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Die Wertverteilung und das Verhalten

von Betrag und Argument einer speziellen
Klasse analytischer Funktionen. I.**

Von A. Pfluger, Solothurn

Einleitung
1. Seit sich die Théorie der ganzen Funktionen zu entwickeln begann,

war es eines der zentralen Problème, die Beziehungen zwischen der
GrôBenordnung des Betrages der ganzen Funktion und ihrer
Wertverteilung aufzusuchen. Dièse Aufgabe hat sich in zwei Teilaufgaben
gespalten:

1. Untersuchung der GrôBenordnung des Betrages bei gegebener Null-
stellenverteilung.

2. Untersuchung der Wertverteilung bei gegebener GrôBenordnung des

Betrages

In gewisser Hinsicht sind dièse beiden Aufgaben reziprok. Wir be-
schrânken uns auf Funktionen endlicher Ordnung.

DaB eine ganze Funktion bis auf einen Exponentialfaktor der Form
gOnz^+'-'+ao durch ihre Nullstellen vollstàndig bestimmt ist und daB die
Ordnung eines kanonischen Produktes mit dem Konvergenzexponenten
der Nullstellen ubereinstimmt einerseits, — der Picard'sche und der
jBorersche Satz iiber die Wertverteilung anderseits sind die wichtigen
klassischen Ergebnisse dieser beiden Aufgaben. Die letztern Resultate
wurden in der Folge verschârft durch Sâtze iiber Julia'sche und JBoreZ'sche

Richtungen, indem jene Aussagen ûber die Wertverteilung in globo zu
solchen iiber ihre Verteilung in beliebig kleinen Winkelràumen verdichtet
wurden. Zur Bestimmung der Lage dieser Winkelràume, genauer, der
Julia'schen und lîorerschen Richtungen geniigt nun nicht die Kenntnis
der GrôBenordnung des Betrages in globo, sondern es wird notwendig, sie

einzeln làngs der verschiedenen Richtungen durch den Indikator oder
Strahltypus (vgl. Nr. 2) anzugeben. Trotzdem mittels des Strahltypus
einige Sàtze iiber JSoreZ'sche Richtungen zutage befôrdert wurden, harrt
letzteres Problem immer noch einer vollstàndigen Lôsung.

Eine entsprechende Weiterentwicklung der ersten Aufgabe ist aus-
geblieben. Wohl ist der âuBerste Spezialfall, wo sàmtliche Nullstellen

*) Dièse Arbeit wurde als Habilitationsschrift der Eidgenôssischen Technischen
Hochschule vorgelegt.
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auf einer Halbgeraden liegen, hinsichtlich des Strahltypus nàher unter-
sucht worden (vgl. Hilfssatz 3). Doch ist damit die allgemeine Aufgabe,
aus der Kenntnis der Nullstellenverteilung in jedem einzelnen Winkel-
raum Ruckschlusse auf den Strahltypus zu ziehen, kaum begonnen. Die
Betrachtung dieser Situation legt es nahe, die letztere Aufgabe einmal
in Angriff zu nehmen.

I. Eine ganze Funktion f(z) von endlicher Ordnung q besitzt die
kanonische Darstellung

f{z) =z«.ephW7i(z) (1.1)

Hierin bedeutenoc eine nieht négative ganze Zahl, n(z) das Weierstra/S'soiie
kanonische Produkt iiber die Nullstellen von f(z) und Ph(z) ein Polynom
vom Grad h < q. Ist die Ordnung q keine ganze Zahl, q ^ 0, 1, 2, so
ist das Geschlecht der ganzen Funktion und daher sowohl das Geschlecht
des kanonischen Produktes wie der Grad von Ph{z) kleiner als q. Der
Faktor z<*ePA(2:) und die Abânderung endlich vieler Nullstellen kônnen
daher das Verhalten des Betrages von f(z) nicht ,,wesentlieh" beein-
flussen : Bei nicht ganzzahliger Ordnung ist das asymptotische Verhalten der

ganzen Funktion lângs irgend welcher Halbgeraden schon durch die asymptotische

Verteilung der Nullstellen vollstàndig bestimmt1).

Damit stellt sich die Aufgabe, aus einer gegebenen Verteilung der
Nullstellen das asymptotische Verhalten der ganzen Funktion làngs der
Halbgeraden arg z (p zu berechnen. Dièse Aufgabe werden wir im folgenden
nur fur eine spezielle Klasse von Verteilungen lôsen, fur sogenannte
rnejibare Nullstellenverteilungen (vgl. Nr. 11). Die gewonnenen Resultate
(Satz 3) lassen sich leicht auf meromorphe Funktionen ubertragen
(Satz 5).

II. Die Beziehung (1.61) zwischen der MaBfunktion N*(<p) der Null-
und Polstellenverteilung und der Funktion h (cp) gestattet eine einfache
geometrische Interprétation. Zu diesem Zwecke untersuchen wir im
zweiten Abschnitt die Hullkurve dei Schar (2.1) unter môglichst allge-
meinen Voraussetzungen uber h(q>). Dièse Hullkurve, im allgemeinen mit
Spitzen und Doppelpunkten aber ohne Wendepunkte, besitzt konvexe
und konkave Bogenstucke, die entsprechend positiv und negativ gezàhlt
zum Begriff der relativen Lange (Nr. 18) eines Bogens fuhren. Darnach ist
2 n (N*(q)2) — iV'*(ç?1)) nichts anderes als die relative Lange L(<pl9 <p2) des

Bogens, der von x cos q <p + y sin q (p — h(cp) 0, ç>x ^ y ^ q?2 umhullt
wird (Satz 8). Die Untersuchung gliedert sich in die Fragen, wie sich

x) Dasselbe gilt auch fur ganze Funktionen vom Minimal- oder Maximaltypus einer
ganzzahligen Ordnung.

181



L(<pl9q>2) aus M?7) berechnen làBt und welches die charakteristischen
Eigenschaften der Bogenfunktion Lfa, <p) sind, zunàchst ohne Rûcksicht
auf die Periodizitàt der Funktionen h (cp) und L((pl9 <p), dann aber unter
der Voraussetzxxng, daB beide Funktionen die Période 2 n besitzen. Hier
taucht ein weitgehender Unterschied auf zwischen nicht ganzzahligem
und ganzzahligem q, dem ein Analogon bei ganzen Funktionen der Ord-

nung q entspricht.
III. Erlaubt die spezielle Klasse der im ersten Abschnitt betrachteten

Nullstellenverteilungen einerseits leicht den Strahltypus zu bestimmen,
so liefert sie anderseits Funktionen von besonders regulàrem asymp-
totischen Verhalten, indem gemàB Satz 3 bis auf eine Menge von linearer
Dichte 0 bei r->oo log \f(rel(p)\ ~ h(q>) V(r) ist. Wir betrachten nun um-
gekehrt die Klasse jener ganzen Funktionen, bzw. in einem Winkelraume
regulàren Funktionen, die sich auf dièse Weise asymptotisch regulàr
verhalten. Die Untersuchungen des dritten Abschnittes zeigen, daB solche
Funktionen sich auch hinsichtlich des Argumentes (Satz 12, 13, 14) und
der Nullstellenverteilung (Satz 15) regulâr verhalten. Wir haben also
hier eine spezielle Klasse analytischer Funktionen, deren Beziehungen
zwischen Betrag, Argument und Nullstellenverteilung sich asymptotisch
leicht erfassen lassen; noch mehr, bei dieser Funktionsklasse lassen sich

Wertverteilung und insbesondere BoreVsche Richtungen mittels des

Strahltypus mit aller hier wiinschenswerten Genauigkeit bestimmen
(Satz 17).

1. Abschnitt. Das asymptotische Verhalten meromorpher
Funktionen mit mefîbarer Null- und Polstellenverteilung

A, Vorbereitende Begriffsbestimmungen

2. Es bezeichne M(r) den maximalen absoluten Betrag der ganzen
Funktion /(z) auf dem Kreis \z\ r. Gibt es Zahlen v, fur die der Aus-
druck r~v log M (r) beschrânkt ist, so heiGt f(z) von endlicher Ordtiung
und die untere Grenze q der Zahlen v von dieser Eigenschaft heiBt Ordnung
von f(z). Es bleibt also r~(<?+fc)log M{r) fur jedes feste e > 0 und r > 1

beschrânkt; dagegen kann die obère Grenze des Ausdrucks r~Q log M (r)
fur r-»oo null, positiv endlich oder unendlich sein2). Aus diesem Grunde
ist die Vergleichsfunktion r* fur feinere Untersuchungen zu grob und es

wird notwendig, den Begriff der Wachstumsordnung zu prâzisieren.

2) Die ganze Funktion heiBt dann entsprechend vom Minimal-, Mittel- oder Maximal-
der Ordnung ç.

182



Zu diesem Zwecke betrachten wir reellwertige Funktionen g(r) von
folgenden Eigenschaften :

1. g(r) ist im Intervall (0, oo) stetig.
2. Die Rechts- und Linksableitung von g(r) existieren und stimmen

stuckweise uberein.

e (1.2)
r->-oo

und

\imQf(r)rlogr 0 (1.3)
r->oo

wenn fur Qf(r) die Rechts- und Linksableitung von q(t) eingesetzt wird;
und wir definieren : Eine ganze Funktion f (z) von der Ordnung q ist von der
prâzisen Wachstumsordnung o(r), wenn der Ausdruck r~^r) log M (r) fur
r -> oo eine positive obère Grenze besitzt. G. Valiron3 hat gezeigt, daB auf
dièse Weise jeder ganzen Funktion endlicher Ordnung eine prazise
Wachstumsordnung zugeordnet werden kann.

