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Uber die Cesaroschen und Rieszschen Mittel
Fourierscher Reihen

Max Dehn zu seinem sechzigsten Geburtstag gewidmet

Von Orro Szasz, Cincinnati (Ohio), U.S.A.

§ 1. Es sei f(x) eine im Lebesgueschen Sinne integrierbare, modulo 2
periodische Funktion. Thre Fouriersche Reihe sei

f(x) ~%—’-+ f(a,, cos vz 4 b, sin »x) (1.1)

y=1
mit den Partialsummen

a
80':-—:"—29- , 8.(x) =8, 5—9 +Z(a,, cos vx 4 b, sin vx) .

Nach einem klassischen Resultat von Fejér (1900) ist an jeder Stetigkeits-
stelle von f(x) die Reihe (1.1) (C, 1)-summierbar gegen f(x), das heilt, esist

lim €9 = lim Sot &1t -+ 8

n->» oo n-» oo + l

t=f() .

Lebesgue hat bewiesen, daf3 die Cesdroschen Mittel zweiter Ordnung der

K {1} 0(2)=(n 1)8 +ns8+--- 43,
" a4+l +n 4.4 1

an einer Stelle x gegen 8 konvergieren, wenn

‘P(x,t)—— gfx-i—t)—zl—f(x———t) sidt—0 fir t—>0 ;

dies ist bekannthoh fiir fast alle x der Fall.

Kiirzlich hat nun Fejér eine neue, interessante Eigenschaft der Cesaro-
schen Mittel hoherer Ordnung entdeckt, die darin besteht, dal sich die
Approximationskurven schon fiir jedes endliche n der geometrischen
Konfiguration der Kurve y = f(x) anpassen. Setzt man

8% () = 28 (z), sP(2)= 8(”(96) , 82 () = 28‘3’(90),
0

so sind die Cesaroschen Mittel erster, zweiter und dritter Ordnung
2.3.6®
(n+1) (n+42) (n+3)

(1( ) _ 8(1) 0(2) . 28(”2)
(n+1) (n+2)’

3)
oD =

. (1.2)
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Ich hebe hier folgendes Resultat von Fejér hervor:
Es sei im Intervall 0<z<a f(x)>0 und nach oben konvex; dann
sind fiir die Sinusreihe von f(x) alle Kurven

y=0), n=1,2,3, ..., 0<z<m,

oberhalb der x-Achse gelegen, und nach oben konvex 1). Fiir die Cesaro-
mittel zweiter Ordnung hingegen gilt dies im allgemeinen nicht mehr.
(1, 2, 3, vgl. Literaturnachweis.)

Die Cesaroschen Mittel k-ter Ordnung einer Reihe 2 %, kann man in
der Form schreiben:

ow = (B et CE w4 -+ D,

1% ;

eng verwandt damit sind die von M. Riesz eingefithrten Mittel (R, k)
(vgl. 4): :
(n + D*uy + n*u, + .-+ + 1%u, o®

R® = (1.3)

" (n + 1)¥  (n+ 1)
Im folgenden wird sich das iiberraschende Resultat ergeben, da3 der dem
vorhin zitierten Fejérschen Satze analoge Satz bei Rieszschen Mitteln
schon fiir k¥ = 2 gilt. In der Beweismethode schliefe ich mich dem
Fejérschen Gedankengange an. In § 2 schicke ich einige Hilfsbetrach-
tungen voraus. In § 3 wird der Hauptsatz bewiesen; in § 4 wird der
Zusammenhang zwischen den (C, 2)- und den (R, 2)-Mitteln allgemein

betrachtet.

§ 2. Mit F (r) bezeichne ich die formal gegebene Potenzreihe 3 u, 7,
0

nicht notwendig konvergent, sondern als Trager der beliebigen Reihe

2. u, gedacht. Setzt man
o n n n n
207% =U,=U", ‘\EUV — U, 2‘{ U — @, %v UD=U®

so ist, im Sinne formaler Cauchyscher Multiplikation

1 - 1 _ Yy
rF(r)——);,'U,,r , (1__r)3F(r)_%'U,,r ,

F(r)= 3’ oy,
1— 0

1
(1—r)?
und 147

(1 o )3 F(T) = Uy + Z(U (2)1+ U(v2))7.v * (2’1)

1) Also y” < 0.
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Andererseits ist

A= 26+ D e +29r =56+ 10,

und formale Multiplikation mit ¥ (r) ergibt

147
(1—nr)?

Aus (2.1) und (2.2) folgt
UP 4+ UP=o? »=1,2,3,...

oder, nach (1.2) und (1.3)
R(,?) — n(n;‘ 1) 0'(‘321 + (n + 1)2(n+ 2) R

F(r) = 3 oPr (2.2)

(n+ 1)

Es besteht somit die folgende bemerkenswerte Beziehung zwischen den
(C, 2)- und (R, 2)-Mitteln:

nCli+ (n +2) P
2(n + 1)

R® = ,n=1,2,8,... . (2.3

Ich setze jetzt speziell

1____702 o0 .
= J'vr¥ gin »x ;

Fig) = sin 2 (1—27 cos x4 r?%)2 0

der Formel (2.2) entspricht jetzt

{ 1 —r2
(1 —7)2(1—2r cos x -+ r?)

