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Approximationseigenschaften und

Strahlengrenzwerte meromorpher und ganzer
Funktionen

Von Alice Roth, Zollikon (Zurich)

Einleitung
1. Den Ausgangspunkt fur die Untersuchungen dieser Arbeit bildet ein

Satz von T. Carleman1), der folgendermaBen formuliert werden kann:
Zu jeder fur aile endlichen Werte der reellen Variablen x definierten stetigen
(reellen oder Jcomplexen) Funktion f(x) und zu jeder fur aile endlichen Werte
der nicht negativen reellen Variablen r definierten stetigen positiven Funktion
s (r) (die gegen 0 streben darf, wenn r -> oo) gibt es eine solche ganze Funktion
G(z) der komplexen Variablen z, dafi im ganzen Intervalle —oo< x< + oo

\G(x) — f(x)\<e(\x\)

gilt. Dieser Satz prazisiert den Approximationssatz von WeierstraB, indem
die stetige Funktion f(x) im unendlichen Intervalle —oo<#< + oo,
nicht nur in jedem endlichen Intervalle, gleichmâBig angenahert wird
durch die ganze Funktion 0(x). Herr Carlemann hat darauf hingewiesen,
daB in seinem Satze die réelle Achse —oo< x< -f oo durch eine sich ins
Unendliche erstreckende doppelpunktlose rektifizierbare Kurve oder
durch gewisse Kurvensysterne der Ebene ersetzt werden darf2). Satz I in
§ 2 der vorliegenden Arbeit bildet eine Erweiterung dièses Carlemanschen
Satzes, und zwar einerseits dadurch, daB als annâhernde Funktionen
meromorphe Funktionen herangezogen werden, andererseits dadurch, daB
als Menge, auf der eine dort stetige Funktion f(z) angenahert wird, eine
beliebige abgeschlossene Menge vom FlachenmaB 0 zugelassen wird. Die
Frage, welches die notwendigen und hinreichenden Bedingungen sind,
denen eine abgeschlossene (beschrankte oder unbeschrànkte) Menge 9JÎ

*) T. Carleman, Arkiv for Matematik, Astronomi och Fysik, Bd. 20 B, No. 4 (1927).
2) In dieser Arbeit werden folgende Bezeichnungen verwendet: Ebene heifit die Ebene

der komplexen Zahlen ohne den unendhch fernen Punkt. Unter Menge wird eme aus
T*unkten dieser Ebene bestehende Menge verstanden. Eme Menge heiBt dann abge-
schlossen, wenn sie m bezug auf die (den unendhch fernen Punkt nicht enthaltende!)
Ebene abgeschlossen ist. Gebiet heifit eme zusammenhangende ofïene Teilmenge der
Ebene, Bereich die abgeschlossene Huile eines Gebietes. Em vanabler Punkt der Ebene

meist mit z — x -f- %y — rety bezeichnet, wobei x, y, r,cp reell sind und r ^> 0 ist.
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zu geniigen hat, damit jede auf thr stetige Funktion f(z) durch mero-
morphe Funktionen gleichmâBig approximierbar sei, wird hier nicht
beantwortet. Immerhin beweise ich : die notwendige Bedingung, da8 die
abgeschlossene Menge SOI nirgendsdicht sei in der Ebene, ist nicht hin-
reiehend, und zwar nicht einmal dann, wenn die Menge SOI beschrânkt ist
(s. § 2, Nr. 3) ; und andererseits zeige ich an einem einfachen Beispiele
(s. den Satz II in § 2, der auch fur die Anwendung in § 4 von Bedeutung
ist) : die hinreichende Bedingung, da8 die Menge 2R das FlâchemaB 0 habe,
ist nicht notwendig, und zwar auch dann nicht, wenn die Menge 9JI un-
beschrânkt ist3). Wenn auf einer beschrânkten Menge 2R jede dort stetige
Funktion gleichmàBig durch meromorphe Funktionen angenâhert werden
kann, kônnen als Annâherungsfunktionen rationale Funktionen ge-
nommen werden ; zu den sich auf diesen Spezialfall beziehenden wichtigen
Untersuchungen von F. Hartogs und A. Rosenthal4) und von M. Lavren-
tiefï5) tragt dièse Arbeit auBer dem bereits angedeuteten Gegenbeispiel
(s. § 2, Nr. 3) lediglich Methodisches bei.

2. Wàhrend auf einem beschrânkten Bereiche die allgemeine stetige
Funktion nicht gleichmâBig approximierbar ist durch rationale
Funktionen, ist eine solche Annàherung, gemâB dem Approximationssatze von
Runge, môglich fur jede dort eindeutige und regulâre analytische Funktion.

Herr Carleman hat in der oben zitierten Arbeit darauf hingewiesen,
daB auf gewissen unbeschrànkten einfachzusammenhângenden Bereichen
jede dort regulâre analytische Funktion gleichmàBig angenâhert werden
kônne durch ganze Funktionen. Satz III in § 3 der vorliegenden
Arbeit handelt von der gleichmaftigen Approximation eindeutiger analy-

3) Mit den in dieser Arbeit angewandten Methoden kônnten leicht auch allgemeinere
Beispiele von Mengen, deren FlâchenmaB nicht 0 ist und auf denen jede dort stetige Funktion

gleichmâfiig durch meromorphe Funktionen angenâhert werden kann, konstruiert
werden. Ich habe bereits frûher, vgl. a. a. O.12), darauf hingewiesen, daÔ auf jeder doppel-
punktlosen stetig ins Unendliche fûhrenden Kurve jede dort stetige Funktion gleichmâBig
durch ganze Funktionen angenâhert werden kann. Etwas allgemeinere Mengen, auf denen
eine solche Approximation môglich ist, sind diejenigen abgeschlossenen Mengen, bei denen
jede abgeschlossene beschrânkte Teilmenge ein Baum (d. h. ein im kleinen zusammen-
hângendes Kontinuum, das keinen topologischen Kreis enthâlt) ist ; dies kann in einfacher
Weise mit Hilfe des fur Baume gultigen Zerlegungssatzes (s. K. Menger, Kurventheorie,
Leipzig und Berlin 1932, S. 306) und des Hilfssatzes 1 von § 1 bewiesen werden.

4) a) F. Hartogs, Math. Annalen 98 (1927), S. 164—178.
b) F. Hartogs und A. Rosenthal, Math. Annalen 100 (1928), S. 212—263.
c) F. Hartogs und A. Bosenthal, Math. Annalen 104 (1931), S. 606—610.

Vgl. weiter J. L. Walsh, Math. Annalen 96 (1926), S. 437—450.

5) M. Lavrentieff, a) (russisch) Travaux de l'Institut Phys. Math. Stekloff, section math.
vol. V (1934); b) Sur les fonctions d'une variable complexe représentables
par des séries de polynômes, Actualités scient, et industr. 441 (1936).
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tischer Funktionen durch meromorphe FunJctionen auf abgeschlossenen
Mengen, die unbeschrànkte Bereiche sein dùrfen, und zwar werden
(hauptsâchlich im Hinblick auf die Anwendung in § 4) gleichzeitig
verschiedene analytische Funktionen, die paarweise fremden Mengen
zugeordnet sind, durch eine einzige meromorphe Funktion angenâhert.

3. Der Wert des Carlemanschen Approximationssatzes besteht nicht
allein darin, dafi die Annâherung im ganzen Intervalle —oo<#<-}-oo
gleiehmàBig erfolgt, sondern auch darin, daB die annâhernde ganze
Funktion G(x) so gewâhlt werden kann, daB die DifiFerenz zwischen ihr
und der gegebenen stetigen Funktion f(x) gegen 0 strebt, wenn \x\-+ oo.
Auch bei allen in der vorliegenden Arbeit durchgefûhrten Approxima-
tionen wird die annâhernde meromorphe Funktion so konstruiert,
dafi die Differenz zwischen ihr und der anzunàhernden Funktion auf der
vorliegenden Menge gleiehmàBig gegen 0 strebt, wenn z->oo5 und zwar
gilt dies nicht nur bei den Annâherungen stetiger Funktionen (Sâtze I
und II in § 2), sondern auch bei der Annâherung analytischer Funktionen
(Satz III in § 3). Dièses Verhalten im Unendlichen legt es nahe, die ge-
fundenen Approximationen zum Nachweis der Existenz meromorpher
Funktionen von besonderem asymptotischen Verhalten heranzuziehen.
Eine der mannigfaltigen Anwendungsmôglichkeiten dieser Art wird in § 4

ausfûhrlich dargestellt; sie betrifft diejenigen meromorphen Funktionen,
die auf allen vont Nullpunkte ausgehenden Halbgeraden gegen einen Grenz-
wert streben, wenn |^|->oo. Im Zusammenhang mit Aufgaben, die von
ganzen Funktionen dieser Art handeln6), findet sich in der Aufgaben-
sammlung von G. Pôlya und G. Szegô die folgende intéressante Frage7) :

Man teile die vom Nullpunkt auslaufenden Halbstrahlen irgendwie in zwei

Kategorien. Gibt es zu jeder Einteilung eine ganze Funktion, die lângs den
Halbstrahlen der ersten Kategorie gegen 0, làngs denen der zweiten Kategorie
gegen oo strebt? Es wird dort mit einer einfachen Mâchtigkeitsûberlegung
gezeigt, daB die Antwort negativ ist. Durch dièse Fragestellung angeregt,
versuchte ich, die notwendigen und hinreichenden Bedingungen fur jene
Einteilung der Strahlen8) zu finden. Nachdem es sich gezeigt hatte, daB
dièse Bedingungen einfacher Art sind (s. Satz V in § 4), bin ich zur Auf-

6) Beispiele transzendenter ganzer Funktionen dieser Art sind e« -f- z, dann —=r- und

die berùhmten, von G. Mittag-Leffler (Verhandlungen des III. Internat. Math. Kongr.
Heidelberg 1904, S. 258—264) gefundenen Beispiele von ganzen Funktionen, die auf allen
vom Nullpunkte ausgehenden Strahlen gegen 0 streben.

