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Differentialgleichungen unendlich
hoher Ordnung mit konstanten Koeffizienten
Von Hermann Muggli, Zurich

Einleitung
1. Die vorliegende Arbeit behandelt lineare Differentialgleichungen

unendlich hoher Ordnung mit konstanten Koeffizienten, d. h. Glei-
chungen von der Forai

l0F(z) + lxF'(z) + l2F"{z) + • • • + lvF™(z) + • • • G(z) (1)

Die Koeffizienten l0, lx, l2, lv, sind gegebene, im allgemeinen
komplexe Zahlen. Wir beschrànken uns auf den Fall, in welchem F(z)
und G(z) analytische Funktionen der komplexen Variablen z sind.

Die linke Seite von (1) wollen wir als das Résultat einer auf F(z) an-
gewandten linearen Funktionaloperation auffassen, die wir mit fi be-

zeichnen; wir setzen also

l0F(z) + lxF\z) + hF"(z) + ¦¦¦ + lvF^(z) + ¦¦¦ QF(z) (2)

Die Funktionaloperation fi ist durch die Angabe der Zahlenfolge
h>h>h> -''h' -•• bestimmt, oder, was damit gleichbedeutend ist, durch
die Angabe der Potenzreihe

Zo + h* + M2 + ••• + h*v + ••' L(z) (3)

welche wir die erzeugende Funktion der Funktionaloperation fi nennen
wollen.

Man sagt, die Funktionaloperation £ sei auf die Funktion F(z) an-
wendbar, wenn die Reihe links in (2) in jedem regulâren Punkt z von F(z)
konvergiert.

2. Soll die Funktionaloperation fi auf aile Funktionen einer gewissen
Klasse anwendbar sein, so mu6 die Koeffizientenfolge Zo, Z1? Z2, eine
dieser Klasse entsprechende Bedingung erfullen. In dieser Arbeit werden
vier verschiedene Funktionenklassen behandelt, nàmlich die folgenden:

A) beliebige regulàre Funktionen;
B) beliebige ganze Funktionen;
C) ganze Funktionen endlicher Ordnung;
D) ganze Funktionen vom Exponentialtypus (d. h. hôchstens vom

Mitteltypus der Ordnung 1).
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Die Bedingung fur die Anwendbarkeit der Opération fi kann man in
allen vier Fâllen vollstàndig aufstellen und in doppelter Weise aus-
drucken, sowohl als eine Bedingung fur die Koeffizientenfolge l0, lx, l2,
wie auch als Bedingung fur die erzeugende Funktion L(z). Es gilt nàmlich,
wie wir beweisen werden, der folgende, die vier Fâlle zusammenfassende

Satz I. A. Die Opération fi ist dann und nur dann auf aile regularen
Funktionen F(z) anwendhar, wenn

Hm\vily\* 0 (a)
V->00

gilt, oder, was damit gleichbedeutend ist, wenn L(z) eine ganze Funktion ist,
deren Anwachsen den Minimaltypus der Ordnung 1 nicht ûbersteigt.

B. Die Opération fi ist dann und nur dann auf aile ganzen Funktionen
F(z) anwendbar, wenn

11

\v\ lv\v beschrankt (b)

bleiht, oder, was damit gleichbedeutend ist, wenn L(z) eine ganze Funktion
vom Exponentialtypus ist.

C. Die Opération fi ist dann und nur dann auf aile ganzen Funktionen
F(z), deren Ordnung q nicht ûbersteigt, wobei g ^ 1, anwendbar, wenn

lim \lv\vl0*v <e<? (c)

ist. Im Fail q > 1 besagt dies, dafi die Ordnung von L(z) kleiner als qr ist9
wobei

Q Qf
~~

faits q l,so besagt die Bedingung (c), dafî L(z) von endlicher Ordnung ist.

D, Die Opération û ist dann und nur dann auf aile ganzen Funktionen,
deren Anwachsen den Typus t der Ordnung 1 nicht Ubersteigt, anwendbar,
wenn

ist ; im Fail t 0 ist dièse Bedingung so zu verstehen, dafj \ lv\^v beschrankt
bleibt. Die Bedingung (à) besagt, dafl L(z) im Kreis \z\ ^ t regulàr ist.
(Sie besagt insbesondere im Fall t 0, da8 L(z) im Punkt z 0

regulâr ist.)
Wir werden ferner beweisen, daB die Opération fi in allen vier Fàllen
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eine Funktion F(z) der betreffenden Klasse in eine Funktion 2F(z) der-
selben Klasse verwandelt. Genauer gesagt, besteht der

Satz IL Es sei 2F(z) G(z); d. h. es soll die Oleichung (1) bestehen.

A. Wenn (a) gilt, so istO(z) auf jeder Stelle z, auf wélcherF(z) regular ist,
ebenfalls regulàr.

B. Wenn (b) gilt und F(z) eine ganze Funktion ist, so ist G(z) ebenfalls
ganz (und zwar von nicht hôherer Ordnung und nicht hoherem Typus
als F(z)).

C. Wenn (c) gilt und F(z) eine ganze Funktion von der Ordnung q ist,
wobei q>\, so istO(z) eine ganzeFunktion und hochstens von der Ordnung g.

D. Wenn (d) gilt und F(z) eine ganze Funktion ist, so beschaffen, daft ihr
Anwachsen den Typus t der Ordnung 1 nicht ilbersteigt, so ist G(z) einé

ganze Funktion von der selben Beschaffenheit.

Zusàtze zu Satz II. D 1. Unter den Voraussetzungen des Folles D kann
man weiter behaupten, dafi dos Indikatordiagramm von G(z) ein (echter
oder unechter) Teilbereich des Indikatordiagrammes von F(z) ist.

D 2. Wenn (d) gilt und F(z) eine ganze Funktion von der Ordnung q ist,
wobei q < 1, so ist G(z) eine ganze Funktion und hochstens von der
Ordnung Q.

Die Satze I und II werden, insofern sie sich mit den Pallen A, B, C

befassen, schon im ersten Kapitel bewiesen. Die Beweise im Fall D mussen
auf das III. Kapitel verschoben werden. Vorher sind namlich noch die
wichtigsten Punkte aus der Théorie der ganzen Funktionen vom Exponen-
tialtypus und ihrer Indikatordiagramme (vgl. [9])1) zu besprechen
(Nr. 15)2).

x) Die fetten Zrffern m eckigen Klammern beziehen sich auf das Literaturverzeichms
auf S 156

2) Hier sei die Bemerkung emgeschaltet, dafi in den Fallen A und B die Opération 2
,,beschrankt" und ,,stetig" ist, vgl [9, S. 600, Satz VI] In den Fallen C und D besteht
kem derartiger Satz Dies zeigt das folgende Beispiel, das man zu beiden Fallen C und D
rechnen kann. Die Opération 2 werde dureh

L(z) e*1

©rzeugt und auf die Funktionenfolge

Fn(*) ^~r (n 1, 2, 3,

angewandt Das ergibt

S g3
Obwohl Fn(z) m jedem festen endhchen Bereich mit wachsendem n gleichmafiig gegen
Null konvergiert, ist 2Fn{z) im Nullpunkt der 2-Ebene ersichthch unbeschrankt.
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3. Man kann in der Gleichung (1) die Funktion G (z) und die Koeffizien-
tenfolge l0, ll3 l2, als gegeben betrachten und eine Funktion F(z)
suchen, welehe die Gleichung befriedigt. Wenn eine solche Funktion F(z)
existiert, so kann sie keinen ausgedehnteren Regularitàtsbereich haben
(Fall A), bzw. nicht von langsamerem Anwaehsen sein (Fàlle B, C, D) als
die Funktion G(z); dies besagt gerade der Satz II. Existiert aber eine
Funktion F(z), welehe (1) geniïgt, im selben Gebiet wie G(z) regulàr ist
und auch kein schnelleres Anwaehsen als G(z) zeigt? Dièse Frage wird
zum guten Teil durch den folgenden Existenzsatz, dessen Beweis den

Hauptinhalt dieser Arbeit ausmacht, beantwortet:

Satz III. A. Wenn (a) gilt und G(z) in einer gegebenen offenen Kreis-
flâche ${ der z-Ebene regulàr ist, so besitzt die Gleichung (1) eine Partikular-
lôsung, welehe in St ebenfalls regulàr ist.

