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Les demi-surfaces de Riemann. Application au
probléeme du type

Par CHARLES BrLanc, Lausanne

§ 1. Demi-surfaces et surfaces entaillées. Les problémes qui se posent.

Soit une surface de Riemann F, simplement connexe, dont la base est
la sphére de Riemann, et soit 7' un chemin ouvert sans point double sur #',
et dont la trace sur la sphére est une courbe rectifiable de longueur finie.
T divise F' en deux parties simplement connexes F', et F,. Nous appel-
lerons demi-surfaces de Riemann les surfaces qui peuvent étre obtenues
comme F,; ou F, & partir d’une surface F' simplement connexe. Aux
extrémités de 7' correspondent deux singularités a et b de F (qui peuvent
étre confondues); on dira que a et b sont sur le bord de ;.

Si T relie un point de la surface (régulier ou algébrique) & une singu-
larité de F, il ne décompose pas F, mais il la transforme en une demi-
surface de nature particuliére: on dira que la surface F'* ainsi obtenue est
une surface entaillée.

On peut parler du type d’'une demi-surface F',: représentons confor-
mément F', sur le demi-plan J{ > 0; deux cas peuvent se présenter:

1° & T correspond toute la droite J¢ = 0, moins un point. On convient
alors de dire que F', appartient au type parabolique;

2° il y a plus d’un point de J ¢ = 0 qui ne correspond & aucun point de 7'.
On dit alors que F'; est du type hyperbolique.

Une surface entaillée étant une demi-surface, elle appartient aussi & un
type bien déterminé.

Plusieurs problémes se posent au sujet des demi-surfaces. Le premier
est naturellement le suivant:

Probléme A : Déterminer le type d’une demi-surface donnée F.

La solution de ce probléme parait plus simple que celle de la déter-
mination du type d’une surface entiére.

On voit immédiatement que si ’on peut diviser une surface simplement
connexe F en deux demi-surfaces F', et F', dont I'une au moins est hyper-
bolique, F est hyperbolique. On peut donc répartir les surfaces de
Riemann simplement connexes en trois catégories:
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1° les surfaces du type parabolique. Toutes les demi-surfaces qu’elles
contiennent sont paraboliques;

2° les surfaces semi-hyperboliques ; ce sont celles que I’on peut décom-
poser en deux demi-surfaces paraboliques; nous savons qu'’il en existe?);

3° les surfaces absolument hyperboliques: celles que ’on ne peut pas
décomposer en deux demi-surfaces paraboliques (la surface de la fonction
modulaire, par exemple).

La solution compléte du probléme A ne permettrait pas de distinguer
les cas 1° et 2°. Il resterait donc & résoudre le probléme suivant:

Probléme B : Une surface simplement connexe donnée étant décomposable
en deux demi-surfaces paraboliques, reconnaitre quel est son type.

On peut se poser un probléme analogue au sujet des surfaces entaillées.
Une surface entaillée F'* étant une demi-surface, le probléme A4 s’y
applique sans autre. Si F'* est hyperbolique, la surface obtenue en soudant
Pentaille I’est également. La réciproque n’est pas exacte. On a cependant
la propriété suivante:

Théoréme : St une surface hyperbolique F donne une surface entaillée F'*
parabolique, F' est semi-hyperbolique.

Représentons, en effet, F* sur un demi-plan; et soit 7"/ un chemin
rectifiable, de longueur finie, ne coupant pas la frontiére 7' de F* et
reliant 'extrémité de 7" située sur F' & une singularité de F' (qui peut étre
la méme que celle qui est & Pextrémité de 7'); T+ 7'/ divise F' en deux
demi-surfaces; dans la représentation de F* sur un demi-plan, ces deux
demi-surfaces sont représentées sur des domaines dont un seul point
frontiére ne correspond pas & un point de F ; il en résulte que ces demi-
surfaces sont paraboliques. Le théoréme est ainsi démontré.

Le probléme B se double naturellement du

Probléme C : Une surface entaillée F'* parabolique étant donnée, trouver
le type de la surface F obtenue en soudant Uentaille de F'*.

Ce probléme peut étre traité par une méthode analogue & celle que nous
avons donnée pour le probléme B?).

1) Voir Ch. Blanc, Les surfaces de Riemann des fonctions méromorphes.
Comm. Math. Helv. 9 (1937), 367; voir aussi Actes Soc. Helv. Sc. Nat. 1937, p. 95—96;
et C. R. Acad. Se. Paris, 206 (1938), 1078—1080.

%) Voir C. R. Acad. Sc. Paris, 202 (1936), p. 623.

131



Représentons conformément F'* sur le plan ({) entaillé le long de 1'axe
réel positif; on peut opérer cette représentation en sorte que tout point
& distance finie de cette demi-droite corresponde & deux points de l’en-
taille, le point { = 0 correspondant & ’extrémité de I’entaille.

A un point de ’entaille de F'* correspondent deux points de J¢ = 0,
R > 0, d’affixes r, et r,; on a ainsi une relation

J(r,13) =0 rn =20, =20
avec

J(0,0) =0
et

lim Ty =00 ,

r1->00

La recherche du type de F se fait par 1’étude du comportement de
J(ry, ;) = 0 lorsque r; et r, tendent vers I’infini.

