Nebengruppen von e in m. Wir wollen kurz

de m

sehreiben.

Wegen der Endlichkeit der Indizes (5) und (e : é) kann man jetzt die
Ergebnisse des § 2 gleich allgemeiner so ausdrûcken:

Es gibt ein stetig begrenztes Reprâsentantensystem d7) der linksseitigen
Nebengruppen von é in m+ ; d hat dieselbe Dimension wie m+ ; d stôfit lângs
seines Bandes nur an endlich vide âquivalente Diskontinuitâtsbereiche d e an.

Wenn d und de lângs einer ïtandmannigfaltigkeit fe aneinander an-
stoBen, so identifiziere fe mit \ee~x oder ,,biege d so zusammen", daB

fc und iee~1 aufeinander liegen. Durch diesen in der Topologie ublichen
ProzeB der Rânderzuordnung entsteht eine abgeschlossene Mannig-
faltigkeit D; sie hat folgende Eigenschaften:

1. m+ ist eine ÎJberlagerung von D, und zwar eine unverzweigte. Es gibt
nàmlich keinen Punkt ô in d, der bei Multiplikation mit einer von 1 ver-
schiedenen Einheit e aus é fest bleibt, denn aus n(ô) 1 und ôe ô

folgt 6=1.
2. m+ ist eine regulâre Ûberlagerung von D, denn die Ûberlagerungswege

auf m+ eines geschlossenen Weges auf D sind entweder aile o£Een oder
aile geschlossen.

3. Folglich ist é die Monodromiegruppe der Ûberlagerung m+/D.

7) Eine Verwechslung mit dem frûher ebenfalls mit d bezeichneten Diskontinuitàts-
bereich von e in m ist ausgesehlossen, da dieser nieht mehr vorkommen wird.
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Hieraus folgt schlieBlieh, weil d nur an endlich viele àquivalente
Bereiehe anstôBt, daB é durch endlich viele Einheiten erzeugt werden
kann. Das ergibt wegen der Endlichkeit des Index (e : é) : e besitzt ein
endliches Erzeugendensystem.

4. D enthàlt nicht mehr, wie d, irgendwelche Willkiirlichkeiten,
sondern ist durch m+ und é eindeutig bestimmt. Ich fuhre deshalb die
folgende Bezeichnung ein:

D m+/é8)

Wegen der Beziehung von D zu der Zerlegung von m+ in linksseitige
Nebengruppen nach é kann man D als das System der linksseitigen
Nebengruppen von é in m+ bezeichnen. D ist eine (homogène) Mannig-
faltigkeit.

9, Eine vollstândige Beschreibung von D kommt nach 8 einer voll-
stândigen Beschreibung von é gleieh, das letztere ist das Ziel der Ein-
heitentheorie ; leider liegt aber die Lôsung der ersteren Aufgabe noch
recht fern. Eine wichtige topologische Invariante von D ist die folgender-
maBen definierte Zahl r: D làBt sich stetig auf eine Mannigfaltigkeit
R der Dimension r abbilden, wobei é in deren Fundamentalgruppe ùber-
geht, aber nicht auf eine Mannigfaltigkeit von kleinerer Dimension.
Der Hauptsatz dieser Arbeit besteht in einer Beschreibung von R und r ;

zu seiner Formulierung ist aber noch eine kleine Vorbereitung nôtig.
Es sei o eine Untergruppe von m+. Dann lâBt sich genau wie in 8 das

S o\m+») (12)

der rechtsseitigen Nebengruppen von o in m+ bilden; die Punkte von S

sind die Nebengruppen o/u. Man kann in naheliegender Weise den

Umgebungsbegrifï von m+ auf S ùbertragen, so dafi S ein stetiges Abbild
von m+ ist. Ebenso wie die Multiplikation der Zahlen ju aus m+ mit
Zahlen v aus m+ stetige Abbildungen /lc-^juv von m+ auf sich ergibt,
liefert auch die Multiplikation der Nebengruppen oju mit Zahlen v stetige
Abbildungen ojbt-^ojLtv von S auf sich. Eine Abbildung ojbt->ojbtv ist
dann und nur dann von der identischen verschieden, wenn nicht /xv/ur1 c o

fur aile fi aus m+ gilt. Ist ox der grôBte in o enthaltene Normalteiler von
m+, so liefert die Multiplikation der Punkte von S mit Zahlen aus m+ eine

mit der Faktorgruppe m+/ o1 isomorphe Gruppe stetiger Abbildungen
von S auf sich. Wir werden es im folgenden nur mit solchen Fàllen zu tun
haben, wo c^ 1 ist.