B. Wenn (b) gilt undG(z) eine ganze Funktion ist, so besitzt die Gleichung
(1) eine Partikularlosung, welehe ebenfalls eine ganze Funktion ist.

C. Wenn (c) gilt und G(z) eine ganze Funktion von der Ordnung q ist,
wobei q ^ 1, so besitzt die Gleichung (1) eine Partikularlosung, welehe ganz
und ebenfalls von der Ordnung g ist.

D. Wenn (d) gilt undG(z) eine ganze Funktion ist, hôchstens vom Typus t
der Ordnung 1, so besitzt die Gleichung (1) eine Partikularlosung, deren

Indikatordiagramm mit dem Indikatordiagramm von G(z) zusammenfâllt.

Zusatze zu Satz III. A. B. Unter den Voraussetzungen des Faites A wie
auch unter denen des Failes B gibt es eine unendlich vielparametrige lineare
Schar von Partikularlosungen der genannten Art, abgesehen vom einzigen
Ausnahmefall, in welchem die Gleichung (1) mit einer linearen Differential-
gleichung endlicher Ordnung fur F(z -j- c), mit kon*. *antem c, gleichwertig ist.

D 1. Es seien die Voraussetzungen des Folles D erfiillt. Ferner sei ein ab-

geschlossener konvexer Bereich SB gegeben, welcher im Kreis \ z \ ^ t ent-
halten ist und das Indikatordiagramm vonG(z) enthalt. Eine ganze Funktion
F(z) vom Exponentialtypus, deren Indikatordiagramm im vorgegebenen
Bereich S enthalten ist, ist dann und nur dann eine Lôsung der Gleichung
(1), wenn sie folgende Gestalt hat:

F(z) Fo (z) + Pmi(z) e*i* + • • • + Pmt (z) eh- (4)

Hiebei bedeutet F0(z) eine fest gewâhlte Partikularlosung von (1), deren

Indikatordiagramm mit dem von G(z) zusammenfâllt; Ax, A2, Xt sind
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diejenigen verschiedenen Nullstellen von L(z), welche im Bereich 35, dem
Spiegelbild von 3? in bezug auf die réelle Achse, liegen ; die w^, m2, m,
bezeichnen die Vielfachheiten von Xl9 X2, ^ und Pmi(z), Pm%(z),

Pm{z) sind Polynôme vom Grad mx— 2, ra2—2, ...iml—2 mit will-
kiirlichen Koeffizienten. (Die Anzahl der Parameter der linearen Schar (4)
ist gleich der Anzahl der mit Mehrfachheit gezàhlten Nullstellen von
L(z) in 23.)

D 2. Wenn (d) gilt und G(z) eine ganze Funktion von der Ordnung q ist,
wobei q < 2, so hat die Gleichung (1) eine Partikularlôsung F0(z) von der
Ordnung g. Die allgemeinste Lôsung von der Ordnung q besitzt die Form
FQ(z) + Pm(z)- Dabei bedeutet Pm(z) ein Polynom vom Grad m— 2 mit
willkûrlichen Koeffizienten und m die Vielfachheit, mit der L(z) im Null-
punkt verschwindet. (Wenn L(0) ^0 ist, so ist F0(z) die einzige Lôsung
von der Ordnung q.)

4. Die Literatur ûber lineare Differentialoperatoren und -Gleichungen
unendlich hoher Ordnung ist sehr ausgedehnt und kann hier nicht aus-
fuhrlich besprochen werden. Ein Ûberblick uber das Gebiet findet sich in
[2], ein ausfuhrliches Literaturverzeichnis in [3]. Es soll daher nur kurz
erlâutert werden, inwiefern dièse Arbeit Neues enthàlt.

DaB die in Satz I ausgesprochenen Bedingungen hinreichend sind,
wurde schon von verschiedenen Autoren erkannt ; da8 die selben
Bedingungen auch notwendig sind, scheint weniger bekannt zu sein. Von
Satz II diirften die Aussage im Fall C sowie die Zusàtze D 1 und D 2

neu sein.
Die erste allgemeine Méthode zur Lôsung von Differentialgleichungen

unendlich hoher Ordnung mit konstanten Koeffizienten gab Schûrer in
[10]. Die Méthode ist nicht an analytische Funktionen gebunden; sie
beruht aber auf gewissen Voraussetzungen, die auf analytische Funktionen

angewandt denen des Falles D entsprechen. Die Arbeiten von
Hilb, Perron und Helge von Koch uber Diflferentialgleichungen unendlich
hoher Ordnung mit Polynomen beschrànkten Grades als Koeffizienten
betrefifen einen allgemeineren Fall; wenn man sie zu dem (wesentlich
einfachern) Fall der konstanten Koeffizienten spezialisiert, kommt man
wieder zu den Bedingungen des Falles D. Die Aussagen des Satzes III
im Fall D und des Zusatzes D 1 sind immerhin insofern neu, als sie sich
auf das Indikatordiagramm beziehen; ebenso ist Zusatz D 2 neu. Als
Grundlage fur die Beweise diente mir die Arbeit [9] von Prof. Pôlya.

Die Méthode, die wir in den Fâllen A bis C anwenden werden, ist die-
selbe, die Hurwitz in [5] zur Lôsung der Differenzengleichung F(z+ 1) —
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F{z) =0(z) in den Fâllen B und D benûtzte. (Fur dièse Differenzen-
gleichung hat ûbrigens Whittaker in [12] auch den Fall C behandelt;
ferner hat er in [13] den betreffenden Spezialfall des Zusatzes D 2 zu
Satz III hergeleitet.) Der Hurwitzsche Ansatz wurde schon 1936 von
Carmichael zur Losung von allgemeinen Differentialgleichungen unend-
licher Ordnung benutzt; vgl. [1]. Doch darf ich erwàhnen, daô mich Herr
Prof. Pôlya schon im Fruhjahr 1935 auf dièse Méthode aufmerksam
machte. Carmichael ist Satz III B sehr nahe gekommen, dagegen ist der
Satz III in den Fàllen A und C ganz neu.
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I.

Klassiflkation und Eigenschaften der Funktionaloperation g
5. Wir wollen zunàchst beweisen, daB die im Satz I genannten Bedin-

gungen fur die Anwendbarkeit der Opération fi auf die betreffenden
Funktionenklassen notwendig sind. Jeder der vier Fâlle A, B, C, D gibt
zu zwei Bedingungen AnlaB, von denen die eine die Koeffizientenfolge
h>h>h> •••» die andere die erzeugende Potenzreihe L(z) betrifft. DaB
dièse beiden Bedingungen in allen vier Fâllen einander àquivalent sind,
durfen wir aus der Théorie der ganzen Funktionen als bekannt voraus-
setzen. Somit haben wir uns nur mit den Bedingungen zu befassen, welche
die Koeffizientenfolge betreffen, d. h. mit den Bedingungen (a), (b),
(c), (d).