Les problémes B et C concernent les propriétés du type en relation avec
les opérations qui font passer de demi-surfaces & des surfaces entiéres.
On peut aussi chercher & étudier les opérations qui transforment les demi-
surfaces en d’autres demi-surfaces. Les résultats que I'on obtient ainsi
donnent des renseignements sur la solution du probléme A4.

Considérons une demi-surface F', de bord 7' ; en reliant un point de 7" &
une singularité de F, on divise ¥ en deux demi-surfaces F'; et F,. Si 'une
des deux est hyperbolique, F 'est aussi.

Probléme D: Une demi-surface F étant décomposable en deux dems-
surfaces F, et F,, paraboliques, quel est le type de F'?

La solution de ce probléme est plus simple que celle du probléme B;
on peut montrer que, sous des hypothéses trés générales, F' est para-
bolique?).

On peut passer du probléme B au probléme C par la transformation
suivante: soient F; et F, deux demi-surfaces paraboliques, pouvant se
souder le long d’une courbe T' de facon & former une surface simplement
connexe F. Si nous soudons F, et F, le long d’un arc de 7' issu d’une des
singularités, nous obtenons une surface entaillée F'*.

Probléme E : Une surface entaillée F'* pouvant étre obtenue en soudant
partiellement deux demi-surfaces paraboliques, déterminer son type.

Ce probléme est un cas particulier du probléme D. Sa solution permet
de passer d’une relation H = 0 & une relation J = 0, dont 1’étude est plus
simple.

3) C. R. Acad. Sc. Paris, 206 (1938), 1079.
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§ 2. Autres énoncés des problémes B a E: introduction des relations de
soudure.

Nous avons démontré le théoréme suivant:

Soit H(ry, r,) = 0 une relation analytique (relation de soudure) satis-
faisant aux conditions

lim 7, > — oo
1> —0©

lim 7, > 4+ oo s (H)
1> + o

On peut définir, au moyen de deux demi-plans soudés suivant la relation
H = 0, une surface de Riemann simplement connexe.

Les conditions (H) sont dans la nature du probléme; par contre, la
condition d’analyticité peut étre levée en partie; cela nous permettra de
poser d’une facon un peut différente les problémes que nous avons en vue.

Considérons une relation H = 0 continue et vérifiant les conditions (H)
ci-dessus (la continuité de H = 0 est nécessaire pour que le probléme ait
un sens). Pour faire disparaitre les valeurs particuliéres r, = r, = oo,
transformons H = 0 en une relation

53(01, 02) =0

liant les arguments de deux points situés sur le cercle |{| = 1, la relation
$ = 0 vérifiant les conditions

$(0,0) = H(2n, 27) =0

6, étant une fonction monotone croissante de 6, pour 0 < 0, < 2=.

En reprenant la démonstration du théoréme cité au début de ce
paragraphe, on montrerait que si $(0,,0,) est analytique pour
|0,]<<e,|0,|]<e, e>0, il correspond & 6; = 6, = 0 un point de la surface
de Riemann; si ce fait se produit pour tous les couples de valeurs (6, 0,)
satisfaisant a §(6,, 0,) = 0, avec 0 <0, < 2met 0 < 0, < 2=z, alors on
peut faire correspondre & la relation § = 0 une surface de Riemann
topologiquement équivalente & une sphére. La relation $ = 0 peut alors
étre engendrée par la décomposition du plan de Gauss en deux parties
par une courbe simple, elle est du type parabolique.

Supposons maintenant que pour certains couples de valeurs (6, 0,),
la relation §(6,, 6,) = 0 ne soit plus analytique. Si I’on parvient cepen-
dant & leur faire correspondre des points de la surface, le type de $ = 0
est encore parabolique.

Si 'on peut montrer qu’il existe un et un seul de ces couples auquel on
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ne peut attribuer aucun point, le type est hyperbolique. S’il y en a
plusieurs, la surface engendrée n’est plus simplement connexe.

Si § = 0 a été obtenue & partir d’une relation H = 0, analytique pour
r, et r, finis, elle est analytique pour tous les couples (0,, 0,), sauf pour
celui qui correspond & 7, = r, = co.

Le probléme du type d’une relation H = 0, c’est-a-dire le probléme B,
se trouve ramené au probléme suivant:

Probléme B’ : Soit une correspondance biunivoque et continue H (ry, r,)=0
avec H (0, 0) = 0. Reconnaitre dans quels cas I'on peut faire correspondre a
r, =1, = 0 et d son voisinage un point d’une surface de Riemann et le
votstnage de ce point.

Avant de donner des solutions de ce probléme, nous chercherons &
traduire d’une fagon analogue les autres problémes du paragraphe
précédent.

La relation J(r,, r,) = 0 que nous avons introduite au sujet du pro-
bléme C se raméne & une relation H = 0, si I’on pose r, =r,, pour r,<<0.
Mais la singularité intéressante est celle qui correspond & r, = r, = oo.
Elle conduit sans autre au probléme suivant:

Probléme C' : Soit une correspondance biunivoque et continue H (r,, r,) =0
avec H(t,t) = 0 pour — e <t << 0, e> 0. Reconnaitre dans quels cas on
peut faire correspondre @ r, = r, = 0 et a son voisinage un point d’une
surface de Riemann et le voisinage de ce point.

