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Uber Mittelwerte im Figurengitter

Von H. HApWIGER, Bern

§ 1. Figur im Figurengitter.
Unter einer Figur verstehen wir:
a) ein ebenes einfach zusammenhingendes Gebiet, das durch eine streck-

bare Kurve berandet ist;

b) eine ebene einfache offene, streckbare Kurve;
c) einen Punkt.

Jeder Figur kommt so eine bestimmte Fliche sowie ein Umfang zu,
falls wir fiir Flache und Umfang einer Kurve bzw. eines Punktes Null und
doppelte Lange bzw. Null und Null ansetzen.

In der euklidischen Ebene seien zwei Grundfiguren &, und G, gegeben
mit den Flachen F'; und F, und den Umfingen U, und U,. Mit G, bilden
wir ein Figurengitter {®,}, indem wir in der Ebene alle Figuren auflegen,
die aus G} in fester Anfangslage durch die Decktranslationen 7' des
quadratischen Einheitsgitters (Gittertranslationen) hervorgehen (vgl.

O
OO

Fig. 1.
Viereck im Kreisgitter. Die Stiickzahl des Durchschnittes ist 6.

®, sei jetzt von einer Anfangslage ®J aus starr beweglich. Ist @ eine
solche Bewegung, so bezeichne G¢ die Figur , in ihrer Endlage. Ferner

sei @ die kinematische Dichte!) von ®,, so dafl die integral-geometrische

1) Vgl. W. Blaschke, Vorlesungen iiber Integralgeometrie. I. Heft, zweite
erweiterte Auflage. Leipzig und Berlin 1936, 8. 20.
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»Anzahl* von Figuren ¢ die eine Bewegungsmenge It liefert, durch das
Lebesquesche Integral 1 6 M

NG , x(@) =
Ja@@ ., x(Q) 0 ¢ M

gemessen wird, wobei natiirlich «(Q) integrabel vorausgesetzt wird.

Es sei nun M (G) eine Funktion von G¢ im Gitter {®,}, die als Funk-
tion der Bewegung G angeschrieben werden kann. Es soll

M@G) = M(TQ) (1)

sein, wenn 7T eine Gittertranslation bezeichnet. Es sei S ein vollstindiges
Restsystem der Bewegungsgruppe B nach der Untergruppe T der Gitter-
translationen. Als Mittelwert der Funktion M (@) im Figurengitter kann
der Quotient

5 — jﬂ(G)M(G}G 8@ — 16C S
f@a 06Gd-6S
definiert werden, falls die Integrale existieren. Da
[B(@G =2a
ist?), erhalt man fiir den Mittelwert
ll_z[=—21—n B MG . (2)

§ 2. Die allgemeine Mittelwertsformel.

Wir betrachten nun die Figur G¢ im Figurengitter {®,}. Der Durch-
schnitt G- ®, der Figur G mit einer aus {%,} herausgegriffenen Figur
®, ist entweder leer oder besteht aus einer gewissen Zahl einfach zu-
sammenhéngender Gebiete oder offenen Kurvenstiicken oder Punkten,
zerfallt also in eine Zahl von Figuren. Addieren wir diese Figurenzahlen
fiir alle ®, aus {®, }, so erhalten wir die ,,Stiickzahl* N des Durchschnittes
¢ {®,} der Figur ¢ mit dem Figurengitter {®,}.

N ist eine ganzwertige Funktion der Bewegung @, und hat fiir alle
Bewegungen T'G, wo T eine Gittertranslation ist, denselben Wert. Die

1) Werden die beiden Komponenten der Translation einer Bewegung @ mit ¢, und £, und
der Drehwinkel mit @ bezeichnet, so kann fiir & die Menge der G mit

0=4<1l, 0=t; <1, 0=¢p<2=x
gewahlt werden. Es ist dann @ = dt, dt, dp und

fé=Jf"J J"andty-dp=2x.
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Bedingung (1) ist somit erfiillt. Die ,,mattlere Stiickzahl* N kann defini-
tionsgemal} nach (2) ermittelt werden, falls feststeht, dafl N meBbar ist.
In dieser Note soll nun die folgende allgemeine Mittelwertsformel her-
geleitet und angewendet werden:

(I) Die mattlere Stiickzahl des Durchschnittes der Figur &, tm Figuren-
gitter {®,} st
U,U,
27

N=F,+F,+

§ 3. Zuriickfiihrung auf die kinematische Hauptformel von Blaschke.