Wir verfahren indirekt und nehmen an, daB in einem der Fàlle A bis D
die Folge der lv die entspreehende Bedingung nicht erfullt. Das wûrde
heiBen, es gàbe eine Teilfolge

lvx » lv% » *v8 » • • •

lVk^0 fur k 1 2 3

mit folgender Eigenschaft:

im Fall A JL

\vkllVk\v*>e>0 ; i=l, 2, 3, ;

im

im

im

FaU

Fall

Fall

B

C

D

lim
Jfc-> 00

lim

lim | lv

l«nl

ln

i

II
IlV

1

1

T
oo

c

fur

fur

o

i
Q

t

t

— i
>

>o
0

Unter diesen Voraussetzungen stellt die Potenzreihe

deren Koeffizienten cv durch die Gleichungen

I cn I fi i v '

C 0 fur v # vfc
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bestimmt sind, in allen vier Fâllen eine Funktion dar, auf welche nach

Voraussetzung die Opération £ anwendbar sein sollte. Es ist nàmlich
im Fall A

1 1^k-*-oo
vk I *

d. h. F(z) ist im Nullpunkt regulàr. Im Fall B wird

lim | cv |v lim — 0 ;

\LV \ *

F(z) ist somit eine ganze Funktion. Im Fall C ist3)

lim | cv |"log v lim | lVk \vklogvk • lim (vk !)|r*tog"*^ e1"" 7 lim (e)vl0*v

d. h. #(2;) ist hôchstens von der Ordnung q. Im Fall D wird
1

jP(2;) ist also hôchstens vom Typus t der Ordnung 1.

Infolgedessen miiBte die linke Seite von (2) fur z 0, d. h. die Reihe

[ £*•(«)],_„ - ZïF» <V f I c,tZvjfc | V,

1 + 1+1+
konvergieren. Das ist aber nicht der Fall. Dies zeigt, da6 die Bedingungen
(a), (b), (c), (d) des Satzes I notwendig sind.

6. Wir Wollen nun beweisen, daB die im Satz I formulierten Bedingungen

in den Fâllen A, B, C auch hinreichend sind. Eine Ausgestaltung
unserer Ûberlegungen wird uns sofort zu den entsprechenden Behaup-
tungen des Satzes II fuhren.

A. Es sei (a) erfullt und F(z) im Punkt z regulâr. Dann gibt es einen

abgeschlossenen Kreis vom Mittelpunkt z, in welchem F(z) regulàr ist;

8) Ich benutze im folgenden hâufig die fur n ^> 1 gûltige doppelte Ungleichung
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bezeichnen wir seinen Radius mit 2 ô und das Maximum von \F(z) | in
diesem Kreis mit M. Naeh Cauchy gilt

n~ (2(5)

Fur genugend groBe v ist wegen (a)

Rechts steht das allgemeine Glied einer konvergenten Reihe. Damit
haben wir eine konvergente Majorante fur die Reihe (2) erhalten und
bewiesen, was in Satz I uber den Fall A behauptet wurde.

Wenn nun ein abgeschlossener Bereich 23 gegeben ist, worin F(z)
regular ist, so bezeiehne man die Distanz dièses Bereiches 23 vom nachsten
smgularen Punkt von F(z) mit 3 ô. Man nenne ferner M das Maximum
von 1^(2)1 in demjenigen Bereich, dessen Punkte von 23 hochstens die
Distanz 2 ô haben. Die vorangehende Rechnung erweist die gleich-
maBige Konvergenz der Reihe (1) in 23, also die Regularitat von O(z) in
allen innern Punkten von 23, d. h. die den Fall A betrefïende Aussage des
Satzes II.

B. Es sei (b) erfullt und F(z) eine ganze Funktion. Dann gibt es eine
Zahl A mit der Eigenschaft, daB fur aile v

ist. Mit M (r) werde wie ublich das Maximum von |jF(z)| auf dem Kreis
| z | r bezeichnet. Wenn | z \ ^ r ist, gelten folgende Ungleiehungen :

M(r+2A)<

Die Reihe (1) besitzt daher zu jedem gegebenen r eine im Kreis \z\ ^ r
konvergente numerische Majorante. Damit sind die Satze I und II im
Fall B bewiesen.

Aus der vorangehenden Rechnung folgt auch, daB die Ordnung von
fiF(z) die von F(z) nicht ubersteigt und daB bei gegebener Ordnung das
Entsprechende vom Typus gilt. Wenn namlich die bei der Définition der
Ordnung bzw. des Typus geforderten asymptotischen Ungleiehungen
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von M (r) erfûllt werden, so werden sie, A ato konstant vorausgesetzt,
auch von M(r + 2A) erfullt.

C. Es sei die Bedingung (c) erfullt. Wenn daher die positive aber
gentigend kleine Zahl ô gegehen ist, so besteht fur v ^ vx die Ungleichung

oder anders geschrieben

|ïF|<v«+iï~r. (1.1)

Wir fûhren noch die Zahl A Max | lv | ein, so da6 also fur r 0, 1, 2,

gilt. Kl <A (1.2)

Es sei F(z) eine ganze Funktion der Ordnung q. Es gibt daher eine
Zahl rx, so daB fur \z\ ^ rx die Ungleichung

\F{z)\<e\*\q+*

richtig ist. Ist 2 r > rt und | z \ ^ r, so gilt

—¦ V

Wirsetzen

und erhalten

\F<v)(z) \<v\ev2vvê+* fur v >r1*+* v2 9 \2z\e+* ^,v (1.4)

Die Reihe (2) wird jetzt in folgender Weise in zwei Teile zerlegt :

fi F(z) £ lv FM (Z) + Z h-F(v) (z)
8 8

Auf die erste Summe sind (1.2) und (1.3), auf die zweite (1.1) und (1.4)
anzuwenden. Das ergibt fur \2z\ > Max (1, rt) die Abschâtzungen

v-l
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Daraus folgt, daB die Reihe (2) in der ganzen endlichen z-Ebene konver-
giert, und daB ihre Summe fur geniigend groBe | z | die Ungleichung

befriedigt. Damit ist im Fall C Satz I und, weil ô beliebig klein sein darf,
auch Satz II bewiesen.

7. Um dieZusàtze zu Satz III beweisen zu kônnen, miissen wir einiges
iiber die Lôsungen der homogenen Gleichung

&F(z) l0F(z) + lxF'{z) + — + lvF^(z) + ••• 0 (1.5)

wissen. Der selbe Ansatz, der bei den analogen Differentialgleichungen
endlicher Ordnung zur Auffindung der Lôsungen fuhrt, verschafft uns
auch einen Teil der Lôsungen von (1.5). Wir finden nàmlich:

Wenn X eine m-fâche Nullstelle der Potenzreihe L(z) im Innern ihres
Konvergenzkreises ist, und P (z) ein beliebiges Polynom vom Grad m — 1

bedeutet, so ist
F(z) P(z) eXz

eine Lôsung (Fundamentallôsung) der homogenen Gleichung (1.5). Jede
endliche lineare Kombination solcher Fundamentallosungen ist meder eine

Lôsung von (1.5).

Unter der Voraussetzung, daB Satz III richtig ist, kônnen wir nun den
Zusatz A, B beweisen. Nehmen wir an, die Gleichung (1) und damit auch
die zugehôrige homogène Gleichung (1.5) besitzen nur endlich viele
linear unabhàngige Lôsungen. Dies ist ofïenbar nur dann môglich, wenn
L(z) bloB an endlich vielen Stellen verschwindet. Nun ist nach Voraussetzung

L(z) eine ganze Funktion, deren Ordnung 1 nicht ûbersteigt. Sie
muB daher von der Form

L(z) (p0 + Pi» + ••• + pkzk)e°* |c| ^ 0 (1.6)

sein. Die Opération fi, die durch L(z) erzeugt wird, sieht dann so aus:

2F(z) PoF(z + c) + PlF'(z+c) + .- + PhFM(z + c) (1.7)

Man bestàtigt dies, indem man die rechte Seite von (1.6) nach Potenzen
von 2, die rechte Seite von (1.7) nach Potenzen von c entwickelt. Damit
ist gezeigt, daB unter der genannten Annahme F(z) mit der linken Seite
einer Differentialgleichung endlicher Ordnung gleichwertig ist.

Commentarii Matheraatici Helvetici



IL
Beweis des Existenzsatzes in den Fâllen A5 B5 C

8. Wir wollen die Falle A, B, C des Satzes III durch einen gemeinsamen
Ansatz beweisen, welcher auf Hurwitz [5] zuruckgeht.