La singularité de la relation est simplifiée, puisqu’elle n’apparait que
d’un seul coté (pour r, > 0).

Le probléme D conduit également & un cas particulier du probléme B’.

Représentons les deux demi-surfaces F', et F, dont il est question dans

ce probléme sur les quart-de-plan 0 << arg { << % , g Largl{<m, la

demi-droite R = 0, J¢ > 0 correspondant dans ces deux représentations
aux bords de F, et de F, qui viennent se souder dans F. Soient 4 et B
deux points qui se correspondent ainsi, 4 =18, B = ¢s,. Il existe
entre s, et s, une relation K(s,, ) = 0

biunivoque et telle que K (0, 0) = 0, et

lim 8= 4 o0
81>+

Considérons la relation H (r,, r,) = 0 qui est donnée par
H(ry, 1)) = K(ry, 13) i r, =0
H(ry,ry) =K(—r,—1) 8 <0
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Cette relation vérifie les conditions (H). Si elle est parabolique, la
demi-surface F' 1’est aussi ; réciproquement, si F est parabolique, H
I’est aussi. On est donc ramené a 1’étude d’une relation H = 0. Mais elle
est particuliére, puisque si (r;, r,) est un couple satisfaisant & H = 0,
(— ry, — 1,) en est également un. On dira alors que H = 0 est & symétrie
axiale?). Le probléme D peut s’énoncer de la facon suivante:

Probléme D': Soit une correspondance biunivogque et continue H (r,, r,)=10
avec symétrie axiale. Reconnaitre dans quels cas on peut faire correspondre d

r, =71, = 0 et a son voisinage un point d’une surface de Riemann et le
voistnage de ce point.

Le probléme £ enfin peut aussi se traduire en un probléme analogue aux
précédents. Soient deux demi-surfaces paraboliques F', et F,, représentées
conformément sur les demi-plans J¢ > 0 et J¢ < 0, ce qui donne lieu a
une relation H (r,, r,) = 0 pour laquelle nous supposerons, ce qui ne
restreint pas la généralité, H (0, 0) = 0. Soudons F, et F, le long de leur
bord qui correspond & l’axe réel négatif: nous obtenons une surface
entaillée F'*. Le probléme ¥ pose la question suivante : peut-on représenter
conformément F'* sur un demi-plan, la droite limitant ce demi-plan cor-
respondant (a part un point) & I’entaille de F'*; on peut remplacer cette
représentation par une représentation sur un plan pourvu d’une entaille
le long de ’axe réel positif. Supposons que nous ayons fait une inversion
du plan (¢), par rapport a l’origine pour amener le seul point singulier a
Porigine; la question qui se posera sera alors la suivante: soient un demi-
disque || < o, J¢ = 0, et le demi-disque du demi-plan ¢ < 0 limité
par le demi-cercle dont les extrémités sont les points qui correspondent,
par la relation H = 0, & ¢ et — p. Ces deux demi-disques forment un
domaine D. On demande s’il est possible de représenter conformément D,
entaillé le long de 1’axe réel positif, sur I'intérieur d’un cercle |u| < 1,
entaillé le long du segment (0, 1), cette représentation étant telle que
u({)—0 lorsque ¢ —0.

La solution dépend du comportement de H (ry,r,) = 0 pour
— o< 7, < 0; elle ne dépend pas du tout de cette relation pour r, > 0.
Si par exemple, H = 0 est analytique pour — ¢ < 7, < 0, la réponse est
affirmative, et F* est parabolique. On obtient alors une relation entre les
abscisses des points correspondants du segment (0, 1) du plan (u), relation
de la forme J (s,, s,) = 0. Cette relation pourra étre plus ou moins sem-
blable & H = 0 pour r, > 0, suivant que H = 0 différe peu ou beaucoup
de 7, — r, = 0 pour r, < 0.

¢) 8i, par contre, H(r;, ry) = 0 entraine H(—ry, —7;) = 0, on dira que H = 0 est &
symétrie centrale.
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S’il est possible de passer de la relation H=0 & la relation J= 0, nous
dirons que la singularité est décomposable. Le probléme E deviendra
alors:

Probléme E’: Reconnaitre si une singularité donnée d’une relation H =0
est décomposable.

Et nous y joindrons le probléme:

Probléme E” : Etant donné une singularité décomposable d’une relation
H = 0 donnée, étudier la singularité correspondante de la relation J = 0
qui en résulte.

§ 3. Le probléme B’.

Nous appliquerons & la résolution de ce probléme les résultats récents
de M. Lavrentieff sur les représentations quasi-conformes. On dit qu’une
représentation d’'un domaine D du plan z = x 4 ¢y sur un domaine D
du plan w est quasi-conforme si elle vérifie les conditions suivantes®):

19 elle est topologique;

20 1élément de longueur ds qui correspond & un élément dz = dx + idy
est donné par une forme quadratique définie

ds® = gy, da® + 2g,, dx dy 4 g,, dy?®

oll g11, J12, 2 Sont des fonctions continues de z et de y, excepté peut-
étre sur un ensemble £ de D formé d’un nombre fini d’arcs analytiques;

3% Pellipse indicatrice de la représentation a une excentricité bornée
dans D.

