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Zur Einheitentheorie der einfachen Algebren
Von M. EicHLER, Gottingen

Einleitung

Noch vor wenigen Jahren befand sich die Theorie der einfachen
Algebren in einem Zustand rapider Weiterentwicklung. Nachdem die
meisten Probleme, die dieser Entwicklung Richtung und Kraft gaben,
gelost wurden, scheint heute auf dem genannten Gebiet eine gewisse Ruhe
eingetreten zu sein. Allein die Einheitentheorie ist noch immer in keiner
Hinsicht abgerundet. Die folgenden Seiten enthalten nun einen Versuch,
an der Schliefung dieser Liicke zu arbeiten. Da schon beim Aufsuchen
sinnvoller Problemstellungen unbekannter Boden betreten werden muf,
kann zur Einleitung nur wenig iiber den Inhalt dieser Arbeit gesagt
werden?). Von der Uberzeugung ausgehend, daf die Begriffswelt der
Zahlengeometrie die geeignete Grundlage fiir den Aufbau eines tragenden
Geriistes fiir die hyperkomplexe Einheitentheorie abgibt, beschaftige ich
mich hier mit Darstellungen der Einheitengruppen durch affine Abbil-
dungen eines Raumes auf sich. In dieser geometrischen Gestalt trat sie
erstmalig in der analytischen Zahlentheorie?) auf und fiithrte auf geome-
trische Untersuchungen, die bis heute noch nicht in befriedigender Weise
abgeschlossen werden konnten. Die Hauptaufgabe der Einheitentheorie
sehe ich nun in der Auffindung von Invarianten dieser Abbildungs-
gruppen. Im Mittelpunkt der folgenden Seiten wird eine topologische
Invariante stehen, die im Falle eines algebraischen Zahlkorpers mit der
Erzeugendenanzahl der Einheitengruppe identisch ist, und der Satz, der
diese Invariante beschreibt, darf mit manchem Recht als die sinngeméfle
Ubertragung des Dirichletschen Einheitensatzes auf einfache Algebren
bezeichnet werden.

Zur Orientierung sei noch bemerkt: Der § 1 hat mit der Einheiten-
theorie selber noch nichts zu tun, er enthalt einige Hilfssatze iiber gewisse
mit einfachen Algebren zusammenhéngende kontinuierliche Gruppen.
In § 2 wird die Einheitentheorie noch einmal soweit verfolgt, wie es ihre

1) Zwei frithere Veroffentlichungen iiber die Einheitentheorie einfacher Algebren
(Eichler, a. a. 0.%) und Neuere Ergebnisse der Theorie der einfachen Algebren, Jahresber.
Deutsche Math.-Verein. 47 (1937), S. 198, Nrn. 14—17, sollen, um das Verstandnis der
vorliegenden Arbeit zu erleichtern, im wesentlichen nicht vorausgesetzt werden, obwohl
ich in ihnen, besonders in der zuletzt genannten, die hier zugrunde gelegte Problem-
stellung bereits vorgezeichnet habe. AuBerdem ist ein Irrtum zu berichtigen.

2) K.Hey, Analytische Zahlentheorie in Systemen hyperkomplexer
Zahlen. Diss. Hamburg 1929.
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Anwendung in der analytischen Zahlentheorie erfordert, frithere Behand-
lungen dieses Themas3) beschrankten sich auf nullteilerfreie Algebren,
waren auch methodisch nicht ganz befriedigend. In § 3 wird der Haupt-
satz vorbereitet und formuliert (Nr. 9), in § 4 wird er bewiesen. Der § 5
schlieflich enthalt Ausblicke auf eine Ausgestaltung der Einheiten-
theorie in der hier eingeschlagenen Richtung, darunter speziell eine Ver-
allgemeinerung des Hauptsatzes und die Behandlung gewisser Quater-
nionenalgebren.

§ 1. Vorbereitende Betrachtungen

2. A sei eine einfache Algebra iiber dem rationalen Zahlkorper k£ und
t15 Lg, ... eine Basis von 4/k. Die Norm 7 (£) der allgemeinen Zahl

Ees et (1)

aus A ist ein Polynom in den Koordinaten x;, von & mit rationalen
Koeffizienten, sie hat daher fiir Koordinaten aus einem beliebigen Zahl-
korper einen Sinn. Der Gegenstand der nun folgenden vorbereitenden
Betrachtungen ist die Gruppe m aller Zahlen (1) mit beliebigen reellen
Koordinaten und mit der Norm 1. m ist eine kontinuierliche Gruppe,
deren gruppentheoretische und topologische Eigenschaften zu beschreiben
sind. Die Einfachheit in der Ausdrucksweise erfordert es, die Zahlen (1)
der Algebra A neben ihrer urspriinglichen Bedeutung auch als Punkte mit
den Koordinaten z, eines affinen Raumes aufzufassen, der dann konse-
quenterweise ebenfalls mit A zu bezeichnen ist.

Es mogen R, K, ¢ den Korper der reellen Zahlen, den Korper der
komplexen Zahlen und das System der Hamiltonschen Quaternionen
bedeuten. Z sei das Zentrum von 4; der Grad von A/Z sei n. Es gebe
r,+ 75 reelle und 27, imaginire zu Z konjugierte Zahlkorper, A /Z sei an r,
(reellen) unendlichen Primstellen verzweigt (r; ist bekanntlich héchstens
dann £0, wenn n gerade ist). Dann zerfallt das direkte Produkt AxR
folgendermaflen in eine direkte Summe:

AxR = Al"l" ot '+Ar1+Ar1+1+ T +Ar1+r,+Ar1+r2+1+ ot 'Ar1+r2+r, ’

wo A,,:+, A, volle Matrixalgebren vom Grade » iiber R, 4, ., ',
4, ,r, volle Matrixalgebren vom Grade n iiber K und 4, ,, 1,

A, rr, Volle Matrixalgebren vom Grade —g— iiber @ sind. Es mogen ferner

8) K. Hey, a. a. 0.2). M. Eichler, Uber die Einheiten der Divisionsalgebren.
Math. Ann. 114 (1937), S. 635 (Satze 4 und 5).
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bezeichnen: m; die Gruppe aller Zahlen aus 4, mit der Norm 1 beziiglich

R, {; irgendwelche Zahlen aus dem Zentrum von A4, und z die Gruppe
aller Zahlen

r1+72+7g r1+7r9+7rs
c="270 mit a@)= I n@)=1. (2)

Dann ist m das folgende direkte Produkt:

M= Myx ..x My p X2, (3)

und z ist das Zentrum von m.