Die nun stets existierende positive Zahl

iïûô loS MW K

nennen wir den Typus der ganzen Funktion bezuglich der Wachstumsordnung

q(r). Sie miBt das maximale Anwachsen von \f(z)\ in der ganzen
z-Ebene, sagt dagegen nichts aus uber ihr Verhalten in einzelnen Winkel-
raumen oder langs Halbgeraden durch 0. Um letzteres zu erfassen
betrachten wir die Funktion

h (<p) lim sup -L log | f(r#*) | (1.4)

Sie miBt das maximale Anwachsen von \f(z)\ langs der Halbgeraden
arg z (p und wir nennen sie Indikator oder Strahltypus4) von / (z)
bezuglich der Wachstumsordnung g{r).

Damit prazisiert sich unsere Aufgabe (Nr. 1) dahin: Man bestimme aus
der asymptotischen Nullstellenverteilung einer ganzen Funktion von
nicht ganzzahliger Ordnung ihre prazise Wachstumsordnung g(r) und
den zugehorigen Strahltypus

8) Bezuglich des Begnfïs der prazisen Wachstumsordnung und des nachfolgenden
Satzes vgl. G. Valiron [2], S. 64—67.

4) Die Eigenschaften dieser Funktion wurden erstmals m E. Phragmén et E. Lindelof
[1] untersucht.
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3. Zwei bedeutsame Ansâtze zur Lôsung dieser Aufgabe sind bereits
bekannt. Um sie zu formulieren, bezeichnen wir die Anzahl der Null-
stellen im Kreis \z\ ^ r mit n(r). Wir wollen Iiberdies vom Exponential-
faktor eP(z) in der kanonischen Darstellung der ganzen Funktion ab-
sehen, da er eine untergeordnete Rolle spielt, und nur das kanonische
Produkt uber ihre Nullstellen betrachten. Das erste Résultat lautet dann :

Die Funktion g(r) genûge den Bedingungen (1.2) und (1.3) mit
g ^ 0, 1, 2, Hat der Ausdruck r~Q{r)-n(r) eine positive endliche obère

Grenze fUr r -> oo, soist das zugéhôrige kanonische Produkt von der pràzisen
Wachstumsordnung Q(r)b).

Damit ist schon ein Teil unserer Aufgabe gelôst, nâmlich die Bestim-

mung der Wachstumsordnung g(r). Gentigt hier allein die Kenntnis des

asymptotischen Verhaltens von n(r), so ist zur Bestimmung des Strahl-
typus die Kenntnis der Nullstellenverteilung in jedem einzelnen Winkel-
raum notwendig. Einen Ansatz in dieser Hinsicht bieten die Unter-
suchungen von E. Lindelôf und G. Valiron6) uber solche ganze Funktio-
nen, deren Nullstellen sàmtliche auf einer Halbgeraden durch 0 liegen.
Dièses zweite, fur uns wichtige Résultat lautet :

Hilîssatz 1. Die Funktion g(r) genûge den Bedingungen (1.2) und (1.3)
mit g ^ 0, 1, 2, Liegen sàmtliche Nullstellen eines kanonischen Pro-
duktes n(z) auf der negativen reellen Achse {der Nullpunkt ausgeschlossen)
und genligt die Anzahlfunktion dieser Nullstellen der Bedingung

n(r) ~Dre^) (1.5)

so gilt gleichmafiig in jedem Intervall — n + rj ^cp ^n — rj, r\ > 0,

lim —7-7 log 17T (re* ^°) I -^ cos gw (1*6)

und fur arg z ^n ^

/^fff ,..7,/
0

wo q [q], q < g <q + 1, das Oeschlecht des kanonischen Produktes
bedeutet.

In beiden Resultaten ist nur von kanonischen Produkten die Rede.
Da letztere durch die Nullstellenverteilung vollstàndig gegeben sind, so

6) G. Valiron [2], S. 67—69.
8) E. Lindelôf [1], S. 49—58; G. Valiron [1], S. 230—243. Einen besondern Spezialfall

siehe bei G. Pôlya [1], S. 571 und F. Bematein [2], S. 267—293.
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stellt sich naturgemâB eine analoge Frage fur den Fall, wo q (r) gegen eine
nicht négative ganze Zahl strebt. Hier treffen wir ganz andere Verhàlt-
nisse an. Lôsungen liegen nur in Spezialfàllen vor und ich gebe zur spàtern
Verwendung die folgende wieder:

Zusatz. Liegen die Nullstellen des kanonischen Produktes n(z) sâmtliche
auf der negativen reellen Achse und ist ihre Anzahlfunktion n(r) von der
Qrôflenordnung

n(r)~rn(logr)«, oc ^ — 1 n= 1,2,3, (1.8)

so gilt gleichma/Hg im Winkelraum | arg z\ < rc — ô, 0 < ô <n,

log n(z) ^t^.
und (1.7) fur arg z ^ n. Dos Oeschlecht q des kanonischen Produktes ist
gleich n, falls oc -\- 1 > 0 und gleich n — 1, falls oc + 1 < O7).

4. Beweis von Hilfssatz 1. Wir folgen einer Méthode, die G. Valiron
fur den Fall g(r)->-j,O<g<l, verwendet hat und die sich leicht auf
unsern allgemeinern Fall iibertragen lâBt8).

Bezeichnet E(u,q) den WeierstraB'schen Primfaktor

E(u,q) (l—u)>e 2 3 + -+ q

und sind —rx, —r2, —rv, die Nullstellen auf der negativen reellen
Achse, so ist

Wir schneiden die z-Ebene von —rx bis cx> lângs der negativen reellen
Achse auf und nehmen im Ausdruck

log n (z) 2

ûberall denjenigen Zweig des LogarithmuS, welcher fur z 0 verschwin-
det. Dadurch ist log n{z) in der aufgeschnittenen Ebene D als regulâre
und eindeutige Funktion definiert. Es gilt

7) E. Lindelôf [1], S. 49—58; R. Nevanlinna [1], S. 221.
8) Q. Valiron [2], S. 128—130.
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// z \ r i z
log El — q I dn (t) — I n(t)' d log E j

" J ^+1(Z + t) J ^+] (g -f- t)
ri 0

Um das Verhalten von log n(z) zu untersuchen zeigen wir zunàchst, daB
die beiden Intégrale

und

: + <) ' |«|=r

fur z in D asymptotisch gleich sind. Zu diesem Zweck betrachten wir ihre
Differenz

T z«+1 - (n(t) — Dt^)dt _
rz*+1.

J t^(z + t) "J t*+*(
ri rx

Beschrànkt man den Punkt z auf den Winkelraum

| arg z | < n — tj 0 < rj < n (W)
so ist

\t + *\>^P-(t+\z\) (1.10)

Fur jedes h > 1 gilt wegen (1.3) und (1.5) fur k-xr ^t ^kr
\<p(t)\ \n(t) — Dtew\<e(r)-t<*r), lim e(r) 0 (1.11)

r->-oo

Ferner gibt es zufolge der Voraussetzung des Hilfssatzes eine positive
Zahl ô > 0, so da6 q + ô < g(r) < q + 1 — ô

TQ{r)-q-h monoton wachsend und
(1.12)

rQ(r)~q-i+8 monoton abnehmend

ist fur genugend groBe r, r > Ro. SchlieBlich folgt aus (1.5)

n(t)<D'tW\ Df>D (1.13)
fur aile t > 0.
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Zerlegen wir den Integrationsweg (rl9 oo) in die drei Teile (rly k-xr)
(ir1/*, kr), (1er, oo), so folgt zunachst aus (1.10)

2rQ+1 \ 1 Ç <p(t)dt Ç<p (t) dt r<p(t) dtl
sin r] [ r J tq+1 J tq+2 J tq+2 J

ri k-*r kr

sin rj
Wegen (1,11) ist

Aus (1,13) und (1,12) ergibt sich

ri -Ko

und entsprechend

J3^(D + D>)

Es folgt
2

Zu e>0 wahlen wir nun k>\ so groB, da8 2(Z) + D) —-< —
p le phierauf r so groB, da8 Kr^~^ir) < — und e(r)-r< — ; dann ist fur

genugend groBe r

und daher gleichmaBig fur jedes z in (W)

log n(z) (- 1)«.Z

Um das asymptotische Verhalten des letztern Intégrais naher zu unter-

suchen, betrachten wir den Integranden y (t) fur komplex-

9) Im folgenden bedeutet die Gleichung f(r) O (ç>(r)) dafî der Quotient ——- bei

r->oo von einer gewissen Stelle an beschrankt bleibt; /(r) o(<p(r)) dagegen besagt,

daû hm -^-L 0 sei. Insbesondere bezeichnet 0(1) eine Grofîe, die bei r—>oo beschrankt
r-x» <p(r)

bleibt; dagegen o(l) eme solche, die bei r-»oo gegen Null strebt.
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wertige t. Wir beschrànkenuns auf das KreisâuBere \t\ > rt und schneiden

von rx bis oo lângs der positiven reellen Achse auf. Auf dem obern Schlitz-
rand dièses Stûcks Dx der £-Ebene wâhlen wir arg t — 0 und t*{r) reell.
Hiedurch ist auf Dx ein eindeutiger Zweig von y>(t) festgelegt. Betrachten
wir, daB das Intégral vonip(t) lângs des Kreises \t\ R gegen Null strebt,
wenn R->oo, so folgt aus dem Cauchy'schen Integralsatz, sofern z in D
gelegen ist,

tq+1 (z +1)r
Dabei ist das Intégral im positiven Sinn um den Rand F von Dx zu
nehmen. Man hat

r n n |«|-r

Das letztere Intégral ist von der GrôBenordnung 0 l-—ri Weiter folgt
M z 1/

7 t^dt _(—l)*.2ni.(—z)*w / 1 \
JF+1{z + t)~ e****** — \\z\J

sin q (r) n

und daher gleichmâBig in (W)

log n (z) ^ sm

5. Durch den Hilfssatz 1 wird unter anderem gezeigt, daB zu jeder
Funktion g(r), die gegen keine der Zahlen 0, 1, 2, strebt, eine ganze
Funktion von der Wachstumsordnung ç(r) existiert. Weiter folgt, daB
die Funktion re(r) durch eine solche mit weitgehenden Regularitâts-
eigenschaften ersetzt werden kann. Um dies zu zeigen, nehmen wir irgend-
eine Funktion g(r), die den Eigenschaften von Nr. 2 mit q > 0 geniigt.
Wir setzen