8) Lies: m"** rechts durch é dividiert.
9) Lies: m+ links durch o dividiert.
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Wenn é auch auf S einen Diskontinuitâtsbereich r besitzt, so erhâlt
man bei der Abbildung m+->S in der Gestalt des Systems

R o\m+/é10) (13)

der Komplexe ogé in der Doppelmodulzerlegung

m+
Q

ein stetiges Abbild von D, welches von S unverzweigt uberlagert wird,
und welches in âhnlicher Weise wie D die Eigenschaften von é wider-
spiegelt.

Hauptsatz. Man erhâlt aile Mannigfaltigkeiten R kleinster Dimension
mit der Fundamentalgruppe é, auf die sich D stetig abbilden lâflt, in der
Form (13), indem man fur o aile môglichen maximalen orthogonalen11)
Untergruppen von m+ nimmt. Die so erhaltenen R sind sâmtlich unterein-
ander homôomorph, und ihre Dimension ist

n(n+l) „ n(n—1) ._..

Oenauer gilt: é ist eine in S diskontinuierliche Abbildungsgruppe und
besitzt dort einen Diskontinuitâtsbereich r; R entsteht aies r durch Rânder-
zuordnung (ebenso wie D aus d in 8). S ist die universelle Ûberlagerung
und é die Fundamentalgruppe von R.

10. Bevor der Hauptsatz bewiesen wird, sind noch zwei erklàrende
Bemerkungen nutzKch.

1. Ajk sei voile Matrixalgebra w-ten Grades. Dann ist die Grappe aller
ganzzahligen unimodularen Substitutionen n-ten Grades eine Einheiten-
gruppe e von A. Wenn man fur o die Gruppe der Substitutionen nimmt,
welche die Form 2,x\ fest lassen, so erhâlt man eine mit S homôomorphe
Mannigfaltigkeit S', indem man jeder Matrix | von A das Produkt
(p |7£ mit ihrer transponierten zuordnet. <p ist bekanntlich die Koeffi-
zientenmatrix einer definiten quadratischen Form. Den Abbildungen
o|->o|e in S entsprechen die Transformationen <p-+sf(pe der quadratischen

Formen. Die Aufstellung von Meduktionsbedingungen fur quadra-
tische Formen ist nichts anderes als das Aufsuchen eines Diskontinuitâts-
bereiches fur die Gruppe e. Aus einem Diskontinuitâtsbereich von e in

l0) Lies: m+ reehts durch é» links durch o dividiert.
11 Eine Untergruppe o von m+ soll orthogonal heifien, wenn o bei einer geeigneten

Matrizendarstellung von A als eine Gruppe euklidischer Drehungen dargestellt wird.
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m m+ erhalt man einen in S und umgekehrt (vgl. 5); es ist mithin
gleichgultig, ob man e als eine in m oder in S diskontinuierliche Gruppe
betrachtet. Dies erkannte bereits Minkowski4). Daruber hinaus besagt
der oben ausgesprochene Hauptsatz, daB S der einzige Raum kleinster
Dimension ist, in dem e einen Diskontinuitatsbereich besitzt.

2. Es sei A Z. Dann haben R und S die Dimension r rx -f r2 — 1.

Sicherlich wird schon allein daraus, daB é abelsch und die Fundamentalgruppe

einer solchen r-dimensionalen Mannigfaltigkeit R ist, die sich
nicht stetig und unter Erhaltung dieser Fundamentalgruppe auf eine