3. Fir ¢ > r  ist n() > 0. Es sei z*+ die Gruppe aller Zahlen der Gestalt
(2) mit n(&;) > O fiir ‘alle ¢. Ferner sei

mt = mx ... XM e %zt . (4)
Es gilt offenbar
(m: mt) = 211, (5)

m* ist eine zusammenhingende Gruppe, und zwar die grofte zusammen-
hdngende Untergruppe von m. Denn man verifiziert miihelos: 1. die m; und
z+ sind zusammenhingende Gruppen; 2. dafiir, dal sich zwei in m
gelegene Punkte y = X' u; und u’ = X'y mit y, und g in A, durch eine
stetige und ganz in m verlaufende Kurve verbinden lassen, ist

n (u;)
n ()

notwendig und hinreichend.

Die m; brauchen im Gegensatz zu einer friiher?!) ausgesprochenen
Behauptung nicht einfach zusammenhéngend zu sein. Fir ¢ <r,
lassen sie sich als die Mannigfaltigkeit der n-dimensionalen orientierten
Parallelotope mit dem Volumen 1 und einer Spitze im Nullpunkt im
Euklidischen Raume deuten ; m; ist dann das topologische Produkt
0, a;, wobei o; die Gruppenmannigfaltigkeit der n-dimensionalen eukli-
dischen Drehungen und a; die Mannigfaltigkeit der n-dimensionalen
orientierten Parallelotope mit dem Volumen 1 ohne Riicksicht auf die
Lage ist. Entsprechendes gilt fiir 4 >7;, nur mull jetzt o, die unitare

>0 fir alle 2

. . * n A . .
Gruppe mit Koeffizienten aus K bzw. @ in n bzw. 3 Dimensionen sein.

m+ ist wegen (4) das topologische Produkt der m; und zt; die a, und z*
sind einfach zusammenhingend.
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§ 2. Die Einheitengruppen als diskontinuierliche Abbildungsgruppen

4. Zu einer Einheit ¢ gehort eindeutig eine solche affine Abbildung

‘”: =2 misk) Ty (6)
von A auf sich, daB

fe = (X ;%) = Z‘ﬁ”é

ist. Wir wollen uns vm folgenden auf die Betrachtung der Einheiten mit der
Norm —+ 1 beschrinken, diesen entsprechen solche affine Abbildungen (6),
welche m fest lassen. Das Ziel dieses Paragraphen ist es, die Existenz
eines stetig berandeten Diskontinuitatsbereiches d der Gruppe e der
Abbildungen (6) in m zu beweisen, wenn ¢ alle Einheiten (mit der Norm
~+ 1) aus einer Maximalordnung | von 4 durchlauft. Ich liefere diesen
Existenznachweis auf zwei Wegen. Der erste geht auf die Dissertation
von K. Hey?) zuriick und ist zweifellos der einfachere; er ist jedoch fiir
nullteilerhaltige Algebren nicht durchfithrbar. Der zweite stiitzt sich auf
einen tiefliegenden Satz von Minkowski.

Der erste Existenznachweis fiir Diskontinuitatsbereiche d fiir die
Gruppe e in m geht von den beiden folgenden Hilfssdtzen aus?):

1. Ist B irgend ein endlicher Bereich in m (d. h haben alle Punkte von B
beschrinkte Koordinaten), so gibt es hochstens endlich viele Kinheiten € in |
von der Art, daf3 mit einer Zahl § aus B auch e in B liegt.

I1. Enthilt A keine Nullteiler, so gibt es einen endlichen Bereich A in m,
" 80 dap fur jede Zahl & aus m mindestens eine Einheit ¢ in | existiert, fir
welche &c7! in A legt.

Dieser zweite Hilfssatz gilt nicht, sobald 4 Nullteiler enthélt.

Es sei A ein stetig berandeter Bereich von der in II. beschriebenen Art.
Der Bereich, dessen Punkte aus denen von A durch die Substitution (6)
hervorgehen, werde mit A¢ bezeichnet. Nach I.gibt es nur endlich viele
Einheiten ¢,, ..., ¢, von der Art, da A mit Ag; Punkte gemeinsam hat.
Ich setze nun

A,=A—A~Ag + AnAg~ A — 4 -+

in diesem Ausdruck konnen hochstens endlich viele Glieder wirklich auf-
treten, denn nur dann kann A~ :-- ~ A&} £ 0 sein, wenn & unter den

&, ..., & vorkommt. Folglich ist A, auch ein stetig berandeter und
endlicher Bereich.
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Nun ist erstens
Al ) A181= 0
und zweitens
A1‘+‘A1€1+A1£%+"':A+A81+A8§+”’

Beide Gleichungen lassen sich unmittelbar durch Anwendung der
bekannten Rechengesetze der mengentheoretischen Addition, Sub-
traktion und Durchschnittsbildung (diese entspricht der Multiplikation),
ohne Zuriickgreifen auf die Anschauung, verifizieren. Aus der zweiten
folgt

2 Ae=2Ae=m,

und wegen der ersten kann A, hochstens noch mit A,¢,, ..., A ¢, Punkte
gemeinsam haben. Der gleiche ProzeB wird darauf auf den Bereich A,
und die Einheit ¢, angewendet, und man erhalt einen Bereich A,, der
stetig berandet ist, die Relation

2 Aye = m
&

erfiillt und hochstens mit A,e,, ..., Ay, Punkte gemeinsam hat. Hoch-
stens endlich viele Operationen dieser Art fithren schlieflich zu einem
endlichen und stetig berandeten Bereich d mit den beiden Eigenschaften:
1. fiir jedes e aus l ist d ~de = 0. 2. Zde = m. d ist also ein stetig
berandeter Diskontinuitdtsbereich von e in m, denn fiir jeden Punkt &
aus m gibt es genau eine Einheit ¢, so dal £¢ in d liegt.

b. Wenn A nicht nullteilerfrei ist, kann der Existenzbeweis fiir d auch
folgendermalien gefiihrt werden: Es sei m der Rang von A/k. Die Zahlen
aus 4 werden dann durch Matrizen m-ten Grades dargestellt, und zwar
speziell so, dal die Zahlen der vorgelegten Maximalordnung | durch
ganzzahlige Matrizen dargestellt werden; die Einheiten aus | erscheinen
dann als ganzzahlige unimodulare Matrizen.