Ces représentations s’étendent & des domaines situés sur des surfaces
de Riemann. On démontre le théoréme fondamental suivant:

8’1l existe une représentation quasi-conforme d’un domaine D simplement
connexe sur un domaine D, il existe une représentation conforme de D
sur .

Il en résulte par exemple que si 'on peut représenter quasi-conformé-
ment une surface de Riemann sur le plan ouvert, cette surface est du
type parabolique.

) On constate un certain flottement dans la terminologie de cette question. Certains
auteurs appellent représentations quasi-conformes des représentations satisfaisant aux
conditions 19 et 20 seulement, et ajoutent ,,0 excentricité limitée* si la condition 3° est
vérifiée. On appelle aussi fonction presque analytique une fonction qui représente quasi-
conformément un domaine sur un autre.

Nous écrirons représentation q. c. (quasi-conforme) pour toute représentation vérifiant
les conditions 1° & 3°. )
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M. Lavrentieff®) a démontré un théoréme d’existence dont nous aurons
a faire usage dans la suite:

Théoréme I : Etant donné dans un domaine D deux fonctions réelles p(z)
et 0(z) telles que

1°1 < p(2) < M dans D;

20 sauf sur un ensemble B de D, formé d’un mombre fini d’arcs analy-
tiques, p(2) est continue ;

30 81 p(2) est continue et différente de U'unité, 0(2) est continue ;

4% p(2) est uniformément continue dans tout domaine D, de D limité par
une courbe analytique et qui me contient aucun point de E; il en est de
méme de 0(z), pour autant que D, ou sa frontiére ne contient pas de point ou
p(z) = 1.

Alors il existe une représentation q. c. de D sur |w| < 1 telle qu’en chaque
point le rapport des axes de Uellipse indicatrice est p(z) et l'angle entre le
grand axe et Uaxe réel Yz = 0 est égal a 0(z).

Nous utiliserons ce théoréme de la fagon suivante: aprés avoir défini
les voisinages du couple (r, = 0, r, = 0) nous en donnons une représen-
tation q. c. sur I'intérieur du cercle |z| < 1; en représentant ensuite q. c.
ce cercle sur le cercle |Z| < 1 avec des fonctions p(z) et 6(z) convenable-
ment choisies, nous définissons une représentation conforme de tout
voisinage de (r, = 0, r, = 0) sur le disque |Z| < 1, le couple venant en
Z = 0.

Cela dit, nous pouvons démontrer le théoréme suivant:

Théoréme 1: Si, pour |r|<e, r, est une fonction de r, pourvue d’une
dérivée comtinue toujours positive, on peut faire correspondre au couple
(ry = 0, r, = 0) un point de la surface de Riemann.

Définissons les voisinages du couple. Posons, pour |r,|<e, ro=h(r,).
Soit 0 < ¢ < ¢; le voisinage V, sera formé:

1° du demi-disque || <o, JC>=0;

2° du demi-disque de diamétre h(— g), h(p), situé dans le demi-plan
J¢<o.

Nous représehtons q. c. ce voisinage V, sur un disque D du plan
z = x + 1y de la fagon suivante; nous posons:

) Recueil Math. Moscou, 42 (1935), 407—424. Le théoréme cité est le théordme 3,
p. 414,
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1°¢ x=h(R{)

=3¢ -
y=243 %o
pour la partie de ¥V, située dans le demi-plan J¢ > 0;
20 t=R{, y=3J¢

pour la partie dans J¢ < 0.

Cette représentation est topologique. Cela est clair si §¢ 7%= 0. Si
3¢ = 0, on a, pour tout couple (%,, u,), dans le premier cas

x = h(u,) y=20
et dans le second
x = uy, = h(u,)
y=20.

Le carré de la différentielle de I’arc est partout donné par une forme
quadratique définie; ses coefficients sont continus sauf peut-étre aux
points pour lesquels J¢ = 0. Posons { = u + ¢v. Pour J¢ > 0,

dr = h' du
k(@) —h(—o)
dy = dv
Y %0
ds? = h'?du? + [h(g) _—23(—* 9)]2dv“’ .

Puisque 2’(u) est continue et toujours positive, le rapport

h(0) — h(— o)
20h'

est compris entre des limites finies, ’excentricité est bornée.

Pour 3¢ < 0, la représentation est évidemment q. c.

Cela étant fait, on peut, en vertu du théoréme I, construire une repré-
sentation q.c. de D sur |Z| < 1, telle que la représentation de ¥V, sur
|Z| < 1 qui en résulte soit conforme. On pose

h(o) — h(—p) 20h (r,) :
[ 2ok (ry) ’h(e)——h(——e)] st 3z>0

1 si Jz<<0

I max

p(z) = \

la valeur de r, dans h’/(r,) étant I’abscisse du point correspondant du
plan (£). On pose enfin
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20/ (ry)

6=0 1
R —h(—p)
. 20h/ (1))
g =" e 1 >1 .
g ™ h(o) — h(— o)

Ces fonctions vérifient les conditions de 1’énoncé du théoréme I; I’en-
semble E est formé du segment (— 1, + 1).