Qi(r) jQ(r) 1< p< 2

und betrachten nach Hilfssatz 1 das zu gx (r) und —- an Stelle von
71

D gehôrige kanonische Produkt nx (z). Wàhlen wir nun in den Ausdrûcken

l°ëni(z) un(^ Z^P Jene Zweige, die auf der positiven reellen Achse reell
sind, und setzen wir Tr,F(z) —
so folgt :
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Zu jeder Funktion q(t) mit q > 0 existiert eine Funktion V(z), die auf
der positiven reellen Achse reellwertig, monoton wachsend und von dort aus-

gehend im Winkelraum |argz|< —der Rîewnann*8chen Floche von

log z eindeutig und analytisch ist und die den Bedingungen

V(r)~r<*r) (1.14)
und

V(z) ~e%e<P-V(r) z rel<? (1,15)

genûgt; letztere gleichmaflig im Winkelraum | arg z\ ^ r\

Mittels (1.2) und (1.3) folgt uberdies (kr)*{kr) ~fcere(r) fur je(ies feste
positive k und hieraus in Verbindung mit (1.15) fur jedes feste z in

|argz|<— V(zr) ~z<? V(r) (1.16)

Die Beziehung (1.14) erlaubt es nun, im Ausdruck (1.4) die Funktion
rQ(r) durclx V{r) zu ersetzen, die Beziehung (1.15) und die Regularitat von
V(z) gestatten die Anwendung der Phragmén-Lindelôfschen Méthode11)
auf die Funktion f(z)e~V{z). Daraus folgen fur den Strahltypus h (q?) die
bekannten Eigenschaften, msbesondere :

a) Der Strahltypus h(<p) ist eine stetige Funktion des Winkels (p12).

b) Der Strahltypus h(<p) ist eine subtrigonometrische Funktion von der

Ordnung q, d. h. fur jedes Wertetripel ç?x, ç?25 9?3 m^

<Pl < <P2 < 9>3 » <?2 < <Pl < — y <PZ—<P2< —

gilt die Funktionalungleichung

%x) sin q ((pz—(p2) + %2) sin q (9^1—^3) + ^(^3) sin Q (^2—^1) > °- (L17)

6. Hilfssatz 1 legt folgenden weitern Schritt zur Losung unserer Auf-
gabe nahe: Seien samtliche Nullstellen des kanonischen Produktes n(z)
auf den n Halbgeraden arg z cpt, 0 < <px < cp2 < • • • < yn < 2 n, ge-
gelegen und nt(r) die entsprechenden Anzahlfunktionen, die den Be-

dingungen
Mf) ^^«r, 8(r)_e ^ o, 1, 2,

genugen mogen; man berechne den Strahltypus von n{z).
10) F. Bernstem [1], S. 346—348.
u) E. Phragmén et E. Lmdelof [1].
12) Folgt also aus (1.6) fur den Strahltypus des kanonischen Produktes m Hilfssatz 1

die Beziehune h(œ) — cos p œ zunachst fur I
cp

I <C tt, so gilt sie wegen der Stetigvr sm çtt *T
keit von h (cp) fur aile ç> mit | <p | ^ tt.
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Zur Lôsung dieser Aufgabe und zugleich zum Hinweis auf die Art der

spàtern Verallgemeinerung bezeichnen wir mit n(r, y) die Anzahl der
Nullstellen im Sektor \z\ ^ r, 0 ^ arg z <cp, und nennen den fur jedes
<p existierenden Grenzwert

^U (1.18)

Mafifunktion der Nullstellen im Winkelraum 0 ^ arg z<<p. Fur dièse

Treppenfunktion N((p) gilt

N(y) dx + d2 + • • • + d{, wenn cpf < cp z

und

dN (<p) T
^ 2 ' ' "^ fur cp ^

Bezeichnet n^z) das kanonische Produkt ûber die Nullstellen auf der

Halbgeraden arg z (pi9 so ist

*(z) =/£*,(*) •

Fur <p ^<p1}<p2, --,<pn folgt aus Hilfssatz 1

i / x ndi x T7/ xlog 3T*(2;) r^ ——-— cos \Q\Wi — <p\ — on) V(r)

und hieraus

_^ y ^ Cos (p I
cpA — œ I — p jt

Setzen wir das Differential dN(cp) periodisch ûber das Intervall (0, 2 n)
hinaus fort und beachten wir, daB dN(<p + 6) d{ fur 0=^- — q>

(mod 2n), sonst aber Null ist, so kann letztere Summe als Stieltjes'sches
Intégral geschrieben werden. Es folgt

lim -L log 1^(^)1 -^— fcos (ee — Qn)dN(<p + d) (1.19)
r->oo V \i) Sin Q 71 J

0

wenn <p ^<pl9<p%, ...,<pn.
Als stetige Funktion ist daher der Strahltypus von n (z) fur aile Winkel <p

gleich der rechten Seite von (1.19).
Erlaubt die besondere Art der hier betrachteten Nullstellenverteilung

einerseits leicht den Strahltypus zu bestimmen, so liefert sie anderseits
Funktionen von besonders regulàrem asymptotischen Verhalten, indem
gemâB (1.19) fur aile von (px, <p2, ...,<pn verschiedenen Winkel <p in (1.4)
der Limes superior durch den Limes ersetzt werden darf. Was dièse
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Regularitât fur <p <Pi,<p2, ...,<pn zerstôrt, sind vorab die Nullstellen,
die das Anwachsen der Funktion làngs der Halbgeraden arg z (p€,

i — 1, 2, n, stellenweise herabdrûcken. Doch ist zu erwarten, dafi
das allgemeine regulâre Anwachsen sich noch irgendwie in die Grenz-
strahlen hinein fortsetze, etwa so, da6 die Abweichungen von der regu-
làren Linie eher ,,stellenweise" als ,,stûckweise" seien. Ein solches
Verhalten kônnen wir z. B bei der Funktion sinrcz feststellen. Fur

cp r^ 0, n gilt lim —log | sin {jtrei<p) \ =n | sin <p |, aber nicht fur <p 0
r->oo T

oder cp 7i. Stanzen wir jedoch die Umgebungen \x ^-n\ < e, e > 0, der
Nullstellen von sin tcz aus der reellen Achse aus, so gilt im ùbrigen Teil,

wie klein aueh dièse Umgebungen gewàhlt werden, lim °8 \ mnx\ q
N->oo \X\

7. Die allgemeine Klàrung des eben dargelegten Saehverhaltes beruht
im wesentlichen auf

Hilfssatz 2. Sei F(z) in \z\ < iî regulâr,

log TOI ^A fûr\z\ < R
und bei gegebenem k < 1

log |jF(z0)I ^ — A fur ein zoin \z\ ^ kR
Dann gibt es

a) zu jedem f > 0 ein nur von k und f abhângiges H H (k, f), so

/lir \z\ ^ fc 12, ausgenommen in Kreislein, deren Radiensumme <ÇR.

b) Eine nur von k abhângige Zahl H H(k), so dafi

\$d{wëF(z)}\<AH

wenn làngs einer einfachen Jordankurve in \z\ ^ kR integriert wird, die
irgend zwei Punkte der Peripherie | z | k R verbindet und die Nullstellen
meidet.

Dies ist eine einfaehe Verallgemeinerung des nachfolgenden Hilfssatzes
von V. Bernstein und M.L.Cartwright.13).

18) Zum ersten Teil (a) vgl. F. Bernstein [3], S. 179. — Zum zweiten Teil (b) vgl.
M. L. Cartwright [1], S. 44—46.
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Hilfssatz 3. Die Funktion F(z) sei in \z\ ^ R regular und genilge dort
den Bedingungen

log 1^(0)1 >— A
und

log\F(z)\^A
Dann gibt es

a) zu jedem #c < 1 und rj > 0 eine nur von k und rj abhdngige Orôfie
H H(k, rj), so dafi im ganzen Bereich \z\ ^ kR

\og\F(z)\>-HA
ist ausgenommen hôchstens in Kreislein mit der Radiensumme < rjR.

b) Zu jedem k < 1 eine nur von k abhangige Grofie H H(k), so da/S

\$d{&TëF(z)}\<HA

wenn lângs eines einfachen Jordanbogens in \z\ < kR integriert wird, die
irgend zwei Punkte der Peripherie \ z \ — kR verbindet und die Nullstellen
meidet.