Man wird ohne weiteres vermuten, daBl unsere Mittelwertsformel (I)
mit Blaschkes Hauptformel der Integralgeometrie eng zusammenhéngen
wird. In der Tat kann die Zuriickfiihrung leicht vollzogen werden, so daf3
die Mittelwertsformel auch als Umdeutung der Hauptformel interpretiert
werden kann. Wir fithren nun den Nachweis:

Die Gittertranslationen der Gruppe I zéhlen wir, mit der Einheit
beginnend, in irgend eine Reihenfolge aus:

To, Tl’ Tz, T3,... ;
Die Figuren des Gitters {®,} bezeichnen wir entsprechend mit
]1.10’ ®f1, 6117” LA |
wobei die Translation 7', ®{ in G* iiberfiihren soll. Es bezeichne jetzt
n (@, Ty)
die Stiickzahl des Durchschnittes
@G (ﬁTk
2 1

Wenn dieser Durchschnitt leer ist, so sei
n (G, T, =0 gesetzt.
Nach Definition ist die gesamte Stiickzahl
N@) =2n@ T,
k=0

wobei die angeschriebene Reihe nur formal unendlich ist, da der Durch-
schnitt ¢ ®7* nur fiir endlich viele k nicht leer ist. Wie W. Maak3)

3) W. Maak {Integralgeometrie 27), Uber stetige Kurven. Abhandlungen aus dem
Math. Seminar der Hansischen Universitat, 12. Bd., 163—178 (1938).
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gezeigt hat ist n (G, T',) unter den sehr allgemeinen Voraussetzungen, die
wir fiir Figuren formulierten, stets meBbar. Also ist es auch N (G@). Wir
bilden nun das Integral

¥= lfmG)N(G)G‘ poy—] 9C°
2w  PEO=1, ¢S
oder
=gz 0@  n@ TG

Da fiir eine beliebige Gittertranslation 7,
n(@, Ty) = n(T,G, T,T,)

ist, kann auch geschrieben werden

— 1 *®
N—3. [#@ S n@pe, 10¢,

k=0
wo T;! die inverse Translation von 7', bezeichnet.
Wir fiilhren nun die Transformation
Q' = T;\q
durch. Wegen der Bewegungsinvarianz der kinematischen Dichte ist

ey
= @G,
so daBl geschrieben werden kann

— 1 e .
N =5 [ (ZBT.@))n @ TG .

7T k=0
Nun gibt es zu einer beliebigen Bewegung @’ nach Definition von G eine
und nur eine Translation 7', so dal 7', G’ zu S gehort. Daraus folgt,
daf3

2 B(Tr.a)=1
k=0
sein mufl. Wir gewinnen so fiir den Mittelwert
N — 1 ’ S U
N "“%fn(a ’ TO)G .
Mit Riicksicht auf die vorausgegangenen Definitionen deutet man das

Integral als Anzahl der Teilstiicke des Durchschnittes B¢’ - ). Nach
der Hauptformel von Blaschke?) ist diese Anzahl durch

4) Das in FuBnote 1) zitierte Buch, § 16.
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275(F1+F2)+ U1U2

gegeben. Besonders zu beachten ist, dafl die Formel fiir Gebiete so wie
fiir offene Kurvenstiicke oder Punkte gilt, falls die Abmachungen be-
treffend Umfang und Fliacheninhalt der Figuren beriicksichtigt werden.
Nach dieser Auffassung enthalt die kinematische Hauptformel die
Formel von Poincarés) als Spezialfall. Wir erhalten also

U,U,
27

womit die Mittelwertsformel (I) gewonnen ist.

N:Fl"{"Fz"“

§ 4. Funktionalgleichungen.

Es ist bemerkenswert, da die mittlere Stiickzahl N von der Gestalt der
Grundfiguren weitgehend unabhingig ist, indem die Mittelwertsformel
nur die Flacheninhalte und Umfinge der Grundfiguren enthalt. Es soll
nun gezeigt werden, wie sich die Mittelwertsformel herleiten 1a8t, falls
vorausgesetzt wird, dal N eine Funktion der Flacheninhalte und Um-
fange ist. Fiir die gesuchte Funktion kénnen gewisse Funktionalgleichun-
gen aufgestellt werden, als deren einzige Losung sich (I) ergeben wird.

