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Ober die Cesàroschen und Rieszschen Mittel
Fourierscher Reihen
Max Dehn zu ôeinem sechzigsten Geburtstag gewidmet

Von Otto Szasz, Cincinnati (Ohio), U.S.A.

§ 1. Es sei f(x) eine im Lebesgueschen Sinne integrierbare, modulo 2n
periodische Funktion. Ihre Fouriersche Reihe sei

cos vx + bv sin vx) (1*1)

mit den Partialsummen

80==-~, sn(x) ï= 8n -£ + 2J(av cos vx -f- &„ sin vx)

Nach einem klassischen Résultat von Fejér (1900) ist an jeder Stetigkeits-
stelle von f(x) die Reihe (1.1) (C,l)-summierbargegen/(x), dasheiBt, es ist

lim C(i> lim go + ^i+-'+^ f(x) #

W + 1
n->-oo

Lebesgue hat bewiesen, da6 die Cesàroschen Mittel zweiter Ordnung der
Reihe (1) 1X

an einer Stelle x gegen 8 konvergieren, wenn

q> (x, t) dt -? 0 fùr t -> 0 ;

dies ist bekanntlich fur fast aile a; der Fall.
Kurzlich hat nun Fejêr eine neue, intéressante Eigenschaft der Cesàroschen

Mittel hôherer Ordnung entdeckt, die darin besteht, da8 sich die

Approximationskurven schon fur jedes endliche n der geometrischen
Konfiguration der Kurve y f(x) anpassen. Setzt man

0 0 0

so sind die Cesàroschen Mittel erster, zweiter und dritter Ordnung

C
{n+ï) (n+2)

' n (n+l) (n+2) (n+3)
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Ich hebe hier folgendes Résultat von Fejêr hervor:
Es sei im Intervall 0<x<n f(x)>0 und nach oben konvex; danii

sind fur die Sinusreihe von f(x) aile Kurven

y C™(x), n=l, 2, 3, 0<x<n,
oberhalb der #-Achse gelegen, und nach oben konvex 1). Fur die Cesàro-
mittel zweiter Ordnung hingegen gilt dies im aUgemeinen nicht mehr.
(1, 2, 3, vgl. Literaturnaehweis.)

00

Die Cesàroschen Mittel &-ter Ordnung einer Reihe JJ ^v kann man in
der Form schreiben: °

eng verwandt damit sind die von M. Riesz eingefuhrten Mittel (R, k)
(vgl. 4):

Im folgenden wird sich das uberraschende Résultat ergeben, daB der dem
vorhin zitierten Fejérschen Satze analoge Satz bei Rieszschen Mitteln
schon fur k 2 gilt. In der Beweismethode schlieBe ich mich dem
Fejérschen Gedankengange an. In § 2 schicke ich einige Hilfsbetrach-
tungen voraus. In § 3 wird der Hauptsatz bewiesen; in § 4 wird der
Zusammenhang zwischen den {G, 2)- und den (R, 2)-Mitteln allgemein
betrachtet.

oo

§ 2. Mit F(r) bezeichne ich die formai gegebene Potenzreihe £ uvrv,
o

nicht notwendig konvergent, sondern als Trâger der beliebigen Reihe
oo

2J uv gedacht. Setzt man
o

j i vy, s uy=
0 0 0

so ist, im Sinne formaler Cauchyscher Multiplikation

1^ ^p ^1-^ F(r)

und i j_ r^^F(r) =uo + ZiU^+U^y • (2.1)

i) Also y"<: 0.
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Andererseits ist

(1 — r)3 2 o o

und formale Multiplikation mit F(r) ergibt

(l—r)*v'~
Aus (2.1) und (2.2) folgt

77 (2) J. J/(2) 0(2) j £ 3

oder, nach (1.2) und (1.3)

(2.2)

(2)-l "1

Es besteht somit die folgende bemerkenswerte Beziehung zwischen den
(G, 2)- und (R, 2)-Mitteln:

2(n+ »==1, 2, 3, (2.3)

Ich setze jetzt speziell

F(r) r sin x — ¦—rr^-v ' (1 — 2r cos x + r2)2

der Formel (2.2) entspricht jetzt

(x) rv r sin

sin vx ;

(1—r)2(l—2r cos a; + r2)

r sin a;

Daher sind aile df{x) ^ 0 fur 0 ^ x ^n; genauer ist, wenn zur Ab-
kûrzung

m _ _x\2sm
=0, 1, 2,

sin

gesetzt wird,

x (x) sin a? 2; ^v (^) ^n-v {x)>0 fur 0 < a; < n
o

71 0, 1, 2,...