Ist e, die Gruppe aller ganzzahligen unimodularen Substitutionen
m-ten Grades, so existiert nach Minkowski%) ein durch endlich viele
Ebenen begrenzter Diskontinuitétsbereich r,, fiir e,, im Raume §,, der
Koeffizienten der definiten quadratischen Formen. Nun entsteht §,, aus
dem Raume 4,, aller m-reihigen Matrizen so: ist & eine beliebige m-reihige
Matrix und &’ ihre transponierte, so ist ¢ = &’& die Koeffizientenmatrix
einer definiten quadratischen Form, und umgekehrt laft sich jede
Koeffizientenmatrix ¢ in dieser Gestalt erhalten. Es sei d,, der Bereich in

4) Diskontinuitatsbereiche fiir arithmetische Aquivalensz, J. reine angew. Math. 129 =
Ges. Abh. II, Leipzig und Berlin 1911, S. 53.
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A,,, der bei der Abbildung 4,, —S,, auf r,, abgebildet wird. Er wird von
den Mannigfaltigkeiten begrenzt, deren Bilder in S,, die Grenzebenen
von r,, sind, wegen des Bildungsgesetzes von S,, sind erstere Flachen
zweiten Grades; d/, ist mithin stetig berandet. Zu jeder Zahl & aus 4,
gibt es jetzt genau ein Einheitenpaar ¢ und — ¢, so dafl £ und —&¢1
in d), liegen. Unter Benutzung dieser Tatsache zeigt man leicht, daB es
einen stetig berandeten Diskontinuitatsbereich d,, von e, in 4, inner-
halb von d], gibt. Nun ist aber A ein linearer Teilraum von A4,, und
A ~ d,, ist ein Diskontinuitatsbereich von e = 4 ~ e, ; er wird eben-
falls durch endlich viele Flachen zweiten Grades begrenzt und ist daher
stetig berandet. Schlieflich st d =m ~d,, =m ~ (4 ~d,) ein stetig
berandeter Diskontinuititsbereich von e in m.

6. Fiir spater wichtig ist noch die folgende Feststellung, die aus beiden
Beweisen fiir die Existenz von d fast unmittelbar hervorgeht: d st6ft
lings seines Randes nur an endlich viele andere ,,mit d dquivalente’‘ Dis-
kontinustdtsbereiche de an.

§ 3. Die Einheitengruppen als Fundamentalgruppen topologischer
Mannigtaltigkeiten

7. In 4 wurde die Gruppe der Abbildungen (6), die zu Einheiten aus
einer Maximalordnung | von A gehoren, mit e bezeichnet; von jetzt ab
soll die Gruppe dieser Einheiten selbst mit e bezeichnet werden. Mif3-
verstandnisse sind nicht zu befiirchten, da von jetzt ab auf die Koordi-
natendarstellung (1) der Zahlen von 4 kaum mehr zuriickgegriffen zu
werden braucht.

Nicht die ganze Gruppe e ist der Gegenstand der nun folgenden
Betrachtungen, sondern irgend eine Untergruppe é von e mit den drei
Eigenschaften: 1. Der Index (e : &) ist endlich. 2. & enthilt keine Einheiten
von endlicher Ordnung. 3. é ¢ mt.

Unter Umstinden kann bereits der Durchschnitt
et =e ~mt (7)

diese Eigenschaften haben. Der Index von et in e ist wegen (5) eine
Potenz von 2:

(e:et) = 2¢ mit 0=ss=r—1, (8)
und zwar 148t sich dieser Index bereits im Zentrum Z von A4 berechnen,
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ist ndmlich e, die Gruppe der Einheiten aus Z, die an den unendlichen
Verzweigungsprimstellen von A4/Z positiv sind, so ist®)

(e:et) = (eg : e ~ zt) . (9)

Wenn aber die Gruppe (7) noch Einheiten von endlicher Ordnung
enthélt, so kann man eine Untergruppe é mit den geforderten Eigen-
schaften folgendermaBen finden: Die als Ordnungen von Elementen von
Einheiten aus 4 auftretenden Zahlen haben ein (endliches) gemeinsames
Vielfaches e. Ist p ein nicht in 2e aufgehendes Primideal aus Z, so haben
alle Einheiten ¢ aus | mit

e =1 (mod I p) (10)

unendliche Ordnung. Denn wére ¢¢ = 1, ¢ £ 1, so ware

e —1

=&+t Fe+1=0,

8.._..

doch hieraus und aus (10) wiirde die unrichtige Kongruenz e = 0 (mod p)
folgen. Daraus, dal p ungerade sein sollte, ergibt sich ferner: die Gruppe
e® aller Einheiten mit der Eigenschaft (10) aus | ist in m+ enthalten.
SchlieBlich ist der Index (e: ™) endlich, denn die Nebengruppen von
e in e verteilen sich auf die endlich vielen Restklassen von Einheiten
aus e mod Ip. (Im Falle r, =17, =0, » = 2 liegt eine total definite
Quaternionenalgebra vor. Dann sind alle maximalen kommutativen
Unterkorper von A total imaginidre Erweiterungen zweiten Grades des
total reellen Zahlkorpers Z. Unter Benutzung des Dirichletschen Ein-
heitensatzes bestatigt man dann leicht nacheinander: 1. Alle Einheiten
aus eP liegen in Z. 2. Der Index (e ~ Z:e®) ist endlich. 3. Der
Index (e:e~Z) ist endlich®)). Sonst aber, wenn nicht 7, =7,=0, n=2
ist, 1aBt sich der Index (e : e®) leicht direkt berechnen®); ich gebe das
Resultat fiir den Fall an, wo p in der Diskriminante von A/Z nicht
aufgeht: Ist e, die Gruppe aller Einheiten aus Z und e’ die Gruppe
der Einheiten aus Z mit der Eigenschaft (10), und ist schlieflich

ng(p) = ¢, 50 ist

(ez:eP) ("—1)g"—q)...(¢"—q"Y

(e:elP) = =
(ez: ez) q—1

(11)

5) Die Rechnung 148t sich durchfithren auf Grund von Satz 5 in: M. Eichler, Allge-
meine Kongruenzklasseneinteilungen, J. reine angew. Math. 179 (1938), S. 227.

8) Ein Beweis dieser Tatsache findet sich auch in: M. Eichler, Uber die Ideal-
klassenzahl total definitiver Quaternionenalgebren, Math.Z.48 (1937), S.102.
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8. Fiir die in 7 genannten Gruppen é an Stelle von e bleiben, wegen
der Endlichkeit des Index (e : é), die Ergebnisse des § 2 iiber die Existenz
eines Diskontinuitdtsbereiches von e in m wortlich in Geltung. Jetzt
greifen gruppentheoretische und geometrische Vorstellungen in charak-
teristischer Weise ineinander: die Formeln aus 4:

Jde=m, drnde=0,
&

welche einen Diskontinuitatsbereich d charakterisieren, lassen sich noch
anders schreiben : Durchlaufen 6 und ¢’ die Gesamtheit aller als Gruppen-
elemente aufgefafiten Punkte aus d, so 1463t sich der Inhalt beider Formeln
auch so ausdriicken:

2de=m, de # 6 e (fiir 6 #6') .

Diese Formeln geben aber die Zerlegung von m in linksseitige Neben-
gruppen nach e wieder. d ist also gleichzeitig ein Reprasentantensystem
fir die linksseitigen Nebengruppen von e in m. Wir wollen kurz

de=m
schreiben.
Wegen der Endlichkeit der Indizes (5) und (e: é) kann man jetzt die
Ergebnisse des § 2 gleich allgemeiner so ausdriicken:

Es gibt ein stetig begrenztes Reprisentantensystem d7) der Linksseitigen
Nebengruppen von é in m*; d hat dieselbe Dimension wie m+; d stoft lings
seines Randes nur an endlich viele dquivalente Diskontinuitdtsbereiche de an.