Es sei also N=o{F,,U,F,U,}.

Wir weisen vorerst zwei Eigenschaften von @ nach.

«) Die Funktion ®{F,, U,, F,, U,} ist beschrinkt, das heiBt, sie besitzt in
jedem endlichen abgeschlossenen Teilbereich des Variablen-Raumes
eine obere Schranke.

B) Es ist ®{1,4,0,0} = 1.

Nachweis der Eigenschaft «:

Wir betrachten die Gesamtheit § von Figuren, durch welche Flachen-
inhalte und Umfinge realisiert werden, die zum vorgegebenen endlichen
Teilbereich gehoren. Da die Umfénge gleichméafBig beschrankt sind, kann
eine positive Zahl R angegeben werden, so dafl jede Figur aus $ mit
einem Kreis & vom Radius R bedeckt werden kann. Sind nun ®, und ®,
zwei Figuren der Gesamtheit §, so kann die Anzahl der verschiedenen
nicht leeren Durchschnitte $,- &, der Figur &, im Gitter {®,} nicht
groBer sein, als die entsprechende Anzahl S des Kreises &, im Kreisgitter
{R:}, wenn G, und G, durch ], und &, bedeckt werden. Der Kreis K],
hat mit einem Gitterkreis &, dann und nur dann einen nicht leeren

5) H. Poincaré, Caleul des Probabilités, 2me édition, Paris 1912.
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Durchschnitt, falls der mit ], konzentrische Kreis &, mit dem Radius 2 R
den Mittelpunkt von &, enthalt. Die fragliche Zahl S der verschiedenen
Durchschnitte deckt sich somit mit der Zahl von Mittelpunkten der Kreise
R, des Gitters {{,}, die von &; bedeckt werden. Da diese Mittelpunkte ein
quadratisches Einheitsgitter bilden, fiihrt eine geliufige Uberlegung zur

rohen Abschétzung S < n(2R + V3)?

Nun konnen vorgegebene Flacheninhalte und Umfange, falls iiberhaupt
realisierbar, immer durch konvexe Figuren realisiert werden. Der Durch-
schnitt konvexer Figuren ist immer zusammenhéngend. Sind also die
Figuren , und , der Gesamtheit konvex, so liefert ein nicht leerer
Durchschnitt &, &, der Figur G, im Gitter {®,} zur Stiickzahl N den
Beitrag 1. Die Stiickzahl N sowie die mittlere Stiickzahl N kann somit

die Schranke m(2 R + ¥'2)? nicht iibertreffen, so daB die Beschrinktheit
von @ nachgewiesen ist.

Nachweis von f§:
Die vier eingesetzten Argumente kénnen realisiert werden durch

®, = Quadrat der Seitenlange 1,
@2 - Punkt.

Die Stiickzahl des Durchschnittes 6,{®,} ist fast tmmer®) 1. Der Mittel-
wert ist also wie behauptet 1.

Die ziemlich tief liegende Eigenschaft « des Mittelwertes konnte aus
der Voraussetzung ohne grofie Miihe erschlossen werden. Durch die
Voraussetzung wird namlich gerade die typische Schwierigkeit, welche
zur Beantwortung der entsprechenden Frage zu iiberwinden wére, von
vornherein beseitigt. Dall die Aussage « keineswegs selbstverstédndlich
ist, sieht man sogleich ein, wenn man sich tiberlegt, dafl die moglichen
Stiickzahlen des Durchschnittes zweier Figuren von gegebenen Flachen-
inhalten und Umfingen, die mindestens eine Nicht-Kreis-Realisierung
zulassen, unbeschrinkt sind, wenn die Gestalt unbestimmt gelassen
wird (vgl. Fig. 2).

Fig. 2.

%) Fast immer bedeutet immer mit Ausnahme von Lagen, deren integralgeometrische
Anzahl verschwindet.
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Die gleichméaflige Beschrianktheit des Mittelwertes bei Figuren mit
gleichméBig beschrankten Flicheninhalten und Umfiangen hidngt natiir-
licherweise damit zusammen, daBl die Anzahl Figuren, deren Durch-
schnitt mit einer anderen Figur eine grofle Stiickzahl aufweist, klein ist,
so daB3 der Mittelwert keine entsprechende Vergroflerung erfihrt. Der
direkte Nachweis dieses hier nur ungefahr ausgesprochenen Sachverhaltes
ist eine ziemlich subtile und verwickelte Angelegenheit. Er wurde fiir
Kurven durchgefithrt von W. Maak?), um die Formel von Poincaré unter
den allgemeinsten Voraussetzungen herzuleiten.

