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Les demi-surfaces de Riemann. Application au

problème du type

Par Chables Blanc, Lausanne

§ 1. Demi-surfaces et surfaces entaillées. Les problèmes qui se posent.

Soit une surface de Riemann F, simplement connexe, dont la base est
la sphère de Riemann, et soit T un chemin ouvert sans point double sur F,
et dont la trace sur la sphère est une courbe rectifiable de longueur finie.
T divise F en deux parties simplement connexes Fx et F2. Nous appellerons

demi-surfaces de Riemann les surfaces qui peuvent être obtenues
comme Ft ou F2 à partir d'une surface F simplement connexe. Aux
extrémités de T correspondent deux singularités a et b de F (qui peuvent
être confondues) ; on dira que a et b sont sur le bord de Fx.

Si T relie un point de la surface (régulier ou algébrique) à une singularité

de F, il ne décompose pas F, mais il la transforme en une demi-
surface de nature particulière : on dira que la surface F* ainsi obtenue est
une surface entaillée.

On peut parler du type d'une demi-surface Ft: représentons
conformément Fx sur le demi-plan 3 C > 0 ; deux cas peuvent se présenter :

1° à T correspond toute la droite 3C 0, moins un point. On convient
alors de dire que Fx appartient au type parabolique ;

2° il y a plus d'un point de 3 C 0 qui ne correspond à aucun point de T.
On dit alors que Ft est du type hyperbolique.

Une surface entaillée étant une demi-surface, elle appartient aussi à un
type bien déterminé.

Plusieurs problèmes se posent au sujet des demi-surfaces. Le premier
est naturellement le suivant:

Problème A : Déterminer le type d'une demi-surface donnée F.

La solution de ce problème paraît plus simple que celle de la
détermination du type d'une surface entière.

On voit immédiatement que si l'on peut diviser une surface simplement
connexe F en deux demi-surfaces Fx et F2 dont l'une au moins est
hyperbolique, F est hyperbolique. On peut donc répartir les surfaces de

Riemann simplement connexes en trois catégories :
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1° les surfaces du type parabolique. Toutes les demi-surfaces qu'elles
contiennent sont paraboliques;

2° les surfaces semi-hyperboliques ; ce sont celles que l'on peut décomposer

en deux demi-surfaces paraboliques ; nous savons qu'il en existe1) ;

3° les surfaces absolument hyperboliques: celles que l'on ne peut pas
décomposer en deux demi-surfaces paraboliques (la surface de la fonction
modulaire, par exemple).

La solution complète du problème A ne permettrait pas de distinguer
les cas 1° et 2°. Il resterait donc à résoudre le problème suivant:

Problème B : Une surface simplement connexe donnée étant décomposable

en deux demi-surfaces paraboliques, reconnaître quel est son type.

On peut se poser un problème analogue au sujet des surfaces entaillées.
Une surface entaillée F* étant une demi-surface, le problème A s'y
applique sans autre. Si F* est hyperbolique, la surface obtenue en soudant
l'entaille l'est également. La réciproque n'est pas exacte. On a cependant
la propriété suivante:

Théorème : Si une surface hyperbolique F donne une surface entaillée F*
parabolique, F est semi-hyperbolique.

Représentons, en effet, F* sur un demi-plan; et soit Tr un chemin
rectifiable, de longueur finie, ne coupant pas la frontière T de F* et
reliant l'extrémité de T située sur F à une singularité de F (qui peut être
la même que celle qui est à l'extrémité de T); T +Tr divise F en deux
demi-surfaces; dans la représentation de jF* sur un demi-plan, ces deux
demi-surfaces sont représentées sur des domaines dont un seul point
frontière ne correspond pas à un point de F ; il en résulte que ces demi-
surfaces sont paraboliques. Le théorème est ainsi démontré.

Le problème B se double naturellement du

Problème G : Une surface entaillée F* parabolique étant donnée, trouver
le type de la surface F obtenue en soudant Ventaille de F*.

Ce problème peut être traité par une méthode analogue à celle que nous
avons donnée pour le problème B2).

1) Voir Ch. Blanc, Les surfaces de Riemann des fonctions méromorphes.
Comm. Math. Helv. 9 (1937), 367; voir aussi Actes Soc. Helv. Se. Nat. 1937, p. 95—96;
et C. R. Acad. Se. Paris, 206 (1938), 1078—1080.

2) Voir C. R. Acad. Se. Paris, 202 (1936), p. 623.
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Représentons conformément F* sur le plan (£) entaillé le long de l'axe
réel positif; on peut opérer cette représentation en sorte que tout point
à distance finie de cette demi-droite corresponde à deux points de
l'entaille, le point £ 0 correspondant à l'extrémité de l'entaille.