Wenn £ einen Parameter bezeichnet, so gilt

&ft lQe*S + lx^ + ••• + h?** + - MC) ** (2.1)

und zwar gleichmaBig in jedem abgeschlossenen Bereieh, der nur innere
Punkte des Konvergenzkreises von L(Ç) enthalt, also in jedem besehrank-
ten Bereieh, wenn einer der Falle A, B, C vorliegt.

Nun sei în eine im positiven Sinn durchlaufene feste Kreislinie vom
Mittelpunkt f 0, die im Innern des Konvergenzkreises von L(Ç) liegt
und dureh keine Nullstelle von L(Ç) hindurchgeht. Wir uberzeugen uns
zunachst, daB

Z^TX (- 0,1,2,...) (2.2)

eine Losung der Gleichung
Zv*(z) *" (2.3)

darstellt. Wegen der gleichmaBigen Konvergenz der Reihe in (2.1)
sind namlich die folgenden Umformungen erlaubt:

Wenn man in (2.2) die Residuen auswertet, so erkennt man, daB ipn(z)
eine ganze Funktion von z ist, und zwar entweder ein Polynom oder eine

ganze Funktion vom Mitteltypus der Ordnung 1.

Die rechte Seite von (1) sei durch die Potenzreihe

G(z) ao + atz + ••• + anz* + ¦•• (2.4)

gegeben4). Die Beziehung (2.3) legt uns nahe, die Losung von (1) in der
Form

••• + anrpn(z) + ••• (2.5)

4) Im Fall A kann namlich als Mittelpunkt des erwahnten Kreises ^ ohne Be-
sehrankung der Allgemeinheit die Stelle z 0 angenonimen werden.
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anzusetzen. Dieser Ansatz enthàlt noch unendlich viele verfiïgbare Para-
meter, nâmlich die Radien der Kreislinien ï0, ît, tn Durch passende
Wahl dieser Parameter wollen wir eine Funktion F(z) herstellen, die der
betreffenden Aussage (Fall A, B, C) des Satzes III voll geniïgt.

Die Radien der în miissen vor allem so gewàhlt werden, da6 die Reihe
(2.5) konvergiert. Ferner soll ihre Summe F(z) das geforderte Tempo des
Anwachsens zeigen und eine Lôsung von (1) darstellen. Die Funktion F(z)
besitzt dièse letztere Eigenschaft, wenn die folgende formale Rechnung
gerechtfertigt werden kann:

n=0

y==0 n=0

n=0 n=0

Wir werden zeigen kônnen, daB die Doppelreihe
00 00

Z Z lvany)(^(z) (2.6)

absolut konvergiert; daher ist die Vertauschung der Summation nach n
und v erlaubt. Im Beweis wird enthalten sein, daB die Reihe (2.5) gleich-
mâBig konvergiert; sie darf daher gliedweise differenziert werden und
stellt, wie obige Umformung zeigt, eine Lôsung von (1) dar.

9. Die Wahl der Kreise ïn richtet sich nach dem Verhalten der Potenz-
reihe 0(z) und der erzeugenden Funktion L(z). Um zunâchst das
Verhalten von G (z) berueksichtigen zu kônnen, fiihren wir eine regelmâBige
Majorante ein. Wir verstehen darunter eine Potenzreihe von der Gestalt

wobei die positiven Zahlen qn so zu bestimmen sind, daB fiir aile
n 1, 2, 3, die Ungleichung

und fiir geniigend groBe n
Qn ^

gilt. In den einzelnen Fàllen werden die gn folgendermaBen gewàhlt :
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A. Der positive, endliche Konvergenzradius der Potenzreihe (2.4)
werde mit q bezeichnet. Wir setzen5)

— Max(|aJn, K+iln+1, • • • I an+p |»+* (2.9)
Qn

Bei dieser Wahl sind die Ungleichungen (2.7) und (2.8) offenbar erfullt.
Ferner gilt *

lim — lim | an \n — (2.10)
n-^oo Qn n+ oo Q

B. Wir definieren qn durch die selbe Formel (2.9) wie im Fall A. Da
aber jetzt 0(z) eine ganze Funktion ist, gilt an Stelle von (2.10)

l 1
lim —=lim|an|w 0 (2.11)

n-> oo Qn w-> oo

C. Im Fall C soll q die Ordnung der ganzen Funktion O(z) bedeuten;
(q ^ 1). Wir definieren Qn durch

K+ *>n+V I \
logn \nlogn ' (n+1) log (n+1)' *"' (n+p) log

(2.12)
Daraus folgt sofort (2.7), ferner

log Qn+l < log Qn
,çy iqx

(Daraus folgt fur Qn ^ 1 Ungleichung (2.8), welche ûbrigens spàter nicht
beniitzt wird.) SchlieBlich gilt noch

n+oo log n n+oon log n q

Man wird bei der Wahl der Kreise ln nicht nur die Nullstellen von L(Ç)
zu vermeiden haben, sondern auch die Stellen, wo L(Ç) klein ist. Dies
wird uns durch den folgenden, von Valiron stammenden Hilfssatz er-
môglicht [11, S. 89]:

Hilfssatz 1: Es sei L(Ç) eine ganze Funktion endlicher Ordnung und k
eine beliebige Zahl grôfier als 1. Dann lâ/it sich eine zugéhôrige Zahl H(k)
finden, mit der Eigenschaft, dafi jeder Ring

mindestens einen Kreis \Ç\ r' enthalt, auf welchem

6) Mit Max (0Ci,0t2>#3, •••) werde die obère Weierstrafische Grenze der Zahlenfolge
#i»0C2><X$, bezeichnet; dièse obère Grenze braucht nicht erreieht zu sein.
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gilt. Dabei bedeutet r0 eine nur von L(Ç) abhangige Zdhl und M(r) dos
Maximum von L(Ç) auf | £| r.

Wir dûrfen annehmen, daB H (Je) eine im Intervall 1 < Je <; 2 stetige
und monoton fallende Funktion von Je ist, welche bei Annâherung an
Je 1 unbeschrânkt wàchst. Dies Ià8t sich nàmlich durch eine passende
VergrôBerung der Werte von H (Je) erreiehen; die behauptete Ungleichung
bleibt dabei bestehen.

10. Nach diesen Vorbereitungen kônnen wir nun zur Bestimmung der
Kreislinien {0, îl9 î2, schreiten. Wir benûtzen dazu eine in den einzel-
nen Fâllen verschieden definierte Folge positiver Zahlen Jc0, Jcx, k2,
mit der Eigenschaft

Kkn ^2 (n 0,1,2,...) (2.15)

Wir dlirfen annehmen, daB das in Hilfssatz 1 vorkommende r0 positiv ist.
Fur n ^> 1 setzen wir

(i)(^i) (2.16)

Nun wird die Kreislinie ïn (n ^ 0) so bestimmt, daB sie konzentrisch
im Kreisring

rn£\C\£Krn (2.17)

liegt, und daB auf ihr ausnahmslos

jL [M(knrj\*t*> (2.18)

gilt. Dies ist nach Hilfssatz 1 wegen (2.16) môglich.