Mannigfaltigkeit von niederer Dimension abbilden laBt, ableiten lassen,
daB é eine genau r-gliedrige Basis besitzt. Dièse Aussage, d. h. den
Dirichletschen Einheitensatz, erhalt man aber jedenfalls dann sofort,
wenn man auch den zweiten Teil des Hauptsatzes heranzieht und nach-
einander zeigt: 1. o besteht aus allen Zahlen von Z, die mitsamt ihren
konjugierten Zahlen den absoluten Betrag 1 haben. 2. S laBt sich
folgendermaBen durch Koordinaten beschreiben: Sind ^(f), ...,ocr+1{Ç)
die r+ 1-absoluten Betrage der allgemeinen Zahl f aus Z (d. h. die ver-
schiedenen unter den absoluten Betragen der zu | konjugierten Zahlen),
so liefert die Abbildung von f auf den Punkt mit den Koordinaten ocl(S)

mit £ocz(£) 0 im (r-f-l)-dimensionalen affinen Raume ein homoo-
morphes Bild von S. 3. Die Abbildungen o£->of£ von S auf sich sind
topologisch Translationen in diesem r-dimensionalen affinen Raume
aquivalent. 4. R ist ein r-dimensionaler Torus. Die klassische Einheiten-
theorie ist mithin in obigem Hauptsatze enthalten, wenn auch etwas ver-
steckt. Umgekehrt folgt aus ihr der Hauptsatz fur A=Z, sodaB man
bei seinem Beweise n > 1 voraussetzen darf.

§ 4. Beweis des Hauptsatzes

11. D moge sich stetig auf eine Mannigfaltigkeit R abbilden lassen,
wobei é in deren Fundamentalgruppe ûbergeht. Die Punkte aus D sind
die linksseitigen Nebengruppen <x> é. Es bezeichne Ô^ die Gesamtheit der
Punkte aus D, welche in R den gleichen Bildpunkt wie coé haben. Die
Cw mussen abgeschlossene und untereinander homoomorphe Mannig-
faltigkeiten sein, wenn R ein homogènes stetiges Abbild von D sein soll.

In m+ gibt es dann Punktmengen ôw mit der Eigenschaft

ôa, é O^ ;

die ô^ lassen sich durch die Forderung noch genauer festlegen, daB sie

minimale und mit den <3W homoomorphe Mannigfaltigkeiten sein sollen ;
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sie sind dann bis auf rechtsseitige Multiplikation mit Einheiten aus é

eindeutig festgelegt. Fur die so bestimmten "ô^ gilt :

1. Durch jeden Punkt von m+ geht genau ein oa
2. Fur Einheiten aus é gilt

(15)

3. Fur jedes co aus m+ gibt es eine Vollumgebung v um co, so dafi fur jedes
co; aus v und jedes e aus é -
ist.

Wenn umgekehrt in m+ Teilmannigfaltigkeiten 7>œ mit diesen Eigen-
schaften gegeben sind, so bilden die aus ihnen erzeugten Teilmannigfaltigkeiten

Ô^ ^5o}ê von D eine Mannigfaltigkeit R, welche dieMannig-
faltigkeit aller ow als regulâre Ûberlagerung und é als die zugehôrige
Monodromiegruppe hat, und R ist ein stetiges Bild von D. Eine stetige
Déformation der Ôœ innerhalb von D ergibt sogar dieselbe
Mannigfaltigkeit R, also nicht nur eine Mannigfaltigkeit mit derselben
Monodromiegruppe. Ein stetiges Bild von D mit der Fundamentalgruppe é

ist R*= o*\D, wo o* eine maximale orthogonale Untergruppe von m+

ist (Nr. 16). Hat R die Fundamentalgruppe é und minimale Dimension,
so ist R ein stetiges Bild von R*. Falls noch nicht R* R ist, lassen
sich die 5^, wegen D o*R*, in die Gestalt o*6w deformieren, wobei
die entsprechend den O^ gebildeten ôw Mannigfaltigkeiten eine Dimension

p<.m — r naben und auch die Bedingungen 1.—3. erfullen. Sie

definieren also ein stetiges Bild R von D. Ich zeige nun, da8 sich die
Om in die Gestalt oct>é mit o<o* deformieren lassen. Dann ist also

r* R. Dabei schreibe ich wieder R, Ô^, Zœ anstatt von R, 0^^ ;

die Dimension p der ôw ist also fortan < m — r.
Ich zeige zunàchst, daB sich die ôw unter Erhaltung der Eigenschaften

1. bis 3. und unter gleichzeitiger stetiger Déformation der Ow innerhalb
von D in Mannigfaltigkeiten om mit

Oa> o co (16)

deformieren lassen, wobei 0 0! von co unabhângig ist.