A un point de l'entaille de F* correspondent deux points de 3 £ 0,
91 £ > 0, d'affixes rx et r2 ; on a ainsi une relation

J(rl9 r2) 0 rx ^ 0 r2 ^ 0

avec
J(0, 0) 0

et
lim r2 oo

La recherche du type de F se fait par l'étude du comportement de

J(rn r2) 0 lorsque rx et r2 tendent vers l'infini.
Les problèmes BetC concernent les propriétés du type en relation avec

les opérations qui font passer de demi-surfaces à des surfaces entières.
On peut aussi chercher à étudier les opérations qui transforment les demi-
surfaces en d'autres demi-surfaces. Les résultats que l'on obtient ainsi
donnent des renseignements sur la solution du problème A.

Considérons une demi-surface F, de bord T ; en reliant un point de T à

une singularité de F, on divise F en deux demi-surfaces Fx et F2. Si l'une
des deux est hyperbolique, F l'est aussi.

Problème D: Une demi-surface F étant dêcomposable en deux demi-
surfaces Ft et F2, paraboliques, quel est le type de F?

La solution de ce problème est plus simple que celle du problème B ;
on peut montrer que, sous des hypothèses très générales, F est
parabolique3).

On peut passer du problème B au problème G par la transformation
suivante: soient Ft et F2 deux demi-surfaces paraboliques, pouvant se

souder le long d'une courbe T de façon à former une surface simplement
connexe F. Si nous soudons Ft et F2 le long d'un arc de T issu d'une des

singularités, nous obtenons une surface entaillée F*.
Problème E : Une surface entaillée F* pouvant être obtenue en soudant

partiellement deux demi-surfaces paraboliques, déterminer son type.

Ce problème est un cas particulier du problème D. Sa solution permet
de passer d'une relation H 0 à une relation J 0, dont l'étude est plus
simple.

8) C. R. Acad. Se. Paris, 206 (1938), 1079.
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§ 2. Autres énoncés des problèmes B à E: introduction des relations de
soudure.

Nous avons démontré le théorème suivant :

Soit H(rx, r2) 0 une relation analytique (relation de soudure)
satisfaisant aux conditions

lim r2 -> — oo
r i -> — oo

lim r2 -> -f~ °°
1*1 -> + oo

Ow £>ew£ définir, au moyen de deux demi-plans soudés suivant la relation
H 0, ?me surface de Riemann simplement connexe.

Les conditions (H) sont dans la nature du problème; par contre, la
condition d'analyticité peut être levée en partie ; cela nous permettra de

poser d'une façon un peut différente les problèmes que nous avons en vue.
Considérons une relation H 0 continue et vérifiant les conditions (H)

ci-dessus (la continuité de H 0 est nécessaire pour que le problème ait
un sens). Pour faire disparaître les valeurs particulières rx r2 =oo,
transformons H 0 en une relation

liant les arguments de deux points situés sur le cercle | £| 1, la relation
§ 0 vérifiant les conditions

§(0, 0)=
62 étant une fonction monotone croissante de d1 pour 0 ^ 6X ^ 2tz.

En reprenant la démonstration du théorème cité au début de ce

paragraphe, on montrerait que si § (d1,02) est analytique pour
10j | < e, 1021 < e, s> 0, il correspond à 61 02 0 un point de la surface
de Riemann; si ce fait se produit pour tous les couples de valeurs (0l9 02)

satisfaisant à §(01? 02) 0, avec O<01<27retO<02<2^;, alors on
peut faire correspondre à la relation § 0 une surface de Riemann
topologiquement équivalente à une sphère. La relation § 0 peut alors
être engendrée par la décomposition du plan de Gauss en deux parties
par une courbe simple, elle est du type parabolique.

Supposons maintenant que pour certains couples de valeurs (0l902)9
la relation §(#!, 02) One soit plus analytique. Si Ton parvient cependant

à leur faire correspondre des points de la surface, le type de § 0
est encore parabolique.

Si l'on peut montrer qu'il existe un et un seul de ces couples auquel on
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ne peut attribuer aucun point, le type est hyperbolique. S'il y en a
plusieurs, la surface engendrée n'est plus simplement connexe.

Si § 0 a été obtenue à partir d'une relation H 0, analytique pour
rx et r2 finis, elle est analytique pour tous les couples (0l9 62), sauf pour
celui qui correspond à rx r2 oo.