Zur Vorbereitung des Konvergenzbeweises setzen wir

\lo\ + \h\*+\h\z2 + - + \h\*v + -=L*(z) (2.19)

Wenn M (r) wie in Hilfssatz 1 definiert wird, so gilt

M (r) =£ L*(r)

und man hat wegen (2.18) und (2.15) fur aile f auf în

l (2.20)

Weiter erhâlt man unter Berucksichtigung von (2.7), der FuBnote8) auf
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S. 8, von (2.17), (2.15), (2.16) und (2.20) die fûr n ^ 1 gûltige Ab-
schâtzung6)

yOj^TTnJ (2-21)

(n + 2) exp {— w + knr,

Folglich gilt nach (2.5)

| F(z) \ £\aoVo(z) \ + 2(n + 2) exp {—n + knrn\z\} [L* (2rn) ]»<*«> ;
n=-l

(2.22)
ferner mit Riicksicht auf (2.19)

00 00

(2.23)
n l v =0

â 27^+ 2) exp {—w + inrw|z|} [£*(2
oo

27(^ + 2) exp {—n + knrn\z\} [i*(2

Da tpQ(z) vom Exponentialtypus ist, so geht aus dem Beweis von Satz I
hervor, daB ^

in jedem beschrânkten Bereich gleichmàBig konvergiert. Um die Konver-
genz der Doppelreihe (2.6) zu beweisen, genugt es daher zu zeigen, daB
die rechte Seite von (2.23) beschrânkt ist. Dazu mussen die drei Fâlle
getrennt behandelt werden. Im Fall C ist dann noch die GrôBenordnung
von (2.22) zu untersuchen.

11. Im Fall A folgt aus (2.10), (2.16), daB fur n ^ Nt

> —

rn — (2.24)

und daher

L*(2rn)<L* (—\ (2.25)

_____
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gilt. Da L*(z) fur positive z nie verschwindet, konnen wir, sobald n ^ N2
ist, a

L*l—n\ e*n en>0 (2.26)

setzen. Fur die en, die aus dieser Gleichung bestimmt werden, gilt
lim en 0 ;

%

(2.27)
n->- oo

sonst ware namlich das Anwachsen von L*(z) und damit auch das von
L(z) starker als vom Mmimaltypus der Ordnung 1, was der Voraussetzung
(a) widersprechen wurde.

Aus der Bemerkung, die wir im AnschluB an Hilfssatz 1 gemacht
haben, geht hervor, daB H (Je) im Intervall 1 < Je ^ 2 jeden Wert, der
groBer als #(2) ist, genau einmal annimmt. Wir konnen daher wegen
(2.27) von einem gewissen n an, d. h. fur n > Nz ^ N2

H(Jen)=——l (2.28)

setzen; fur kleinere n sei Jen 2. Die Jcn sind dadurch eindeutig bestimmt.
Die Funktion H (Je) ist ferner so beschaffen, daB aus (2.27)

r i lim Jen 1 (2.29)

Auf Grund von (2.24), (2.25), (2.26) und (2.28) wird die letzte Reihe
in (2.23) bis auf endlich viele Anfangsglieder durch

f (n + 2) exp { — n + kn—\z\+n-en} (2.30)

mit N =-Max (Nt, N3) majorisiert. Ist nun z im Kreis \z\ < q beliebig
aber fest gegeben, so erkennt man unter Benutzung von (2.29), (2.10)
und (2.27), daB die Glieder der Reihe (2.30) von einem gewissen n an
kleiner als (n-\- 2) exp (—a n) sind, mit <x > 0, d. h. die Reihe konver-
giert. Die Konvergenz erfolgt gleichmaBig in jedem abgeschlossenen Teil-
bereich des Kreises \z\ < q. Da in einem solchen Bereich die Summe endlich

vieler Anfangsglieder der letzten Reihe in (2.23) beschrankt ist, so

folgt daraus die gleichmaBige Konvergenz der Reihen in (2.23), ferner die
absolute und gleichmaBige Konvergenz der Doppelreihe (2.6) im selben
Bereich (man beachte die Bemerkung uber rpo(z)). Damit haben wir, wie
schon fruher gezeigt wurde, bewiesen, daB die Reihe (2.5) in jedem
abgeschlossenen Teilbereich des Kreises | z \ < q gleichmaBig konvergiert
und eine in \z\ < q regulare Funktion darstellt, welche (1) befriedigt. In
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der Existenz einer solchen Funktion besteht aber die Behauptung von
Satz III im Fall A.

12. Im Fall B wàhlen wir

kn=2 fur n 0, 1, 2, (2.31)

Dann hat il (k) einen festen, von n unabhàngigen Wert, den wir mit

H(kn) H(2) H (2.32)

bezeichnen. ImFall B ist ferner L(z) und damit auch L*(z) (vgl. (2.19))
eine ganze Funktion vom Exponentialtypus ; es existieren daher zwei
feste Zahlen S und T, so da8 fur jedes positive r

L*(r)<SeTr (2.33)

gilt. Wegen (2.31), (2.32), (2.33) wird die Reihe in der letzten Zeile von
(2.23) majorisiert durch

Z8(n + 2) exp{— n + 2rn[\z\ + T(H+ 1)]}
n=l

Dièse Reihe konvergiert aber wegen (2.16), (2.11) in jedem beschrânkten
Bereich gleiehmâBig in bezug auf z. Somit ist die Doppelreihe (2.6)
absolut und gleichmàBig konvergent ; F(z) (vgl. (2.5)) ist daher eine ganze
Funktion, die (1) genûgt, wie es im Falle B zu beweisen war.

13. Im FaU G kônnen wir auch kn 2 und H(kn) H, wie in (2.31)
und (2.32), setzen. Nun sei a eine Zahl, die beliebig nahe bei q, der Ord-

nung von 0 (z) liegen darf, aber so, daB

a>Q^l (2.34)

gilt. Die Ordnung von L(z) ist naeh Voraussetzung endlich und, falls
q > 1, kleiner als g', wo g' durch

7 +7-
definiert ist. Infolgedessen erfullt die Zahl a', welche aus

-1 + ^ 1 (2.35)

bestimmt wird, die Bedingung

1 < af < qf fur g > 1

(2.36)
1 < a < oo fur g 1
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Sofern a genûgend nahe bei q gewâhlt wurde, ist die Ordnung von L(z)
und damit auch die von L*(z) kleiner als af\ d. h. es gibt eine positive
Zahl à derart, daB fur r ^ R

L*{r) < exp (r^1-*») (2.37)

gilt. Aus (2.13), (2.14) und (2.34) folgt fûr n ^ Nt

log n a '

Qn

SchlieBlich erhalten wir wegen (2.16), (2.31)

î
knrn 2rn< ii? fur n ^ Max {Nl9 (2ro)a') (2.38)

Das ergibt mit (2.37), (2.35)

L* (2rn) < L* (nff') < exp (n1-*) (2.39)

fur n^N2 Max (tfx, (2ro)a', i^')
Die Reihe in der dritten Zeile von (2.23) besitzt wegen (2.38), (2.39)
von einem bestimmten Glied an die Majorante

iZ {n + 2) exp {—n+ \z\n*' + (JET+l)**1-*} (2.40)
n**N2

welche wegen (2.36) in jedem beschrânkten Bereich gleichmâBig konver-
giert. Da in einem solchen Bereich die hier nicht abgeschàtzten Anfangs-
glieder beschrànkt sind, so folgt daraus, daB die Reihe (2.5) in jedem
Punkt z konvergiert und eine ganze Funktion darstellt, welche Gleichung
(1) befriedigt.

Es bleibt noch die Ordnung von F(z) zu berechnen. Die Zahl N ^ N2
sei so groB gewâhlt, daB fur n ^ N

gilt. Ist dazu noch
1421er < n

so hat man wegen (2.35)

— n+ \z\np + Hn1^<—^- • (2.41)
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Nun wenden wir (2.22) an. Bezeichnen S und T zwei geniigend groBe
feste Zahlen, so sind |v>o(z)| und die N ersten Glieder der Reihe auf der
rechten Seite fur aile z kleiner als $exp (T\z\ ; der Rest der Reihe
besitzt im wesentlichen die selbe Majorante wie (2.23); von einem ge-
wissen n an gilt noch (2.41). Man erhàlt unter Berûeksichtigung von
(2.35) fur geniigend groBe \z\

\F(z) \^£8e*\*\
1

+ E (n + 2) exp { — n+ \z\n?'+Hn1-*}

^ N8e21"1 + (|4z|a+2)2. exp
n=l

Da a > 1 ist, so folgt daraus, daB F(z) hôchstens die Ordnung a besitzt.
Nun durfte aber a beliebig nahe an q gewàhlt werden. Somit ist die
Ordnung von F(z) hôchstens gleich q; da aber 2F{z) G(z) gilt, so kann sie

nach Satz II auch nicht kleiner als q sein; d. h. F(z) besitzt genau die

Ordnung q, was zu beweisen war.