Nun gehen wir daran, gewisse Funktionalgleichungen fiir die gesuchte

Funktion @ {F,, U,, F,, U,} aufzustellen. Zunichst kann die Sym-
metriebeziehung

¢{F1:U1,F2,UZ}:¢{F2, U2>F1: Ul} (A)

leicht eingesehen werden. Eine einfache Uberlegung zeigt, daB die ver-
schiedenen Durchschnitte der Figur %, mit den Figuren des Gitters
{®,} auch erhalten werden konnen als Durchschnitte der Figur ¢, mit
den Figuren von {®,}. &, und G, konnen in ihrer Rolle vertauscht
werden, was auf die Symmetrie (A) hinauslauft.

Es gilt weiter

@ {4F,, 2U,, 4F,, 2U,} = 4 & {F,, U,, F,, U,} . (B)

Diese Funktionalgleichung begriindet man auf folgende Weise: Der
Mittelwert mit doppelt so grolen dhnlichen Figuren ist durch die linke
Seite von (B) gegeben. Werden jetzt Gitter und Figuren gleichzeitig
ahnlich auf die Halfte verkleinert, so kann der Mittelwert sich nicht
andern, da die Stiickzahlen bei Ahnlichkeitsabbildungen gleich bleiben.
Auf diese Weise entsteht ein engeres Figurengitter, das sich aus 4 norma-
len Figurengittern zusammensetzen lat. Jede Stiickzahl im engeren
Figurengitter setzt sich aus 4 Beitrdgen zusammen, deren Mittelwerte
einzeln @ betragen. Der Mittelwert der Summe ist somit 4 @, und das ist
die rechte Seite von (B).

Es folgt nun eine Art Additionstheorem:

(D{F{: U;(:-an U2}+¢{F;.,3 Uil>F2: U2}=
—O(F|+F] , UL+ U, Fy, U} +0{0,0,F,, U} . (O

Zum Nachweis dieser Beziehung denken wir uns eine Figur ,, die die
Summe &, + &” zweier Figuren G; und ®; ist, die nur einen Punkt
®; - 7 gemeinsam haben. In diesem Falle ist Fliche und Umfang von

7) Vgl. die in FuBnote 3) zitierte Arbeit.
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®, gleich der Summe der Flichen und Umfinge der Teilfiguren 6] und
®7. Nun ist leicht einzusehen, daB die Summe der Stiickzahlen der
Durchschnitte G, ®; und G,- ®, gleich der Summe der Stiickzahlen der
Durchschnitte 6, (®; + ) und G, (®] - G7) ist. Diese Relation iiber-
tragt sich auf die Stiickzahlen im Gitter und dann auf den Mittelwert. So
ergibt sich (C).

Zu einer weiteren Funktionalgleichung gelangen wir auf folgende
Weise: Denken wir uns die Werte fiir Flacheninhalte und Umfinge durch
Eibereiche (Konvexe Bereiche mit stetig gekrimmter Randkurve) ®,
und %, realisiert, so gibt es zu hinreichend kleinem & einen &uBeren
Parallelbereich ®, (&) zu %, im Abstand &, sowie einen inneren Parallel-
bereich ®,(— &) zu &, im gleichen Abstand. Wenn die Flichen und
Umfange von G, und &, wie iiblich bezeichnet sind, so sind nach den
bekannten Formeln von J. Steiner?) die Flichen und Umfinge der
Parallelbereiche ®, (&) und G,(— &) gegeben durch

F,+U,6+n&? Fo,—U,6+nk% und U,42a&, U,—2m& .