Le problème du type d'une relation H 0, c'est-à-dire le problème B,
se trouve ramené au problème suivant :

Problème Bf : Soit une correspondance biunivoque et continue H (rx, r2)= 0

avec H (0, 0) 0. Reconnaître dans quels cas Von peut faire correspondre à

rt r2 0 et à son voisinage un point d'une surface de Riemann et le

voisinage de ce point.
Avant de donner des solutions de ce problème, nous chercherons à

traduire d'une façon analogue les autres problèmes du paragraphe
précédent.

La relation J (rx, r2) 0 que nous avons introduite au sujet du
problème C se ramène à une relation H 0, si l'on pose r1 r2, pour rt< 0.

Mais la singularité intéressante est celle qui correspond à rx r2 oo.

Elle conduit sans autre au problème suivant:

Problème Gr : Soit une correspondance biunivoque et continue H (rt ,r2) 0

avec H(t, t) 0 pour — e ^ £ ^ 0, e> 0. Reconnaître dans quels cas on

peut faire correspondre à rx r2 0 et à son voisinage un point d'une
surface de Riemann et le voisinage de ce point.

La singularité de la relation est simplifiée, puisqu'elle n'apparaît que
d'un seul côté (pour rt> 0).

Le problème D conduit également à un cas particulier du problème Br.
Représentons les deux demi-surfaces F1 et F2 dont il est question dans

ce problème sur les quart-de-plan 0 ^ arg f ^ ~ « ^ arg £ ^ n la

demi-droite 5R£= 0, 3 £ > 0 correspondant dans ces deux représentations
aux bords de Fx et de F2 qui viennent se souder dans .F. Soient A et B
deux points qui se correspondent ainsi, A i 8l9 B i s2. Il existe
entre s± et s2 une relation _ __i£ (Sx, s2) — 0

biunivoque et telle que K(0, 0) 0, et

lim s + oo

Considérons la relation H (rx, r2) 0 qui est donnée par

H(rur%) E(rl9r2) si rx > 0

H(rl9 r2) K(— rl9 — r2) si rt < 0
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Cette relation vérifie les conditions (H). Si elle est parabolique, la
demi-surface F Test aussi ; réciproquement, si F est parabolique, H
Test aussi. On est donc ramené à l'étude d'une relation H 0. Mais elle
est particulière, puisque si (r1, r2) est un couple satisfaisant à H 0,

(— rx, — r2) en est également un. On dira alors que H 0 est à symétrie
axiale4). Le problème D peut s'énoncer de la façon suivante:

Problème D' : Soit une correspondance biunivoque et continue H (rx, r2) 0

avec symétrie axiale. Reconnaître dans quels cas on peut faire correspondre à

r± r2 0 et à son voisinage un point d'une surface de Riemann et le

voisinage de ce point.

Le problème E enfin peut aussi se traduire en un problème analogue aux
précédents. Soient deux demi-surfaces paraboliques Fx et F2, représentées
conformément sur les demi-plans 3 C ^ 0 et 3 C ^ 0> ce qui donne lieu à

une relation H (rx, r2) 0 pour laquelle nous supposerons, ce qui ne
restreint pas la généralité, H (0, 0) 0. Soudons Fx et F2 le long de leur
bord qui correspond à l'axe réel négatif: nous obtenons une surface
entaillée F*. Le problème E pose la question suivante : peut-on représenter
conformément F* sur un demi-plan, la droite limitant ce demi-plan
correspondant (à part un point) à l'entaille de F* ; on peut remplacer cette
représentation par une représentation sur un plan pourvu d'une entaille
le long de l'axe réel positif. Supposons que nous ayons fait une inversion
du plan (C), par rapport à l'origine pour amener le seul point singulier à

l'origine ; la question qui se posera sera alors la suivante : soient un demi-
disque |C| ^ Q, 3 C ^ 0> et le demi-disque du demi-plan 3 C ^ 0 limité
par le demi-cercle dont les extrémités sont les points qui correspondent,
par la relation H 0, à q et — q. Ces deux demi-disques forment un
domaine D. On demande s'il est possible de représenter conformément D,
entaillé le long de l'axe réel positif, sur l'intérieur d'un cercle \u\ < 1,

entaillé le long du segment (0, 1), cette représentation étant telle que
u(C) ->0 lorsque f ->0.

La solution dépend du comportement de H (r1, r2) — 0 pour
— Q < ri ^ 0 î eUe ne dépend pas du tout de cette relation pour rx > 0.

Si par exemple, H 0 est analytique pour — q < r± ^ 0, la réponse est

affirmative, et F* est parabolique. On obtient alors une relation entre les

abscisses des points correspondants du segment (0, 1) du plan (u), relation
de la forme J (s±, s2) 0. Cette relation pourra être plus ou moins
semblable à H 0 pour rx > 0, suivant que H 0 diffère peu ou beaucoup
de rx — r2 0 pour rx < 0.