12. D enthâlt eine Menge R von teils offenen, teils abgeschlossenen
Simplizes, die man leicht aus einer simplizialen Zerlegung von R ge-
winnen kann, mit den Eigenschaften : 1. Durch jeden Punkt von R geht
genau ein U&* 2. Die Rânder der einzelnen Simplizes sind derart
auf einander bezogen, da8 ein CÛ, das durch einen Randpunkt Pt
eines Simplex St geht, auch stets durch einen Randpunkt P2 eines
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anderen Simplex S2 geht, wobei wegen 1. entweder P1 zu 8t oder
P2 zu $2, jedoch nicht gleichzeitig Px zu Sx und P2 zu $2 gehôrt.
Werden die in dieser Weise einander zugeordneten Simplexrânder
identifiziert, so entsteht eine zu R homôomorphe Mannigfaltigkeit.
3. R làBt sich stets so wàhlen, daB die ô<o, welche durch eine be-
liebige Vollumgebung eines beliebigen Punktes aus D gehen, nicht
durch Randpunkte von R hindurchgehen. S sei die grôBte Punktmenge
aus m+, welche bei der Abbildung m+->D auf R abgebildet wird; sie
ist durch dièse Forderung eindeutig festgelegt. Durch jeden Punkt von
S geht genau ein o^, jedes ow geht durch einen Punkt von S.

Es werde nun ein Produkt ô^o/z durch die Festsetzung erklàrt: es
sei aw der Punkt von ô der auf S liegt, und

ô^^ oao)fJi (17)

Ferner werde durch
(Ôcu°^l)°^2= Ô^of^o^) (18)

ein Produkt fix o ^2 der Zahlen aus m+ untereinander definiert. Bezùglich
dieser neu erklàrten Verknûpfung erzeugen die Elemente von m+ eine

Gruppe M stetiger Abbildungen einer Ûberlagerung von R auf sich.
Zur Untersuchung von M sei u eine infinitésimale Umgebung der 1 in

m+. Man mâche nun zunâchst von der Erlaubnis, die C)^ und R stetig zu
deformieren, soweit Gebrauch, daB man erstens R und damit auch S durch
1 hindurchgehen lâBt und zweitens die ô^ und 3 zu linearen Teilrâumen
von m+ (oder m. a. W. von A) macht, soweit sie innerhalb u verlaufen,
wobei hier die ôw auf S senkrecht stehen. Jetzt haben die Zahlen von
u r> ô^ die Form co -f Eoci dtt, wobei die oc{ von œ unabhângige Elemente
aus A und dtt réelle variable infinitésimale GrôBen bedeuten. Fur irgend
zwei Elemente 1 + dfi und 1 -\- dv aus u folgt nun, wenn man infinitésimale

GrôBen zweiter Ordnung vernachlâssigt,

u - 5(1+^) (i+dv) " ^ o1+dfl. (1 + dv) (19)

Dièse Gleichung besagt, falls durch ô^u kein Normalteiler von m+ geht,
daB M und m+ im kleinen homôomorph sind. In jeder einfach zu-
sammenhàngenden Umgebung stimmen mithin M und m+ hinsichtlich der
Gesamtheit ihrer Elemente uberein ; dasselbe gilt dann auch im groBen.

Durch eine geeignete Déformation der C^ kann man ferner erreichen,
daB M und m+ isomorphe Gruppen sind. Zum Beweise môgen v und w
zwei Vollumgebungen von 1 in m+ mit der in 11, 3. beschriebenen Eigen-
schaft bezeichnen, wobei v ganz im Inneren von w liegt. Werden v und w
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hinreichend klein gewàhlt, so sind die Durchschnitte v ^ o^, w r\ ow,
sobald co in v bzw. w liegt, Vollumgebungen von co in ô^. Man lege u^ox
auf eine p-dimensionale Untergruppe o von m+, welche keinen Normal-
teiler von m+ enthàlt (da die mt in (4) einfach sind, und wegen n> 1,

p <m—r gibt es solch ein o), und setze

ow =o.co

Wird v hinreichend klein gewàhlt, so sind die v ^ o^ mit den v ^ ô^
homôomorph, und das gleiche gilt fur deren Randmannigfaltigkeiten.
Wird v ferner so klein gewàhlt, daB die v ^ ow, sofern v ^ owt0 ist, mit
S genau einen Punkt gemeinsam haben, welcher wiederum mit a^ be-
zeichnet sei, so ist

V^Oco V^Oa V^ O^, V r\ Qa w, V ^ Oa • O)' (20)

und die von v ^ S und den v ^ ow in v einschlieBlich des Randes erzeugte
Konfiguration ist mit der durch v ^ S und die v r\ o^, erzeugten homôomorph.