Wenn d und de lings einer Randmannigfaltigkeit f, aneinander an-
stoBen, so identifiziere f, mit f,e~! oder ,,biege d so zusammen®’, daB3
f, und f,e! aufeinander liegen. Durch diesen in der Topologie iiblichen
ProzeB der Réanderzuordnung entsteht eine abgeschlossene Mannig-
faltigkeit D; sie hat folgende Eigenschaften:

1. m* ist eine Uberlagerung von D, und zwar eine unverzweigte. Es gibt
namlich keinen Punkt § in d, der bei Multiplikation mit einer von 1 ver-
schiedenen Einheit ¢ aus é fest bleibt, denn aus n(d) = 1 und de = ¢
folgt ¢ = 1.

2. m* ist esne regulire Uberlagerung von D, denn die Uberlagerungswege
auf m+ eines geschlossenen Weges auf D sind entweder alle offen oder
alle geschlossen.

3. Folglich ist é die Monodromiegruppe der Uberlagerung m+/D.

7) Eine Verwechslung mit dem friither ebenfalls mit d bezeichneten Diskontinuitéts-
bereich von e in m ist ausgeschlossen, da dieser nicht mehr vorkommen wird.
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Hieraus folgt schlieflich, weil d nur an endlich viele dquivalente
Bereiche anstofit, daf é durch endlich viele Einheiten erzeugt werden
kann. Das ergibt wegen der Endlichkeit des Index (e: é): e besitzt ein
endliches Erzeugendensystem.

4. D enthalt nicht mehr, wie d, irgendwelche Willkiirlichkeiten,
sondern ist durch m+ und é eindeutig bestimmt. Ich fithre deshalb die
folgende Bezeichnung ein:

D=m+/é8%).

Wegen der Beziehung von D zu der Zerlegung von m+* in linksseitige
Nebengruppen nach é kann man D als das System der linksseitigen
Nebengruppen von é in m* bezeichnen. D ist eine (homogene) Mannig-
faltigkeit.

9. Eine vollstandige Beschreibung von D kommt nach 8 einer voll-
stdndigen Beschreibung von é gleich, das letztere ist das Ziel der Ein-
heitentheorie; leider liegt aber die Losung der ersteren Aufgabe noch
recht fern. Eine wichtige topologische Invariante von D ist die folgender-
mafen definierte Zahl r: D 148t sich stetig auf eine Mannigfaltigkeit
R der Dimension r abbilden, wobei é in deren Fundamentalgruppe iiber-
geht, aber nicht auf eine Mannigfaltigkeit von kleinerer Dimension.
Der Hauptsatz dieser Arbeit besteht in einer Beschreibung von R und r;
zu seiner Formulierung ist aber noch eine kleine Vorbereitung notig.

Es sei o eine Untergruppe von m+. Dann 148t sich genau wie in 8 das
System S = o\m*?) (12)
der rechtsseitigen Nebengruppen von o in m* bilden; die Punkte von S
sind die Nebengruppen ox. Man kann in naheliegender Weise den
Umgebungsbegriff von mt auf S iibertragen, so daff S ein stetiges Abbild
von m+ ¢st. Ebenso wie die Multiplikation der Zahlen x4 aus m* mit
Zahlen v aus m+ stetige Abbildungen u—uv von m* auf sich ergibt,
liefert auch die Multiplikation der Nebengruppen ou mit Zahlen » stetige
Abbildungen ou—>ouv von S auf sich. Eine Abbildung ou—>opuv ist
dann und nur dann von der identischen verschieden, wenn nicht yvu= c o
fiir alle u aus m+ gilt. Ist o, der grofte in o enthaltene Normalteiler von
m+*, so liefert die Multiplikation der Punkte von S mit Zahlen aus m+ eine
mit der Faktorgruppe mt/o, isomorphe Gruppe stetiger Abbildungen
von S auf sich. Wir werden es im folgenden nur mit solchen Fallen zu tun
haben, wo o, = 1 ist.

8) Lies: mt rechts durch & dividiert.
%) Lies: mt links durch o dividiert.
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Wenn é auch auf S einen Diskontinuitatsbereich r besitzt, so erhalt
man bei der Abbildung m+—S in der Gestalt des Systems

R = o\ m*/é 1) (13)
der Komplexe 0gé in der Doppelmodulzerlegung
mt = 3006 = oré
e

ein stetiges Abbild von D, welches von S unverzweigt iiberlagert wird,
und welches in ahnlicher Weise wie D die Eigenschaften von é wider-
spiegelt.

Hauptsatz. Man erhdlt alle Mannigfaltigkeiten R kleinster Dimension
mat der Fundamentalgruppe é, auf die sich D stetig abbilden lift, in der
Form (13), indem man fir o alle moglichen maximalen orthogonalent)
Untergruppen von m* nimmt. Die so erhaltenen R sind similich unterein-
ander homéomorph, und thre Dimension ist

r:rln—(%t—ﬂ—}-rznz—}-mp——(ﬁ—z:ﬂ—l . (14)

Genauer gilt: é ist eine in S diskontinuterliche Abbildungsgruppe und
besitzt dort einen Diskontinuatitsbereich r; R entsteht aus r durch Rinder-
zuordnung (ebenso wie D aus d in 8). S ist die universelle Uberlagerung
und é die Fundamentalgruppe von R.

10. Bevor der Hauptsatz bewiesen wird, sind noch zwei erklarende
Bemerkungen niitzlich.

1. A [k sei volle Matrixalgebra n-ten Grades. Dann ist die Gruppe aller
ganzzahligen unimodularen Substitutionen n-ten Grades eine Einheiten-
gruppe e von 4. Wenn man fiir o die Gruppe der Substitutionen nimmt,
welche die Form 2'a} fest lassen, so erhilt man eine mit S homtomorphe
Mannigfaltigkeit S’, indem man jeder Matrix & von A das Produkt
@ = &’ & mit ihrer transponierten zuordnet. ¢ ist bekanntlich die Koeffi-
zientenmatrix einer definiten quadratischen Form. Den Abbildungen
of—>o0fe in S entsprechen die Transformationen ¢ —¢’@e der quadra-
tischen Formen. Die Aufstellung von Reduktionsbedingungen fiir quadra-
tische Formen ist nichts anderes als das Aufsuchen eines Diskontinuitits-
bereiches fiir die Gruppe e. Aus einem Diskontinuitiatsbereich von e in

10) Lies: m* rechts durch @, links durch o dividiert.
11) Eine Untergruppe 0 von m+ soll orthogonal heiBen, wenn o bei einer geeigneten
Matrizendarstellung von A4 als eine Gruppe euklidischer Drehungen dargestellt wird.
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m = m+* erhalt man einen in S und umgekehrt (vgl. b); es ist mithin
gleichgiiltig, ob man e als eine in m oder in S diskontinuierliche Gruppe
betrachtet. Dies erkannte bereits Minkowski?). Dariiber hinaus besagt
der oben ausgesprochene Hauptsatz, dafl S der einzige Raum kleinster
Dimension ist, in dem e einen Diskontinuitiatsbereich besitzt.