*) Si, par contre, H(rly r2) 0 entraîne H(—r2, —rx) — 0, on dira que JET 0 est à
symétrie centrale.
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S'il est possible de passer de la relation H= 0 à la relation J= 0, nous
dirons que la singularité est décomposable. Le problème E deviendra
alors :

Problème E! : Reconnaître si une singularité donnée d'une relation H 0
est décomposable.

Et nous y joindrons le problème:
Problème E" : Etant donné une singularité décomposable d'une relation

H 0 donnée, étudier la singularité correspondante de la relation J 0

qui en résulte.

§ 3. Le problème B'.
Nous appliquerons à la résolution de ce problème les résultats récents

de M. Lavrentieff sur les représentations quasi-conformes. On dit qu'une
représentation d'un domaine D du plan z x + iy sur un domaine X>

du plan w est quasi-conforme si elle vérifie les conditions suivantes5) :

1° elle est topologique;

2° l'élément de longueur ds qui correspond à un élément dz dx -\- idy
est donné par une forme quadratique définie

ds2 £11 dx2 + 2^12 dx dy + g22 dy2

°fr (7n> ^12? ^22 son^ des fonctions continues de x et de y, excepté peut-
être sur un ensemble E de D formé d'un nombre fini d'arcs analytiques ;

3° l'ellipse indicatrice de la représentation a une excentricité bornée
dans D.

Ces représentations s'étendent à des domaines situés sur des surfaces
de Riemann. On démontre le théorème fondamental suivant :

S'il existe une représentation quasi-conforme d'un domaine D simplement
connexe sur un domaine î), il existe une représentation conforme de D
sur X).

Il en résulte par exemple que si l'on peut représenter quasi-conformé-
ment une surface de Riemann sur le plan ouvert, cette surface est du
type parabolique.

5) On constate un certain flottement dans la terminologie de cette question. Certains
auteurs appellent représentations quasi-conformes des représentations satisfaisant aux
conditions 1° et 2° seulement, et ajoutent ità excentricité limitée" si la condition 3° est
vérifiée. On appelle aussi fonction presque analytique une fonction qui représente quasi-
conformément un domaine sur un autre.

Nous écrirons représentation q. c. (quasi-conforme) pour toute représentation vérifiant
les conditions 1° à 3°.
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M. Lavrentieff*) a démontré un théorème d'existence dont nous aurons
à faire usage dans la suite :

Théorème I : Etant donné dans un domaine D deux fonctions réelles p (z)
et 0(z) telles que

1° 1 < p(z) < M dans D;
2° sauf sur un ensemble E de D, formé d'un nombre fini d'arcs analytiques,

p (z) est continue ;
3° si p (z) est continue et différente de Vunité, 6 (z) est continue ;

4° p (z) est uniformément continue dans tout domaine Dx de D limité par
une courbe analytique et qui ne contient aucun point de E ; il en est de

même de d(z), pour autant que Dx ou sa frontière ne contient pas de point où

p(z)=l.
Alors il existe une représentation q. c. de D sur \ w | < 1 telle qu'en chaque

point le rapport des axes de Vellipse indicatrice est p(z) et Vangle entre le

grand axe et Vaxe réel %z 0 est égal àO(z).

Nous utiliserons ce théorème de la façon suivante: après avoir défini
les voisinages du couple (rx 0, r2 0) nous en donnons une représentation

q. c. sur l'intérieur du cercle \z\ < 1 ; en représentant ensuite q. c.

ce cercle sur le cercle \Z\ < 1 avec des fonctions p(z) et 0(z) convenablement

choisies, nous définissons une représentation conforme de tout
voisinage de (r1 0, r2 0) sur le disque \Z\ < 1, le couple venant en
Z 0.

Cela dit, nous pouvons démontrer le théorème suivant :

Théorème 1 : Si, pour \ rx \ < e, r2 est une fonction de rx pourvue d'une
dérivée continue toujours positive, on peut faire correspondre au couple
(rt 0, r2 0) un point de la surface de Riemann.

Définissons les voisinages du couple. Posons, pour \T1\<e,r2 h(r1).
Soit 0 < q ^ e ; le voisinage VQ sera formé :

1° du demi-disque | £| < q 3C> 0 ;

2° du demi-disque de diamètre h(— q), h(g), situé dans le demi-plan
3C<o.