Wir beweisen Hilfssatz 2 mittelst Hilfssatz 3. Sei z0 auf der positiven
reellen Achse, was dureh Drehung der 2-Ebene immer erreicht werden
kann. Um z als Mittelpunkt legen wir den Kreis vom Radius r (1—k)R
und wenden darauf mit k -| und r\ j den Hilfssatz 3 a an. Hiernach
ist in \z — zo\ < |r

log|JF(«)|>—£T(f, \)A -HXA (1.20)

ausgenommen hôchstens in solchen Kreislein, die wegen ri ~ das

Intervall (z0 — |-r, z0 — -|r) nicht ganz iiberdecken kônnen. Dort wâhlen
wir einen Punkt zl9 fur welchen (1.20) erfullt ist und wenden auf den
Kreis \z — zt\ < r wieder den Hilfssatz 3a mit k | und r\ j an

rkRl [Skiund fahren so fort. Nach hôchstens — Schritten kommen
L J J L J

wir mit dem Punkt zn in das Intervall (— |r, + |r) hinein. Fur diesen
Punkt gilt

log \F(zn)\>-H1i-*.A •

Eine abermalige Anwendung von Hilfssatz 3 a mit k und
£ -]- /c

r I l ]A
rj C auf den Kreis \z—zn\ < R — jR 11 — J der in \z\ < R

enthalten ist, ergibt
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3k
log \F(z) | ^—Hj^.Ht.A

fur \z — zn\ < R — ff ^(1 — f(l — Je)) ausgenommen in Kreis-

1 —J < r) R ist. Der Kreis

\z — zn\ ^ -R (1 — f (1 — &) enthâlt aber den Kreis \z\ ^ &2? und da-

mit ist die Behauptung a) bewiesen.

Zum Beweis von b) integrieren wir zunâchst ûber einen Durchmesser
des Kreises \z\ < Je R. GemàB Behauptung a)14) kann dieser Durchmesser
mit zwei Kreisen iiberdeckt werden, fur welche die Voraussetzungen von
Hilfssatz 3 erfûllt sind. Daraus folgt dann b) im Falle eines Durch-
messers. Der allgemeine Fall ergibt sich daraus in Verbindung mit der
Bemerkung, daB die Anzahl der Nullstellen von F(z) in \z\ < hR den

2A
Betrag nicht xibersteigt15).

8. Sei nun f(z) eine in | arg z | ^ oc regulâre Funktion von der Wachs-
tumsordnung q(t) und dem Strahltypus h(cp) und es gelte fur 0<<p<<x

lim =L. log | f(re<*) \=h{V) (1.21)

Wir untersuehen bei beliebig kleinem vorgegebenem e > 0 die Menge
501 (e) der r-Werte im Intervall (0, oo), fur die

|log|/(r)|—*(0)-F(r)|<6F(r) (1.22)

Hierzu wàhlen wir C > 0 beliebig klein und Je ^, wodurch die GrôBen
C und Je und hiedurch auch die GrôBe H H (Je, f in Hilfssatz 2 fest-
gelegt sind. Danach wâhlen wir (} so klein, daB

fur | <p | ^ )S und beschreiben dem Winkelraum | arg z \ ^ /S eine Schar
von Kreisen \z — Rn\ < | Rn sin j8 mit 1 Bx < R2 < R2 < und

J?n+1 i?n¦, !n o, w 1, 2, 3, ein, so daB jeder Kreis seine
x — -g* sin ^C)

beiden benachbarten von auBen beruhrt und sie deshalb die ganze
positive réelle Achse bis auf das Intervall 0 < x < 1 — ^ sin /? voll-
stàndig ûberdecken. Neben dieser Schar betrachten wir noch eine zweite,
die von den Kreisen \z — Rn\ < Rn sin /? gebildet wird.

Je

u) Man wahle dort etwa Ç —-

15) Letzteres ist eine unmittelbare Folge der Jensen'Bchen Ungleichung.
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Wâhlen wir nun irgend ein q>0 im Intervall 0 < ç> < ~, so liegt JRne<9P°

im Kreis \z — Bn| < \Bn sin p und es gilt nach Voraussetzung (1.21) fur
gentigend groBe r

| log | / (Rne«fo) | _ h(<p0) V(Bn) | < ^ (1- sin p)* ¦ V(Rn) ; (1 • 24)

ferner

^(±=^)e\) (1.25)

fur |z — Bn\ < Bn sin p, n> NQ. Wir setzen

JP^rrz/^e-^0)'^). (1.26)

Dann ist wegen (1.23), (1.24), (1.25) und (1.16) fur genugend groBe
n, n > Nt > No

log | JF(z) | <^ (1 — sin p)< F(5n)

fur \z — B\^ Rnsinp und

log |#(i?TC e'") | > — -L (1 — rin «• • F(i2J

mit |i?wci9P°— J?n| < ^ i2n sin /S. Durch Anwendung von Hilfssatz 2 mit
den eingangs festgelegten GrôBen £ und le \ auf ^(2;) im Kreis
\z — Bn\^Rn8m

log \F(z) | > _ ^- (1 _ sin fi* • F(JBJ > - eV(z)

in |2 — Rn\ ^ ^Bn sin /? fur n > N2 > Nx ausgenommen in Kreislein,
deren Radiensumme < £jRnsin/? ist. Dièse Ausnahmekreise bedecken
also von der positiven reellen Achse in jedem Intervall (0, r) hôchstens
eine Menge vom MaB 2 £ r + 2 £ r sin j8< 4 £ r 16). Rechnen wir das

Intervall 0 < x < J?j^2(l + ^ sin j8) zu den Ausnahmeintervallen, die

von den Ausnahmekreislein herrûhren, noch hinzu, so folgt: Es gilt
log \F(r) | > — eV(r) und daher wegen (1.26) und (1.25) auch (1.22) auf
der ganzen positiven reellen Achse hôchstens mit Ausnahme einer Menge,
deren MaB im Intervall (0, r) den Betrag 4 £ r + BNi(l + ^sin /?) nicht
ûbersteigt. Bezeichnet m(r) das MaB des im Intervall (0, r) gelegenen

Stûcks der Menge 9Jt(e), so ist lim inf—— ^1 —4 £. Da aber 9K(e) nur
f-»-00 *

M) Eine âhnliche Verwendung von Hilfssatz 3 vgl. bei M. L. Cartwright [2], [3], [4];
insbesondere [2], S. 165.
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von e abhângt und £ unabhângig von e beKebig klein gewâhlt werden
kann, so folgt ^) (1.27)

Satz 1. Es sei f(z) eine in \ arg z | < oc regulare Funktion von der Wachs-

tumsordnung g(r) und dent Strahltypus h(q>) und es gelte fïïr O<<p<oc
(1.21). Bezeichnet 9Jt(e) die Menge der r-Werte in (0, oo), fur die (1.22)
erfûllt ist und m{r) dos Mafï von Wl(e) in (0, r), so gilt (1.27).

Das asymptotische Verhalten von log \f(r)\ unterscheidet sich also von
demjenigen der Funktion h(0)V(r) nur ,,stellenweise" und kann als eine

Verallgemeinerung der Limesbeziehung (1.21) aufgefafit werden. Seine

Bedeutung fur spàtere Untersuchungen rechtfertigt eine genauere
Begriffsbestimmung.

9, Sei im Intervall (0, oo) eine Punktmenge 9K gegeben, die in jedem
Teilintervall im Lebesgue'schen Sinne meBbar ist. m(r) bezeichne das
Ma8 des im Intervall (0, r) enthaltenen Stûcks dieser Menge. Wir nennen
m(r) die zur Menge StR gehôrige MaÛîunktion und definieren:

1. Die Zahlen

v m(r) r=r m(r) ^lim sup —L-L D bzw. km inf D
r-^oo t r^O0 r

heiflen obère 6zw. untere lineare Dichte der Menge 2R.

2.IstD D gilt also

so Tteijit 9K von linearer Dichte D. 17)

Aus dieser Définition folgt unmittelbar:

(a) Hat 9JÏ die obère lineare Dichte Z), so hat die Komplementârmenge
Sffl die untere lineare Dichte 1 — S.

(b) Der Durchschnitt zweier Mengen von linearer Dichte 1 ist wieder
von linearer Dichte 1.

(c) Der Durchschnitt einer Menge von der Dichte 1 und einer Menge
von der obern linearen Dichte D hat wieder die obère lineare Dichte D.

Aus dem dargelegten Begriff ,,Menge von linearer Dichte" ergibt sich
folgende Erweiterung des Grenzwertes an der Stelle x oo.

17) Die Begriffe untere und obère lineare Dichte wurden in Besicovitsch [1] definiert.
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Définition : Die Zahl l heifit ,,dominierender Hâufungswert" der
Funktion (p(x) fïïr #->oo wenn es zu jedem e > 0 im Intervall 0<x< oo
eine Menge 3Jl(e) von linearer Dichte 1 gibt, so daft

\<p(x) — l\<e (1.28)

sobald x der Menge 501 (e) angehôrt.
Dieser ganze Sachverhalt soll kurz durch die Schreibweise

lim* q> (x) l
ausgedrUckt werden.18)

Nach dieser Definiton darf die Ungleichung (1.28) im Gegensatz zum
Grenzwert in unendlich vielen, gegen Unendlich strebenden Intervallen
falsch sein, sofern nur das MaB dieser Ausnahmeintervalle im Vergleich
zum Ausmafï des ganzen Intervalles verschwindend klein ist. Es wird also
im allgemeinen l nicht der einzige Hâufungswert von cp (x) fur x -> oo sein.
Betrachtet man aber nicht nur die Existenz eines Hâufungswertes h}
sondern auch die ,,Affinitàt", welche (p(x) im Intervall (0, oo) zu diesem

Hâufungswert besitzt, d. h. die untere lineare Dichte der Menge 501 (e),
fur welche bei kleinem e > 0 die Ungleichung |ç>(#) — h\ < e erfullt ist,
so hat bei obigem Sachverhalt der Hâufungswert l gegeniiber allen andern
den Vorzug. Denkt man sich etwa statt der Hâufungswerte Kugeln von
der GrôBe ihrer Affinitât zur Funktion <p(x), so wird bei jedem noch so

feinmaschigen Sieb die zum Hâufungswert l gehôrige Kugel als einzige
im Siebe bleiben, l ist also der ,,dominierende Hâufungswert". Dieser
Sachverhalt wird durch folgenden Satz noch vertieft:

Satz 2. Die Aussage

„ lim* <p(x) l "

ist gleichbedeutend mit der folgenden :

,,E8 gibt im Intervall 0 < x < oo eine feste Menge 501 von linearer Dichte 1,

so dafi im gewôhnlichen Sinne
]im.<p(x) l

wenn x in dieser Menge 501 gegen Unendlich strebt."