7) G. Pôlya und G. Szegô, Aufgaben und Lehrsâtze aus der Analysis (Berlin
1925) Bd. 2, Abschnitt IV, Nr. 187, S. 33 und S. 212.

8) Eine Halbgerade wird im folgenden stets Strahl (nicht Halbstrahl) genannt.
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stellung und Beantwortung einer allgemeineren Frage gefûhrt worden:
Wenn eine meromorphe Funktion F(z) auf jedem vom Nullpunkt aus-
gehenden Strahle gegen einen endlichen Grenzwert oder gegen den
Grenzwert oo strebt, bilden dièse Grenzwerte eine auf der Peripherie des
Einheitskreises definierte Funktion, den Strahlengrenzwert der mero-
morphen Funktion F(z). Dieser Strahlengrenzwert ist offenbar eine
Funktion der Klasse 0 oder 1 (im Baireschen Sinne), d. h. Grenzfunktion
einer konvergenten Folge stetiger Funktionen. Welche auf der Kreislinie
definierten Funktionen der Klassen 0 und 1 lassen sich als Strahlengrenzwert

einer meromorphen Funktion auffassent Solche und nur solche, deren
Konstanzintervalle auf der Kreislinie dicht liegen. Dièses Ergebnis ist mit
etwas weitergehenden Resultaten zusammen in den Sàtzen IVa und
IV b von § 4 enthalten; sie bestimmen insbesondere noch den Typus der
Verteilung der Juliaschen Richtungen einer meromorphen Funktion, die
auf allen im Nullpunkt entspringenden Strahlen gegen einen Grenzwert
strebt: Eine Menge von Richtungen kann dann und nur dann als die
Menge der Juliaschen Richtungen einer solchen besonderen meromorphen
Funktion aufgefaBt werden, wenn die entsprechenden vom Nullpunkt
ausgehenden Strahlen eine abgeschlossene Menge bilden, die keinen
Winkelraum enthâlt9).

In § 5 werden weitere Anwendungsmôglichkeiten der Ûberlegungen der
drei ersten Paragraphen skizziert; Satz VI betrifft die Existenz einer

ganzen Funktion, die auf einer gewissen Teilmenge der Einheitskreislinie
eine vorgelegte beliebige Funktion der Klasse 0 oder 1 als Strahlengrenzwert

aufweist. Satz VI ' ist ein entsprechender Satz uber die Existenz
einer im Kreisinnern \z\<\ regularen Funktion, die auf einer gewissen
Teilmenge der Kreisperipherie eine vorgelegte beliebige Funktion der
Klasse 0 oder 1 als radialen Grenzwert hat.

Ein Teil der Resultate dieser Untersuchungen ist in einer 0. R.-Note
angekiindigt worden10).

§ 1. Hilfssâtze

1. Zu irgend zwei beschrânkten abgeschlossenen Mengen 30^ und 9ït2,
deren Durchschnitt leer ist, zu zwei beliebigen rationalen Funktionen
Rx(z) und R2(z) und zu einer beliebig kleinen positiven Zahl e gibt es,

8) Die Aussagen ùber den Strahlengrenzwert und uber die Verteilung der Juliaschen
Richtungen bleiben richtig, wenn der Ausdruck ,,meromorphe Funktion" ûberall durch
den Ausdruck ,,ganze Funktion" ersetzt wird; s. Satz IVb in § 4.

10) A. Both, Comptes Rendus Paris 206 (1938), S. 479—-481.
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wie aus den Untersuchungen von Runge folgt11), eine solche rationale
Funktion R(z), daB

\B(z) — Rl{z)\<e9 wenn z in mx (1)

\B(z) — R2(z) \<e, wenn z in 9Jl2 (2)

Dieser Paragraph handelt ebenfalls von solcher gleichzeitiger Approximation
zweier rationaler Funktionen Rx(z) und R2(z) durch eine rationale

Funktion R(z), jedoch werden Mengen <SR1 und 50l2 zugelassen, die einen
nicht leeren Durchschnitt b SD^ • 2R2 haben.

Man konnte zunachst den einfachen Fall behandeln, wo der Durchschnitt b aus einem
emzigen Punkt, z. B. z 0, besteht und wo die anzunahernden Funktionen Polynôme
smd. Ich skizziere emige diesbezugliche Ûberlegungen und Ergebnisse, ohne naher darauf
emzutreten, da sie in dieser Arbeit nicht weiter benutzt werden. a) Wenn zu îrgend einer
behebig klemen positiven Zahl e eme rationale Funktion R(z), welche die Bedmgungen
(1) und (2) erfullt, existieren soll, ist es notwendig, dafi 1^(0) R2{0) ist. Es genugt, die
Approximationsmoglichkeit fur den speziellen Fall, dafi R^{z) z und R2{z) —'z 18^>

zu untersuchen; denn smd R1{z) und R2(z) îrgend zwei Polynôme, fur die Rt(0) R2(0)
ist und ist Q1(z), Q2(z), ••• ©me Folge von rationalen Funktionen, die m Wlx gleichmafiig
gegen z, m 9Jt2 gleichmafiig gegen — z streben, so strebt die rationale Funktion

RiW—Rtiz) Rx(z) + R2(z)
2z VnW T 2

m 9Jlx gleichmafiig gegen R1(z), m 9Jl2 gleichmâfiig gegen R2{z), wenn n->-oo. b) Mit
einem von Carleman emgefuhrten Verfahren1) kann bewiesen werden, dafi wenn StRj und
9Jl2 zwei von je einem Polygon begrenzte Bereiche smd, die nur den Punkt z 0 ge-
memsam haben, zu einer behebig klemen positiven Zahl ê em Polynom P(z) existiert,
fur das

\P(z) — z\<e m mt (1')

\P(z)+z\<c m m2 (2f)

c) Ich habe bereits fruher darauf hmgewiesen, dafi in diesem Satze die Polygonbereiche
Wl1 und 50l2 durch allgememere Mengen ersetzt werden konnen und dafi der Beweis auf den
Carlemanschen Fall zuruckgefuhrt werden konne durch eme elementare konforme Ab-
bildung12). Doch schemen andere, von dieser Méthode verschiedene Hilfsmittel zur
Behandlung der allgemeinen Falle geeigneter zu sein, so z. B. die Benutzung gewisser
Wuizelfunktionen, wie sie m den Beweisen der nachfolgenden Hilfssatze eme wesentliche
Rolle spielen. Mit dem folgenden Hilfssatze 1 kann m verhaltnismafiig recht emfacher
Weise bewiesen werden • Zu îrgend zwei die Ebene nicht zerlegenden beschrankten abge-
schlossenen Mengen 93^! und 5Ol2, die nur den Punkt z — 0 gemeinsam haben, gibt es em
Polynom P(z), das die Bedmgungen (1') und (2') erfullt.

In allen in den folgenden Hilfssàtzen vorkommenden Fallen kann die
Durchschnittsmenge b aus unendlich vielen Punkten bestehen. Es ist
dann nicht môglich, da8 die zwei anzunahernden rationalen Funktionen
in b ûbereinstimmen, ohne identisch zu sein. Deshalb hangt die Môglich-
keit, wie genau zwei verschiedene Funktionen angenâhert werden kônnen,

u) C. Runge, Acta mathematica 6 (1885), S. 229—244.
12) A. Rothy Verhandlungen der Schweiz. Naturforschenden Gesellschaft, Thun 1932,

S 304.
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zum mindesten in einer gewissen Umgebung der Durchschnittsmenge
b davon ab, wie groB die Differenz der anzunâhernden Funktionen auf b

ist, und auBerdem kann sie von der Beschaffenheit der Menge b abhângen,
in gewissen Fàllen z. B. von ihrem MaBe.