Nous représentons q. c. ce voisinage VQ sur un disque D du plan
z x + i y de la façon suivante ; nous posons :

6) Recueil Math. Moscou, 42 (1935), 407—424. Le théorème cité est le théorème 3,
p. 414.
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pour la partie de VQ située dans le demi-plan 3 C ^ 0 ;

2° ^

pour la partie dans 3 C ^ 0 •

Cette représentation est topologique. Cela est clair si JJC^O. Si

3f 0, on a, pour tout couple (%, u2), dans le premier cas

x A(^) y 0

et dans le second

Le carré de la différentielle de l'arc est partout donné par une forme
quadratique définie; ses coefficients sont continus sauf peut-être aux
points pour lesquels 3C 0. Posons £ u + iv. Pour 3C ^ 0

dy=

Puisque A/(^) est continue et toujours positive, le rapport

*(—g)

est compris entre des limites finies, l'excentricité est bornée.
Pour 3 C ^ 0, la représentation est évidemment q. c.
Cela étant fait, on peut, en vertu du théorème I, construire une

représentation q. c. de D sur \Z\ < 1, telle que la représentation de VQ sur
\Z\ < 1 qui en résulte soit conforme. On pose

f

si

la valeur de rx dans hf(rt) étant l'abscisse du point correspondant du
plan (f On pose enfin
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o si
— M— q)

n 2Qh'{r1)
~2

Ces fonctions vérifient les conditions de l'énoncé du théorème I ;

l'ensemble E est formé du segment (— 1, -f 1).

Remarque: La démonstration précédente est en défaut si h*(rj s'annule

dans l'intervalle (—e, + e). Il convient alors de faire des hypothèses
supplémentaires. Si hf(0) ^ 0, on peut toujours prendre e > 0 assez petit
pour que hf (r^) ^ 0 lorsque |rx| < e (continuité de h^r^)). Supposons
donc que h'(0) 0, et h'{rx) > 0 pour 0< \rt\ <e

Théorème 2: Si hf(0) 0 possède un ordre déterminé m, on peut faire
correspondre un point de la surface au couple (rx 0, r2 0).

Cela revient à supposer qu'il existe un nombre positif m tel que

est une fonction continue non nulle pour \rx\ < e. Nous procéderons
comme nous l'avons fait pour un théorème analogue dans notre thèse
(où l'hypothèse sur l'ordre du zéro était inutile, puisque la fonction h (rt)
était alors analytique). On pose

Z2 Çf+*

en choisissant la détermination telle que Zx et Z2 soient réels positifs si
Ci et f2 le sont. Le voisinage F* de Z 0 est formé

1° du secteur | Z \ < g w+2 0 < arg Z <2j j] ^

2° d'un secteur de l'angle

2 \ ?r
m + 2

limité par la courbe image du demi-cercle de diamètre h(— g), h(Q), du
2

demi-plan 3£ < 0 par Z C^1"1"2.
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Ces deux parties sont soudées le long de la demi-droite arg Z 0 par
une relation

et le long de la demi droite arg Z 2 - n par

ces deux relations étant déduites de r2 h(rt). Elles possèdent une
dérivée continue et positive pour toutes les valeurs de Zt que nous
considérons.

ue%eOn représente ce voisinage sur un disque D du plan z — x -f- iy ue

1° si 0 < arg Z < 2 —i-^ tt on pose

0 arg Z

2° si 2W1] o ^r < arg Z < 2tt

0 arg Z w | Z |

Cette représentation est topologique ; il suffit de le montrer pour

arg Z 0 et arg Z =•= 2
m ~j~ ^ ^

Si arg Z 0, la représentation 1° donne

0 0 u h*(Z1)=Z2

et la représentation 2°

0 0 ^ Z2

Pour arg Z 2 —^-5 ^ on a respectivement

et
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On démontre ensuite comme plus haut que la représentation est q. c,
et le théorème en résulte par le théorème I.

Il est immédiat que l'on peut, pour appliquer le théorème 2, intervertir
les demi-plans Ci et £2.

Les conditions du théorème 2 peuvent encore être élargies.

Théorème 3 : Si, pour 0 < \rt\ < e, r2 h(rx) a une dérivée continue et

positive,

avec 0 < ~ < hf(rt) < K (1)

on peut faire correspondre au couple (0, 0) un point de la surface de Riemann.

On fait, pour le démontrer, la même représentation qu'au théorème 1.

Il faut montrer qu'elle est q. c. et que les conditions du théorème I sont
vérifiées.