Folglich kann man die ô^ stetig so deformieren, daB sie erstens
auBerhalb aller Gebiete we ungeândert bleiben, zweitens innerhalb von v

in die o^, ûbergehen und drittens einer stetigen Déformation der Ô^
innerhalb von D entsprechen. Nach dieser Déformation sind M und m+

wegen (20), und weil o keinen Normalteiler von m+ enthalten sollte,
innerhalb von v identisch. Weil sie andererseits im groBen homôomorph
sind, sind sie im groBen topologisch isomorph.

Jetzt ist die Gruppe M eine ,,Verzerrung" von m+ in dem Sinne, daB es

eine eineindeutige stetige Abbildung F von m+ auf sich gibt, daB

(21)
ist. Setzt man

(22)

so erfûllen die ow die Bedingungen 1. bis 3. und (16) in 11. Das Erfulltsein
von 1. ist klar. Da S durch 1 hindurch geht, folgt aus (17) und (18)

und aus (21) und (22), wenn man zur Abkiirzung

setzt,

oder
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fix und fi2 durchlaufen zugleich mit [xx und fz2 die ganze Gruppe m+; dann
folgt aber unmittelbar 2. und (16).

SchlieBlich ergibt sich aus (15), (17) und (18) fur e aus é und \i aus m+

eofj, eju juoe ju€

Mithin lâBt die Verzerrung V, welche vermittels (21) die gewôhnliche
Multiplikation mit der Verknupfung o verbindet, die e fest und liefert
eine stetige Déformation von D. Ferner bewirkt die Verzerrung (22) eine
stetige Déformation der O^ in die Ow o^é innerhalb von D. Also ist
auch 3. erfullt und die Ow bilden nach 11 dieselbe Mannigfaltigkeit R wie
die O^.

13. Von jetzt ab darf (16) als erfullt angenommen werden. Aus 11 geht
dann hervor: Bezeichnet S die Gesamtheit der o^, so ist é eine in S dis-
kontinuierliche und fixpunktfreie Abbildungsgruppe ; einen Diskonti-
nuitâtsbereich r von é in S erhâlt man in Gestalt der Gesamtheit der o^,
welche durch die Punkte eines Diskontinuitâtsbereiches d von é in m+

gehen. R entsteht aus r durch Rànderzuordnung wie D aus d in 8. Ist S

einfach zusammenhàngend, so ist es die universelle Ûberlagerung von
R. Dies ergibt den zweiten Teil des Hauptsatzes. Es genugt daher, o nàher
zu betrachten.

o ist eine Gruppe. Nâmlich, weil o die Gesamtheit der Punkte ist, die in
S denselben Bildpunkt haben wie 1, gilt

00 0.

Ist co ein Elément aus o, so enthâlt oar1 die 1, es ist also nach 11,1

oco"1 o

folglich ist o wirklich eine Gruppe. Ferner ist

S o\m+

14. o liegt ganz im Endlichen, d. h. die Koordinaten der Elemente von o

im Sinne der Koordinatendarstellung (1) sind beschrânkt. Ich beweise
dièse Behauptung zunàchst unter der Voraussetzung, daB A nullteilerfrei
ist. Jetzt gibt es nach 4 einen ganz im Endlichen gelegenen Diskonti-
nuitàtsbereich d von é in m+. Wenn o nicht im Endlichen lâge, so durch-
liefe o unendlich viele mit d Equivalente Diskontinuitàtsbereiche de.
Dann enthielte aber der Bereich r in S, der aus allen o^ besteht, die durch
Punkte von d hindurchgehen, unendlich viele Paare àquivalenter Punkte
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°<o> °cue- 3^a r nach 13 ein Diskontinuitâtsbereich von é in S ist, miiBte
dann jedesmal 0^=0^6 gelten, und in diesem Falle kônnte é nicht in der
Fundamentalgruppe von R liegen. Die Behauptung ist damit bewiesen.