18) Falls die Funktion <p (x) integrierbar und absolut beschrânkt ist im Intervall (0, oo),
x

ist dieser ,,dominierende Hâufungswert" identisch mit dem Mittelwert lim J_J cp(t)dt.
JC-X» X q

Im allgemeinen aber sind dièse beiden Begriffe nicht miteinander vergleichbar. Denn
ersterer besagt etwas ûber aile Werte von cp(x) im Mittel, letzterer aber etwas ûber die
meisten Werte im einzelnen, ûber die andern dagegen gar nichts.
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Beweis : Ausgehend von der Définition des dominierenden Hàufungs-
wertes lâBt sich zur Zahlenfolge 1, f, f, f, eine Folge von Mengen
50li, 50t2 9 • • • j 3JI» 9 • • • mit linearer Dichte 1 derart bestimmen, daB

S»! > 3W, > • - o SR, > • • •

Und |() ï|<* fûr *cSK,,t 1,2,3,...
Bedeutet m^ (r) die zu 50tt gehôrige MaBfunktion, so gibt es eine wach-
sende, gegen Unendlich strebende Folge positiver Zahlen r{, so daB

mi(r) > (1 — i) r fur r > r{, i 1, 2, Bezeichnet nun 501* den im
Intervall (0,r<+1) gelegenen Teil der Menge 50tt-, so hat die Vereinigungs-
menge 3[R aller dieser Mengen 501* die im Satz behauptete Eigenschaft.
Denn fur ihre MaBfunktion m(r) gilt m(r) ^m^r) fur r{<r ^ri+1.
Es hat also 501 die lineare Dichte 1. Gehôrt ferner x der Menge 501 und dem
Intervall rt < x ^ ri+1 an, so gehôrt x auch zur Menge 50lt-. Folglich ist

woraus sich die Behauptung Hm(p(x) — l fur x c 501 ergibt.
Der Beweis der Umkehrung ist einfach und sei dem Léser uberlassen.
Aus den Eigenschaften der Mengen von linearer Dichte ergibt sich

leicht, daB der dominierende Hâufungswert von der Auswahl der Mengen
501 (e) unabhàngig, also durch die Funktion <p(x) eindeutig bestimmt ist.
Ebenso folgt, daB die Rechenregeln fur Grenzwerte auch fur dominierende
Hàufungswerte Geltung besitzen. Denn sind (px(x) und ç?2(^) zwei Funk-
tionen, fur die lim* (px{x) und lim* <p2(x) existieren, so gilt nach Satz 2 fur

zwei feste Mengen 50lx und 50l2 von linearer Dichte 1

lim <Pi(%) ^i bzw. lim (p2(x) — h •

Dasselbe gilt auch fur den Durchschnitt dieser Mengen, der ebenfalls
von linearer Dichte 1 ist und durch Anwendung der Rechenregeln fur
Grenzwerte folgen dann wieder unter Verwendung von Satz 2 die ent-
sprechenden Rechenregeln fur dominierende Hàufungswerte. Es gilt

lim* <p± (x) ± lim* <p2 (x) lim* ((px (x) ±

lim* <pt (x) • lim* ç?2 {x) lim* {(px (z) • <p2 {x) (b)
X->-QO fl5->00 £C->00

lim* Vl(x)
(c\lim* q>2(x) o^oo <p2{x) '

a;->-oo

letzteres sofern cp2(%) =^ 0 und lim* 9>2(#) ^ 0 •

£->00
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Gemàfi unserer getroffenen Begriffsbestimmung làfit sich jetzt die
Behauptung von Satz 1 so fornmlieren:

Es gilt

Entsprechend erfâhrt das Résultat (1.19) von Nr. 6 mittels Satz 1

folgende Pràzisierung :

Wird die in Nr. 6 betrachtete Nullstellenverteilung zugrunde gelegt, so gilt
filr aile Winkel cp

2K
1 71 (*

lim* •=— log I n(re*>) I —. I cos (p0 — on) d N(w + 6) (1.29)
r-x» v (r) sin q 7t J

o

und in jenen Winkelrâumen9 die keine Nullstellen enthalten, darf lim*
durch lim ersetzt werden.

B. Ganze Funktionen mit nieûbarer Nullstellenverteilung ;

Yerallgemeinerung auf meromorphe Funktionen

10. Durch genûgende Verfeinerung der obigen Nullstellenverteilung
lâBt sich erreichen, daB die zugehôrige MaBfunktion N(q>) mit beliebiger
Genauigkeit eine vorgegebene monoton wachsende Funktion approxi-
miert. AUe dièse Verteilungen sind aber insofern noch von sehr spezieller
Natur, als die Nullstellen immer nur auf einer endlichen (wenn auch

beliebig groBen) Anzahl von Strahlen durch 0 liegen dûrfen. Um uns von
dieser Forderung loszulôsen, miissen wir einen ,,VerschmierungsprozeB4C
vornehmen, dessen Môglichkeit auf der folgenden Tatsache beruht : Das

asymptotische Verhalten eines kanonischen Produktes n$(z), dessen

Nullstellen im Winkelraum |arg« — n\ < ô gelegen sind und der

Bedingung (1.5) geniigen, nâhert sich demjenigen von tz(z) (vgl. Hilfs-
satz 1) um so mehr, je kleiner der Winkel ô wird. Genauer formuliert
heiBt dies:

Hilfssatz 4. Zu jedem e > 0, rj > 0 und f > 0 existiert ein ô (5(e, rj, è)

mit tj> ô ^ 0 von folgender Eigenschaft : Liegen sâmtliche Nullstellen
eines Weier8Ëra&schen kanonischen Produktes ti$(z) im Winkelraum
| arg z — n \ < <5 und genûgt die Anzahlfunktion dieser Nullstellen der

Bedingung
n{r)~Dr*w9 e(r)-*e # 0, 1, 2f..., (1.30)
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80 gilt gleichmâfiig im Intervall \<p\^.n — r\ fur genilgend grofie r

log | ns (re^) | — si^ cos e<p • V(r)
Sin Q7l I

In den Restintervallen n — rj ^ | y | ^ n gilt nur

(1.31)

log | n$ (re*>) | ^ cos g<p • F(r) < s .^^ F(r) (1.32)

gleichmafîig filr aile genilgend grofien r, wâhrenddem

r> Obis auf eine Menge von obérer linearer Dichte < S.

Beweis: Wir beweisen den Hilfssatz in drei Abschnitten, indem wir
bei gegebenem e>0, rj> Q, |>0 zeigen:

1. ($ làBt sich so klein wàhlen, daB (1.31) fur genûgend groBe r gleich-
màBig im Intervall — n -\- rj ^<p ^ n — rj erfûllt ist.

2. ô làBt sich iiberdies noch so klein wàhlen, daB fur geniigend groBe r
(1.32) auch in den Restintervallen n — rj < \<p\ ^n erfullt ist.

3. à lâBt sich schlieBlich so klein wàhlen, daB (1.33) auch in den
Restintervallen n — rj ^ \cp\ < n fur r > 0 bis auf eine Menge von obérer
linearer Dichte < | erfullt ist.

Erster Schritt. Wir bezeichnen die nach wachsenden Betrâgen geord-
neten Nullstellen von n§(z) mit — av — rvetctv, \ocv\ ^ ô, und betrach-
ten die beiden Produkte

und

~, q)

wobei das Geschlecht q des WeierstraB'schen Primfaktors E(u, q) (vgl.
Nr. 4) gleich der grôBten in q enthaltenen ganzen Zahl ist. Bezeichnet
Cv den Bogen, der rv mit rvé*v verbindet, so folgt

(1.34)
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z ré* und Ç tei0 gesetzt, gilt wegen \cp\ < n— rj, \0\ < ô und ô<yj
die Ungleichung

Das Intégral der letzten Summe von (1.34) ist absolut kleiner als

ô -

und deshalb

log jrs (ré *) — log jro(rei *)
sm

r**1 dn(t)

Wegen (1.30) verschwindet das erste Glied der letzten Seite. Der
Differentialquotient unter dem Intégral ist negativ. Sein absoluter

Betrag ist kleiner als ^ und folglich

log \nh{ré*) I — log i — à

dt

log
sm

Wâhlen wir nun bei beliebig kleinem aber festem rj > 0 die Zahl ô so

klein, da8
sin

2

I log n{

ist

log\nQ(ré*)
e

T
woraus sich in Verbindung mit Hilfssatz 1 ergibt, da8 bei geniigend
groBem r (1.31) gleiehmàBig im ganzen Intervall — jt + rj < 99 < tt — ?j

erfullt ist. Damit ist der erste Schritt bewiesen.