2. Hilfssatz 1 : Sind tyt und *P2 zwei von je einem Polygon (d. h. von
einem gesehlossenen Streckenzug ohne Doppelpunkt) begrenzte Bereiche,
deren Durchschnitt aus der Verbindungsstrecke e der beiden Punkte z ¦=¦ + s

und z — e, wo e > 0, besteht, so gilt fur einen gewissen Zweig w(z,e) der
Funktion Vz2 — e2

\w(z, e) — z| ^ e wenn z in S^1

\w(z9 e) + z\ ^b wenn z in ty2

Die Riemannsche Flàche von Vz2 — e2 kann aus zwei Exemplaren (S^

und (£2 der lângs der Strecke e aufgeschnittenen Ebene aufgebaut werden.
Sei (S^ dasjenige Blatt, in dem Vz2 — e2 — z -> 0, wenn z -> oo. Im andern
Blatte, (£2, gilt dann Vz2 — e2 + z->0, wenn z-> oo. Dièse Festsetzung
bewirkt, daB in (£1 die Funktion |Vz2 — e2 — z\ beschrânkt ist, also das
Maximum auf dem Rande, der aus den beiden Ufern der Strecke e besteht,
annimmt. Fur z x —e<*x< + e ist aber I Vz2 — s2 — z\

— X2 — x\ e und somit ist in

\Vz2— e2 — z\^e
Entsprechend ist in (£2

| Vz2 — e2 + z | ^ e

Jeder der Bereiche S$1 und ^$2 liegt mit Ausnahme der Randstrecke e ganz
im Innern der làngs der Strecke e aufgeschnittenen Ebene. Deshalb kann
festgesetzt werden, daB unter w(z, e) derjenige der beiden eindeutigen
Zweige, in die Vz2 — e2 in ^Pi + ^2 zerfâllt, sei, der fur ^J1 zum Blatte (&i

gehôrt. Dann ist in

Da man bei der analytischen Fortsetzung der Funktion w(z,e) vom
Bereiche ?P1 in den Bereich ^J2 liber die Strecke e hinweg vom Blatt G^

ins Blatt (£2 gelangt, ist in ^S2
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3. Hilfs8atz 2a : Zu jeder beschrânkten abgeschlossenen Menge 90?, deren
Durchschnitt b mit der reellen Achse vont linearen Mafi O ist, und zu zwei

béliebig kleinen positiven Zahlen ô und e gibt es eine rationale Funktion
R{z) mit folgenden Eigenschaften :

\R(z)\<l wenn z in $Jl

| R (z) | < e wenn z in 30?, y ^ — ô

| R(z) — 1| < s wenn z in 30?, y ^ + ô

Da die Durchschnittsmenge b beschrânkt, abgeschlossen und vom linearen
MaB O ist, gibt es endlich viele paarweise fremde ofifene Intervalle
i1, t2, in der reellen Achse, deren Summe b enthâlt und deren Gesamt-
lânge kleiner als Je<5 ist. Die Endpunkte des Intervalles i^ seien z xv + ev

und z xv — sv, wobei ev > 0. Es ist

Zev<\eÔ (1)

Mit §x sei die obère Halbebene {y > 0) mit §2 die untere Halbebene
n

(y<0) bezeichnet und mit (S das Schlitzgebiet §i + §2+ £iv- Indiesem
v=»l

Gebiet S zerfàllt „ / x

z — (xv — ev)

in eindeutige Zweige. Einer unter ihnen, er sei mit a(z) bezeichnet, ist in
§3 gleich der Summe aller Winkel, unter denen die Intervalle i1? i2, in
vom Punkte z aus erscheinen, und in §2 gleich der Ergànzung dieser
Winkelsumme auf 2 je. Hieraus folgt, daB

0< a(z)< 7z in §! (2)
n

a(z) 7t in Exv (3)

n < a(z) < 2 n in £>2 (4)

Unter w(z) sei der entsprechende, im Gebiete S eindeutige und regulàre
Zweig von

verstanden, d. h. es sei
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Wegen (2), (3) und (4) hat w(z) im ganzen Gebiete S positiven Imaginâr-
teil, in der obern Halbebene §x positiven Realteil und in der untern Halb-
ebene §2 negativen Realteil. Es ist also

\w(z) + i
\w(z) + 1

in

in

in

Die Bedingung (1) bewirkt, daB fiir | y\ ^ ô

(5)

(6)

(7)

fLi\z — (xv — ev)\ -TFtirSï
gilt. Da angenommen werden darf, es sei s < 2 (und da fur irgend welche

n

komplexen Zahlen alf a2, an, fur die £ \av\ < i ist,

| II (1 -f- av) — 1 | ^2 2J\ av\ gilt), so folgt
Ï>=1 V=l

[w(z)]* —
v=i \ z — 0*V — ev/ <Yfûr \y\

Daraus ergibt sich in Verbindung mit (6) und (7), daB

M*)]2 —
w(z) —

w{z) +

w{z)

< — fur y ^ — i

(8)

(9)

Da, wie bereits bemerkt, der Imaginàrteil von w(z) im ganzen Schlitz-
gebiete S positiv ist, so ist

f(z)=i:w(z) — i
w(z) -f~ i

eine im Gebiete S regulâre, eindeutige Funktion, deren absoluter Betrag
dort kleiner als 1 ist. Weil die abgeschlossene Menge 9Jt ganz im Gebiete S
enthalten ist, gibt es eine solche positive Zahl r\, rj < e, daB

\f(z)\<l — rj in 501.
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Aus den Ungleichungen (5), (8) und (9) folgt, daB

Nach dem Approximationssatze von Runge gibt es eine rationale Funk-
tion R{z), fur die auf der Menge 501

gilt. Dièse rationale Funktion hat die verlangten Eigenschaften ; aus den
letzten vier Ungleichungen folgt nàmlich, da8

H£1> wennzinSR,

\R(z)\<±\f(z) + l\ +!<*,

Anmerkung : Die Polverschiebungsmethode von Runge ergibt, daB fur
die annâhernde rationale Funktion R(z) ein Polynom genommen werden
darf, wenn die Menge 9ÏI die Ebene nicht zerlegt.

4. Hilfssatz 2 b : Zu jeder (beschrànkten oder unbeschrânkten) abgeschlosse-

nen Menge $01, deren Durchschnitt b mit einer gegebenen Kreislinie \z\ q

vom linearen Mafie 0 ist und zu zwei beliebig hleinen positiven Zahlen ô und e

gibt es eine rationale Funktion R(z) mit den folgenden Eigenschaften:

|j?(z)|<l wenn z in 3K

|jR(z)|< e wenn z in 2R \z\ ^q—ô
— l|<fi wenn z in 501, \z\

Weil die Durchschnittsmenge b abgeschlossen ist und das lineare MaB 0

hat, gibt es auf der Kreislinie |z| g einen Punkt z a, der von der
Punktmenge 501 positiven Abstand hat. Der Kreis |z| q wird nun durch
eine lineare Funktion, etwa durch

z — a

so auf die réelle Achse abgebildet, daB dabei der Punkt z a in den
unendlich fernen Punkt und die Kreisscheibe \z\<q in die untere Halb-
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ebene ûbergeht. Die Bildmenge von 501 ist dann abgeschlossen und
beschrànkt. Ihr Durchschnitt mit der reellen Achse hat das lineare Ma8 0.

Diejenige Teilmenge von SOI, fur die \z\ ^q—ô ist, wird auf eine Teil-
menge der unteren Halbebene, diejenige fur die \z\ ^ q + ô ist, auf eine
Teilmenge der oberen Halbebene abgebildet und zwar haben beide Teil-
mengen von der reellen Achse einen positiven Abstand. Deshalb gibt es
naeh Hilfssatz 2 a eine Funktion, die eine rationale Funktion von f, aber
damit auch eine rationale Funktion von z ist, welche die an die rationale
Funktion R(z) gestellten Forderungen erfullt.

5. Hilfssatz 2c: Es seien vorgelegt

l. vier positive Zahlen g, ô, rj, e, wobei q> ô, rj> e,

2. eine (beschrânkte oder unbeschrânkte) abgeschlossene Menge 501, deren
Durchschnitt b mit der Kreislinie \z\ q das lineare Mafi 0 hat, und

3. eine rationale Funktion S(z), fur die \S(z)\ ^tj gilt, wenn z in 501 ent-
halten und g—ô ^\z\ ^q + ô ist.

Dann existiert eine rationale Funktion T (z) mit folgenden Eigenschaften :

\T(z)\<tj, wennzin<m, \z\^q + ô,

\T(z)\<e, wennzinVR, \z\^q—ô,

\T(z)—8(z)\<e, wennzinVJl, |z|^
Dieser Hilfssatz wird auf den vorangehenden zurûckgefuhrt, der in ihm
fur 8(z) 1 — e, rj 1, enthalten ist.

a) Falls die vorliegende rationale Funktion S (z) auf 501 beschrànkt ist,
ist der Beweis besonders einfach. Sei m eine so groBe positive Zahl, daB

\8(z)\<m, wenn z in 501 enthalten ist. Ist R(z) eine (nach Hilfssatz 2b
existierende) rationale Funktion, fur die

\B(z)\<

\*{*)\<

\B(z)—]

e

m

u<

5

" m '

wenn

wenn

wenn

z

z

z

in

in

in

501

501

501

so hat die rationale Funktion

T(z) B{z)-8(z),
wie sofort ersichtlich ist, die geforderten Eigenschaften.
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b) Beweis fur den Fall, daB 8 (z) auf 50Ï nicht beschrânkt ist : Weil die
Menge 501 abgeschlossen ist und ihr Durchschnitt mit der Kreislinie
\z\ q das lineare MaB 0 hat (also nicht aus dieser ganzen Kreislinie
besteht), enthàlt 501 weder das ganze Innere, noch das ganze ÂuBere dieser
Kreislinie. Sei z a ein nicht in 501 enthaltener Punkt des Innern und
z b ein nicht in 501 enthaltener Punkt des ÀuBern und dr eine so kleine
positive Zahl, daB \a\<q—à', \b\>q + à' und ôr ^ô ist.