15. Nun sei A wieder beliebig. Wenn o ganz im Endlichen liegt, ist o
eine orthogonale Gruppe. Wenn man nâmlich o durch lineare Substitu-
tionen darstellt, so sind die Koeffizienten dieser Substitutionen be-
schrànkt. Folglich lassen sie eine définitive quadratische Form fest12);
eine solche Substitutionsgruppe ist stets mit einer Gruppe euklidischer
Drehungen âquivalent.

Aile maximalen orthogonalen Untergruppen o von m+ sind in m+

konjugiert. Aus 11 ergibt sich aber, daiî o\m+/é und jur1 o^\m+/é
homôomorph sind, denn die Punkte von ju"1 Ofi\m+/ê sind die Mannig-
faltigkeiten

sie gehen aus den ow durch eine stetige Déformation von m+ hervor, bei
welcher gleichzeitig die O^ stetig in die 0^, o^é iibergehen.

16. Umgekehrt liegt eine orthogonale Untergruppe o von m+ ganz im
Endlichen. Da é keine Elemente von endlicher Ordnung enthalten sollte,
ist jetzt fur jedes a> aus m+

o ^ co^éco 1 (23)

Die durch é gelieferten stetigen Abbildungen o^-x^e von o\m+ S

auf sich bilden daher eine diskontinuierliche und fixpunktfreie Gruppe ;

einen Diskontinuitâtsbereich erhàlt man in Gestalt des Bildes eines
Diskontinuitàtsbereiches d bei der Abbildung m+->S. Ist o eine maximale
orthogonale Untergruppe von m+, so ist S einfach zusammenhângend;
S ist die universelle Ûberlagerung von S/é o\m+/é, und é ist die
Fundamentalgruppe von S/é. Die maximalen orthogonalen o kônnen
also wirklich, wie der Hauptsatz aussagt, zur Bildung von R hergezogen
werden; sie liefern die R von minimaler Dimension. Die Gestalt der
maximalen orthogonalen Untergruppen o von m+ iibersieht man nâmlich
am besten mit Hilfe von (4) : es ist

o (o n mjx • x(o ••> mrrH.2+ra)

Die o r\ m^ sind beschrânkt und lassen sich daher als unitâre Substi-

12) H. Auerbach, C. B. Acad. Paris 195 (1932), S. 1367.
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tutionsgruppen darstellen12). Nach 3 und (12) ist dann S das topo-
logische Produkt der a{ und z+ und folglich einfach zusammenhàngend.
Die maximalen unitâren Untergruppen der mt- haben die Dimension

n(n +
2

n(n+ 1)

— n fur i 1 rx

— n iûr i rx + 1 rx + r2,

n

^ fur t r1 + ra+ 1,..., rx + ^ + ^s

Die Dimension von R ist gleich der Dimension von m+, vermindert um die
von o. Hieraus ergibt sich die Formel (14) fur die Dimension von R. Fur
nullteilerfreie Algebren ist der Hauptsatz hiermit in vollem Umfange
bewiesen.

17. Fur nullteilerhaltige Algebren bleibt allein noch der Satz aus 14

zu beweisen. Seine Gûltigkeit fur die kommutativen Unterkôrper K
von A wird dabei benutzt, ferner der folgende Hilfssatz : Eine zusammen-
hàngende Jcontinuierliche Substitutionsgruppe o, deren Elemente nicht be-

schrànkte Koeffizienten haben, enthàlt eine zyklische Untergruppe, deren
Elemente auch nicht beschrânkte Koeffizienten haben. — Beweis. Es sei

u eine Umgebung der 1 in o und U die Menge der Gruppenelemente,
welche Potenzen von Elementen aus u sind. U hat die gleiche Dimension

wie o und ist in o abgesehlossen und ohne Rand. Folglich ist
U o. Im Gegensatz zur Behauptung môgen nun die Betrâge der
Koeffizienten der Potenzen jedes Elementes a unter einer Schranke S {oc)

liegen. Nach der Voraussetzung gibt es eine Folge von Gruppen-
elementen oci9 so daB lim $(0^) 00 ist. Wegen 8 (oc) ^ S(ocn) fur jedes

a und jedes n gibt es eine solche Folge bereits in u, denn aile Elemente
aus 0 lassen sich als Potenzen von Elementen aus u darstellen. Eine
Teilfolge konvergiert dann gegen ein oc mit 8 (oc) =00. Damit ist der
Hilfssatz bewiesen.