Zweiter Schritt. Der Beweis dièses Teiles gelingt mit Hilfe eines

Phragmén-Lindelofschen Satzes uber den Strahltypus19). Ist e > 0

19) E. Phragmén et E. Lindelôf [1], Gilt fur eine ganze Funktion der Ordnung ç

A ^~, so folgt ^(cp)^ coaç<p |q| <Î2 O COo y CL
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beliebig vorgegeben, so lâBt sich aus Stetigkeitsgrûnden rj' mit

0 < rj ' < — rjf <rj so klein wâhlen, daB

(± ces ç(„ -n>) + ±) «*£*-"> < ± ces e<p + -I- (1.35)

fiir 7t — rjf ^y ^ 7z. GemàB dem ersten Schritt gilt fur genugend
kleines <5, mit ^' an Stelle von rj :

log \ns(rei(P)\ nD s nD o/>,hm sup
B '

T
* \ ^<-; cos Q(p+-r'C136)F(r) sin Q7t

T 4T \ ^<-; cos Q(p+-r'T—' iF(r) sin Q7t
T 4 | sm qtz\

fur \(p\ ^ 7t— r]r. Der Wachstumsindikator A(ç?) der ganzen Funktion
n§(z) von der Ordnung q genûgt also in den Enden des Intervalls

n — rç ' < ç? < rc + 17
' rj' <—, der Ungleichung

h {n ± «7 < ~ cos ^ (tz; — ?/) +sm ^ ^v ' ; |sin

und infolgedessen nach dem Satz von Fhragmén-Lindelof im ganzen
Winkelraum n — rj' ^cp ^n + r\! der Ungleichung

cos Q{(p —7 / x 7-, /c°s Q (n — V fi \
\ sin £7t 4 I sm g:rc |/ cos qry

Berucksichtigt man (1.35) und (1.36), so folgt

7 / v
™D € TlD ^h (w) < —. cos g œ + -7T T"* r 9> ^ ^ >vry sm ^^ ^^ 2 |sin qtz\ ins

womit der zweite Schritt bewiesen ist.

Dritter Schritt. Seien c > 0, rj > 0 und | > 0 beliebig kleine vorgegebene

Zahlen. Durch £ — und fc ^ sind dann die GrôBen Ç und ik und
2

damit auch £T H(k, Ç)> 1 in Hilfssatz 2 festgelegt. Darnach wâhlen
wir r\n' < rj so klein, daB

nD
—: r cos pç? — cos q n cos p(w — n)

e ii —
24 if

/l —sin 4?f\g ^_
\l + sin 4^/ < 6

(1.37)
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fur \<p — n\ < 4 r\" und bestimmen hierauf gemàB dem zweiten Schritt à

so, daÛ fur geniigend groBe |z|, \z\ > J?o,

(1.38)
gleichmàBig in | arg z\ ^ n und gemàB dem ersten Schritt

log |ns(z) | > -££- cos e3r • F( | z | --^ (1-sin V)e- F( | z |

(1.39)

gleichmâBig in \a>Tgz\^n — rj" Wir betrachten nun die in
| argz — n\<7t\q eindeutige und regulàre Funktion

F(z) jrs(2) e-*D «**Q*-vi**~in) (1.40)

auf der Kreiskette \z + iîn| ^ Bn sin 4 ^r/ mit Rx 2 JS0 und iîn+1
iîn(l +^sin 4 t^^), n= 1, 2, 3, die im Winkelraum |arg 2—rc|
enthalten ist. Wegen (1.37) bis (1.40) und (1.16) folgt

fur \z + Bn\^ Rnain4:ri", n>N0 und

log I^U^C-^) | >-3^(1-sin4^)C-F(i?n), n>NQ

Dabei ist ^e*^""1^ in \z + Rn\<% J?nsin 4 r\" enthalten. Durch An-
wendung des Hilfssatz 2 mit den eingangs festgelegten GrôBen C und k
auf F(z) in den Kreisen | z + Rn\ < i?n sin 4 r\n folgt

log |^)| > —i (1 - sin 4 ^^)ç F(JKJ > -y aF(|«|)

und hieraus in Verbindung mit (1.40) und (1.37)

^cos Q<p-V(\z\)—eV(\z\)

fur aile z in |^ + -Sn| ^ è-Kn ^ * ^/;> ^ > ^i > ^o> ausgenommen je
hôchstens in solchen Kreislein, deren Radiensumme < C-Bnsîn * fl" î8*-

Die Kreise |2J + JBn| ^ ^JBn sin 4 ?j" iiberdecken aber bis auf ein endliches
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Stûck den ganzen Winkelraum | arg z — jr|< ?/', wâhrenddem die Aus-
nahmekreislein auf jedem Strahl dièses Winkelraumes hôchstens eine
Menge von obérer linearer Dichte 2 £ f uberdecken kônnen. Daraus

folgt aber (1.33) mit e an Stelle von e j—, -. zunàchst fur n—nn^ M^ n(Sin Q7t\ ' ^Iri^
und wegen (1.39) dann im ganzen Winkelraum n — rj < \<p\ ^ n fur aile
r > 0 hôchstens mit Ausnahme einer Menge von obérer linearer Dichte
< £. Damit ist auch der dritte Schritt bewiesen.

Mit dem gleichen Beweisverfahren folgt aus dem Zusatz des Hilfs-
satzes 1 (Ende Nr. 3) :

Zusatz : Sind die Nullstellen im Winkelraum | arg z — n \ < ô von der
Orôfienordnung

n(r) ~Drn(log r)a n 1, 2, <x =£ — 1, (1.30a)

50 gilt gleichmafiig im Intervall \y\^n — rj filr genilgend grofîe r

D
log | 7r$ (re*'^) | — -—-r-j— rn (log r)a+1 • cos ncp

(1.31a)
In den Restintervallen n — r\ ^ | (p | ^ n gilt nur

l)nD D
log I tc» (retv) I — /—z— rn(log r)a+1 cos nœ < e—r-r rn (logr)a+1

oc + 1 oc + 1

(1.32a)
gleichmafiig filr aile genilgend grofien r, wâhrenddem

log I n§ (rei(P) \ — p-r— rn (log r)a+1 cos n<p > — e ——r rn (log r)a+1
OC -j- 1 <X ~f- 1

(1.33a)

aile r > 0 6is a^/ eine Menge von obérer linearer Dichte < |.

11. Im AnschluB an Nr. 6 und Nr. 10 ist es nun naheliegend, allgemein
solche Verteilung der Nullstellen zu betrachten, bei denen der Grenzwert
(1.18) fur jedes 9? existiert und diesen Grenzwert N(cp) zur Berechnung
des Strahltypus heranzuziehen. Dièse Art, die Nullstellenverteilung zu
charakterisieren, ist aber in doppelter Hinsicht nicht ganz zweckmâBig :

1. Der Strahltypus ist gegenliber Translationen der z-Ebene invariant,
dagegen nicht die Funktion N(q>). 20)

ao) Man betrachte etwa die beiden parallelen Punktfolgen {n -f- *} und |n — i},
n 1, 2, 3, i imaginâre Einheit. Ihre Mafîfunktionen sind verschieden. Denn fur
die erste gilt N (0) 0, N (y) 1 (0 < cp ^ 2 77) und fur die zweite N (cp) 1(0 ^ cp < 2 tt),
iV(2 2.
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2. Es gibt Nullstellenverteilungen, die nicht von der festgesetzten Art
sind, deren zugehôriger Strahltypus sich aber leicht nach Hilfssatz 4

berechnen Ià8t. 21)

Um allgemein vorzugehen, definieren wir:
Gibt es zu jedem s > 0 Strahlen von der Richtung

mit 0 < <px < ç?2 < • - • < cpn < 2 n (E)

Vi+i — <Pi< £> i 1,2,3, ...n
derarty dafl die Grenzwerte

*^*/"1* (1.41)

/^r i 1, 2, 3, ri existieren, so hei/ît die NulUtellenverteilung mefibar
beziiglich der Ordnung q{r)22). Dabei bedeutet n(r, <Pi,<pi+1) dieAnzahl der
Nullstellen im Sektor \z\^r,<pi^ arg z < q>i+1. Um solcheVerteilungen
durch eine Funktion N(cp) zu charakterisieren, setzen wir

lim sup r~^r) - n(r, <p) N(<p) 23)
r->oo

lim inf
r->oo

und setzen dièse Funktionen gemàB der Bedingung

bzw. N(cp±2 n) N(cp)±N(2 n)

tiber das Intervall (0, 2 rc) hinaus fort. Es sind N(<p) und -^(ç?) fur aile y
monoton wachsend; sie haben also hôchstens abzàhlbar viele Unstetig-
keitsstellen. Wir zeigen, da6

ton n(r^y//)
al) Man wâhle z. B. auf don Geraden x -f i, x > 0 und a? — i, a? > 0 je eine Punktfolge,

die zusammen mefibar, einzeln aber nicht mefibar sind beziiglich ç (r) 1. Fur keinen
Winkel ç? wird dann der Grenzwert (1.18) existieren. Dagegen subsummiert sich dieser
Fall sehr wohl fur jedes à > 0 unter die Voraussetzungen von Hilfssatz 4 (immer abge-
sehen von endlich vielen Nullstellen).

22) Es sei ausdrucklich bemerkt, dafi dièse Définition nur die Existenz von beliebig feinen
Einteilungen des Intervalls (0, 2 tt) verlangt und nicht etwa, dafi jede der môglichen Ein-
teilungen sich beliebig verfeinern lasse. Letzteres ist auch nicht eine Folge des erstern,
wie leicht durch Beispiele belegt werden kaiin.