2. Es sei A = Z. Dann haben R und S die Dimension r = r, + r, — 1.
Sicherlich wird schon allein daraus, daf3 é abelsch und die Fundamental-
gruppe einer solchen r-dimensionalen Mannigfaltigkeit R ist, die sich
nicht stetig und unter Erhaltung dieser Fundamentalgruppe auf eine
Mannigfaltigkeit von niederer Dimension abbilden 148t, ableiten lassen,
dafl é eine genau r-gliedrige Basis besitzt. Diese Aussage, d.h. den
Dirichletschen Einheitensatz, erhalt man aber jedenfalls dann sofort,
wenn man auch den zweiten Teil des Hauptsatzes heranzieht und nach-
einander zeigt: 1. o besteht aus allen Zahlen von Z, die mitsamt ihren
konjugierten Zahlen den absoluten Betrag 1 haben. 2. S laflt sich
folgendermaflen durch Koordinaten beschreiben: Sind o, (&), ..., %1 (&)
die r- l-absoluten Betriage der allgemeinen Zahl £ aus Z (d.h. die ver-
schiedenen unter den absoluten Betragen der zu & konjugierten Zahlen),
so liefert die Abbildung von £ auf den Punkt mit den Koordinaten «,(§)
mit Y'x,;(£) =0 im (r+41)-dimensionalen affinen Raume ein homéo-
morphes Bild von S. 3. Die Abbildungen o&-—+0é&e von S auf sich sind
topologisch Translationen in diesem 7-dimensionalen affinen Raume
dquivalent. 4. R ist ein r-dimensionaler Torus. Die klassische Einheiten-
theorie st mithin wn obigem Hauptsatze enthalten, wenn auch etwas ver-
steckt. Umgekehrt folgt aus ihr der Hauptsatz fiir A =Z, sodaB man
bei seinem Beweise n>1 voraussetzen darf.

§ 4. Beweis des Hauptsatzes

11. D moge sich stetig auf eine Mannigfaltigkeit R abbilden lassen,
wobei é in deren Fundamentalgruppe iibergeht. Die Punkte aus D sind
die linksseitigen Nebengruppen wé. Es bezeichne O, die Gesamtheit der
Punkte aus D, welche in R den gleichen Bildpunkt wie wé haben. Die
O, miissen abgeschlossene und untereinander homoomorphe Mannig-
faltigkeiten sein, wenn R ein homogenes stetiges Abbild von D sein soll.
In m+ gibt es dann Punktmengen o, mit der Eigenschaft

0,6 =0, ;
die o, lassen sich durch die Forderung noch gena,her festlegen, daf} sie
minimale und mit den O, homdomorphe Mannigfaltigkeiten sein sollen;
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gie sind dann bis auf rechtsseitige Multiplikation mit Einheiten aus é
eindeutig festgelegt. Fiir die so bestimmten o, gilt:

1. Durch jeden Punkt von m+ geht genau ein o, .
2. Fir Einherten aus é gilt o= (15)
3. Fir jedes w aus m* gibt es eine Vollumgebung v um w, so daf fir jedes

o’ aus v und jedes & dus & _ _
Oyt 7 Oy + €
18t.

Wenn umgekehrt in m* Teilmannigfaltigkeiten o, mit diesen Eigen-
schaften gegeben sind, so bilden die aus ihnen erzeugten Teilmannig-
faltigkeiten O, = o,é von D eine Mannigfaltigkeit R, welche die Mannig-
faltigkeit aller o, als regulire Uberlagerung und é als die zugehérige
Monodromiegruppe hat, und R ist ein stetiges Bild von D. Eine stetige
Deformation der O, innerhalb von D ergibt sogar dieselbe Mannig-
faltigkeit R, also nicht nur eine Mannigfaltigkeit mit derselben Mono-
dromiegruppe. Ein stetiges Bild von D mit der Fundamentalgruppe é
ist R* = o*\D, wo o* eine maximale orthogonale Untergruppe von m+*
ist (Nr.16). Hat R die Fundamentalgruppe é und mini male Dimension,
so ist R ein stetiges Bild von R*. Falls noch nicht R* = R ist, lassen
sich die 0,, wegen D = o*R*, in die Gestalt o* 0, deformieren, wobei
die entsprechend den O, gebildeten o, Mannigfaltigkeiten eine Dimen-
sion p<<m—r haben und auch die Bedingungen 1.—3. erfiillen. Sie
definieren also ein stetiges Bild R von D. Ich zeige nun, da@l sich die
0, in die Gestalt owé mit o< o* deformieren lassen. Dann ist also
R* = R. Dabei schreibe ich wieder R, O,, o, anstatt von R, O,o0,, ;
die Dimension p der o, ist also fortan <m —r.

Ich zeige zunichst, daf sich die o, unter Erhaltung der Eigenschaften
1. bis 3. und unter gleichzeitiger stetiger Deformation der O, innerhalb
von D in Mannigfaltigkeiten o, mit

Op = 0. (16)
deformieren lassen, wobei o = o, von w unabhéngig ist.

12. D enthalt eine Menge R von teils offenen, teils abgeschlossenen
Simplizes, die man leicht aus einer simplizialen Zerlegung von R ge-
winnen kann, mit den Eigenschaften: 1. Durch jeden Punkt von R geht
genau ein Oy,. 2. Die Rénder der einzelnen Simplizes sind derart
auf einander bezogen, daB ein O,, das durch einen Randpunkt P,
eines Simplex 8; geht, auch stets durch einen Randpunkt P, eines
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anderen Simplex S, geht, wobei wegen 1. entweder P, zu S, oder
P, zu S,, jedoch nicht gleichzeitig P, zu S; und P, zu S, gehort.
Werden die in dieser Weise einander zugeordneten Simplexrinder
identifiziert, so .entsteht eine zu R homoomorphe Mannigfaltigkeit.
3. R laBt sich stets so wéahlen, dafl die O, welche durch eine be-
liebige Vollumgebung eines beliebigen Punktes aus D gehen, nicht
durch Randpunkte von R hindurchgehen. § sei die grote Punktmenge
aus m*, welche bei der Abbildung m+—>D auf R abgebildet wird; sie
ist durch diese Forderung eindeutig festgelegt. Durch jeden Punkt von
S geht genau ein o, jedes o, geht durch einen Punkt von S.