Cela est clair pour tous les points qui ne sont pas sur le segment (0, ig).
En ces points, les fonctions g{ k cessent d'être continues. Mais l'ensemble
singulier E que l'on a ainsi, est formé d'un segment de l'axe réel et d'un
segment de l'axe imaginaire, ce qui est conforme aux conditions du
théorème I. D'autre part, les inégalités (1) entraînent que l'excentricité
est bornée. D'où le théorème.

Le théorème 3 peut être généralisé en tenant compte du théorème 2 :

Théorème 4 : Si, pour 0 < | rx | < e, r2 h (rj a une dérivée continue
positive, et s'il existe un nombre m avec, pour 0 < IrJ < e,

<K
r?

alors le couple correspond à un point de la surface de Riemann,

En résumé, le type est parabolique si la dérivée hf{r^) existe et est
continue positive pour tout rx, excepté pour un ensemble fini de valeurs
r\ de r1, pour chacune desquelles il existe deux nombres positifs m et K

K-.JK.
(fi—*-;r <k

Nous verrons plus loin quelques cas où le type est hyperbolique, c'est-
à-dire où la singularité de r2 A(ra) est telle qu'on ne peut faire
correspondre au couple aucun point de la surface de Riemann.
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§ 4. Le problème C.

Ce problème peut être traité ainsi:
Soit une bande 0 < %z < 1 du plan z, et soit une correspondance

biunivoque entre les points des deux droites

donnée par la relation v v(u), u étant l'abscisse d'un point de 3^ 0,

v l'abscisse du point correspondant de 3 z 1- Représentons conformément

cette bande sur une couronne

Bx< \Z\<R2

pourvue d'une coupure reliant les deux cercles \Z\ R1 et \Z\ B2 de
manière qu'à un point de %z 0 et à son correspondant sur 3& 1

corresponde un seul et même point de cette coupure. Suivant le type de

v v(u), on devra prendre jB1 0 ou R1 > 0, R2 < oo ou R2 oo

(il y a quatre cas possibles) ; il est clair que l'on peut décomposer la
discrimination : Rx dépendant par exemple de v (u) pour u < 0, et R2 dépendant

de v (u) pour u > 0. Nous nous occuperons uniquement de u > 0 ;

le type de la relation v v(u) sera hyperbolique lorsque R2 < oo,
parabolique lorsque R2 oo.

Nous avons démontré dans notre thèse les théorèmes suivants7) :

Théorème 5 : Si v ku, k ^ 1, alors R2<oo.

Théorème 6 ; Si vr{u) > K> 2, et si v"{u) > 0 pour u > 0, R2 < oo.

L'application des représentations q. c. permet d'étendre ces résultats.

Théorème 7 : Soient deux relations v vx (u) etv v2 (u) ; s'il existe deux
constantes positives Kx et K2 avec

(1)

\v1(u)—vi{u)\<Ki (2)

pour u > 0, alors vx et v2 ont, pour u > 0, le même type.

Soient les deux bandes

(B2) 0<3z2
7) Comm. Math. Helv., » (1937), 362.
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et une représentation de Bx sur B2 donnée par les relations suivantes

— vx(u)] yx

Vl

u étant l'abscisse du point situé sur l'axe réel de la droite reliant (u, 0) à

(vx(u), 1) et passant par le point (xl9 yx). On montre aisément qu'en vertu
de la continuité de vx(u), cette droite existe et est unique.

Nous allons montrer que pour les points tels que u > 0 cette représentation

est q. c. (ce sont les seuls points qui nous intéressent). On a, sur
une droite u — constante

#i u + y {vx — u)
d'où

— {vx — u) dy±
du

Puis

v[— 1)
* 1-

dy2 d^
Si nous écrivons

<fo! + dy\ gxxdx\ + 2gl2dxxdyx + g22dy\

—i)]2
d'où

y011022—ggU
|

(3)

D'après l'inégalité (1), on a, pour 0 < yx < 1

i + yxK-D MaxM ^- 1) \Vi V'J
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puis la même inégalité pour le second terme de l'expression (3) ; en
outre l'expression

*>2 — "i + Vi [ (*>2 — u)v[ — (vt — u) t£_ (t>a — vx)

atteint son maximum soit pour yx 0, soit pour y1 1 ; ce maximum
est donc

v1
Max { I v2 — vx I I v2 — u j (vx — u) I}

qui est inférieur, en valeur absolue, à

¦]\/rQxr / Jf o 17 i O 27" 1 O Ï7" _l O 1^lriaX -^ A. 2 j ^ ¦"- 2 "T" ^ ¦**• 1 j — ^ ¦**• 2 l ^ -"• 1 •

Un même calcul montre ensuite que

vi

I ]en résulte que

la représentation est donc q. c, et les deux relations sont bien du même

type.
On remarquera que ce théorème ne fait pas intervenir la dérivée

seconde de v(u), il constitue bien une généralisation des théorèmes 5 et 6.