28) n(rt cp) bedeutet wie frûher die Anzahl der Nullstellen im Sektor |2| ^ r,
0 ^ arg z < ç>.
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ist, wenn 9/ und ç>" zwei beliebige Stetigkeitsstellen der Funktion N(<p)
sind. Zum Beweis wahlen wir r\ so klein, daB bei beliebig vorgegebenem
£>0

\N(9) — ÏÏ(<p')\<± bzw. \N(<p)-N(q>")\<-^,

sobald \(p — (pr\ < rj bzw. \q> — (pfr\ < r\ ist. Nach Voraussetzung existiert
aber eine so feine Einteilung (E), daB in die Intervalle (<pf,<p'+r)) und
(<pfr— rj, (pf!) je ein Strahl von der Richtung <pt und q>k zu liegen kommt.
Darnach ist

limsup r-e(r)- n{r,<pr,<p") < lim
r->oo r->oo

und
lim inf r~Q{r)-n(r, q>! ç?/;) ^ lim

r->oo

und somit (1.42) bewiesen24). Ist also <p0 irgend eine Stetigkeitsstelle von
N(cp), so stimmen wegen (1.42) die Funktionen N{cp) — N((pQ) und
N^(<p) — -^(ç>o) for fas^ a^e 9^î hochstens mit Ausnahme von abzahlbar
vielen Werten, uberein. Daraus folgt aber, daB die Grenzwerte
N(q> + 0)— F(9?o)25) und N(<p + 0) — N(<p0) bzw. N(<p — 0) — N(<p0)

und i\f(9> — 0) — N^{(po) die gegenuber Translationen der z-Ebene
invariant sind, fur aile 9? ubereinstimmen.

Wir setzen

N(<p - 0) — y (ç>0) ^(ç)- 0) —

0) — N(<p0) ^(y + 0) —

und nennen N(<p) die MaBîunktion der gegebenen Nullstellen. Da
0) N-{<p) und N(<p + 0) JV+(ç>), so folgt

Die Ma/ifunktion N(<p) ist monoton wachsend, bis auf eine additive
Konstante durch die Nullstellen bestimmt und gegenuber Translationen der
z-Ebene invariant. Es gilt fur aile y

M) Genau gleich lâÛt sich zeigen, dafi (1.42) auch fur zwei Stetigkeitsstellen von
JV(<p) erfullt ist. Daraus folgt dann, daÛ die Stetigkeitsstellen von N(<p) und N^(q>)

zusammenfallen.
25) Allgemem bezeichnen wir mit /(<&+ 0) den Grenzwert der Funktion f(x -\- rj),

wenn rj von rechts in den Nullpunkt hmemruckt, und entsprechend mit f(x — 0) den
Grenzwert von f(x + rj)f wenn rj von links m den Nullpunkt hinemruckt.
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und fur irgend zwei Stetigkeitsatellen ç?t und ç>2

*>) (1.44)

Ist umgekehrt N(q>) eine monoton wachsende Funktion, fur die (1.43)
und (1.44) gilt, so ist die Nullstellenverteilung meBbar bezuglich der
Ordnung g(r) und N(cp) ihre MaBfunktion.

Obige Définition der meBbaren Nullstellenverteilung schlieBt auch den
Fall in sich, wo N(cp) identisch verschwindet.

12. Der Hauptsatz ûber das asymptotische Verhalten ganzer Funktio-
nen mit meBbarer Nullstellenverteilung lautet nun :

Satz 3. Sei f (z) eine ganze Funktion hochstens von der Wachstumsordnung
Q(r), Q(r)->Q 7^ 0, 1, 2, Ist ihre Nullstéllenverteilung me/ibar bezuglich
der Ordnung g(r) und N((p) die zugehorige Mafîfunktion, so gilt filr aile q>

lim* =J- • log | f(ré<P) \ h(<p)
r->oo y \r)

und
2K

e) (1.46)

Insbesondere darf in jedem Winkelraum, der keine Nullstellen enthâlt, bei

(1.45) lim* durch lim ersetzt werden.'f)

Beweis : Da f(z) bis auf einen Faktor «aeP(2r), fur den

0
r-+~oo

ist, durch das Weierstrafi'sche kanonische Produkt n(z) iiber die
Nullstellen von f(z) dargestellt wird, so genûgt es, das Wachstum des letztern
zu untersuchen. Seien e > 0 und | > 0 zwei beliebig kleine Zahlen und q>

irgend eine feste Richtung. Zu e, | und rj0 1 bestimmen wir nach
Hilfssatz 4 zunàchst ô0 ô(e, £, 1) und wàhlen dann rj < ô0. Im Inter-
vall \6 — (p\ < rj gibt es zwei Stetigkeitsstellen <p0 < ç? und <fx>(p von

26 Allgemein gilt

f Vgl. die Ankûndigung dièses Satzes bei A. P/luger [1].
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N(q>), fur die (1.44) mit ç?0 und q>x an Stelle von tpx und ç>2 erfullt ist.
Bezeichnet tcq(z) das kanonische Produkt ûber die Nullstellen von f(z) im
Winkelraum q>0 ^ arg z < <px, so gilt nach Hilfssatz 4

(1.47)

UT

log | n0(ré?) | —- —. (Nfa) — N(tp0) cos Qn*V(r)
Sin Q 7C

fur r > 0 ausgenommen eine Menge von obérer linearer Dichte < f.
Wir teilen mm den Winkelraum ç>x ^ arg z ^q>0 -{- 2n durch Strahlen

von der Richtung <px < cp2 < • • • < cpn < cpn+1 <p0 + 2 n in solche Teile
ein, da8 (1.41) fur i 1, 2, 3, erfullt ist und wâhlen dièse Einteilung
so fein, dafi cpi+1 — <pi9 i 1, 2, kleiner wird als die nach Hilfssatz 4

den GrôBen e, f, 7y zugeordnete Zahl 5(e, f, ry). Bezeichnet ^(z) das
kanonische Produkt uber die Nullstellen von f(z) im Winkelraum
(p4 ^ arg z < <pi+1, i 1, 2, n, so gilt nach Hilfssatz 4

log | m (re**) | — -r-p-- (N(<pi+1) —N(<pi) cos (q {Vi—q>) —qtc) V(r)

en (1>48
<

bei genugend groBem r, und zwar gleichmàBig fur i 1, 2, w.
n

Berûcksichtigt man, dafi tt(2:) II?rt(z), so folgt aus (1.47) und (1.48)
1=0

log I 7i(rei({)) | ; (N{(pij —N(q?0) cos q tz V(r)

(1.49)

^ 71
(g{fpt — <p)—Qn) V(r)

fur r > 0 bis auf eine Ausnahmemenge von obérer linearer Dichte < |.
Dies gilt aber fur aile genugend feinen Einteilungen des Intervalles
(9^1 9^0 + 2 7t). Lassen wir daher die Maximallànge der Teilintervalle
gegen Null streben, so strebt die Summe

i)) cos {gi<Pi — V) —

gegen das Stieltjes'sche Intégral

J cos (qO — Q7i)dN((p-\-6)
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Demnach gilt an Stelle von (1.49)

\og\n(re>*)\ _^ cos
V(r) sin q

<. Bn (N(2n)—N(0)) (1'50)

Dièse Beziehung gilt aber bei vorgegebenem e > 0 und | > 0 fur jedea

rj < ô(e, |, 1). Lassen wir daher rj gegen Null streben, so strebt die eckige
Klammer von (1.50) gegen das Intégral J(0, 2tz). Es ist also

n
V(r) sin on

J(0,2n)
Sin Q7t

(N(2n)—N(0))

fur aile r > 0 mit Ausnahme einer Menge 501 (s), die nur von e abhângt
und deren obère lineare Dichte f nicht ubersteigt. Da aber £ unabhângig
von e beliebig klein gemacht werden kann, so ist die Ausnahmemenge
9JÎ(e) von linearer Dichte 0. Dies gilt fur jedes £>0; also ist

log I nfre*?) I n C
lim* ' \—~ -: / cos (p 0 — on) • dNlO 4-œ) h(w)
f^oo V(r) sin on J ^ * ' r) KY/

o

Damit ist (1.45) und (1.46) bewiesen.
DaB in jedem Winkekaum, der keine Nullstellen enthàlt, lim* durch

lim ersetzt werden darf, folgt ohne weiteres aus (1.48).
Da in Satz 3 die Funktion f(z) hochstens von der Wachstumsordnung

q (r) zu sein braucht, so gilt der Satz insbesondere fur solche Funktionen,
die den Minimaltypus der Ordnung q(t) nicht ûbersteigen. Die Null-
stellenverteilung solcher Funktionen ist immer meBbar bezûglich der
Ordnung q (r) ; ihre MaBfunktion ist identisch null. Fur eine ganze Funktion,

die den Minimaltypus der Ordnung g(r), g(r) ->q ^ 0, 1, 2, nicht
ubersteigt, gilt daher

lim* t~~(î^ log | f(rei9>) \ =E 0

m. a. W. die Menge der r-Werte, fur die log \f(rel<f)\< — er«(r) ist fur
jedes e > 0 von der linearen Dichte null.

So viel folgt aus Satz 3. DaB die Behauptung auch fur q 1, 2, 3,...
stimmt, làBt sich mit andern Methoden27) beweisen. Die Beziehung dièses

letztern Ergebnisses zum Faber-Pôlya'sehen Satz28) liber ganze
Funktionen vom Minimaltypus der Ordnung 1 ist offensichtlich.

27) etwa durch Verwendung von Hilfssatz 3.

28) Q.Fàber [1], S. 297; O. Pôlya [2], S. 745. Vgl. auch eine Verallgemeinerung bei
K. Pennycuick [1].
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Die Formel (1.46) wird fur g 0, 1, 2, sinnlos. Es muB deshalb
interessieren, welche Formel an Stelle von (1.46) tritt, wenn wir ganze
Funktionen von ganzzahliger Ordnung n betrachten, deren Nullstellen-
verteilung beziiglich der GrôBenordnung rn(log r)a, oc ^ — 1, meBbar ist.
Die oben verwendete Méthode fuhrt in Verbindung mit dem Zusatz von
Hilfssatz 4 (Ende Nr. 10) zum Ergebnis

{^ÇfcoB(n6-n7t) dN(<p+O)=h(q>).
0

Eine einfache Umformung des Intégrais ergibt
27T 271

h(cp) cos nq> - I cos nd-dN(d) + sin nq> • • I sin nd • dN(0)
OC -f- x J OC -p 1 i)

0 0

A cos n (p -f- B sin ny P • cos w (ç? — ç?0)

Es folgt:
Zusatz : Js£ die Nullstellenverteilung eines kanonischen Produktes beziiglich

der Grôfîenordnung rn (log r)a, oc =fi — 1, n 1,2,3,... meflbar, so gilt

l I ^(^y) | ^ cos nç? + jB sin n<p

27T 27T

(«+1)4 J cos nO'dN(0)t (« + 1) J5= J sînnfl.cï^(e)
0 0

Ist die Nullstellenverteilung rotationssymmetrisch bezûglich des Null-
punktes von der Ordnung 2n, so ist A 0 und B 0 und daher die

ganze Funktion hôchstens vom Minimaltypus.