Nun werden die Pôle der Funktion S (z) in drei Kategorien eingeteilt:
die erste enthàlt aile im Kreisgebiet \z\< q—ôr liegenden Pôle, die zweite
diejenigen des Ringgebietes q—ô'<\z\< q + à' und die dritte aileubrigen.
Es sei ôr so gewâhlt, daB kein Pol auf den beiden Kreislinien |z| q—ôr
und \z\ q-\-ôr liegt. Dementsprechend wird die rationale Funktion
R(z) so in drei rationale Summanden 81(z), 8.2(z) und #3(z) zerlegt,

8(z) 81(z) + 8%(z) + 89(z), (1)

daB S1(z) fur \z\ ^q—àf beschrânkt ist, S2(z) fur |z|^^—à* und fur
\z\ ^q-\-ôf beschrânkt ist und #3(z) fur \z\ ^q-\-ôf beschrânkt ist. Da
also die rationale Funktion #3(z) im Kreisbereich \z\^qJrôf regulâr ist
und da der Punkt z b auBerhalb dièses Bereiches liegt, gibt es eine
rationale Funktion Tz(z), deren einziger Pol z b ist und fur die

\T*(*) — 88{z)\<y> wenn\z\^q + ôf (2)

Entsprechend gibt es eine rationale Funktion Tx(z), deren einziger Pol
z a ist und fur die

\Tx(z) — 8x(z)\<^, wenn|z|ï^-<5'. (3)

Aus den Eigenschaften der Funktionen 8x{z), 82(z), Ss(z) und aus der
tiber die Funktion S(z) gemachten Voraussetzung ergibt sich leicht, daB

82(z) 8(z) — 8x(z) — 8s(z) auf der ganzen Menge 501 beschrânkt ist.
Da auch die Funktionen Tx(z) und T3(z), deren einzige Pôle z — a und
z b sind, auf 501 beschrânkt sind, gibt es eine solche positive Zahl m, daB

I Tx (z) + S2 (z) + Ts(z) | < m wenn z in 501. (4)

Sei R(z) eine (nach Hilfssatz 2 b existierende) rationale Funktion mit
den folgenden Eigenschaften:

|<l, wennzin50î, (5)

|< JL, wenn z in 501, \z\£e—d', (6)
2m

\R(z) — 1|<^-, wenn z in 501, \z\^q + Ô'. (7)
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Es soll gezeigt werden, daB die rationale Funktion

die verlangten Eigenschaften aufweist. Zunàchst folgt aus (2), (4) und
(6), daB

> wennzin9Jl, \z\^g—ôf, (8)

und aus (1), (3), (4) und (7), daB

[ z)^T3{z)\\ (9)
F F

< —+ -—m<e, wenn z in 501,
o Zïïl

GemâB der iiber die Funktion S (z) gemachten Voraussetzung ist das
Maximum von S (z) auf der Durehsehnittsmenge von 2R mit dem Kreis-
ring g—^^|2:| ^Q + ô kleiner als rj. Es bedeutet keine Einsehrânkung,
anzunehmen, die vorliegende Zahl e sei so klein, daB dièses Maximum
auch kleiner als r\—e ist, d. h., daB

\S(z)\<7]—e fur z in m, q—ô^\z\^q+ô. (10)

Aus (1), (2), (3), (5), (10) und daraus, daB àf S à ist, ergibt sich, daB

\T(z)\ \ [S,(z)-T3(z)]+R(z)

<y+ [2~ + ri — é\=r), wenn z in 9K, q — ôf < \ z \ ^ q + à'

Da ô' ^ ô ist, folgt aus (8), daB

\T(z)\<e, wenn z in 30Ï, \z\ ^q—ô ;

aus (8) und (11) und weil £< r\ ist, schlieBt man, daB

\T(z)\<rj, wenn2;inaR, \z\^q + ô'

aus (9) und (10), daB

\T(z)\S\T(z)—8(z)\ + \S(z)\<rj wenn z in 501, q + ô' ^\z\ ^q + ô

und aus (9), daB

\T(z)—S(z)\<e, wenn z in m, \z\^
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6. Hilfssatz 3a13): Zu jeder beschrânkten abgeschlossenen Menge SOI,

welche die obère Halbebene %1 nicht zerlegt (d. h., da/ï §x — §x • 501 zu-
sammenhangend ist) und deren Durchschnitt b mit der reellen Achse auf
dieser nirgendsdicht ist, und zu zwei beliebig kleinen positiven Zahlen
ô und s gibt es ein Polynom P (z) mit den folgenden Eigenschaften :

| P (z) | < 1, wenn z in$R

\P(z)\<e, wenn z in$Jl, y ^ — ô

\P(z) — l|<e, wenn zinffll, y^-\-ô.
Die positive Zahl a, a> ô, sei so groB, daB die Menge 9ït im Quadrate

\x\<a \y\<a (1)

enthalten ist. AuBer der in Hilfssatz 1 eingefûhrten Wurzelfunktion
w(z, e) verwenden wir beim folgenden Beweis ein Hilfspolynom Q(z), das
folgenden Bedingungen genugt:

I) im Rechteck

\x\ <^2a O^y^a (2)
ist \zQ(z)\<l,

II) im kleineren Rechteck

\x\ ^2a, ô^y^a, (3)

Ein solches Polynom erhàlt man z. B., indem man die im Rechteck (2)
1 ôe

regulâre Funktion — wobei oc — dort durch ein Polynom
z -\-%oc 8

genûgend annàhert. Da das Maximum von —-—r- im Rechteck (2)
z-\-ioc

13 Der Hilfssatz 3 a ist in einem interessanten allgemeineren Hilfssatz von Herrn
Lavrentieff enthalten, vgl. a. a. O. 5b) S. 25. Anstelle der Voraussetzung, dafi die Menge 2ft
die obère Halbebene nicht zerlege, tritt dort die Voraussetzung, dafl die Menge 2R die
Ebene nicht zerlege. Ich fùhre trotzdem den nachstehenden, unabhângig von Lavrentieff
©ntstandenen Beweis des spezielleren Satzes aus, weil der Lavrentieffsche Beweis des
aMgenieineren Satzes komplizierter ist und sich zudem auf Sâtze stùtzt, die nur in einer
nicht leicht zugânglichen fruheren (russischen) Publikation bewiesen wurden (s. a. a. O.

") S. 32, wo auf die Sâtze 11 und 12 von S. 17 und 18 Bezug genommen wird; der Beweis
dieser Sâtze findet sich nicht in dieser Publikation, sondern in der a. a. O. 5a) zitierten.)
frartiber, dafi der Lavrentieffsche Hilfssatz in einer gewissen Richtung nicht verallge-
meinert werden kann, vgl.14).
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pkleiner als 1 ist, gibt es eine positive Zahl r\, r\< — 5
fur die im Rechteck (2)

2

< 1 — î] gilt. Ist nun Q(z) ein Polynom, fur das im Rechteck (2)

1

gilt, • wobei

12 a 24 a

so hat dièses Polynom die gewiinsehten Eigenschaften, denn im Rechteck

(2) gilt

Q{z)\< z-\- itx

und im Rechteck (3) gilt

| z | p < 1 — r, + 3a/î 1 — —

\\—z Q(z)\
(5)

Sei ferner m eine so grofie positive Zahl, daB

\Q(z)\<m fur \x\£2a, \y\£a (6)

Nachdem so das Polynom Q (z) und die mit ihm zusammenhangenden,
in (4) und (6) vorkommenden Zahlen r\ und m bestimmt sind, stellt man
die folgenden geometrischen Ûberlegungen an:

Da der Durchschnitt b von der Menge SOÎ mit der reellen Achse eine

abgeschlossene nirgendsdichte Teilmenge des Intervalles —a ^ x ^ + a
ist, gibt es in diesem Intervalle endlich viele paarweise getrennte offene
Teilintervalle \x, t2, ...,tw) deren Summe die Menge b enthâlt und deren

einzelne Làngen kleiner als die kleinere der beiden Zahlen— und —^r ist.° m a m2
Bezeichnet 2 ev die Lange des Intervalles i,,, so ist also

a m2

Sv<2m' v= 1, 2, n,
und

a ¦

(7)

(8)
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Der Mittelpunkt des Intervalles t,, sei z xv, also z xv + ev und
z xv — ev seine Endpunkte. Weil dièse Endpunkte auBerhalb 501 liegen
und weil die Menge §x — §x • 501 die obère Halbebene §x nicht zerlegt und
ganz im Innern des Rechtecks

liegt, kann jedes Punktepaar z xv±ev durch einen diesem Rechteck 9^
angehôrigen doppelpunktlosen Streckenzug pv verbunden werden, der die
Menge 501 nicht triflft. Dièse Streckenzlige Px,p2, • • • > pw kônnen zudem so

gewàhlt werden, daB sie paarweise fremd sind und daB sie auBer ihren
Endpunkten z xv±ev, v l, 2, n, keine Punkte mit der reellen
Achse gemein haben.

iv + pv ist ein Polygon ; tyv bezeichne den Bereich, der aus ihm und
n

seinem Innern besteht. Die Vereinigungsmenge U S$v bildet zusammen
v=»l

mit dem Rechteck
5R2: \x\ ^a —a ^y ^0

n
einen von einem einzigen Polygon begrenzten Bereich ^ 9Î2 + £ tyv >

der die Menge 501 in seinem Innern enthâlt.