Es werde nun ein Produkt o,ou durch die Festsetzung erklart: es
sei o, der Punkt von o, der auf S liegt, und

awolu = 0, (17)

wi
Ferner werde durch

(BwO,ul)O,uz = 0,0 (110 @) (18)

ein Produkt u, o u, der Zahlen aus m+ untereinander definiert. Beziiglich
dieser neu erklarten Verkniipfung erzeugen die Elemente von m* eine
Gruppe M stetiger Abbildungen einer Uberlagerung von R auf sich.

Zur Untersuchung von M sei u eine infinitesimale Umgebung der 1 in
m*. Man mache nun zunichst von der Erlaubnis, die O, und R stetig zu
deformieren, soweit Gebrauch, da3 man erstens R und damit auch S durch
1 hindurchgehen 148t und zweitens die o, und S zu linearen Teilrdumen
von mt (oder m. a. W. von A) macht, soweit sie innerhalb u verlaufen,
wobei hier die o, auf S senkrecht stehen. Jetzt haben die Zahlen von
u ~ o, die Form w + 2o, dt,, wobei die «; von w unabhingige Elemente
aus 4 und di, reelle variable infinitesimale Grofen bedeuten. Fiir irgend
zwei Elemente 1 4+ du und 1 4 dv aus u folgt nun, wenn man infinite-
simale GroBlen zweiter Ordnung vernachlassigt,

un 6(1+dy,) (14dy) — U " 51+d,,; (14dv) . (19)

Diese Gleichung besagt, falls durch o, ~ u kein Normalteiler von m* geht,
da M und m* im kleinen homdomorph sind. In jeder einfach zu-
sammenhingenden Umgebung stimmen mithin M und m+* hinsichtlich der
Gesamtheit ihrer Elemente iiberein ; dasselbe gilt dann auch im groBen.

Durch eine geeignete Deformation der O, kann man ferner erreichen,
daB M und m+ isomorphe Gruppen sind. Zum Beweise mogen v und w
zwei Vollumgebungen von 1 in m+ mit der in 11, 3. beschriebenen Eigen-
schaft bezeichnen, wobei v ganz im Inneren von w liegt. Werden v und w

265



hinreichend klein gewéhlt, so sind die Durchschnitte v ~ o,, w ~ o,
sobald w in v bzw. w liegt, Vollumgebungen von w in o,. Man lege u~o,
auf eine p-dimensionale Untergruppe 6 von m+, welche keinen Normal-
teiler von m* enthéalt (da die m; in (4) einfach sind, und wegen n>1,
p <m—r gibt es solch ein o), und setze

aw == 0.0 ,

Wird v hinreichend klein gewihlt, so sind die v ~ 0, mit den v ~ o,
homdomorph, und das gleiche gilt fiir deren Randmannigfaltigkeiten.
Wird v ferner so klein gewiahlt, daB diev ~ o,,, sofernv ~ o, + 0 ist, mit
S genau einen Punkt gemeinsam haben, welcher wiederum mit ¢, be-
zeichnet sei, so ist

/

VRO, =VnO, , VA Ouy =V~ O o =V~ 0, - , (20)

w
und die von v~ S und den v ~ o, in v einschlieBlich des Randes erzeugte
Konfiguration ist mit der durch v ~ S und die v ~ o, erzeugten homoo-
morph. Folglich kann man die o, stetig so deformieren, daf} sie erstens
auBerhalb aller Gebiete we ungeiindert bleiben, zweitens innerhalb von v
in die o, ilibergehen und drittens einer stetigen Deformation der O,
innerhalb von D entsprechen. Nach dieser Deformation sind M und m+
wegen (20), und weil 6 keinen Normalteiler von m* enthalten sollte,
innerhalb von v identisch. Weil sie andererseits im groflen homéomorph
sind, sind sie im groflen topologisch isomorph.

Jetzt ist die Gruppe M eine ,,Verzerrung‘‘ von m+ in dem Sinne, daB es
eine eineindeutige stetige Abbildung V von m+ auf sich gibt, daf}

ppopy = V1 (V(#l) : V(ﬂz)) (21)

0w = V(—O-V—l(w)) ’ (22)

ist. Setzt man

so erfiillen die o,, die Bedingungen 1. bis 3. und (16) in 11. Das Erfiilltsein
von 1. ist klar. Da S durch 1 hindurch geht, folgt aus (17) und (18)

—

03019 Uy = Opiou,y

und aus (21) und (22), wenn man zur Abkiirzung

V(u,) = ,z-h, V(ug) = ﬁz
setzt, L

V=1(0y gy ) = Vo05,3,)
oder

Oufts fly = OF, &, -
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p1 und g, durchlaufen zugleich mit u, und u, die ganze Gruppe m+; dann
folgt aber unmittelbar 2. und (16).

SchlieBlich ergibt sich aus (15), (17) und (18) fiir £ aus é und x aus m+

EOU = EMU, MOE= UE .

Mithin laBt die Verzerrung V, welche vermittels (21) die gewohnliche
Multiplikation mit der Verkniipfung o verbindet, die ¢ fest und liefert
eine stetige Deformation von D. Ferner bewirkt die Verzerrung (22) eine
stetige Deformation der O, in die O, = 0,6 innerhalb von D. Also ist
auch 3. erfiillt und die O, bilden nach 11 dieselbe Mannigfaltigkeit R wie
die O,,.

13. Von jetzt ab darf (16) als erfiillt angenommen werden. Aus 11 geht
dann hervor: Bezeichnet S die Gesamtheit der o,, so ist é eine in S dis-
kontinuierliche und fixpunktfreie Abbildungsgruppe; einen Diskonti-
nuitédtsbereich r von é in S erhilt man in Gestalt der Gesamtheit der o,
welche durch die Punkte eines Diskontinuitétsbereiches d von é in m*
gehen. R entsteht aus r durch Randerzuordnung wie D aus d in 8. Ist S
einfach zusammenhingend, so ist es die universelle Uberlagerung von
R. Dies ergibt den zweiten Teil des Hauptsatzes. Es geniigt daher, o nidher
zu betrachten.

o 18t esne Gruppe. Namlich, weil o die Gesamtheit der Punkte ist, die in
S denselben Bildpunkt haben wie 1, gilt

oo =o.

Ist o ein Element aus o, so enthilt ow=! die 1, es ist also nach 11,1
owl=o0,

folglich ist o wirklich eine Gruppe. Ferner ist
S = o\m+ .

14. o liegt ganz im Endlichen, d. h. die Koordinaten der Elemente von o
im Sinne der Koordinatendarstellung (1) sind beschrankt. Ich beweise
diese Behauptung zunichst unter der Voraussetzung, daB} A nullteilerfrei
ist. Jetzt gibt es nach 4 einen ganz im Endlichen gelegenen Diskonti-
nuitétsbereich d von é in m+. Wenn o nicht im Endlichen lage, so durch-
liefe o unendlich viele mit d aquivalente Diskontinuitatsbereiche ds.
Dann enthielte aber der Bereich r in S, der aus allen o,, besteht, die durch
Punkte von d hindurchgehen, unendlich viele Paare dquivalenter Punkte
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0w, 0,¢. Da r nach 13 ein Diskontinuitidtsbereich von é in S ist, miilite
dann jedesmal o, = o, ¢ gelten, und in diesem Falle kénnte é nicht in der
Fundamentalgruppe von R liegen. Die Behauptung ist damit bewiesen.