. z\ 2 2
w | SIN (v+1)—2—)
2 (ad

z
0 in -
sm2

(- -]
2o? @)r"=r sin z
0

—7r 8in x

Daher sind alle ¢®(x) = 0 fiir 0 < ¢ < =; genauer ist, wenn zur Ab-
kiirzung

sin (r+-1)3\°

. X =kl’(m)’v=O>1,2:'
sin
2
gesetzt wird,
o (@) = sin x X ky (%) b,y (x) >0 fiir 0<z<wm (2.4)
0

=0, 1, 2,.:s
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Wir wollen dieses Resultat anwenden, um mit Hilfe eines Fejérschen
Gedankenganges zu beweisen, dafl auch die (R, 2)-Mittel der Reihe

-}

2 sinvasinvze fir O<a<n, O0<z<wm
1]

nicht negativ sind. Wir bezeichnen die (R, 2)-Mittel dieser Reihe mit

P, x),n=0,1,2,... ;
dann ist offenbar

P®(a, x) = P®(z,a), PP(rn—a,n—2x)= PPa,x) .
Es geniigt daher, die Behauptung im Dreieck.
Oga—l—g:s_az, 0Sa—z=nmn (2.5)
zu beweisen. Nun ist auf der Hypothenuse

r=0, 0<a=<n:P9a0) =0 ;

ferner ist offenbar
2 o) _1{ @y
axP(n (a’x)""z— Qn (a’+x)+en (a $)$,

und dies ist nach (2.4) nicht negativ im Dreieck (2.5). Daher ist in diesem
Dreieck das trigonometrische Polynom P{¥(a, ) monoton wachsend
auf jeder vertikalen Geraden (d.h. fiir festes a). Somit ist in diesem
Dreieck P\¥(a, x) > 0 fiir z > 0. Es gilt daher:

P®q,z)>0 fir 0O<a<n, O<z<=zm|,n=12,3,... . (2.6)

§ 3. Um nun zu dem in § 1 angedeuteten Resultat zu gelangen,
betrachte ich zunéichst die ,,Dachfunktion:

b . . —g—x firo<z=<a
® 8ln ra SIn X
0+ = (3.1)
¢ln—d) 3 Y b Tt a<z<a
T—a =T =77

wobel 0 <a <m, 0<b.
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Bezeichnet man die Partialsummen dieser Reihe mit

2b " sin ya@ sSin »x
2 "

T(l:O’ tn(x)za(”_a) 5

,n=1,2,3,...

und setzt man

(2) = Z7,(2) , 72 (2) = 210 (a) ,

0

so ist nach den Resultaten von § 2

B 12 (@) + D@ _

Pr@ o) = — 1y

fir 0<ae<wm, 0< 2 < m. Somit sind d1e (R, 2)-Mittel der Reihe (3.1)
nach oben konvex fir 0 < z < &.

Nun ist jedes oberhalb der Abszissenachse liegende konvexe Polygon
darstellbar als Summe endlich vieler Dachfunktionen; ferner ist jede
positive, in 0 < 2 <z nach oben konvexe Funktion gleichmaBig appro-

ximierbar durch solche Polygone. Hieraus folgt unmittelbar unser zu
beweisender

Satz. Ist f(x) >0 in 0< x <m, und daselbst mach oben konvex, so
swnd fiir thre Fouriersche Sinusreihe die in § 1 definierten (R, 2)-Mittel
sdamtlich nach oben konvex.

Es ist ganz leicht, hieraus den in der Einleitung zitierten Fejérschen
Satz herzuleiten.

Mit den Bezeichnungen von § 2 ist

1 I e
-(-i-—_—_—;)-;F(r)z%"U(ﬁ)r - 1__7.2' (1—7)3 F(?‘)-—
2(2:,3_1_:1'_%:_1_)_ ) (29(2)7)*“*2(9(2’-%-9,‘,3’.2 Ry
Daher ist

U= (e + ot ) -
Da aber unter den Voraussetzungen unseres Satzes die Kurven y = ¢'¥ ()
oberhalb der Abszissenachse liegen und nach oben konvex sind fiir
O<z<m, so gilt das gleiche fiir die Kurven y= U®(x); womit der
Fejérsche Satz bewiesen ist.

§ 4. In diesem Zusammenhang ist es bemerkenswert, daBl fiir eine
Reihe, deren allgemeines Glied nach Null konvergiert, also insbesondere
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fiir jede Fouriersche Reihe, die (C, 2)- und (R, 2)-Mittel entweder beide
konvergieren oder beide divergieren. Es ist namlich nach (2.3)

D _o___ " @ __ 0@
'R(n C(n 2(7&-—|— 1) (Cn-—l On) ’

und wir brauchen nur zu beweisen, daf3

C®»—C®, >0 fir n—>oo0.
Nun ist

2 2
ge U,

n

2 aUP—(n+2)U2,
n+2_ n

;n-!—l n(n 4 2)
2UY 4U>®
n+1) (n+2) n@r+1l) n+2)°

und aus der Voraussetzung u, — 0 folgt unmittelbar

2
O —O =7 +1

U, U U
—1;--—>0,—?—{2———->0,—7;é—'—>0furn'—>00,

womit unsere Behauptung bewiesen ist.

Wihrend noch im allgemeinen aus C® —s nach (2.3) stets R®—g
folgt, gilt das Umgekehrte nicht immer. Setzt man z. B. C® = (— 1),
so wird nach (2.3) R® = =0, 0 fiir n — oo, withrend C'? offenbar

n—+1
oszilliert.
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(Eingegangen den 9. September 1938.)

220



	Über die Cesàroschen und Rieszschen Mittel Fourierscher Reihen.