Da der Durchschnitt von tyv mit dem ebenfalls von einem einzigen
Polygon begrenzten Bereiche

aus der Verbindungsstrecke der Punkte z — xv — ev und z — xv-\- ev

besteht, ergibt sich aus Hilfssatz 1, daB fur den einen Zweig

w(z—xv, ev) wv(z)

der Funktion V(z^^Xy)2 — e% die folgenden Ungleichungen gelten:

\wv(z) — (z — xv)\ ^ev in % (9)

\wv(z) + (z — xv)\ ^ sv in 5R2 +£v% •
*

AuBer diesen Funktionen wv(z) gebrauchen wir Polynôme Qv{z)y die
aus dem bereits konstruierten Polynom Q(z) durch die Festsetzung

Qv{z) Q(z — xv) v= 1, 2, ...,n
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entstehen. GemàB den Ungleichungen (4), (5) und (6) ist

H? _____ *V \ {"} tv\ I <"'"" 1 — V\ T11T* I "Y* — 1* I ^~_! ^) ft C\ <^. ti ^L flAt —— vUyl Vfiv \&/ I ^~» -*¦ —— __ ^« jl ULX I »|/ —— ifs I _^ Xi l* \J _Sî M —^b \A/

insbesondere in ^5V (11)

insbesondere, wenn z in SÇV, y ^ ô (12)

|Q,,(z)| < m fur | # — #„! ^ 2a, | y\ ^ a insbesondere in ^ (13)
Setzt man

M*) \Qv(*) K(«) + (« — xv)) v 1, 2, n

so gilt wegen (13), (9), (11) und (7), dafi

\fv(z)\ \-Qv(z) (wv(z) — (z—xv)) + (z — xv)Qv(z) |

i _,_, » v- «
(14)

<An « [ I _____ /yi ^-^ I _____ ' 1T"| 1|{~ //€' Cy | X ~~2 'l '^* —— —— JLXl ^_7 j;

wegen (13), (9), (12), (7) und weil rj < | ist, da6

| /„(s) — 1 | | -Qv(z) (wv(z) — (z — xv)) +((z — Xy) Qv(z)— 1) |

1 e rj e Se ~ ^ _
<C — mev -\—7^-7 + t^ tt > wenn z m U5V 5V^o,2 4448 r,7—>

und wegen (13) und (10), daB

1 1
I fv(z) I | - Qv(z) | I ^v(z) -\- {z — xv) \ <zmev in »2 + 27^ (16)

Die Funktion

ist eine im Innern des (einfach zusammenhângenden) Bereiches ^J re*
gulâre eindeutigè Punktion. Aus (14), (15), (16) und (8) folgt, daB

| /(*) | ^ | fv(z) |« + 271 /m W I2
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l in
4

f(z) — l\^\fv(z) + l\ | /v(») - 1 | + S | M

< -/ + 4" wenn * in

Da die abgeschlossene Menge $R im Innern des die Ebene nicht zerlegen-
den beschrânkten Bereiches S$ liegt und f(z) dort regulàr ist, gibt es

schlieBlich nach Runge ein Polynom P{z), fur welches auf der Menge 3X1

\P(z)—f{z)\ <^
gilt. Aus den vorangehenden fur die Funktion f(z) geltenden Ungleichun-
gen folgt, da8

| P(z) | < 1 in Wt • Z^v d. h., wenn z in 9JÎ, y ^ 0

| P(z) | < -| + 2L < £. wenn 2 in 9(K i/^0,
| P(z) — l\<^. + ± + ±<e, wenn 2 in m. ¦ f ^8,, y ^«

~r TC TC y —\

d. h., wenn z in 9JÎ y ^ (5

Somit ist P(z) ein Polynom mit den gewûnschten Eigenschaften.

Anmerkung: Bei der Bildung der Funktion f(z) war es nôtig, die

Quadrate der Funktionen fv(z) und nicht bloB dièse selbst zu summieren.
n

Bie gesamte Intervallânge 2 £ ev ist nâmlich grôBer als das Ma6 derMenge b,

das aber positiv sein darf ; hingegen wird £ e% beliebig klein, wenn die ein-

zelnen Intervalle, wie es oben geschah, genugend klein gewâhlt werden.

7. Hilfssatz 3 b : Zu jeder beschrânkten abgeschlossenen Menge 501, die das
Àufiere einer gegebenen Kreislinie \z\ q nicht zerlegt und deren Durch-
schnitt b mit dieser Kreislinie auf ihr nirgendsdicht ist, und zu zwei beliebig
Heinen positiven Zahlen ô und e gibt es ein Polynom P (z) mit den folgenden
Eigenschaften :

\P(z)\ < 1 wenn z in 5DÎ

\P(z)\ < e wenn z in 501, \z\ <^ q — ô

— 11 < e wenn z in 9K | z\ ^ q + ô
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Dieser Satz wird, àhnlich wie Hilfssatz 2 b auf Hilfssatz 2 a, auf Hilfs-
satz 3a zurûckgefuhrt, indem man das Kreisgebiet \z\ < q durch eine
lineare Funktion auf die untere Halbebene abbildet und zwar so, daB ein
Punkt z a der Kreislinie \z\ q, der von 501 positiven Abstand hat
(einen solchen Punkt gibt es, da b abgeschlossen und auf dieser Kreislinie

nirgendsdicht ist), in den unendlichfernen Punkt iibergeht. Die
Bildmenge von 501 ist beschrânkt, hat mit der reellen Achse einen auf ihr
nirgendsdichten Durchschnitt und zerlegt die obère Halbebene nicht.
Diejenige Teilmenge von 501, fur die \z\ ^ q + ô ist, wird abgebildet auf
eine Teilmenge der oberen Halbebene, diejenige, fur die \z\ ^ q — ô ist,
auf eine Teilmenge der unteren Halbebene, und zwar haben beide Bild-
mengen einen positiven Abstand von der reellen Achse. Die Anwendung

von Hilfssatz 3 a ergibt die Existenz einer rationalen Funktion Q\ 1

\z—a)
deren einziger Pol z a ist und die folgende Eigenschaften hat :

Q (-^—) < 1, wenn z in 501
\z — a}\
I jQI j < e 9 Wenn z in $tt \z\ <Zq — ô

Q < e wenn z in 501 \z\ ^ q-\- ô

Da die Menge 501 das ÂuBere der Kreislinie | z \ q nicht zerlegt und da sie
beschrânkt ist, liegt eine gewisse XJmgebung des unendlich fernen Punktes
in demselben Teilgebiet der Komplementàrmenge von 501 wie der Punkt

z a. Deshalb kann Q 1 auf der Menge 501 gleichmàBig durch
\z—a)

Polynôme approximiert werden. Ein solches Annàherungspolynom P(z)

hat, sobald die Annâherung an QI 1 geniigendgut ist, dieverlangten

Eigenschaften.

8. Hilfssatz Se: Es seien vorgelegt

1. vier positive Zahlen q, ô, rj, e, wobei q > d, rj > s

2. eine beschrânkte abgeschlossene Menge 501, die das Àufiere der Kreislinie
| z | q nicht zerlegt und deren Durchschnitt b mit dieser Kreislinie auf
ihr nirgendsdicht ist, und

3. ein Polynom S(z), filr das \S(z)\ g rj gilt, wenn z in 501 enthalten und

q — ô ^\z\ -^ q-{- ô ist.
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Dann existiert ein Polynom T (z) mit folgenden Eigenschaften :

| T(z)\ < rj wenn z in 501, \z\ ^ g + ô

| T(z)\ < e wenn z in 501 \z\ ^ g — ô

\T(z) — S(z)\ < e wenn z in m, \z\ ^ g + ô

Dieser Hilfssatz wird, ebenso wie Hilfssatz 2 c auf Hilfssatz 2 b, auf den
Hilfssatz 3b zuruekgefuhrt, der in ihm fur S(z) 1 — e, rj 1, ent-
halten ist; es kommt nur die Ûberlegung zur Anwendung, die im leich-
teren Fall a) des Hilfssatzes 2 c angestellt wurde. Da die Menge 501 be-
schrankt und S (z) ein Polynom ist, gibt es eine solche positive Zahl m,
daB \8(z)\<m auf 501 ist. Ist P(z) ein Polynom, fur das

\P(z)\ < 1 wenn z in 501

\P(z)\<—, wenn z in 501, \z\^g — ô,m

\P(z) — 11 < — wenn z in 501, \z\ > g + ô

so ist, wie sofort ersichtlich ist,

T(z) P(z)-8(z)

ein Polynom, das die geforderten Eigenschaften aufweist.

9. Ein Vergleich der Hilfssatze 2 a, 2 b, 2 c, mit den Hilfssatzen 3 a, 3 b,
3 c legt die Frage nahe, ob nicht in den Hilfssatzen 2 a, 2 b, 2 c die Vor-
aussetzung, daB die Durchschnittsmenge b vom linearen MaB 0 sei, dahin
abgeschwâcht werden darf, daB dièse Menge b nirgendsdicht sei auf
der betreffenden Linie. Es kommt auf das Gleiche heraus, zu fragen, ob
nicht in den Hilfssatzen 3 a, 3b, 3 c die Voraussetzung, daB die Menge 501

die obère Halbebene bzw. das ÀuBere der Kreislinie \z\ g nicht zer-
lege, uberflussig wird, wenn statt Polynomen allgemeine rationale
Funktionen als annâhernde Funktionen zugelassen werden. Der folgende
Hilfssatz 4 zeigt, daB eine solche Ânderung nicht vorgenommen werden
darf in den Hilfssatzen 2b, 2 c und 3b, 3 c und damit auch nicht in den
mit den Hilfssatzen 2 b und 3 b aquivalenten Hilfssatzen 2 a und 3 a14).