(2.4)
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Wir wollen dièses Résultat anwenden, um mit Hilfe eines Fejérschen
Gedankenganges zu beweisen, da8 auch die (JR, 2)-Mittel der Reihe

00

£ mnvamivx fur 0 < a < rc 0<x<n
o

nicht negativ sind. Wir bezeichnen die (R, 2)-Mittel dieser Reihe mit

dann ist offenbar

Es genugt daher, die Behauptung im Dreieck.

\) s* a -f- x s* 7i, u^a-
zu beweisen. Nun ist auf der Hypothenuse

x ^ n (2.5)

x 0 0 ^ a <*7i : ^(a, 0) 0 ;

ferner ist offenbar

1

und dies ist nach (2.4) nicht negativ im Dreieck (2.5). Daher ist in diesem
Dreieck das trigonometrische Polynom P^a, x) monoton wachsend
auf jeder vertikalen Greraden (d. h. fur festes a). Somit ist in diesem
Dreieck i*n2)(a, x) > 0 fiir x > 0. Es gilt daher:

P(Z)(a)x)>0 fur 0<a<7t, 0 n=l, 2,3,... (2.6)

§ 3. Um nun zu dem in § 1 angedeuteten Résultat zu gelangen,
betrachte ich zunâchst die ,,Dachfunktion<c :

26 ^,sin va sin vx
— x fiir 0 <, x <, a
a — —

n — xb fur a <.x <>7i
n—a ~~ ~~~

(3.1)

wobei 0 < a < n, 0 < 6.
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Bezeichnet man die Partialsummen dieser Reihe mit

26 îLsin va sin vxO()£*o=O,rn(*)=^—-£
und setzt man

,«=1,2,3,...

so ist nach den Resultaten von § 2

> *' - dz* (n + l)2

fur 0<a<n, 0<x<7t. Somit sind die (R, 2)-Mittel der Reihe (3.1)
nach oben konvex fur 0 < x < n.

Nun ist jedes oberhalb der Abszissenachse liegende konvexe Polygon
darstellbar als Summe endlich vieler Dachfunktionen; ferner ist jede
positive, in 0 < x < n nach oben konvexe Funktion gleichmâBig appro-
ximierbar durch solche Polygone. Hieraus folgt unmittelbar unser zu
beweisender

Satz. Ist f(x) > 0 in 0 < x < n, und daselbst nach oben konvex, so
sind fur ihre Fouriersche Sinusreihe die in § 1 definierten (B, 2)-Mittel
sâmtlich nach oben konvex.

Es ist ganz leicht, hieraus den in der Einleitung zitierten Fejérschen
Satz herzuleiten.

Mit den Bezeichnungen von § 2 ist

i oo

Daher ist

Da aber unter den Voraussetzungen unseres Satzes die Kurven y q^ (x)
oberhalb der Abszissenachse liegen und nach oben konvex sind fur
0 < x < n so gilt das gleiche fur die Kurven y U(^(x) ; womit der
Fejérsche Satz bewiesen ist.

§ 4. In diesem Zusammenhang ist es bemerkenswert, da6 fur eine
Reihe, deren allgemeines Glied nach Null konvergiert, also insbesondere
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fur jede Fouriersche Reihe, die (C, 2)- und (R, 2)-Mittel entweder beide
konvergieren oder beide divergieren. Es ist nâmlich nach (2.3)

und wir brauchen nur zu beweisen, daB

Nun ist

n+ 1 n + 2 n
"

n + 1 n {n + 2)

(w + 2) '

und aus der Voraussetzung un -> 0 folgt unmittelbar

womit unsere Behauptung bewiesen ist.

Wâhrend noch im allgemeinen aus C^->s nach (2.3) stets

folgt, gilt das Umgekehrte nicht immer. Setzt man z. B. C^= (— l)n,

so wird nach (2.3) R^
osziUiert.

7b
0 fur n -> oo, wàhrend C™ offenbar
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(Eingegangen den 9. September 1938.)
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