Il est clair que la relation v u est parabolique. On a donc le

Théorème 8: Si une relation v v(u) vérifie, pour u> 0, les deux
conditions j*

v(u) —u
alors elle est parabolique.
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D'autre part, puisque v ku est hyperbolique pour k ^ 1:

Théorème 9: 8i une relation v — v (u) vérifie, pour u > 0, les deux
conditions

vf{u)_^ ^ uk

elle est hyperbolique.

Et enfin:
Théorème 10 : Soit une relation v v(u); s'il existe une fonction p(u)

telle que, pour u > 0,
pf{u)> K> 2

p"{u) > 0

— 1

u
I p-v\<K2

alors v(u) est hyperbolique.

Ce théorème est plus général que le théorème 6, qui affirme que cette
fonction p(u) est hyperbolique. On le voit en prenant par exemple

v(u) — sin u

et

v"(u) n'est pas toujours positif, et le théorème 6 ne permet par d'affirmer,
comme le théorème 10, que v(u) est hyperbolique.

On peut encore mettre le théorème 8 sous une forme plus précise.
Posons, dans le théorème 7,

vx(u) u
v2(u) u + p(u)

Il vient <7ii +^22 i

qui est borné dès que p, p' et —r—7 ^e sont. D'où

Théorème 11: Soit une relation v v(u) u + p(u). Elle est du type
parabolique si l'on a

— 1 + K1< p'(u) <K2 Kt>0
\p(u)\<Ks
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§ 5. Les relations H Oà symétrie centrale.

Les théorèmes du § 4 s'appliquent facilement aux relations H (r1, r2) 0

qui possèdent la symétrie centrale :

H(rl9 r2) 0 entraîne H(—r2, —rt) 0.

Soit une valeur r\ > 0 de rx et r\ la valeur correspondante de r2 par la
relation H 0 ; on prendra pour voisinage de rx r2 0 les deux demi-
disques de diamètres (rj,—r2) et (r2,—rj) situés respectivement dans
les deux demi-plans supérieur et inférieur. On peut représenter ces

voisinages conformément sur une couronne

1 <|Z| <R Z f(z)

R étant infini ou non suivant que le type cherché est parabolique ou
hyperbolique. Le voisinage du point (0,0) est symétrie par rapport à ce

point8) : il existe donc une transformation biunivoque et conforme de la
couronne en elle-même, qui, répétée, donne la transformation identique ;

d'autre part, le cercle \Z\ 1 est conservé dans cette transformation:
c'est donc une rotation de n autour de Z 0; l'image de l'axe réel est
donc formée de deux arcs symétriques de la couronne, décomposant cette
couronne en deux parties égales. Posons

u =Z2
donc

g(z) représente le demi-disque de diamètre (—r\,r\) du demi-plan
3^ ^ 0 sur une couronne J?2

cette représentation étant telle que deux points de ^z 0 d'abscisses

xx et x2 donnent un même point de cette couronne dès que

J(x±, x2) H(xl9 —x2) 0 x1 > 0

relation qui est de même nature que celles qui ont été étudiées au § 4.

Le type de cette relation est celui de la relation donnée H 0.

On peut montrer ainsi que la relation

H{rx, r2) eri — err* — rx — r2 0

est du type hyperbolique9).
8) Ce qui justifie l'expression de symétrie centrale.
•) Voir le deuxième mémoire cité à la note 1.
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§ 6. Les problèmes E' et E".

Considérons une relation H(r1,r2) 0 autour du couple (rx 0,

r2 0). Supposons que r2 admet une dérivée continue par rapport à rx
dans le voisinage de rx 0, excepté pour rx 0. Supposons de plus que
cette dérivée tend vers une limite finie a si rx tend vers zéro par valeurs
négatives. On peut, sans restreindre la généralité supposer que a 1.