o sei eine nicht ganz im Endlichen gelegene kontinuierliche
Untergruppe von m+ und oc ein Elément aus o, dessen Potenzen nicht beschrânkt
sind. Ist oc in einer Matrizendarstellung von A auf Hauptdiagonalform
transformierbar, so gibt es dann einen kommutativen Unterkôrper K
und ein Elément r in A, daB r~1ocr der Limes einer Zahlenfolge aus K ist.
Wenn man o zur Bildung von R benutzen kann, so kann man nach 15

(letzter Absatz) auch r~1or hierzu benutzen. Wenn man sich auf die
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Betrachtung des Teiles K von A beschrânkt, so kann man ferner hierzu
auch die maximale Untergruppe oK von r"1 or benutzen, deren Elemente
Grenzwerte von Zahlenfolgen aus K sind. oK enthâlt aber die Zahl
x~xocx und ist daher im Gegensatz zu 14 nicht ganz im Endlichen gelegen.
Folglieh muB in jedem Falle o ganz im Endiichen gelegen sein, wenn es

zur Bildung von R benutzt werden kann.
Ist jedoch oc nicht auf Hauptdiagonalform transformierbar, so muB

man folgendermafien schliefien: es sei u1=u)u2)u0)... eine gegen 1

konvergierende Folge von Umgebungen der 1 und oci Zahlen aus u{, so daB
<%?* oc mit ganzen rationalen n{ gilt (vgl. den Beweis des Hilfssatzes).
Dann erzeugen die <xt eine kontinuierliehe abelsche Untergruppe oa von o,
die ebenso wie o zur Bildung von R herangezogen werden kann. Sàmtliche
Elemente S von oa lassen sich simultan auf Dreiecksform transformieren:

• (24)
0

Es gibt in A eine Zahl r und einen kommutativen Unterkôrper K der Art,
daB die t~x S& Grenzwerte von Zahlenfolgen aus K sind, und wenn man
sich wieder allein auf K beschrânkt, darf man die Gruppe der r"1 ixr zur
Bildung von R benutzen. Nach dem Hauptsatz haben die xu folglich aile
den Betrag 1. Dann aber enthâlt oa wegen S (oc) oo Zahlen £ ^ 1 mit
|x 1 in (24), und dièse lassen sich weiter so transformieren, daB ober-
halb der Hauptdiagonalen nur 0 und unterhalb der Hauptdiagonalen 0
oder 1 steht. Sie sind also Einheiten aus é âquivalent, und (23) gilt des-
halb nicht mehr fur aile co, und dies hat zur Folge, daB oa und o nicht zur
Bildung von R benutzt werden darf.

§ 5. Weitere topologische Invarianten von D

18. Es sei Z! ein in Z enthaltener Zahlkôrper und ê^Zf) di© Gruppe
derjenigen Einheiten ausé, welchebezûglichZ7 die Relativnorm 1 haben.
Ferner sei m^ analog zu m+ durch die Relativnormen von A bezuglich
Zr erklârt. Es gebe r[ réelle und 2r'2 imaginâre zu Z'konjugierte
Zahlkôrper. Die Betrachtungen der vorigen Paragraphen bleiben fast wôrtlich
giiltig, wenn man m+ und é durch m^ und é(Z/} ersetzt; insbesondere

gilt:
m(£')/é(Z') D(Z')

ist eine Mannigfaltigkeit, die Mannigfaltigkeiten kleinster Dimension
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mit der Fundamentalgruppe é(Z^, auf die sich D(Zf) stetig abbilden laBt,
erhalt man in der Form

wobei o(z^ irgendwelche maximalen orthogonalen Untergruppen von
m^/j sind. Aile so erhaltenen R(Z,} sind untereinander homoomorph,
und ihre Dimension ist, wenn r die Bedeutung (14) hat,

T(Z') ~ r ri T2 "

Es sei speziell Z' Z. Man uberlegt leicht, daB das direkte Produkt

e* éw x êz (éz ê~ Z)

in é einen endlichen Index hat. Ist jetzt n(Z) die von z+ und o{Z) er-
zeugte Gruppe, so ist

und aus dieser Gleichung kann man wegen der Endlichkeit des Index
(é : e*) folgern, daB sich D stetig auf R^Z) abbilden laBt.