Nun hat man sich nur zu iiberlegen, dafl sich die zwei Eibereiche
®,(&) und G,(— &) dann und nur dann treffen, wenn sich auch &, und
®, treffen, um zu bemerken, dafl die Stiickzahl des Durchschnittes
®,{®,} gleich sein mufl wie die Stiickzahl des Durchschnittes ,(— &)
{®,(&)}. Dabei ist noch zu beachten, daB die Stiickzahl eines Durch-
schnittes zweier Eibereiche 1 betragt. Die mittlere Stiickzahl @ wird sich
somit nicht &ndern, wenn die Grundfiguren ersetzt werden durch die
erwihnten Parallelfiguren. Damit stoen wir auf folgende Funktional-
gleichung:

O{F,+ U a8 U 4278, Fy—EU 4 n&?, Ui—2né} = O{F,, Uy, Fy,U,} .
(D)

Der so gewonnene Vorrat an Funktionalgleichungen geniigt, um die
Funktion @ zu ermitteln.

Wir leiten jetzt also die Mittelwertsformel (I) aus den Eigenschaften «
und g und aus den Funktionalgleichungen (A) bis (D) ab.

Setzen wir in (C) U, = U’ = U, und lassen U,, F,, U, konstant, so
daB nur noch die Abhéngigkeit von F, in Erscheinung tritt, so ergibt
sich nach sinnentsprechender Abkiirzung in der Schreibweise

@ {F;} + ®{Fi} = ¢{F1 + Fi}

8) J. Steiner, Uber parallele Flachen, Monatsbericht der Akademie der Wissen-
schaften zu Berlin (1840), S. 114—118.
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Setzen wir analog F; = F;] = F, und lassen F,, F',, U, konstant, be-
trachten also nur noch die Abhéngigkeit von U,, so gilt wieder

P{U+P{U{} =y {U; + U/}

Wie Darboux?®) gezeigt hat, ist die lineare Funktion die einzige in einem
endlichen Intervall gleichméaBig beschriankte Losung einer Funktional-
gleichung der oben angeschriebenen Form. Die Funktion ®{F,,U,,F,,U,}
ist also in bezug auf die beiden ersten Variablen F', und U, linear, da sie
nach « beschrankt ist. Im Hinblick auf die Symmetrie (A) ist sie es auch
in bezug auf die beiden letzten Variablen F, und U,.

Die allgemeinste Funktion @ {F',, U,, F,, U,} die in den vier Variablen

linear ist, und auBerdem die Symmetriebeziehung (A) aufweist, hat
die Form

D=0, +C,{F,+F,} +C,U,U, + C;{U, + U,}
+C,{F, U, +F, U} +C;{F,U,+F,U,}
+ CeF . Fy, + C,{F,U, U, +F,U, U,}
+ C{F,F, U, + FF,U,} +Cy F,F, U, U, .
Verwenden wir jetzt noch Relation (B), so folgt, da@3
=0 =l=U=0;=U,=0;=0,=10
sein mub}. Es bleibt also noch

¢=CI{F1+F2}+02U1U2 .

Suchen wir jetzt die Funktionalgleichung (D) zu erfiillen, so werden wir
auf die Identitat gefiihrt
01{F1+F2}+ 02 U]_ U2=

C, {F1+F2+§(U1"" Uz) + 27552} +02{ Ul Uz"“2755(U1_U2)_4772§2} ’
woraus sich die Identitat

2n82{C, —2nC,} + (U, — U,)&{C; —2aC,} = 0

ergibt, die die Relation C. — ¢
27 27
zur Folge hat. Wir erreichen
U, U
2 =01{F1+ F2}+01 217t2 .

%) Q. Darboux, Math. Ann. 17 (1880), S. 55.
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Endlich beriicksichtigen wir noch die Eigenschaft f, welche abzulesen
gestattet, dafl €, = 1 sein muf}, so dal wir endgiiltig erhalten

U,U,

2n °

(D:Fl‘l‘Fz"l‘

was zu zeigen war.

§ 5. Bereich im Punktgitter. Der Satz von Blichfeldt.

Es sollen nun einige wichtige Spezialisierungen der allgemeinen Mittel-
wertsformel (I) besprochen werden. Es sei zundchst &, ein beliebiger
Bereich der Fliache F, und ®, ein Punkt. Die Stiickzahl des Durchschnit-
tes ,{®,} kann hier anschaulich als Treffzahl bezeichnet werden. Sie ist
gleich der Zahl der Bereiche des Bereichgitters, die vom Punkt getroffen
werden. Die mittlere Treffzahl ist nach (I)

N—7,.