156. Nun sei 4 wieder beliebig. Wenn o ganz im Endlichen liegt, ist o
etne orthogonale Gruppe. Wenn man namlich o durch lineare Substitu-
tionen darstellt, so sind die Koeffizienten dieser Substitutionen be-
schrankt. Folglich lassen sie eine definitive quadratische Form fest2);
eine solche Substitutionsgruppe ist stets mit einer Gruppe euklidischer
Drehungen aquivalent.

Alle maximalen orthogonalen Untergruppen o von mt* sind in m+
konjugiert. Aus 11 ergibt sich aber, daB o\m+*/é und w1 op\m*/é
homoéomorph sind, denn die Punkte von x~! ou\m+*/é sind die Mannig-
faltigkeiten

! - -
o(.u —'lu loyw,,r'l,u ’

sie gehen aus den o, durch eine stetige Deformation von m+ hervor, bei
welcher gleichzeitig die O, stetig in die O], = o, é iibergehen.

16. Umgekehrt liegt eine orthogonale Untergruppe o von m+ ganz im
Endlichen. Da é keine Elemente von endlicher Ordnung enthalten sollte,
ist jetzt fir jedes w aus m+

onwléw=1. (23)

Die durch é gelieferten stetigen Abbildungen o,—o0,e von o\m* =S8
auf sich bilden daher eine diskontinuierliche und fixpunktfreie Gruppe;
einen Diskontinuitiatsbereich erhalt man in Gestalt des Bildes eines
Diskontinuitatsbereiches d bei der Abbildung m+—S. Ist o eine maximale
orthogonale Untergruppe von mt, so ist S einfach zusammenhingend;
S ist die universelle Uberlagerung von S/é = o\m+*/é, und ¢ ist die
Fundamentalgruppe von S/é. Die maximalen orthogonalen o kénnen
also wirklich, wie der Hauptsatz aussagt, zur Bildung von R hergezogen
werden; sie liefern die R von minimaler Dimension. Die Gestalt der
maximalen orthogonalen Untergruppen o von mt iibersieht man ndmlich
am besten mit Hilfe von (4): es ist

0= (0 ~nmy)x---x(0n mr1+r2+r,) .

Die o ~ m; sind beschriankt und lassen sich daher als unitiare Substi-

12) H. Auerbach, C. R. Acad. Paris 195 (1932), S. 1367.
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tutionsgruppen darstellen'?). Nach 3 und (12) ist dann S das topo-
logische Produkt der a;, und z* und folglich einfach zusammenhingend.
Die maximalen unitiren Untergruppen der m; haben die Dimension

M—)———n fir1=1,..., r, ,
2
2—&;————1—)————7& fir o =r, +1,..., 7, + 15,
G)
4————2————————§ fir o =r,+r+1,...,rn+r4r;.

Die Dimension von R ist gleich der Dimension von m+, vermindert um die
von o. Hieraus ergibt sich die Formel (14) fiir die Dimension von R. Fir

nullteilerfreie Algebren ist der Hauptsatz hiermit in vollem Umfange
bewiesen.

17. Fiir nullteilerhaltige Algebren bleibt allein noch der Satz aus 14
zu beweisen. Seine Giiltigkeit fiir die kommutativen Unterkorper K
von A wird dabei benutzt, ferner der folgende Hilfssatz: Eine zusammen-
hingende kontinuierliche Substitutionsgruppe o, deren Elemente micht be-
schrinkte Koeffizienten haben, enthdilt eine zyklische Untergruppe, deren
Elemente auch micht beschrinkte Koeffizienten haben. — Beweis. Es sei
u eine Umgebung der 1 in o und U die Menge der Gruppenelemente,
welche Potenzen von Elementen aus u sind. U hat die gleiche Dimen-
sion wie o und ist in o abgeschlossen und ohne Rand. Folglich ist
U = o. Im Gegensatz zur Behauptung mogen nun die Betrage der Koef-
fizienten der Potenzen jedes Elementes « unter einer Schranke S (x)
liegen. Nach der Voraussetzung gibt es eine Folge von Gruppen-
elementen «,, so daB lim §(x;) = oo ist. Wegen S(x) = S(x") fiir jedes

=00
o« und jedes n gibt es eine solche Folge bereits in u, denn alle Elemente
aus o lassen sich als Potenzen von Elementen aus u darstellen. Eine
Teilfolge konvergiert dann gegen ein « mit S(x) = co. Damit ist der
Hilfssatz bewiesen.

o sei eine nicht ganz im Endlichen gelegene kontinuierliche Unter-
gruppe von m* und x ein Element aus o, dessen Potenzen nicht beschrankt
sind. Ist o in einer Matrizendarstellung von A auf Hauptdiagonalform
transformierbar, so gibt es dann einen kommutativen Unterkérper K
und ein Element 7 in 4, daB v1«r der Limes einer Zahlenfolge aus K ist.
Wenn man o zur Bildung von R benutzen kann, so kann man nach 15
(letzter Absatz) auch 7—!or hierzu benutzen. Wenn man sich auf die
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Betrachtung des Teiles K von A beschrankt, so kann man ferner hierzu
auch die maximale Untergruppe o, von 7—1otr benutzen, deren Elemente
Grenzwerte von Zahlenfolgen aus K sind. oy enthdlt aber die Zahl
7ot und ist daher im Gegensatz zu 14 nicht ganz im Endlichen gelegen.
Folglich muB} in jedem Falle o ganz im Endlichen gelegen sein, wenn es
zur Bildung von R benutzt werden kann.

Ist jedoch « nicht auf Hauptdiagonalform transformierbar, so mufl
man folgendermaflen schlieBen: es sei u;=u> uy> uyy> ... eine gegen 1
konvergierende Folge von Umgebungen der 1 und «; Zahlen aus u,, so daf
o7 = « mit ganzen rationalen n,; gilt (vgl. den Beweis des Hilfssatzes).
Dann erzeugen die «; eine kontinuierliche abelsche Untergruppe o, von o,
die ebenso wie o zur Bildung von R herangezogen werden kann. Samtliche
Elemente & von o, lassen sich simultan auf Dreiecksform transformieren:

PRI 0 Zy 0
oléo=\| . I |=§&§& mit &= . (24)

LR z, 0 Zpn

Es gibt in 4 eine Zahl 7 und einen kommutativen Unterkérper K der Art,
daB die v1&,7 Grenzwerte von Zahlenfolgen aus K sind, und wenn man
sich wieder allein auf K beschrinkt, darf man die Gruppe der ™' £,7 zur
Bildung von R benutzen. Nach dem Hauptsatz haben die z,, folglich alle
den Betrag 1. Dann aber enthilt o, wegen S(x) = co Zahlen & #% 1 mit
&, = 1 in (24), und diese lassen sich weiter so transformieren, dafl ober-
halb der Hauptdiagonalen nur 0 und unterhalb der Hauptdiagonalen 0
oder 1 steht. Sie sind also Einheiten aus é dquivalent, und (23) gilt des-
halb nicht mehr fiir alle w, und dies hat zur Folge, dafl o, und o nicht zur
Bildung von R benutzt werden darf.