Remarque: La démonstration précédente est en défaut si h’(r,) s’an-
nule dans l'intervalle (—e, + ¢). Il convient alors de faire des hypothéses
supplémentaires. Si A’(0) s 0, on peut toujours prendre & > 0 assez petit
pour que h’(r;) # 0 lorsque |r,| < & (continuité de A’(r,)). Supposons
donc que A’(0) = 0, et A'(r;) > 0 pour 0< |r,| <e.

Théoréme 2: Si h'(0) = 0 posséde un ordre déterminé m, on peut faire
correspondre un point de la surface au couple (r, = 0, r, = 0).

Cela revient & supposer qu’il existe un nombre positif m tel que

b (ry)

m

n
est une fonction continue non nulle pour |r,| < ¢. Nous procéderons
comme nous I'avons fait pour un théoréme analogue dans notre thése

(ou I'hypothése sur 'ordre du zéro était inutile, puisque la fonction A (r,)
était alors analytique). On pose

2m+1
Zy={(, m+?
2
Zy == {ymt?

en choisissant la détermination telle que Z, et Z, soient réels positifs si
{, et ¢, le sont. Le voisinage V, de Z = 0 est formé

m+1
—= m —+ 1
1° du secteur |Z|< 92””‘2 0

N
&

o3
N
N
0]

2° d’un secteur de ’angle

2m—|—1
m -+ 2

n<arg Z <2m

limité par la courbe image du demi-cercle de diamétre h(— p), k(g), du
2

demi-plan ¢ < 0 par Z = (™2,
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Ces deux parties sont soudées le long de la demi-droite arg Z = 0 par
une relation

Zy = h*(Z,)
et le long de la demi droite arg Z = 2 mi 5%, par
|Z,| = h**(]|Z,])

ces deux relations étant déduites de r, = h(r,). Elles possédent une
dérivée continue et positive pour toutes les valeurs de Z, que nous
considérons.

On représente ce voisinage sur un disque D du plan z = = + 1y = ue'®

o m+1
1° 81 0 < arg Z < m s’ on pose
0 =arg Z
m+1
arg Z-h** |Z|)—|—[ s n———argZ]h*(]Zl)
U = e .
m—|—2
2° si m+1n<argZ<2n

m -+ 2
0=arg Z, u=\|2Z| .

Cette représentation est topologique; il suffit de le montrer pour

arg Z=0 et argZ::2mi;n.
Si arg Z = 0, la représentation 1° donne
6=0 u=h*Z)=2
et la représentation 2°
0=O u:Z2 .
Pour arg Z = 2 mi ;n , on a respectivement
=20t w=(|Z])=|Z|
et
m+ 1 —
6=2 m+27t u= |2, .
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On démontre ensuite comme plus haut que la représentation est q. c.,
et le théoréme en résulte par le théoréme I.

11 est immédiat que I’on peut, pour appliquer le théoréme 2, intervertir
les demi-plans {, et {,.
Les conditions du théoréme 2 peuvent encore étre élargies.

Théoréme 3: Si, pour 0 < |r,| < €, r, = h(r,) a une dérivée continue et
positive,

avec 0< ~11—(~ <h(r)< K (1)

on peut farre correspondre au couple (0, 0) un point de la surface de Riemann.

On fait, pour le démontrer, la méme représentation qu’au théoréme 1.
I1 faut montrer qu’elle est q. c. et que les conditions du théoréme I sont
vérifiées.

Cela est clair pour tous les points qui ne sont pas sur le segment (0, ¢ ).
En ces points, les fonctions g, , cessent d’étre continues. Mais I’ensemble
singulier £ que 'on a ainsi, est formé d’un segment de ’axe réel et d’un
segment de I'axe imaginaire, ce qui est conforme aux conditions du
théoréme I. D’autre part, les inégalités (1) entrainent que I'excentricité
est bornée. D’ou le théoréme.

Le théoréme 3 peut étre généralisé en tenant compte du théoréme 2:

Théoréme 4: 8i, pour 0 < |r,| < &, 7y = h(r,) a une dérivée continue
positive, et s’il existe un nombre m avec, pour 0 < |r,| < &,

1 h'("l)
0 < — Sl oL S K .
<< <

alors le couple correspond a un point de la surface de Riemann.

En résumé, le type est parabolique si la dérivée h'(r,) existe et est
continue positive pour tout r,, excepté pour un ensemble fini de valeurs
ry de r,, pour chacune desquelles il existe deux nombres positifs m et K
a

vec, pour I — 19 <&
B (ry)

(ry— Tg)m

1
0< <

7 <k .

Nous verrons plus loin quelques cas ol le type est hyperbolique, c’est-
a-dire ol la singularité de r, = h(r,) est telle qu'on ne peut faire corres-
pondre au couple aucun point de la surface de Riemann.
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§ 4. Le probléme C'.