Considérons un voisinage de (rx 0, r2 0) et opérons sur ce voisinage
la transformation q. c. suivante :

si

si 3C^o Ci C ;

si

La transformation est bien q. c. ; grâce à elle, on obtient une relation

H(r[ r\) 0

qui se réduit à l'identité pour r\ < 0. C'est une relation J 0 du
problème C. On a donc le théorème

Théorème 12 : Soit une relation H 0 telle que pour —e < rx < 0, r2
possède par rapport à rx une dérivée continue positive, tendant vers l'unité
pour rx-> 0. Alors

1° la singularité est décomposable ;
2° la relation J 0 qui en résulte a le même type que la relation

r2) H(rl9 r2) 0 rx > 0

Considérons par exemple la relation

H(r19 r2) =er*— e*n + 1 0

Si rx-*—0, r2->—0 avec r'2-> 1. Le type de cette relation est donc le
même que celui de

J(rx, r2) e% — e*'1 + 1 0 rx > 0

Pour appliquer un des théorèmes du § 4, nous posons

ce qui donne

147



En vertu du théorème 7, cette relation a le même type que la relation

v eu ;

elle est donc hyperbolique.
La décomposition d'une singularité peut se faire dans des cas plus

étendus :

-j-ï existe, avec 0<-=<
arx &

Théorème 13: Soit une relation H(rt, r2) 0 telle que, pour —e<r1<0
dr2 K
dF, < •

Alors
1° La singularité est décomposable;

2° La relation J 0 qui en résulte a le même type que la relation

Pour le démontrer, on opère la même représentation que dans le théorème

12; en vertu des hypothèses sur H 0, cette représentation est
bien q. c.

Ces deux derniers théorèmes peuvent s'étendre au cas où la dérivée de

r2 s'annule.

Théorème 14 : Soit une relation H 0, avec H (0, 0) 0. Supposons que

pour —e < rx < 0, -=-2 existe, m
* tendant vers une limite finie non nulle

lorsque rx tend vers zéro par valeurs négatives (m est un nombre positif
quelconque). Alors

1° La singularité est décomposable ;
2° Le type est celui de la relation J(sx, s2) 0 obtenue en posant

8l rx x
2

r2 > 0
dans H(rl9r2) 0.

Posons r2 h(rt) et, comme dans la démonstration du théorème 2,

2

m+2

en choisissant les déterminations réelles pour Ci et £2 réels. Le voisinage
F* de {Zx 0, Z% 0) est formé
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2
1° du secteur |Z| < q

m + 2 0 < argZ

2° d'un secteur de l'angle

argm + 2

limité par la courbe image du demi-cercle de diamètre h(— q), h(g) du
2

demi-plan 3£ < 0 par Z f™*2

Ces deux parties sont soudées le long de la demi-droite arg Z 0 par
une relation

et le long de la demi-droite arg Z 2 —î—- tt pare & m+ 2 r
| Zt\=K**(\Zx\)

La relation J(«l9 s2) 0 est équivalente às2 A**(51); d'autre part,
|Z2| A**( 1^1 possède une dérivée continue pour toutes les valeurs de
Z1 que nous considérons. On représente F* sur un disque D du plan
z uei0, coupé le long de l'axe réel positif: on pose

1° pour m+1

d arg

arg

pour
2^!?L±i^< arg Z

0 arg Z

u=\Z\

Cette représentation est bien q. c. ; elle représente F* sur le disque
entaillé D et le long de cette entaille la relation est s2 h* (s^) ; le théorème

est démontré.
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Comme le théorème 12, le théorème 14 se généralise immédiatement:

Théorème 15 : On peut dans Vénoncé du théorème 14, remplacer la con-
dr%

dition que m tend vers une limite finie non nulle par la condition

«<<
pour —e < rx < 0.

La démonstration est la même.

dr2

r\ndrl <K

§ 7. Remarque sur la méthode utilisée.

Il est clair que la méthode que nous avons utilisée peut donner des

résultats beaucoup plus étendus. Par exemple, les théorèmes 1 et 12

peuvent encore être généralisés de diverses façons. On aurait ainsi comme
généralisation du théorème 1 :

Théorème 16: Si, pour 0 <\r1\ <e, r2 est une fonction de rx pourvue
d'une dérivée continue toujours positive, et si, de plus, on a

0<^< \r1(\ogriy.r2.rr2\<K (1)

on peut faire correspondre au couple (rt 0, r2 0) un point de la surface
de Riemann.

La démonstration est en principe la même que celle du théorème 2. On
fait une substitution

Zi Md) 22 /,(M
On pose

ce qui représente le demi-plan 3? ^ 0 sur un domaine D1; la fonction
Z2 f2{^2) représente le demi-plan 3C ^ 0 sur le domaine complémentaire

D2. On trouve que les relations Z2 A*(ZX) et \Z2\ A**(|Z1|)
qui en résultent possèdent des dérivées continues et positives pour les

valeurs de Zx que nous considérons; la double inégalité (1) permet de
faire une représentation q. c. du voisinage de (Zt ==¦ 0, Z2 0) sur un
cercle, Zx Z2 0 venant au centre du cercle.

Il est clair qu'on établirait sans peine un grand nombre de propositions
analogues.

(Reçu le 29 septembre 1938.)
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