14) Dies bedeutet gleichzeitig, daÔ der a. a, O. 13) genannte Hilfssatz von Lavrentiefï
meht dadurch verallgememert werden kann, dafî die dortige Voraussetzung, die Menge
5W zerlege die Ebene nicht, weggelassen wird, wenn dafur nur noch verlangt wird, dafi die
annahernden Funktionen rational seien.
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Hilfssatz 4 : Es gibt eine beschrânkte abgeschlossene Menge 9t, die in der
Ebene nirgendsdicht ist und die mit der Kreislinie \ z 2 einen auf dieser
Kreislinie nirgendsdichten Durchschnitt hat und die so beschaffen ist, dafî
fur keine rationale Funktion R(z) gleichzeitig

und

gelten Icunn15).

1*001

\R(*)\

\R(z)

<

<
—

1

\
1|

>

< 4

wenn

wenn

wenn

z

z

z

in

in

in

91,

Jt, 1*1

1*1

1

3

d bezeichne die Kreislinie |z| 1, c3 die Kreislinie |z| 3. Im Kreis-
ringe 91: 1 < \z\ < 3, der von d und c3 begrenzt wird, wàhle man eine

Punktfolge z zl9z z2, die dort dicht ist und deren auf der Kreislinie

\z\ 2 liegende Teilfolge auf dieser Kreislinie dicht ist. Weiter

werde eineFolge positiver Zahlen el9 e2, gewàhlt, fiir die Z en< ^ist.
n=l

Dann werden nacheinander Mengen $tt, 512 > • • • gemâB den folgenden
Vorsehriften bestimmt :

I. 5li ist ein im Ringgebiet 9Î gelegenes Kreisgebiet mit dem Mittel-
punkt z zx und einem Radius, der kleiner ist als ex. Dièses Kreisgebiet
wird auBerdem so gewàhlt, daB seine Begrenzung ïx keine Punkte der
Folge z z2, z z3, enthàlt; dies ist môglich, da dièse Punktmenge
abzâhlbar ist.

II. fur n 2, 3, :

n—l
a) Falls U ${„ den Punkt z zn enthâlt, ist 5lw leer.

n—l
b) Falls 275lv vom Punkte z — zn einen positiven Abstand hat, ist 5lw

v=l
n—l

ein im Ringgebiet 91 liegendes Kreisgebiet, dessen Abstand von £ 5lv

positiv ist, dessen Mittelpunkt z zn ist, dessen Radius kleiner als en ist
und dessen Begrenzung în keinen der Punkte z zn+1, z 2n+2,

enthâlt.
15 Fur die vorangehende Diskussion ûber die Hilfssatze ist nur von Bedeutung, dafi der

Durchschnitt der Menge 91 mit der Kreislinie | z\ 2 auf ihr nirgendsdicht ist, nicht aber,
daB 91 auch in der Ebene nirgendsdicht ist; dièse zweite Eigenschaft wird jedoch in § 2

verwendet.
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n—1

(Der Fall, daB der Punkt z zn auf der Begrenzung von Z SL liegt,
kann nicht eintreten. Dies folgt zunâchst fur n 2 aus der Vorschrift I,
dann nacheinander fur n 3, 4, aus der in Vorschrift IIb an die
Begrenzungen gestellten Bedingung.)

oo

Z SKn ist eine offene Teilmenge der abgeschlossenen Huile 9? desRing-

gebietes 91. Daher ist

eine abgesehlossene Teilmenge von 9Î, welche die Kreislinien Ci und c3
enthâlt. Da die Menge Sft die im Ringe 9? und auf der Kreislinie \z\ 2

dichte Menge der Punkte z zx, z z2, nicht enthàlt, ist sie nirgends-
dicht im Ringe 9î und ihr Durchschnitt mit der Kreislinie | z \ 2 ist auf
dieser nirgendsdicht. Aus den Vorschriften I und II ergibt sich ferner

daB U în zu 9î, aber nicht zu £Stn gehôrt und daB somit £ln in 9t
n=l n«=l n=l

enthalten ist. Wegen der Wahl der Radien der Kreisgebiete Rx, R2,
oo

ist die Gesamtlànge von Z în kleiner als n.

Nehmen wir nun an, es gebe eine solche rationale Funktion R(z), daB

00

| JK (a:) j < 1, wenn z in 51, also insbesondere wenn z in E în liegt, (1)
n«»l

\R(z)\<l in Cl • 5R cx (2)

l\<% in c3-5R c3 (3)

Wegen (1) mussen die Pôle von R(z) auBerhalb 51 liegen. Ein Teil kann
auBerhalb des Ringes 9Î liegen; der andere Teil liegt in endlich vielen
unter den Kreisgebieten Rly R2> * • • Nach dem Integralsatze von Cauchy
ist also, aile Intégrale in positivem Sinn erstreckt,

J t J t n~lj t

Da

À.t, so ist somit

Ci c8 ïn
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Nun folgt aber aus (2), daB

und aus (3), daB

1 f*\J
Cl

l f1/

(t) -

l(t)~
t

1 n

71

l" 2
(6)

Indem man die Ungleichung (1) benutzt und berucksichtigt, daB die
oo

Gesamtlânge von E in kleiner als n ist, ferner, daB jede der Kreislinien

ïx, ï2, vom Nullpunkte einen Abstand hat, der 1 xibersteigt, erhâlt
man weiter

m- -dt

Die Ungleichungen (5), (6) und (7) ergeben zusammen einen Widerspruch
zur Gleichung (4), und damit ist die Existenz der rationalen Funktion
R(z) widerlegt.

§ 2. Gleichmâfiige Annâherung stetiger Funktionen durch meromorphe
Funktionen auf (beschrânkten oder unbesehrankten) nirgendsdiehten ab-

geschlossenen Mengen.

1, Wenn eine Funktion auf einer beschrânkten Menge gleichmàBig an-
genàhert werden kann durch meromorphe Funktionen, so kônnen, wie
leicht ersichtlich ist, als annâhernde Funktionen rationale Funktionen
genommen werden. Auf diesen Fall bezieht sich

Satz la : Auf jeder beschrânkten abgeschlossenen Menge 9Jt vom Flàchen-
ma/3 0 kann jede dort stetige Funktion f(z) gleichmàjHg angenâhert werden
durch rationale Funktionen.

Dieser Satz wurde von Hartogs und Rosenthal aufgestellt und in ein-
facher, schôner Weise bewiesen16). Mit dem Hilfssatz 2 a kann ein neuer
Beweis gegeben werden ; er wird nur deshalb nachfolgend dargestellt, weil
die Anwendung des Hilfssatzes 2 c zu einem allgemeineren Résultat
fûhren wird, nàmlich zum Satze I, aus dem der Hartogs-Rosenthalsche
Satz durch Spezialisierung hervorgeht.

Man kann sich darauf beschrânken, zu zeigen, daB die Funktion x auf
der Menge SOI durch rationale Funktionen gleichmàBig angenâhert werden

16) Vgl. a. a. O.4c), S. 610.
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kann, denn dann gilt dies auch fur y i(x — z) und damit fur jede stetige
(réelle oder komplexe) Funktion von x und y, da eine solche nach dem
Weierstrafischen Approximationssatze gleichmâBig durch Polynôme von
x und y angenàhert werden kann17). Wir suchen also zu einer beliebig
kleinen positiven Zahl e eine rationale Funktion R(z), fur die auf 5Dt

\R{z) — x\<egi\t.
Es bedeutet keine Einschrânkung, anzunehmen, die Menge 501 sei im

Quadrate 0<#<l,0<2/<l enthalten18). Mit n sei diejenige positive
p p

ganze Zahl bezeichnet, fur welche (n—1) - < 1 ^n- gilt. Da die
o o

Menge 501 vom FlâchenmaB 0 ist, bilden diejenigen Parallelen zur ima-
ginàren Achse, deren Durchschnitt mit 501 das lineare MaB 0 hat, eine
in der Ebene diehte Menge19). Deshalb gibt es fur v 1, 2, n eine

£ S
positive Zahl xv, fur welche (v— 1) -<xv< v- gilt und welcher eine

Gerade x xv entspricht, deren Durchschnitt mit der Menge SOI das
lineare MaB 0 hat. Indem man die Gerade x xv durch die Funktion
Ç =z i(z — xv) auf die réelle Achse abbildet und dann auf die Bildmenge
von 501 den Hilfssatz 2 a anwendet, ergibt sich die Existenz einer rationalen
Funktion Rv(z) mit folgenden Eigenschaften:

| Rv(z) | < 1 wenn z in 501

E S
I -Rv(s) I < ô > wenn z in 501 x <ï (v — 1) ^

p p.
| Rv(25) — 1 | < ô > wenn z in 501 x^v-z

o o

Die gesuchte rationale Funktion ist

Wenn nàmlich z in 501 enthalten ist und (k— 1)-^ x ^k ^ ist, wobei k
o 3

irgend eine der Zahlen 1, 2, n ist, so gilt
17) Vgl. a. a. O. 4b), S. 232.
18 Die folgende Beweisanordnung wurde bereits von Herrn Lavrentieff angewandt, iim

auf Grund seines schon unter 13) genannten Hilfssatzes die sehr bemerkenswerte Tatsache
zu beweisen, dafi auf einer beschrânkten Menge, welche die Ebene nicht zerlegt und die in
ihr nirgendsdicht und abgeschlossen ist, jede dort stetige Funktion gleichmâôig angenâhert
werden kann durch Polynôme.