Ce probléme peut étre traité ainsi:
Soit une bande 0 << Jz << 1 du plan 2z, et soit une correspondance
biunivoque entre les points des deux droites
Jz2=0 Jz=1

donnée par la relation v = v(u), w étant ’abscisse d’un point de Jz = 0,
v 'abscisse du point correspondant de §z = 1. Représentons conformé-
ment cette bande sur une couronne

R, < |Z|< R,

pourvue d’une coupure reliant les deux cercles |Z| = R, et |Z| = R, de
maniére qu’a un point de Jz = 0 et a son correspondant sur Jz = 1
corresponde un seul et méme point de cette coupure. Suivant le type de
v = v(u), on devra prendre R, =0 ou R, >0, R, < oo ou R, =0
(il y a quatre cas possibles); il est clair que I’on peut décomposer la dis-
crimination: R, dépendant par exemple de v(u) pour u < 0, et R, dépen-
dant de v(u) pour u > 0. Nous nous occuperons uniquement de u > 0;
le type de la relation v = v(u) sera hyperbolique lorsque R, < oo, para-
bolique lorsque R, = oo.

Nous avons démontré dans notre thése les théorémes suivants?):
Théoréme 5: St v = ku, k # 1, alors R, < co.

Théoréme 6 : Si v/(u) > K > 2, et 8t v"(u) > 0 pour u> 0, R, < co.
L’application des représentations q. c. permet d’étendre ces résultats.

Théoréme 7 : Soient deux relations v = v, (u) et v = v,(u); 8’il existe deux
constantes positives K, et K, avec

vy (u) , K,
ot SO |
vy (u) U -+ v, (u)

| v, (u) — v, () | < K, (2)

(1)

pour w > 0, alors v, et v, ont, pour w > 0, le méme type.

Soient les deux bandes
’ (B,) 0<Js <1 2y =x + 19,
(B,) 0 Iz <1 23 Zy + 1Y,

I

7) Comm. Math. Helv., 9 (1937), 362.
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et une représentation de B, sur B, donnée par les relations suivantes

Xy = T, + ['Uz (w) — v, (u)] ¥4
Yo = U

u étant 'abscisse du point situé sur I’axe réel de la droite reliant (u, 0) &
(v1(u), 1) et passant par le point (z,, ¥,). On montre aisément qu’en vertu
de la continuité de v, (u), cette droite existe et est unique.

Nous allons montrer que pour les points tels que » > 0 cette représen-
tation est q. c. (ce sont les seuls points qui nous intéressent). On a, sur
une droite © = constante

T =% + y (v, —u)

d’out
_ dzx; — (v, — u) dy, .
14 ?/1(”; — 1)
Puis
de, — 14y, (v—1) de, + Vo—0;+ yl[v;('vz‘_u) — ”;(”1‘”u)_(v2”‘”1)]dyl

T L4y (v]—1)
dy, == dy, .
Si nous écrivons

dx; 4 dy; = gy, dx? + 29,5 dx, dy, + g2, dY;

1+ y;(v3—1)

nous avons

14y (v—1) , L
=y — D [ vl ke — (0, — )]
1 , ) 2
Ja2 = [ 1+ 9, (v{ _ 1)]2 [’02—“’01‘{‘ Y1 (V) (Vg—u)—v, (v,— “)”—(”2——”1))] +
d’otx +[1+ gy, (0] — 1)]2E

J11 t+ Goo _1+y1(”;_‘1)+1+y1(”{_1)_i_
Vgugze"—g%z 1+y, (”{ —1) 1+ 9y, ('”;"‘ 1)

(3)

{vo—v + ¥u| (vy— u) v — (v, — %) Vo — (v, —0,) ] } 2 )

[1 + ?/1(”{—' 1)] [1 + ?/1('”;""‘ 1)]
D’aprés l’inégalité (1), on a, pour 0 <y, <1,

-+

I____ / 'U,
L+ 9, (0} 1)<Max(2§_’ —i)<K1
1+ g (o, — 1) v’ o,
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puis la méme inégalité pour le second terme de ’expression (3); en
outre 1’expression

Vo— Uy + Y [ (vz"“‘“)”;’—(”l“" u) ”;—‘(7)2“*”1)]
14 ?/1(”{“" 1)

atteint son maximum soit pour y,=0, soit pour ¥y, =1 ; ce maximum
est donc

Max {|vg—wv,|, |vo—u—— (v,—u) |}
qui est inférieur, en valeur absolue, &
M&X {.Kz, 2K2 + 2K1} = ZKz + 2K1 .

Un méme calcul montre ensuite que

Vo— Uy + 3/1[(”2'—'“) ”;“"(”1"“’“) ”;_‘(”2—”1)]
1+ 91(”;““1)
7

v
<Max {|v,—v;|, |(v;—u)——(v,—u)|}
2

<Max {K,, 2K,+ K,}
—2K,+ K, .

I Jen résulte que

+
911 T Yo = < 2K, +2(K,+ K,) (2K, + K,) ;
Vgngzz‘—gxz

la représentation est donc q. c., et les deux relations sont bien du méme

type.
On remarquera que ce théoréme ne fait pas intervenir la dérivée

seconde de v(u), il constitue bien une généralisation des théorémes 5 et 6.