14. Bevor wir zum dritten Kapitel iibergehen, welches dem Fall D
gewidmet ist, wollen wir den Grand kennenlernen, der die Sonder-

behandlung dièses Falles rechtfertigt. Wenn man nacheinander die Vor-
aussetzungen der Sàtze in den Fâllen A, B, C, D betrachtet, so bemerkt
man, daB die Vorschriften uber L(z) immer lockerer werden, bis beim
Fall D das Minimum dessen erreicht wird, was man von L(z) schlieBlich
doch verlangen darf, daB nâmlich ihre Potenzreihe uberhaupt ein Kon-
vergenzgebiet besitzt. Im entgegengesetzten Sinn bewegen sich die
Vorschriften ûber F(z) und 0 (z) ; sie beginnen mit dem fur analytische Funk-
tionen zulâssigen Minimum, werden immer schàrfer, um schlieBlich mit
einer Schranke fur den Typus der Ordnung 1 zu enden. Eine solche Ab-
stufung der GrôBenordnung muB sich auch bei den Zahlenfolgen zeigen,
die wir im Beweis verwendet haben. Wenn man vom Fall A uber B nach C

ûbergeht, so wird die GrôBenordnung der an und rn kleiner (die der gn

grôBer). Wàhrend sich also im Fall A die Kreise fn ,,sturmisch" ver-
grôBern, so wachsen sie im Fall C nur noch ,,zaghaft", und, wenn man die
Méthode auf den Fall D iibertragen wûrde, kônnte man sehen, daB sie sich

nur bis zu einer bestimmten endlichen GrôBe ausweiten. Man hat dann
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aber nicht unendlich viele verschiedene lw nôtig, sondern es geniigt an
einem; d. h. wir werden die ipn(z) (vgl. (2.2)) fur aile n als ein Intégral
iiber ein und denselben Kreis ï definieren. Der Konvergenzbeweis fur die
Reihe (2.5) wird dadurch viel einfacher; jetzt kann man nâmlich das

Integralzeichen vor die ganze Reihe setzen und gewinnt dadurch gerade
die Form, in welcher wir die Lôsung im dritten Kapitel aufstellen werden
(setzen wir nàmlich (2.2) in (2.5) ein und lassen aile ïn mit voQ zusammen-
fallen, so erhalten wir gerade (3.14)). Eine Anpassung des Intégrations -

weges an das Wachstum von G (z) in den verschiedenen Richtungen fûhrt
dann zum Zusatz D 1 zu Satz III.

Zusammenfassend lâBt sich sagen: Die im II. Kapitel angewandte
Méthode ist auch im Fall D brauchbar, fûhrt aber sofort zu einer einjacheren
Darstellung der Lôsung. Dièse kann aber auch auf einem ganz andern Weg
gefunden werden, wie das III. Kapitel zeigen wird.

III.
Ganze Funktionen vom Exponentialtypus

15. Ich beginne mit der Erlàuterung einiger Définitionen und Tat-
sachen, die ganze Funktionen vom Exponentialtypus betreffen; man
vergleiche dazu [9, S. 571—585]. Wir werden dabei von folgender Ver-
einfachung der Bezeichnung Gebrauch machen: Statt ,,Das Anwachsen
der Funktion F(z) ist hôchstens vom Typus t der Ordnung 1" schreiben
wir nur ,,Die Funktion F(z) ist hôchstens vom Typus £", und statt ,,Das
Anwachsen der Funktion F(z) ist hôchstens vom Minimaltypus der
Ordnung 1" schreiben wir ,,Die Funktion F(z) ist hôchstens vom
Typus 0". Aile Aussagen, in denen t vorkommt, gelten sinngemàfi auch
fur t — 0.

Die Potenzreihe F(z) c0 + <h% + c2z2 -\ + cnzn + • • • (3.1)

sei hôchstens vom Typus t, oder, was damit gleichbedeutend ist, es gelte

ï
lim\n\cn\^ ^t (3.2)

n->- oo

Der Reihe (3.1) lâBt sich die Potenzreihe

zuordnen; ihre Summe /(£) wird die Borelsche Transformierte von F(z)
genannt. Aus (3.2) folgt, daB die Reihe (3.3) im ÂuBern des Kreises
|C| t konvergiert und dort eine regulàre Funktion darstellt.
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Zur genaueren Erfassung des Wachstums von F(z) dient die reell-
wertige Funktion h(9?), welche folgendermaBen definiert ist:

h(q>) Û

Man nennt h (ç>) den Indikator von F(z). Der Indikator miBt also das
Anwachsen von F(z) làngs eines Halbstrahles, der mit der positiven
reellen Achse den Winkel <p einschlieBt. Die Funktion h (99) kann als Stûtz-
funktion eines ganz im Endlichen gelegenen abgeschlossenen und kon-
vexen Bereiches aufgefaBt werden. Dieser Bereich wird das Indikator-
diagramm von F(z) genannt und mit 3 bezeichnet. Genauer gesagt, liegt
ein Punkt z x + i y dann und nur dann in % wenn fur aile cp

$R(ze*-"t9P) x cos (p + y sin 9? 5j h(q>)

gilt. Ferner ist fur aile 9? die Ungleichung h (9?) ^ t erfûllt; d. h. 3 is^ em
echter oder unechter Teilbereich des Kxeises \z\ ^t.

Es gibt konvexe Bereiche, in deren AuBenraum die durch die Reihe
(3.3) definierte Funktion /(C) ausnahmslos regulàr ist; ein solcher Bereich
ist z. B. der Kreis | Ç\ ^t. Der Durchschnitt aller dieser Bereiche wird das

konjugierte Diagramm genannt und mit 3 bezeichnet. Der abge-
schlossene und konvexe Bereich 3 ^ im Kreis | C | ^ t enthalten und
enthâlt aile Singularitàten von /(£). Es gilt nun der

Hilîssatz 2. [9, S. 585.] Das konjugierte Diagramm 3 ist (wie schon die
Bezeichnung ausdrlickt), das Spiegelbild des Indikatordiagrammes 3 in
bezug auf die réelle Achse.

Die Funktion F(z) làBt sich folgendermaBen durch ihre Borelsche
Transformierte /(C) ausdriicken:

fîZ: (3.4)

Das Intégral ist in positivem Sinn liber einen geschlossenen Weg t» zu
erstrecken, der das konjugierte Diagramm 3 îm Innern enthâlt. Man
verifiziert dièse Formel, indem man die Funktionen im Integranden
durch ihre Potenzreihen ersetzt und ûber einen Weg, auf dem (3.3)
gleichmâBig konvergiert, gliedweise integriert. Weiter gilt folgender

Hilîssatz 3. (Fur den Beweis vergleiche [9, S. 584]). Es sei JB ein im
Endlichen liegender, konvexer und abgeschlossener Bereich der Jcomplexen

Ebene, vo eine geschlossene, doppélpunktlose Kurve, die 15, das Spiegélbild
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von 93 in bezug auf die réelle Achse, im Innern enthalt und v(Ç) eine Funktion,

die auf vo und zwischen vo und 93 eindeutig und regular ist. Dann
stellt das ûber vo erstreckte Intégral

eine Funktion vom Exponentialtypus dar, deren Indikatordiagramm in 93

enthalten ist.
Die Definitionen und Sâtze dièses Abschnittes gelten auch fur den Fall,

da8 F(z) hôchstens vom Typus 0 ist. Der Indikator h(cp) wird dann iden-
tisch Null, das Indikatordiagramm und das konjugierte Diagramm fallen
mit dem Nullpunkt zusammen. Dies gilt speziell auch dann, wenn die
Ordnung von F(z) kleiner als 1 ist. In diesem Fall besteht aber daraber
liinaus noch der

Hilfssatz 4. Es sei F(z) eine Funktion der Ordnung g, mit g < 1, /(£)
ihre Borelsche Transformierte, vo ein Weg, der den Nullpunkt einmal um-
lauft und v(C) eine Funktion, die auf m und im Innern von m regular ist
oder hôchstens im Nullpunkt einen Pol hat. Dann stellt das liber vo erstreckte

Intégral

^ (3.5)

eine ganze Funktion dar, deren Ordnung hôchstens gleich g ist.