19) Vgl. Enzyklopâdie der math. Wissensehaften, II, C 9a (Zoretti-Rosenthal), S. 986.
Entsprechendes gilt auch fur eine Schar konzentrischer Kreise.
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ZRv{z) — (k — 1) | ^l
— Jfc)| (n — K2

und somit

ô ZRM — x
O v=1

S. /Sate /: Zw jeder (beschrankten oder unbeschrankten) abgeschlossenen

Menge 301 vom Flachenmafi 0, zu jeder auf der Menge $Jl stetigen Funktion
f(z) und zu irgend einer fiir 0 < r < oo stetigen positiven Funktion e(r),
fur die lim e(r) 0 sein darf, gibt es eine solche meromorphe Funktion

F(z), dafi auf der Menge 93Î

gilL
\F(z)-f(z)\<e(\z\)

Es seien el9 e29 e3, positive Zahlen, fur die ex > e2> ez> und

lim en 0
n->oo

gilt. Setzt man ^n_x — sn— en+1, so sind rj0, rjl9 ebenfalls positive
Zahlen und es ist

00

Nach Satz la gibt es zu jeder positiven ganzen Zahl n eine rationale
Funktion Rn(z), fur welche

20) Man kann mit Hilfssatz 2a die Funktion f(z) auch direkt, ohne Benutzung des
Satzes von Weierstrafî, approximieren Dazu teilt man em Quadrat, das die Menge S0t

enthâlt, durch Parallelen zu den Seiten m so kleme Teilrechtecke em, dai3 m jedem dieser
Rechtecke die Funktion / (z) durch eme Konstante angenàhert werden kann Die Parallelen
werden aufierdem so gewàhlt, daB îhre Durchschmtte mit der Menge $Jl das lmeare MaB 0
haben. Durch Anwendung von Hilfssatz 2a nâhert man die Funktion f(z) zuerst auf jeder
der Teilmengen, m welche 501 durch die eme Parallelenschar zerschmtten wird, durch eine
rationale Funktion an. Nachher werden, wieder auf Grand von Hilfssatz 2 a, die zu diesen

Teilmengen gehorigen rationalen Funktionen durch eine emzige rationale Funktion an-
genâhert.
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ist auf derjenigen Teilmenge 50în von 501, fur die (n—1) ^\z\ ^n gilt.
Es soll nun durch vollstândige Induktion gezeigt werden, daB nach-
einander rationale Funktionen TQ(z), T1(z), T2(z), gefunden werden
kônnen, die folgenden Bedingungen genûgen :

I Tn{z)\ < rjn^ +rjn+ rjn+1 in 50ïn, n 1, 2, ; (4)

\Tn(z)\<Vn fur \z\<Zn—l, n=l,2,... ; (5)

| S Tv(z)—Rn+1(z) | -| Tn(z)—(Rn+1(z) — £ Tv(z))\< rjn in 50ln+1

n 0,1,2,... (6)

Angenommen, es gebe rationale Funktionen T0(z), Tx(z), Tn(z),
n

deren Summe Z Tv{z) die Bedingung (6) erfullt, so folgt zusammen mit

Ungleichung (3), daB in der Durchschnittsmenge 50ln+1 • 50în+2

\E Tv(z)~Rn+2(z)\ ^ |f Tv(z)-Rn+1(z)| + |Rn+1(z)-f(z)\+\ f(z)-Rn+2(z)\

< Vn + Vn+l + Vn+2 (7)

gilt. Da dièse Ungleichung nicht nur fur den Durchschnitt 50ln+1 • 50ln+2

der Menge 501 mit der Kreislinie \z\ n -f- 1, sondern auch noch fur eine
gewisse Umgebung gilt, gibt es eine positive Zahl A derart, daB die
Ungleichung (7) fur aile im Kreisringe

liegenden Punkte von 501 besteht. Weil die Menge 501 das FlâchenmaB 0

hat, liegen diejenigen unter den Kreislinien um den Punkt z 0, deren
Durchschnitt mit der Menge 501 das lineare MaB 0 hat, in der Ebene
dicht19). Insbesondere gibt es somit eine positive Zahl ô, die kleiner
als \A und kleiner als \ ist und der eine Kreislinie \z\ (n -f- 1) — ô

entspricht, deren Durchschnitt mit der Menge 50Î das lineare MaB 0 hat.
Da der Kreisring x n fi .^v(n -f- 1) — ù o ^ \z\ S ^ + 1 vy)

im Kreisringe (8) enthalten ist, gilt auf der Durchschnittsmenge der
Menge 501 mit dem Kreisringe (9) die Ungleichung (7). Wendet man den
Hilfssatz 2 c an, indem man fur die dort vorkommende rationale Funktion

n
8(z) die Funktion Rn,2(z) — 2 T(z) nimmt und indem man den dortigen
_ v—0

Note 19) siehe S. 99.
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Radius g durch (n + 1) — ô ersetzt, so ergibt sich die Existenz einer
rationalen Funktion Tn+1{z) mit folgenden Eigenschaften :

<rjn + r]n+1 + rjn+2, wenn z in 9JI, \z\ ^n+1, also insbesondere
in mn+1,

< ^n+i fur 1^1 âa(w+l) — 2 5, insbesondere fur |a:| ^n,
{z) — (i?n+2(z) — ZTv(z))\< rjn+1 in

Wenn also rationale Funktionen T0(z), Tx(z), Tn(z) existieren, deren
Summe die Bedingung (6) erfullt, so gibt es eine weitere rationale Funktion

Tn+l(z), welehe die Bedingungen, die aus (4), (5) und (6) durch die

Ersetzung von n durch n-\-\ entstehen, erfullen. Setzen wir nun

T0(z) Rx{z)
so ist

d. h., die Bedingung (6) ist fur n 0 erfullt, und somit folgt nach-
einander die Existenz der rationalen Funktionen Tx{z), T2(z), welehe
den Bedingungen (4), (5) und (6) geniigen.

00

Ist k irgend eine positive ganze Zahl, so konvergiert 2J Tv+1 (z) gleich-

mâBig im Kreisbereich \z\ <g k, denn wegen (5) und (2) ist

und gemâB (1) ist Km ek+2 0. Somit ist
ife->*00

F(z) Z Tv(z)

eine meromorphe Funktion. Aus (6), (4) und (5) folgt, daB in 9Jtfc

\F(z) — Rh{z)\ ^ \ZTv(z)- Rk(z)\ +1 Tk(z)\+ Z \ Tv(z)\

00

+ (*l*-i + rjk + Vh+i) + Z Vv •

Indem man damit (3), (2) und (1) verbindet, ergibt sich weiter, daB in 3Jlfc

\F(z)-f(z)\^\F(z)-Rk(z)\ + \Rk(z)-f(z)\<2 S Vv 2ek<e(\z\)

Da k eine beliebige positive Zahl ist, so gilt somit auf der ganzen Menge
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3. Wlirde man in Satz la und in Satz I die Voraussetzung, daB die
Menge 9JI abgeschlossen sei und das FlàchenmaB 0 habe, durch die
sehwâchere Voraussetzung, daB 3JI eine in der Ebene nirgendsdiehte
abgeschlossene Menge sei, ersetzen, so wurden zwei falsche Sâtze ent-
stehen; denn: Auf der beschrànkten in der Ebene nirgendsdichten abge-
schlossenen Menge 9t von Hilfssatz 4 kann nicht jede dort stetige Funktion
gleichmâBig durch rationale Funktionen (und somit, da 91 beschrânkt ist,
auch nicht durch meromorphe Funktionen) angenâhert werden. Eine solche

stetige Punktion ist z. B. | (|z|— 1), wie Hilfssatz 4 zeigt.

4. Doch braucht andererseits eine abgeschlossene Menge, auf der jede
dort stetige Funktion gleichmâBig durch meromorphe Funktionen an-
genàhert werden kann, nicht notwendigerweise vom FlàchenmaBe 0 zu
sein. Fur den Fall beschrànkter Mengen zeigen dies Sàtze von Hartogs21)
und Lavrentieff22). DaB es unbeschrànkte Mengen mit positivem FlàchenmaB

gibt, auf denen jede dort stetige Funktion gleichmàBig durch
meromorphe Funktionen angenâhert werden kann, wird durch den folgenden
Satz II belegt.