I1 est clair que la relation » = u est parabolique. On a donc le
Théoréme 8: St une relation v = v(u) vérifie, pour uw> 0, les deux
conditions K
 (ag) — Ay
|0/ () — 1] <=
o) —u|<Ks,
alors elle est parabolique.
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D’autre part, puisque v = ku est hyperbolique pour k& # 1:

Théoréme 9: St une relation v = v(u) vérifie, pour u> 0, les deux
conditions
v’ (u)
k
| v(u) —ku | < K, k+#1

.__.ll<_'_K.l
u

elle est hyperbolique.
Et enfin:

Théoréme 10: Soit une relation v = v(u); s’il existe une fonction p(u)
telle que, pour uw > 0,

alors v(u) est hyperbolique.
Ce théoréme est plus général que le théoréme 6, qui affirme que cette
fonction p(u) est hyperbolique. On le voit en prenant par exemple
v(u) = fu? + sinu
et . p(u) = Fu? ;

v”(u) n’est pas toujours positif, et le théoréme 6 ne permet par d’affirmer,
comme le théoréme 10, que v(u) est hyperbolique.

On peut encore mettre le théoréme 8 sous une forme plus précise.
Posons, dans le théoréme 7,
v (u) =u

vy (%) = u + p(u) .

I1 vient 1 2
vien 911+9222=1+y1p,+ +P,
V g11920 — 92 14 y,p
qui est borné dés que p, p’ et T 5 le sont. D’ol

Théoréme 11: Soit une relation v = v(u) = u + p(u). Elle est du type
parabolique si U'on a
— 14+ K, <p'(w)< K, K,>0
|p(w)| < K, .
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§ 6. Les relations H = 0 & symétrie centrale.

Les théorémes du § 4 s’appliquent facilement aux relations H (r,, r,) =0
qui possédent la symétrie centrale:

H(ry,r) =0 entraine H(—ry,,—r) = 0.

Soit une valeur 7 > 0 de r, et rJ la valeur correspondante de r, par la
relation H = 0; on prendra pour voisinage de r, = r, = 0 les deux demi-
disques de diamétres (r3, —r3) et (r3, —77) situés respectivement dans
les deux demi-plans supérieur et inférieur. On peut représenter ces
voisinagés conformément sur une couronne

1<|Z|<R Z = {(z)

R étant infini ou non suivant que le type cherché est parabolique ou
hyperbolique. Le voisinage du point (0,0) est symétrie par rapport a ce
point?): il existe donc une transformation biunivoque et conforme de la
couronne en elle-méme, qui, répétée, donne la transformation identique;
d’autre part, le cercle |Z| = 1 est conservé dans cette transformation:
c’est donc une rotation de x autour de Z = 0; I'image de ’axe réel est
donc formée de deux arcs symétriques de la couronne, décomposant cette
couronne en deux parties égales. Posons

u =22
donc
u=(f(z))? =9g(2) ;
g(z) représente le demi-disque de diamétre (—r3,7]) du demi-plan
Jz = 0 sur une couronne 1 < |u| < R?

cette représentation étant telle que deux points de Jz = 0 d’abscisses
x, et €, donnent un méme point de cette couronne deés que

J (%, z,) = H(z,, —2x,) =0 z, >0

relation qui est de méme nature que celles qui ont été étudiées au § 4.
Le type de cette relation est celui de la relation donnée H = 0.
On peut montrer ainsi que la relation
Hir,,rn)=e¢r1—e"—r,—r,=20

est du type hyperbolique?®).

8) Ce qui justifie ’expression de symétrie centrale.
?) Voir le deuxi®éme mémoire cité & la note 1.
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§ 6. Les probldmes E’ ot E”.

Considérons une relation H(r;,r,) = 0 autour du couple (r, = 0,
r, = 0). Supposons que r, admet une dérivée continue par rapport & r,
dans le voisinage de r, = 0, excepté pour r;, = 0. Supposons de plus que
cette dérivée tend vers une limite finie a si r, tend vers zéro par valeurs
négatives. On peut, sans restreindre la généralité supposer que a = 1.

Considérons un voisinage de (r, = 0, 7, = 0) et opérons sur ce voisinage
la transformation q. c. suivante:

si 91(20, CI=C;
si 3&20, CI=C;
si RE<0, Jt<O, H(§ &)=0 Mn =17

La transformation est bien q. c.; grace a elle, on obtient une relation
H(ry , r)=0

qui se réduit & 1'identité pour r; < 0. C’est une relation J =0 du pro-
bléme C’. On a donc le théoréme

Théoréme 12: Soit une relation H = 0 telle que pour —e <71, <0, 1,
posséde par rapport a r, une dérivée continue positive, tendant vers U'unité
pour r,— 0. Alors

1° la singularité est décomposable ;
20 la relation J = 0 qui en résulte a le méme type que la relation

J¥(ry, 1) = H(ry, 1) =0 r, >0

Considérons par exemple la relation

1 1

s

Hr,,r)=¢'— e +1=0.