Ist R irgend eine Mannigfaltigkeit, auf die sich R stetig abbilden
laBt, so ist die Fundamentalgruppe von R die Faktorgruppe é/e von
é nach einem Normalteiler e e und die Dimension eines solchen R sind
topologische Invarianten von D. Vermutlich wird aber e entweder é(z)
enthalten oder in éz enthalten sein; in beiden Fallen wurde man so
keine wesentlich neuen Invarianten finden.

19. Die einzigen Falle, wo é(Zf) nicht in Z liegt und r(Zf) 2 ist, sind:
Z' — Z, rx 1, r2 0, n 2. Sie liegen bei Quaternionenalgebren ùber
total reellen Zahlkôrpern vor, welche nur an einer einzigen unendlichen
Primstelle nicht verzweigt sind. Jetzt ist R{Z) eine geschlossene orientier-
bare Flache (geschlossen ist sie, wenn A nullteilerfrei ist), sie wird durch
ihr Geschlecht g^ eindeutig beschrieben. Die Berechnung von g^ er-
folgt genau so wie in dem bereits fruher behandelten Spezialfall r3 013).

Man zeigt, daB S(Z) o^^m^) mit der hyperbolischen Ebene homoomorph

ist, und daB é{Z) eine in S(Z) diskontinuierliche Gruppe hyper-
bolischer Bewegungen liefert14). Nun laBt sich das Residuum der Zeta-

1S) M. Eichler, a. a. O 3), Nrn. 6—12.
14) Dièse Gruppe gehort îm wesentlichen zu dem Typus der schon fruher (Fncke-Klein,

Automorphe Funktionen I, Leipzig 1897) behandelten Grenzkreisgruppen, welche durch
die Automorphismen ternârer mdefimter quadratischer Formen gehefert werden. Die
Théorie dieser Gruppen wurde kurzhch von K. Heegner (Transformierbare automorphe
Funktionen und quadratische Formen I und II, Math. Z 43 (1938), III, Math Z 44(1938)
ausfuhrhch dargestellt, so dafi ich mich hier mit einer kurzen Bemerkung begnugen darf.
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funktion einer Idealklasse von A mit Hilfe eines ûber d erstreckten
Intégrais bereehnen, und dièses lâBt sich anf das Intégral ûber die
GauBsche Hauptkrummung von R(J^ zurûckfuhren. Mit Hilfe der GauB-
Bonnetschen Integralformel erhàlt man so einen Zusammenhang zwischen

g{Z) und der Zetafunktion von Au). Das Endresultat lautet, falls é e+

ist (vgl.7):
\D I

und falls é e(p) ist,

1 + (e, : #>) q(g2- 1) ^jfjff n(nz/kp' — 1)

darin môgen ez, e^} und q die oben in 7 erklârte Bedeutung haben,
fo(s), Do, n0 seien Zetafunktion, Diskriminante und Absolutgrad von Z
und p' durchlaufe die verschiedenen Primideale von Z, die in der
Diskriminante von A/Z aufgehen.

20. Im Falle A Z ist das Residuum der Zetafunktion einer
Idealklasse bis auf einen Faktor gleich dem Regulator der Einheitengruppe
und nicht eine topologische Invariante von D; der Regulator wird zur
Bestimmung der Idealklassenanzahl auf transzendentem Wege benutzt.
Wie hier an dem Beispiel gewisser Quaternionenalgebren gezeigt wurde,
liegen die Dinge im Nichtkommutativen vôllig anders : die Idealklassenanzahl

stimmt im wesentlichen mit der des Zentrums ûberein, infolge-
dessen gelingt die Berechnung des Residuums der Zetafunktion einer
Idealklasse, und mittels dièses Residuums kann man eine wichtige und
scheinbar nicht elementar zugângliche topologische Invariante der
Einheitengruppe bereehnen. Man kann jetzt fragen: kann man immer im
Nichtkommutativen auf diesem Wege topologische Invarianten von é

finden, und erhâlt man so neben den fruher besprochenen Invarianten
aile? Die Beantwortung dieser Fragen scheint heute gewiB sehr schwierig,
wenn nicht gar einstweilen unmôglich zu sein.

(Eingegangen den 16. Januar 1939.)

15 Hierbei wird die Kenntnis des Zusammenhanges zwischen den Idealklassen-
anzahlen in A und Z benutzt.
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