Beachten wir, dal die Treffzahl bei allen Drehungen des Punktes gleich
bleibt, so kann die Mittelwertsbildung statt tiber alle Bewegungen nur
iiber Translationen erstreckt werden, ohne das Resultat zu d4ndern. Wir
haben demnach auch als Translationsmittelwert

N —F,

zu erwarten. Wir sprechen dieses Resultat ausdriicklich fiir den zuge-
hérenden symmetrischen Fall aus. (Auch bei der Mittelwertsbildung, die
sich iiber die Translationen erstreckt, darf man die beiden Grundfiguren
in ihrer Rolle vertauschen. Man vergleiche die zur Begriindung der
Symmetriebeziehung (A) beigebrachte Bemerkung.)

(II) Ein Bereich der Fliche F werde vm quadratischen Einheitsgitter allen
Bewegungen oder allen Translationen unterworfen. Die mittlere Zahl
der getroffenen Gitterpunkte ist in beiden Fdillen gleich F'.

Diese Aussage enthilt einen bekannten Satz von Blichfeldt'®) als ein-
fache Konsequenz. Dieser Satz besagt im zwei-dimensionalen Fall
folgendes: Ein Bereich der Fliche F kann im quadratischen Einheitsgitter
immer so parallel verschoben werden, daf3 die Zahl der bedeckten Qitterpunkte
nicht kleiner als F ausfdllt.

Da nun nicht alle Treff- oder Bedeckungszahlen kleiner als der Mittel-
wert sein konnen, folgt der Blichfeldtsche Satz ohne weiteres aus (II).

10) Blichfeldt, Trans. Amer. Math. Soc. (1914) 15, S. 227—235. Einen kurzen Beweis
dieses Satzes gab W. Scherrer, Ein Satz iiber Gitter und Volumen. Math. Ann.
86 (1922), S.106—107.
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§ 6. Konvexer Bereich im Kreis- und Quadratgitter.

Sind die Grundfiguren %, und &, beide konvex, so ist der Durchschnitt
®,* ®, immer entweder leer oder einfach zusammenhéngend. Die Anzahl
der nicht leeren Durchschnitte der Figur ®, im Figurengitter {®,}
nennen wir dann statt Teilstiickzahl anschaulicher T'reffzahl. Aus der
Mittelwertsformel (I) ergeben sich die folgenden speziellen Aussagen:

(III) Drie muttlere T'reffzahl eines konvexen Bereiches der Fliche F und vom
Umfang U im Gitter der Kreise vom Radius R ist F + U R+ = R2.
(IV) Drie mittlere T'reffzahl eines konvexen Bereiches der Fliche F und vom
Umfang U im Gitter der Quadrate der Seitenlinge S ist F+g——g§+ Sz,

Wir notieren uns noch eine Folgerung aus (IV), die in gewissem Sinne
ein Seitenstiick des Blichfeldtschen Satzes bildet:

Ein konvexer Bereich der Fliche F und vom Umfange U kann im
quadratischen Hinheitsgitter immer so bewegt werden, dafy die Zahl der

getroffenen Gitterquadrate nicht kleiner als 1+ %Eq + F ausfdllt.

§ 7. Nadel im Eibereichgitter.

Die Grundfiguren &, und ®, seien ein Eibereich und eine Strecke
(Nadel). Wie frither erwahnt, muf} als Flache und als Umfang der Nadel

Null und die doppelte Liange eingesetzt werden. Die Mittelwertsformel
liefert dann folgendes Resultat:

(V)  Die mattlere Treffzahl einer Nadel der Linge L vm Qitter der Eibereiche
der Fliche F und vom Umfang U ist F + —[;];L— .
Wahlt man als Grundfiguren ein Einheitsquadrat und eine Nadel, so
erreicht man das Resultat:

Eine Nadel der Linge L trifft im quadratischen Einheitsgitter im Mittel
14 -4—;5—; Quadrate.

§ 8. Kurve im Kurvengitter.