Si 7,——0, 7, —0 avec r,—> 1. Le type de cette relation est donc le

méme que celui de
1 1

Jry, 1) =¢€¢’—e +1=0 r,>0.
Pour appliquer un des théorémes du § 4, nous posons
ra=e% , rp=e"°

ce qui donne

v

e — e 1=0.
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En vertu du théoréme 7, cette relation a le méme type que la relation

v=e" ;

b4

elle est donc hyperbolique.

La décomposition d’une singularité peut se faire dans des cas plus
étendus:

Théoréme 13 : Soit une relation H (r,, r,) = 0 telle que, pour —e<r, <0,

dry . 1 dr,
dr. existe, avec O<~K—< ar. <K.
Alors

1° La singularité est décomposable ;
20 La relation J = 0 qui en résulte a le méme type que la relation

J(ry,r) =H(ry, 7)) =0 rn>0.

Pour le démontrer, on opére la méme représentation que dans le théo-
réme 12; en vertu des hypothéses sur H = 0, cette représentation est
bien q. c.

Ces deux derniers théorémes peuvent s’étendre au cas ol la dérivée de
r, 8’annule.

Théoréme 14 : Soit une relation H = 0, avec H (0, 0) = 0. Supposons que
pour —e <71, <0, ary existe, _dry tendant vers une limite finie non nulle
dr1 ’l';n d?'l

lorsque r, tend vers zéro par valeurs négatives (m est un nombre positif quel-
conque). Alors

1° La singularité est décomposable ;
20 Le type est celui de la relation J (8,, 8,) = O obtenue en posant

2m+1

81 == Tl m+2 ”'1 > 0
L

8y = 1M1 r3> 0

dans H(r,,r;) = 0.

Posons r, = h(r,) et, comme dans la démonstration du théoréme 2,

it
Zl — 4'1 m+2

et
Zy= &

en choisissant les déterminations réelles pour {, et {, réels. Le voisinage
VS, de (Z, = 0, Z, = 0) est formé
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2t m 4 1
1° du secteur |Z| <o ™*?* O <<argZ <2

2% d’un secteur de I’angle

limité par la courbe image du demi-cercle de diamétre h(— p), h(p) du
2

demi-plan ¢ < 0 par Z = Cﬂ‘z .

Ces deux parties sont soudées le long de la demi-droite arg Z = 0 par
une relation

Zz = h* (Zl)
et le long de la demi-droite arg Z = 2 m + 1 n ar

|Zzl = h**(lzll) .

La relation J (s,, 8,) = 0 est équivalente & s, = h**(s,); d’autre part,
|Zy| = h**(|Z,|) posséde une dérivée continue pour toutes les valeurs de
Z, que nous considérons. On représente V', sur un disque D du plan
z = ue'?, coupé le long de ’axe réel positif: on pose

1° pour m + 1
0 < arg Z<2m+2n
0 —=arg Z
1
arg Z-h**(|Z|) + (2Zizn~arg Z) | Z |
U =
2m+1n
m + 2
2° pour
1
2::1275< arg Z < 2nm
6 = argZ
w=|Z]| .

Cette représentation est bien q. c.; elle représente V, sur le disque
entaillé D et le long de cette entaille la relation est s, = h*(s,); le théo-
réme est démontré.
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Comme le théoréme 12, le théoréme 14 se généralise immédiatement:

Théoréme 15: On peut dans U'énoncé du théoréme 14, remplacer la con-

dition que tend vers une limate finie non nulle par la condition

P dr,
0<—1—<
K

dry’

7 dr,

<K

pour —e < r; <O0.

La démonstration est la méme.

§ 7. Remarque sur la méthode utilisée.

I1 est clair que la méthode que nous avons utilisée peut donner des
résultats beaucoup plus étendus. Par exemple, les théorémes 1 et 12
peuvent encore étre généralisés de diverses fagons. On aurait ainsi comme
généralisation du théoréme 1:

Théoréme 16: Si, pour 0 < |r | <e, r, est une fonction de r, pourvue

d’une dérivée continue toujours positive, et si, de plus, on a
1
O<—K‘<'71(10g71)2'7'2'7;'<K (1)

on peut faire correspondre au couple (r, = 0, r, = 0) un point de la surface
de Riemann.

La démonstration est en principe la méme que celle du théoréme 2. On
fait une substitution

Z1=f1(51) Zy = fy(Ls) -
On pose 1

Zy = log ¢,

ce qui représente le demi-plan J¢ > 0 sur un domaine D,; la fonction
Z, = f,({,) représente le demi-plan J¢ < 0 sur le domaine complémen-
taire D,. On trouve que les relations Z, = h*(Z,) et |Z,| = h**(|Z,])
qui en résultent possédent des dérivées continues et positives pour les
valeurs de Z, que nous considérons; la double inégalité (1) permet de
faire une représentation q.c. du voisinage de (Z, = 0, Z, = 0) sur un
cercle, Z, = Z, = 0 venant au centre du cercle.

11 est clair qu’on établirait sans peine un grand nombre de propositions
analogues.

(Recgu le 29 septembre 1938.)
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