Fur vo kann ein beliebiger Kreis | f | r < ô gewàhlt werden, wenn
v(Ç) in 0 < | C| < à regular ist. Nach Voraussetzung gilt fur die Koeffi-
zienten der Reihe (3.1)

-— n log nlim —-,—-.—r q •

Wir bemerken, da6 f{w1) eine ganze Funktion von w ist, deren
Ordnung q; aus den Koeffizienten der Reihe (3.3) berechnet werden kann.
Man erhâlt mit Berûcksichtigung der FuBnote3) auf S. 158

l—Q

Bedeutet daher a eine beliebige Zahl grôBer als g*, so besteht, sofern
]w?|-1 > rQ ist, die Ungleichung
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Wir setzen nun

und betrachten nur solche z, fur welche r < Min (rjj1 à) wird. Mit m werde
die Ordnung des Pôles von v(t) im Nullpunkt bezeichnet (m 0, wenn
v(Ç) dort regulàr ist). Dann erlaubt das Intégral (3.5) folgende Ab-
schàtzung :

1 i r*
(£) dÇ < exp | z | r + r~a) A rx~m

— A \z\B exp (2 |25|1+a)<e'*i

wo A und B feste Zahlen bedeuten. Da a beliebig nahe an £* gewàhlt
werden kann, so erkennt man unter Beachtung der zweiten Gleichung in
(3.6), daB fur jedes noch so kleine positive e eine solche Ungleichung er-
fiïllt ist, sofern nur \z\ genugend groB gewâhlt wird; dies ist aber die
Behauptung des Hilfssatzes.

16. Ich werde in diesem Kapitel von einem Satz Gebrauch machen,
den mir Prof. Pôlya mitteilte ; es ist dies

Hilfssatz 5. Es sei vo ein geschlossener, doppelpunktloser Weg in der
z-Ebene, R(z) eine ganze Funktion, in deren Entwicklung

aile Koeffizienten bo,blyb2, von Null verschieden sind, Q(z) eine entlang
xo regulàre und eindeutige Funktion. Dann ist

(3.8)

dann und nur dann identisch Null in z, wenn Q(z) im Innern von vo

regular ist.

DaB dièse Bedingung hinreichend ist, folgt aus dem Cauchyschen
Integralsatz ; wir haben also nur zu beweisen, daB sie auch notwendig ist.

Es gibt zwei geschlossene Kurven a und b, von denen a ganz im
ÂuBern, b ganz im Innern von tt) liegt, und auf welchen Q (z) auch noch

regulàr ist. Mit Hilfe der Cauchyschen Integralformel kann man Q (z) nun
folgendermaBen schreiben

a b

Qa(z) — Qb(z)
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Die Funktion Q(z) lâBt sich also als Differenz zweier Funktionen dar-
stellen, von denen Qa(z) im Innern von a, Qb(z) im ÀuBern von b regulàr
und eindeutig ist. Die Funktion Qh (z) besitzt daher eine Reihenentwick-
lung von der Form

welche auf jedem Kreis ï, der b im Innern enthàlt, gleichmâBig konver-
giert. Indem man den Integrationsweg deformiert und auf dem neuen
Weg sowohl Qh(z) durch ihre Reihe wie auch R(z) durch die Reihe
(3.7) ersetzt, erhâlt man schlieBKch

m

- (£ S Zbvqn
*J v=Q n==0

ïï
— 2ni {bQq0 + bxqxz + b2q2z2 + • • •

Die Doppelreihe unter dem Integralzeichen ist als Produkt zweier absolut
und gleichmâBig konvergenter Potenzreihen selbst gleichmâBig konver-
gent und kann daher gliedweise integriert werden. Da aile Koeffizienten
&o

5 ^i, b2, von Null verschieden sind, so kann die Reihe in der dritten
Zeile nur dann identisch verschwinden, wenn

qo=,qi q2 0

gilt. Also reduziert sich Q(z) auf Qa(z), eine im Innern von to regulàre
Funlition, wie zu beweisen war.

17. Nun sind wir imstande die Sàtze I bis III im Fall D zu beweisen.
Zunàchst haben wir den Beweis nachzuholen, daB die Bedingung (d) von
Satz I auch hinreichend ist. Gleichzeitig damit wird gezeigt, daB die
Opération fi unter den Voraussetzungen dièses Satzes die Darstellung

&F(z) ~ (fie*Sf(Ç) L(C) dÇ (3.9)
tD

besitzt. Dabei ist im positiven Sinn uber einen Weg to zu integrieren, der
im Gebiet gleichmâBiger Konvergenz der Reihe (3) verlàuft und das

konjugierte Diagramm 3 von F(z) im Innern enthâlt. Das ist môglich,
weil 5 im Kreis | C| ^ t enthalten ist und daher wegen (d) ganz im Innern
des Konvergenzkreises von L(z) liegt. Da /(£) auBerhalb 3 regulâr ist, so
hangt der Wert des Intégrales (3.9) nicht von der speziellen Wahl von
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vo ab. Wir kônnen daher fur vo den Kreis | £ | t + e> t nehmen und s

so klein wàhlen, daB darauf nicht nur (3.3) sondern auch noch (3) gleich-
mâBig konvergiert (vgl. (d), (3.2)). Dann sind folgende Umformungen
erlaubt

Die dreifache Reihe unter dem Integralzeichen ist ja flir jedes feste z in
bezug auf Ç gleichmàBig konvergent und gestattet daher die gliedweise
Intégration. Mit der Konvergenz der Reihen in der zweiten Zeile ist auch
die Aussage von Satz I im Fall D bewiesen.

Die Integraldarstellung (3.9) erlaubt uns auch, Satz II im Fall D und
zwar gleich in der verschàrften Form von Zusatz D 1 zu beweisen. Man
hat dazu Hilfssatz 3 anzuwenden, indem man 93 mit dem Indikator-
diagramm von F(z) zusammenfallen làBt und v(Ç) /(£) L(Ç) setzt. Auf
die gleiche Art erhâlt man die Aussage von Zusatz D 2, indem man
Hilfssatz 4 anwendet und dort v(Ç) L(Ç) setzt.

18. Wir gehen nun zum Existenzsatz III iiber, indem wir ihn gerade
zusammen mit Zusatz D 1 beweisen. Es sollen SB und SB die dort erklàrte
Bedeutung haben. Wir wollen uns zunâchst folgende Frage stellen: Wie
muB eine Funktion F(z) beschaffen sein, die eine Lôsung von (1) darstellt
und deren Indikatordiagramm in 93 enthalten ist? Eine solche Funktion
kann zunâchst in der Form (3.4) geschrieben werden. Da nach Hilfssatz 2

das konjugierte Diagramm von F(z) in 93 enthalten ist, so kann als

Integrationsweg xo jede im positiven Sinn durchlaufene Kurve genommen
werden, die S im Innern enthâlt. Wir wâhlen to so, daB L(Ç) auf vo und
zwischen tD und 93 regulàr und nullstellenfrei ist. Mit diesem tD kann nun
die linke Seite von (1) in der Form (3.9) dargestellt werden. Ferner folgt
aus Hilfssatz 2, daB auch das konjugierte Diagramm 3 von #(z)> der
rechten Seite von (1), in SB enthalten ist; deshalb lâBt sich auch 0(z) in
der Form

<*(*) 2^1 (fi** 9 (QdC (3.10)

durch ihre Borelsche Transformierte ausdriicken. Damit findet man, daB
die Gleichung (1) mit

$*i(f(QL{Ç)-g{Q)dt=O (3.11)

équivalent ist. m
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Wann ist nun dièses Intégral identisch Null in z\ Dièse Frage beant-
wortet uns Hilfssatz 5; wir haben nur R{z) ez und

Q(C)=f(Z)L(Z) — g(Z) (3.12)

zu setzen und finden, daB Q(Ç) innerhalb to regulâr sein muB. Lôst man
(3.12) nach /(£) auf und setzt in (3.4) ein, so gelangt man zumRésultat,
daB eine Lôsung von (1), deren Indikatordiagramm in 33 enthalten ist, die
Form

besitzen mufl, wobei Q(Ç) auf xo und innerhalb vo regulâr ist.