§ 5. Weitere topologische Invarianten von D

18. Es sei Z’ ein in Z enthaltener Zahlkoérper und é/,, die Gruppe
derjenigen Einheiten aus é, welche beziiglich Z’ die Relativnorm 1 haben.
Ferner sei mg,, analog zu m+ durch die Relativnormen von 4 beziiglich
Z' erklart. Es gebe ) reelle und 27; imaginire zu Z’ konjugierte Zahl-
korper. Die Betrachtungen der vorigen Paragraphen bleiben fast wortlich
giiltig, wenn man m+ und é durch my,, und é,,, ersetzt; insbesondere
gilt:

M{zy/6czy = Dizry

ist eine Mannigfaltigkeit, die Mannigfaltigkeiten kleinster Dimension
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mit der Fundamentalgruppe &5/, auf die sich D/, stetig abbilden 1at,
erhdlt man in der Form

. -+
Rizry = 0z\\m(z1\/&z1) »

wobel o, irgendwelche maximalen orthogonalen Untergruppen von
m¢zs sind. Alle so erhaltenen R, sind untereinander homéomorph,
und ihre Dimension ist, wenn r die Bedeutung (14) hat,

Fgn =1—1—1; .
Es sei speziell Z' = Z. Man iiberlegt leicht, daB das direkte Produkt
e*=é(z)xéz (éZ: é"\Z)

in é einen endlichen Index hat. Ist jetzt n, die von z* und oy, er-
zeugte Gruppe, so ist

Riz) = ng\m+/e*,

und aus dieser Gleichung kann man wegen der Endlichkeit des Index
(6 : e*) folgern, daf sich D stetig auf R, abbilden 1a8t.

Ist R irgend eine Mannigfaltigkeit, auf die sich R stetig abbilden
168t, so ist die Fundamentalgruppe von R die Faktorgruppe é/e von
é nach einem Normalteiler e.e und die Dimension eines solchen R sind
topologische Invarianten von D. Vermutlich wird aber e entweder §,,
enthalten oder in é, enthalten sein; in beiden Féllen wiirde man so
keine wesentlich neuen Invarianten finden.

19. Die einzigen Fille, wo ;. nicht in Z liegt und 75, = 2 ist, sind:
Z'=2Z,r,=1,r, = 0, n = 2. Sie liegen bei Quaternionenalgebren iiber
total reellen Zahlkoérpern vor, welche nur an einer einzigen unendlichen
Primstelle nicht verzweigt sind. Jetzt ist R, eine geschlossene orientier-
bare Fliache (geschlossen ist sie, wenn A nullteilerfrei ist), sie wird durch
ihr Geschlecht g, eindeutig beschrieben. Die Berechnung von g, er-
folgt genau so wie in dem bereits frither behandelten Spezialfall r, = 013).
Man zeigt, daB Sz = oz\mz mit der hyperbolischen Ebene homoo-
morph ist, und daB 6, eine in S, diskontinuierliche Gruppe hyper-
bolischer Bewegungen liefert'?). Nun laBt sich das Residuum der Zeta-

18y M. Eichler, a.a.0.3), Nrn. 6—12.

14) Diese Gruppe gehort im wesentlichen zu dem Typus der schon frither (Fricke-Klein,
Automorphe Funktionen I, Leipzig 1897) behandelten Grenzkreisgruppen, welche durch
die Automorphismen ternérer indefiniter quadratischer Formen geliefert werden. Die
Theorie dieser Gruppen wurde kiirzlich von K. Heegner (Transformierbare automorphe
Funktionen und quadratische Formen I und II, Math. Z. 438 (1938), III, Math. Z. 44 (1938)
ausfiihrlich dargestellt, so daB ich mich hier mit einer kurzen Bemerkung begniigen darf.
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funktion einer Idealklasse von A4 mit Hilfe eines iiber d erstreckten
Integrals berechnen, und dieses lafit sich auf das Integral iiber die
GauBlsche Hauptkriimmung von Rz, zuriickfiihren. Mit Hilfe der GauB-
Bonnetschen Integralformel erhalt man so einen Zusammenhang zwischen
g.z) und der Zetafunktion von A'%). Das Endresultat lautet, falls 6 = e+
ist (vgl. 7):

3
£o(2) |D
Jzy=1+ 2" o((zn)lzn:l II(ng, p'—1),

und falls ¢ = &P ist,

3
8o (2) | Dy|®
9z=1+ (ez: e¥) q(g>—1) °(2,,')2,£,' H(ngp' —1),

darin mogen e,, e’ und ¢ die oben in 7 erklirte Bedeutung haben,
&y (8), Dy, m, seien Zetafunktion, Diskriminante und Absolutgrad von Z
und p’ durchlaufe die verschiedenen Primideale von Z, die in der Dis-
kriminante von 4/Z aufgehen.

20. Im Falle A = Z ist das Residuum der Zetafunktion einer Ideal-
klasse bis auf einen Faktor gleich dem Regulator der Einheitengruppe
und nicht eine topologische Invariante von D; der Regulator wird zur
Bestimmung der Idealklassenanzahl auf transzendentem Wege benutzt.
Wie hier an dem Beispiel gewisser Quaternionenalgebren gezeigt wurde,
liegen die Dinge im Nichtkommutativen vollig anders: die Idealklassen-
anzahl stimmt im wesentlichen mit der des Zentrums iiberein, infolge-
dessen gelingt die Berechnung des Residuums der Zetafunktion einer
Idealklasse, und mittels dieses Residuums kann man eine wichtige und
scheinbar nicht elementar zugingliche topologische Invariante der
Einheitengruppe berechnen. Man kann jetzt fragen: kann man immer im
Nichtkommutativen auf diesem Wege topologische Invarianten von é
finden, und erhilt man so neben den friither besprochenen Invarianten
alle? Die Beantwortung dieser Fragen scheint heute gewil sehr schwierig,
wenn nicht gar einstweilen unmaoglich zu sein.

(Eingegangen den 16. Januar 1939.)

15) Hierbei wird die Kenntnis des Zusammenhanges zwischen den Idealklassen-
anzahlen in 4 und Z benutzt.
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