13. Die in Nr. 11 definierte MaBfunktion einer meBbaren Nullstellenverteilung

ist monoton wachsend. Wir zeigen, daB dièse Klasse von
Funktionen keiner weitern einschrânkenden Bedingung unterworfen ist.

Satz 4. Zu jeder gegebenen, monoton wachsenden Funktion N(cp) und zu
jeder pràzisen Wachstumsordnung q(r) gibt es eine Nullstellenverteilung,
welche mefibar ist bezûglich der Ordnung Q(r) und die Funktion N((p) dis

Mafifunktion besitzt.

Beweis : Zut Konstruktion der Nullstellenverteilung beniitzen wir die
leicht ersichtliche Tatsache, daB sich N((p) durch eine Folge von Treppen-
funktionen Tv{q>) gleichmâBig approximieren làBt. Genauer ausgedrûckt
heiBt dies: Zu jeder positiven ganzen Zahl v existieren im Intervall
(0, 2n) Stellen

14 Commentarii Mathematici Helvetici



mit der Anzahl À;v(>fcv_1), so daB bei Tv(<p)=N{<pvk

<T()^ rc, (1.51)

ist. Bezeichnen wir den Sprung der Treppenfunktion Tv(q>) an der Stelle

<pVth mit sVih, so ist

Tv(<p)

Mit Hilfe der Funktion V(r) (vgl. Nr. 5) und der Zahlen lcv bestimmen wir
nun eine Folge von Radien {Rv} nach der Vorschrift

V(R1)>2Jc2, (1.53)

V(Rv-1)>Me^x{vkv9 6V(R^2)}f " 3,4,... (1.54)

und bezeichnen mit al9 a2, av, je die Lôsung der Gleichungen
V(r) v, v 1, 2, 3, Wir konstruieren die Verteilung zunàchst im
Kreis \z\ ^ Rx und nachher in den Kreisringen jR^ < \z\ ^ Rv,
* 2,3,....

1. Die Nullstéllen im Kreis \z\ < Rx.

Auf jedem Strahl arg z <plh h 1, 2, hx, wàhlen wir die

Punktfolgej-^-ci9C t 1, 2, soweit sie in den Kreis \z\ < Rx

hineinfâllt und bezeichnen ihre Anzahlfunktion mit n(r, 1, h). Dann ist

Durch Summation dieser Ungleichungen ûber aile h mit <px
f h < <p folgt

wegen (1.52) und (1.53)

T1{9)V{r) —B^Û. < n(r9(p) < Tl(tp) V(r), 0 < q> < 2n 0 < r

2. Die Nullstéllen im Kreisring Rv^x <\z\ < i?v.

Wir nehmen an, die Nullstéllen seien im Kreis \z\ > JB^i bereits so

bestimmt, daB

9) r-i) 0
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und wir wâhlen auf jeder Halbgeraden arg z <pv h, h 1, 2, 1cv

die Punktfolge ] -^-±- et(pv> h i 1, 2, 3, soweit sie in den Kreisring

< |s| < Rv hineinfàUt29). Es folgt

)«„,> — 1 < n(r,vh) <
h= 1,2, 3,...,*„, Rv.x<r^Rv,

und durch Summation tiber allé A mit (pv$h^ (p wegen (1.52)

TM V(r) — 2» F^) — fcv < n(r, 7) - n(Ev_1? y) ^ T» F(r) -
— 7^(9)7(1?^), (1.56)

0< ç>< 2 jr,
JB^ < r < i?,

Addieren wir zu (1.56) die Ungleichung (1.55), so folgt

Tv (y) F(r) - 7(22^) (Tv (y) - r^y) - V(RJ~J - kv^ n(r, p) < ^(^ F(r)

fur Rv-±< r^Rv, 0<ç><2jt. Da nach (1.61) Tv{<p) — Tv^((p)^ —,
so folgt weiter

yy (cp) » F(r) - 2F(^-l} —kv^n(r,<p)^Tv (y) ¦ F(r) (1.57)

Nun ist wegen (1.54)

2F(iîï,_1) hv 3
r> ^ ^ »W + FW<7 fur *-i<^<*

und

Dies gibt in Verbindung mit (1.57)

TAV)— y <^|^-<2T,,((p)Jiî,_1<r<i2l,,O<9!»<27r, (1.58)

und

Lî^^<r>,(ç»),»=2,3,... (1.59)

Durch allgemeine Induktion folgt, dafi die Ungleichung (1.58) fur aile

v= 1, 2, 3, richtig ist, woraus sich schlieBlich in Verbindung mit
(1.51)

28) Ihre Anzahlfunktion sei mit n (r, v> h) bezeichnet.
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ergibt. Damit ist der gewunsehte Beweis erbracht.
Aus Satz 3 und Satz 4 ergibt sich unmittelbar, daB zu jeder pràzisen

Wachstumsordnung q(r)y g(r)->Q ^ 0, 1, 2, und zu jeder monoton
wachsenden Funktion N(q>) eine ganze Funktion f(z) existiert, fur die
(1.45) und (1.46) erfullt sind.

14. Die Tatsache, daB jede meromorphe Funktion sich als Quotient
zweier ganzer Funktionen darstellen lâBt, fûhrt in Verbindung mit Satz 3

und den Rechenregeln mit lim* zu folgendem Résultat iiber das asymp-
totische Verhalten meromorpher Funktionen mit meBbarer Null- und
Polstellenverteilung :

Satz 5. Sei f (z) eine meromorphe Funktion von der pràzisen Wachstumsordnung

Q(r), e(r) -> q # 0, 1, 2, ...30).
Ist sowohl ihre Nullstellen- als auch Polstellenverteilung mejibar bezilglich

der Ordnung ç(r) und sind N0(y) und Nco(q?) ihre entsprechenden Ma/S-
funhtioneny so gilt fur jedes y

W) ~
«» (1.60)

^-^- \coa(Qd-Q7t)-d{N0(<p + d) — Na3(<p + e)} h(q>)

0

Insbesondere darf in jedem WinJcelraum, der keine Nullstellen und Pôle
enthalt, lim* durch lim ersetzt werden.

Beweis : Es gibt zwei ganze Funktionen cp (z) und \p (z) ohne gemeinsame
Nullstellen, die je hôchstens von der pràzisen Wachstumsordnung g(r)
sind, so daB

fW
n'~":iï(z) '

Nach Satz 3 folgt yw

Um* =L log | ç,(rëf) | -JL- fcos{ed — q*) -dN0(<p + 6)
r->co V \r) oui \J7lJ

0

log | y (ré*) | -r^— fcos (e 0 - Qn) -dNlim*
f->oo

80) In der kanonischen Darstellung einer meromorphen Funktion endlicher Ordnung
hat der Exponentialfaktor sowohl als auch das kanonische Produkt ûber die Nullstellen
und jenes ûber die Pôle je eine prâzise Ordnung: ç bzw. ço(r) bzw. (>oo(r). Diejenige mit
dem stàrksten Anwachsen bezeichnen wir als die prâzise Wachstumsordnung der
meromorphen Funktion.

212



und durch Subtraktion, in Verbindung mit den Rechenregeln in Nr. 9,
die Gleichung (1.60).

Aus Satz 5 ergibt sich die bemerkenswerte Tatsache, daB fur das

asymptotische Verhalten der meromorphen Funktion f(z) nur die Diffe-
renz der MaBfunktionen N0(<p) und Nw((p) maBgebend ist. Es wurde
vorausgesetzt, daB die Pol- und Nullstellenverteilungen einzeln meBbar
seien. Inwieweit es hiebei ùberhaupt nur auf die Differenz no(r, q?) —
n<* (r> ?0 der Nullstellen und Pôle ankommt, kann noch nicht mitgeteilt
werden.

15. Die MaBfunktion N0(<p) — ^«> (?>) der Null- und Polstellenverteilung
ist als Differenz zweier monotoner Funktionen von beschrânkter totaler
Schwankung. Umgekehrt kann aber jede Funktion von beschrânkter
totaler Schwankung als Differenz zweier monotoner Funktionen dar-
gestellt werden. Daraus folgt in Verbindung mit Satz 4 :

Zu jeder prâzisen Wachstumsordnung g(r), @(r) -> q =£ 0, 1, 2, und
zu jeder Funktion N*(<p) von beschrânkter totaler Schwankung gibt es eine

meromorphe Funktion f(z) fur die (1.60) mit N*(y) an Stelle von N0(q>) —
Nw (<p) erfûllt ist.

Die so definierten Funktionen

6) (1.61)

sind von weitgehender AUgemeinheit. Die im nàchsten Abschnitt folgende
nâhere Untersuchung der Beziehung zwischen den Funktionen h(<p)

und N*(<p) und deren geometrische Interprétation fuhrt zu einer durch-
sichtigern Charakterisierung dieser Funktionen.

(Eingegangen den 28. Oktober 1938.)
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