Nun wollen wir umgekehrt zeigen, daB dos Intégral (3.13) stets eine

Lôsung von (1) bildet, deren Indikatordiagramm in 23 enthalten ist. Die
letztere Behauptung ergibt sich aus Hilfssatz 3, wenn man dort fur v(Ç)
den Bruch im Integranden von (3.13) einsetzt. (Man beachte, wie wir t»
gewàhlt haben.) Setzen wir jetzt (3.13) in die linke Seite von (1) ein!
Da die Reihe in (2.1) auf m gleichmàBig konvergiert, darf das Zeichen fi
mit dem ïntegralzeichen vertauscht werden. Man erhàlt mit (2.1), (3.10)

F(z) ist also eine Lôsung von (1).

SchlieBlich bleibt noch nachzuweisen, daB die Lôsung, die wir in der
Form (3.13) gefunden haben, mit der rechten Seite von (4) gleich-
bedeutend ist. Zunàchst soll gezeigt werden, wie man dasjF0(z) erhàlt. Wir
wâhlen einen geschlossenen Weg too, der das konjugierte Diagramm 3
von G(z) im Innern enthâlt, es aber so eng umschlieBt, daB L(Ç) auf m0
und zwischen tx)0 und 3 regulâr und nullstellenfrei ist. Dann stellt das im
positiven Sinn ûber to0 erstreckte Intégral

als Spezialfall von (3.13) eine Lôsung von (1) dar, deren Indikatordiagramm

in 3 enthalten ist. Da aber 2,F{z) Q(z) gilt, so muB umgekehrt
auch 3 im Indikatordiagramm von F0{z) enthalten sein; dies folgt ja aus
Satz II, Zusatz D 1 ; die Indikatordiagramme von ^0(2;) und O(z) mûssen
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daher zusammenfallen. Wir haben damit die den Fall D betreffende Aus-

sage von Satz III bewiesen.
Die rechte Seite von (3.13) làBt sich nun folgendermaBen umformen:

tD

Fo(z) + Pmi(z) e*n + • •. + Pmi(z) elZ

Beachtet man, daB Q(z) innerhalb tD und g(Ç) zwischen tt)0 und xo regulàr
sind, und berechnet man die Residuen, so zeigt sich, daB die Symbole in
der letzten Zeile die gleiche Bedeutung wie in (4) haben. Damit haben wir
auch den Zusatz Dlzu Satz III bewiesen.

SchlieBlich bleibt noch der Beweis fur Zusatz D 2 zu leisten. Ûbertràgt
man die vorangehenden Ûberlegungen auf den hier vorliegenden Spezial-
fall, so reduzieren sich die Bereiche Jb 3> ©> © au^ den Nullpunkt. Die
Kurve too (die hier auch die Rolle von tt) spielt), muB so eng um den
Nullpunkt gelegt werden, daB L(z) auf vo0 und im Innern von tD0 regulàr und
bis auf z 0 nullstellenfrei bleibt. Eine Lôsung von (1), deren Ordnung
Jcleiner aïs 1 ist, mu/3, nach (3.13), die Form

VDq XDq

besitzen, wobei Q(Ç) auf voQ und im Innern von w0 regulàr ist, Wendet man
auf das erste Intégral auf der rechten Seite, das wie in (3.14) mit F0(z)
bezeichnet werde, den Hilfssatz 4 an, indem man dort F(z) durch O(z)
und v C) durch \L C)]"1 ersetzt, so findet man, daB Fo (z) hôchstens von der

Ordnung g sein kann. Da aber £,F(z) O(z) gilt, so kann nach Zusatz D 2

zu Satz II die Ordnung von FQ(z) auch nicht kleiner als q sein; sie ist
daher gleich g. Das zweite Intégral in (3.15) ergibt ein Polynom, das die

Eigenschaften von Pm(z) in Zusatz D 2 zu Satz III besitzt. Damit haben
wir auch diesen Zusatz bewiesen.

19. Ich mâche noch einige Bemerkungen zu der Form, in welcher wir
die Lôsung in den Fàllen A, B und C gefunden haben (und in welcher wir
sie auch im Fall D finden kônnten).

Wenn man in (2.2) die Residuen auswertet, so sieht man, daB ipn{z)

von folgender Form ist :
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Dabei bedeutet (pn(z) ein Polynom, dessen Grad unter der Annahme
2,(0) ^ 0 gleich n ist (sonst erhôht er sich um die Vielfachheit der Null-
stelle von L(z) im Nullpunkt). Wenn wir an Stelle von (1) die Differenzen-
gleichung F(z +1) —F(z) zn vor uns haben, so sind die q>n(z) mit den
Bernoullischen Polynomen identisch. Weiter bezeichnet nn9 r(z) eine
lineare Kombination solcher Fundamentallôsungen7) der homogenen
Gleichung, die mit denjenigen Nullstellen von L(z) gebildet sind, die im
Kreis | z\ < r liegen. Da auch £<pn(z) zn ist, so befriedigt die Reihe

«o^o(^) +«i9?i(2;) + «2^2(2) H (3.16)

,,formai" die Gleichung (1); sie wird aber im allgemeinen divergieren.
Man kann sie aber durch Hinzufiïgung der Summanden nn, r(z) konver-
gent machen. Vgl. [5].

Die Form, in welcher wir die Lôsung von (1) gewonnen haben, besitzt
eine gewisse Âhnlichkeit mit der Form, in welcher die Aufgabe, eine ganze
Funktion mit vorgeschriebenen Nullstellen bO9bl9b29 anzugeben,
gelôst wird. Bei dieser Gegenuberstellung entsprechen sich dièse
Nullstellen und die Koeffizienten a09 al9 a29 der gegebenen FunktionG(z).
Der Ansatz (3.16) fur die Lôsung von (1) ist analog dem Ansatz

fur eine Funktion, die in 60, bl9 62, verschwindet. Beide Entwicklungen
lassen sich konvergent machen, indem man zu dem allgemeinen Glied in
(3.16) den konvergenzerzeugenden Summanden anipn, r (z), bzw. in (3.17)
einen geeigneten konvergenzerzeugenden Faktor exp {P(zjbn)) hinzu-
fiïgt ; es wird also im ersten Fall eine Lôsung der homogenen Gleichung,
im zweiten eine nullstellenfreie Funktion hinzugefûgt. Ferner erhalten
wir die allgemeine Lôsung von (1) durch Addition der allgemeinen Lôsung
der homogenen Gleichung zu einer speziellen der inhomogenen; ebenso
wird eine beliebige ganze Funktion mit den Nullstellen b0, bx, 62,... durch
Multiplikation einer speziellen solchen Funktion mit einer beliebigen
nullstellenfreien ganzen Funktion erhalten. Bei der Produktdarstellung
einer ganzen Funktion der endlichen Ordnung q ist die Ordnung der
Exponentialfaktoren durch q begrenzt; ist G(z) in (1) vom Typus t der
Ordnung 1 (Fall D), so ist der Typus der konvergenzerzeugenden
Summanden durch t begrenzt.

(Eingegangen den 30. September 1938.)

—___ _ -.
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