Endlich nehmen wir als Grundfiguren &, und &, zwei streckbare
offene oder geschlossene Kurven. Geschlossene Kurven sind nach Vor-
aussetzung in § 1 als Figur nicht zuldssig. Doch erkennt man leicht, daf3
bei der speziellen Aussage, die hier gemacht werden soll, dieses Verbot
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unnotig wird, da die Werte (Anzahl der Schnittpunkte mit einer anderen
Kurve), um die es sich hier handelt, ungeindert bleiben, wenn man eine
geschlossene Kurve an irgend einer Stelle durchschneidet. Die Teilstiick-
zahl des Durchschnittes der einen Kurve mit dem Gitter der andern ist
natiirlich die Zahl der auftretenden Schnittpunkte. Nach (I) schlieBen
Wwir':

(VI) Die mattlere Schnittpunktszahl einer Kurve der Linge V in einem
2VW

Grtter von Kurven der Linge W ist

Wird in (V) an Stelle des Eibereiches eine Einheitsstrecke gewahlt, oder
in (VI) fir die bewegliche Kurve eine Nadel der Lange L, und fiir die
Gitterkurve eine Einheitsstrecke, so liegt in beiden Fallen die gleiche
Versuchsanordnung vor: In einem Geradengitter der Elementardistanz 1
(Schar paralleler und dquidistanter Geraden) wird eine Nadel der Lange

L bewegt. Die mittlere Schnittpunktszahl wird nach (V) und nach (VI)

gy—? 11), Durch die Aussagen (V) und (VI) sind Aufgaben gelost, die als

Verallgemeinerungen des bekannten Nadelproblems von Buffon an-
gesprochen werden konnen 12).

§ 9. Eibereich im eigenen Gitter. Das isoperimetrische Defizit.

Als Grundfiguren nehmen wir zwei kongruente Eibereiche der Fliche F
und vom Umfange U. Wir bewegen also einen Eibereich in seinem eigenen
Gitter. In einer bestimmten Lage des bewegten Eibereichs ermitteln wir
den UberschuB § — 2 N, wo S die Schnittpunktszahl der Riander und N
die Treffzahl der Bereiche ist. Der Mittelwert dieses Uberschusses

S—2N=8—2N
wird nach (I) und (VI)

20%
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11) R. Laemmel (Untersuchungen iiber die Ermittlung von Wahrscheinlich-
keiten, Diss. Zurich 1904, S. 78) bestimmte bei einer solchen Versuchsanordnung die
Héaufigkeiten der moglichen Schnittpunktszahlen theoretisch und experimentell. Fiir die
mittlere Schnittpunktszahl findet man nach dem dort angegebenen Material empirisch:
2,663, theoretisch: 2,546. Es war L = 4.

12) Vgl. auch die Resultate von E. Barbier, Liouv. Journ. II, 5 (1860), S. 273—286.
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Also:

(VII) Der mittlere Uberschuf der Rinderschnittpunktszahl aber die doppelte
Treffzahl bei einem Eibereich der Fliche F und vom Umfang U in
sexnem eigenen Gitter ist

U2— 4nF

T

Dieser Satz enthalt die Losung der isoperimetrischen Aufgabe fiir
Eibereiche 13).

In der Tat ist stets S—oN =0
da ja jeder Trefffall Anlafl zu mindestens zwei Schnittpunkten gibt. Es
folgt zunéachst, daB als Mittelwert nicht-negativer GroBen

U2—4xaF =0

sein mufBl, fiir jeden Eibereich. Da sich zwei Kreise hochstens in zwei
Punkten schneiden, ist fiir Kreise fast immer

S—2N =0, also U2—4aF=0.
Ist umgekehrt U? — 4 nF = 0, so mul} fast immer S — 2 N = 0 sein,
und es muf} die Eilinie die Eigenschaft haben, eine kongruente Eilinie in

hochstens zwei Punkten zu schneiden. Dies ist aber eine charakterisie-
rende Higenschaft des Kreises ).

(Eingegangen den 29. Oktober 1938.)

13) Dieser bemerkenswerte Gehalt der Aussage ist nicht neu, sondern kann als Uber-
tragung einer von Santalo und Blaschke vorgenommenen Verwertung der integral-
geometrischen Grundformeln, durch welche eine elegante Losung des isoperimetrischen
Problems erzielt wurde, aufgefaBt werden. Vgl. das in FuBnote!) genannte Buch, ins-
besondere S. 25—27.

14) 7. Kubota, Tohoku Math. J. Bd. 21 (1922), 8. 21—25. — Wegen eines einfachen
Beweisverfahrens vgl. auch H. Hadwiger und W. Scherrer, Losung der Aufgab 231.
Jahresbericht der D. M. V. 48 (1938), S. 50. Bei der von W. Blaschke gestellten Aufgabe
handelt es sich um den entsprechenden Satz der raumlichen Geometrie, der eine Kenn-
zeichnung der Kugel darstellt.
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