Satz II : Zu jeder in der Ebene nirgendsdichten abgeschlossenen Menge 9JÎ,

welche als Summe von Strahlen, die entweder vom Nullpunkte ausgehen oder

Teile solcher vom Nullpunkte ausgehender Strahlen sind, aufgefafit werden

kann, zu jeder auf S0Î stetigen Funktion f(z) und zu irgend einer fur
0 <g r < oo stetigen positiven Funktion e(r), fur die lim e(r) 0 sein darf,

r->oo

gibt es eine solche ganze Funktion O(z), dafi auf der Menge 9JI

giU
\O(z) — f{z)\<e(\z\)

Der Beweis ist demjenigen von Satz I âhnlich, jedoch wird jetzt der
Hilfssatz 3 c benutzt. Die positiven Zahlen ex, ^2, und rjl9 r}2, seien
wie im Abschnitt 2 dièses Paragraphen gewàhlt, sollen also den Bedin-

gungen (1) und (2) geniigen. Aus den iïber die Menge 9K gemachten Vor-
aussetzungen folgt leicht, daB der Durchschnitt SDÎn der Menge 2ft mit
dem Kreisringe n — 1 ^ | z \ ^ n abgeschlossen ist und daB jede Kom-
ponente23) von $Rn entweder ein Punkt oder eine Strecke ist. Nach dem

Approximationssatze von WeierstraB kann die Funktion f(z) auf jeder
dieser Komponenten durch Polynôme von z gleichmâBig angenâhert
werden. Daraus folgt, daB die Funktion f(z) auch auf der ganzen Menge
~~21)Vgl.a.a.O.4a), § 1.

22) Vgl. a. a. O. 5b), S. 25.
23 Komponente: zusammenhângende Teilmenge, die in keiner grôtëeren zusammen-

hângenden Teilmenge enthalten ist.
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gleichmâBig angenàhert werden kann durch Polynôme24). Es gibt
also ein Polynom Rn(z), welches auf der Menge 50tn die Bedingung (3)
erfiïllt. Angenommen, es gebe Polynçme T0(z)9 T^z), Tn(z), fur

n
deren Summe £ Tv{z) die Bedingung (6) erfullt ist, so besteht wiederum

v=-0

fur den Durchschnitt 50tn+1 • 50în+2 der Menge 501 mit der Kreislinie
\z\ n + 1 die Ungleichung (7). Sei ô, ô < J, eine so kleine positive
Zahl, daB dièse Ungleichung auch noch fur den Durchschnitt der Menge 501

n+2
mit dem Kreisring (9) gilt. Es ist leicht einzusehen, daB die Menge £ 50lv

das ÂuBere der Kreislinie \z\ (n-\-l) — ô nicht zerlegt und daB sie

mit dieser Kreislinie einen auf ihr nirgendsdichten Durchschnitt hat.
Nach Hilfssatz 3 c gibt es ein Polynom Tn+1(z) mit folgenden Eigen-
schaften :

I Tn+I(z)\ < Vn + Vn+i + Vn+2> wenn z in 501, \z\ ^n+1, also insbeson-
dere in 50ln+1

< Vn+i fi*r \z\ ^ (n + 1) — 2 ô erst recht fur \z\ ^ n

— (Rn+2(z) —ETv(z))\ < rjn+1, wenn z in 50ln+2

Wenn also Polynôme T0(z), Tx(z), Tn(z) existieren, deren Summe die

Bedingung (6) erfullt, so gibt es ein weiteres Polynom Tn+1(z), welches
die Bedingungen, die aus (4), (5) und (6) durch die Ersetzung von n durch
n + 1 entstehen, erfullt. Setzt man wiederum T0(z) R1(z), so erfullt
dièses Polynom die Bedingung (6) fiir n 0, und so folgt nacheinander
die Existenz von Polynomen Tt(z), T2(z), die den Bedingungen
(4), (5) und (6) genûgen. Ganz gleich wie beim Beweise von Satz I zeigt
man, daB ^

E\TV+I{z)\ <ek+2 fur \z\ £ h

und daB in 501
w

\ZTv(z)-f(z)\<e(\z\)

gilt. Da die Funktionen Tv(z) jetzt Polynôme sind, ist

O(z)=ZTv{z)
eine ganze Funktion. va*°

24) F. Hartogs und A. Rosenthal (a. a. O. *b), S. 233—234) haben nâmlich mit einem
einfachen tÎT^erdeckungsverfahren bewiesen, dafi wenn eine Funktion auf jeder Kom-
ponente einer beschrànkten abgesehlossenen Menge gleichmâBig durch Polynôme
angenàhert werden kann, dies auch auf der ganzen Menge môglich ist.
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Anmerkung : Dieser Beweis kann ubernommen werden zum Beweise
eines Satzes, der etwas allgemeiner ist als Satz II. Man darf nâmlich in
Satz II die Menge 501 ersetzen durch irgend eine in der Ebene nirgends-
dichte abgeschlossene Menge, bei der jede beschrànkte abgeschlossene
Teilmenge, welche mehr als einen Punkt enthàlt und zusammenhângend
ist, eine Strecke ist; denn nur dièse Eigenschaft der Menge 30Î spielte
beim Beweise eine Rolle.

§ 3. Gleichmâfiige Annâherung analytischer Funktionen durch mero-
morphe Funktionen auï abgeschlossenen Punktmengen, die unbe-

schrankt sein und innere Punkte enthalten dûrfen.

1. Satz III : Es sei vorgelegt

1. eine Folge von paarweise fremden (beschrânkten oder unbeschrànkten)
Gebieten ©1,©2j • ••> die sich nicht im Endlichen hàufen25), und eine

Folge von abgeschlossenen Mengen ^Rx, 9Jl2, wobei jede Menge 9JÎW

im entsprechenden Gebiete ©n enthalten ist ;
2. eine Folge von analytischenFunktionen fi(z), /2(z), ••• derart, dafi jede

Funktion fn(z) im entsprechenden Gebiete ©n regulâr und eindeutig ist;
3. eine positive Zahl s.

Dann gibt es eine meromorphe Funktion F(z), fur welche

\F(z)-fn(z)\<s
auf yjtn und

lim[F(z)-fn(z)] 0
3->0O

gleichmafiig auf 3Jîn gilt, n 1, 2,

Mit bekannten Methoden kann eine solche Folge von paarweise
fremden Bereichen S1>5B25--J die sich nicht im Endlichen hâufen,
gewâhlt werden, da8 a) der Bereich 23n im Gebiete ©w enthalten ist,
b) die Menge 3PÎW im Innern von 23n enthalten ist und c) jede beschrànkte
abgeschlossene Teilmenge des Randes bn von 58n aus endlich vielen

00 00

Strecken besteht. Der Durchschnitt von £ bn mit JJ SOln ist leer, denn

wegen Bedingung b) ist bn • 9Kn 0 und fur k $ n sind die Bereiche 93k

und $Bn und also auch die in ihnen enthaltenen Mengen bk und 50ln fremd.

25) Die Aussage: eine Folge von Mengen hâuft sich nicht im Endlichen, soll bedeuten,
daB irgend ein Kreisbereich nur mit endlich vielen unter diesen Mengen einen nicht leeren
Durchschnitt hat.
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Zudem sind die Summen Zbn und Z$Jln abgeschlossene Mengen, denn die
n=l n=l

Summanden sind abgeschlossen und hàufen sich nicht im Endlichen.
oo

Somit hat jede beschrànkte Teilmenge von Zbn einen positiven Abstand
OO 71=1 00

von 272Rn. Bezeichnen wir diejenige Teilmenge der Ràndersumme Zbn,

fur welche v— 1 S*\z\ ^ v ist, mit pv, (v 1, 2, so hat also pv
00

einen positiven Abstand ôv von ZWln. Da nur endlich viele unter den
n=»l

Bereichen 2$i, 332 > • • • m^ dem Ringe v — 1 ^\z\ ^ v einen nicht leeren
Durchschnitt haben und da der in diesem Ringe enthaltene Teil irgend
eines Randes bn aus endlich vielen Strecken besteht, setzt sich pv aus
endlich vielen Strecken zusammen. pv hat also eine endliche Lange lv.

Zu den positiven Zahlen ôv und den nicht negativen reellen Zahlen lv
bestimmen wir eine Folge von so kleinen positiven Zahlen ex, e2, daB

2jî^h<2ne (1)

und

Z evlv<\ (2)

Weil der Rand bn im Gebiete ©n liegt, ist die Funktion fn(z) auf bn

regulâr und eindeutig. Da auBerdem die Rânder b1,b2, ••• paarweise
fremd sind und da sie sich nicht im Endlichen hàufen, wird durch die

Festsetzung
f{a) fn(z) auf K, w=1;2)...

OO

eine auf Zbn stetige Funktion f(z) definiert. Da pv aus endlich vielen
n—l oo oo

Strecken besteht, hat Zbn Zpv das FlàchenmaB 0. Nach Satz I gibt
n=l v=l

es eine meromorphe Funktion F1(z), fur welche

\F1(z) — f(z)\<ev auf pv, v=1929...\ (3)

Dièse meromorphe Funktion Fx(z) nâhert also auf dem Rande bn des

Bereiches SBn die Funktion fn(z) an; hingegen ist es nicht gesagt, daB dies
auch im Innern von 93n gilt. Doch gelingt es durch Bildung gewisser
Intégrale, aus dieser Funktion F1(z) die gesuchte Funktion F(z) zu
gewinnen26). Bei den folgenden Integralen soll jeder vorkommende Teil

26) Die Anregung zur Verwendung dièses Kvmstgriffes verdanke ich Herm Prof. Pôlya.
Vgl. a. a. O. 7), Bd. 1, Abschnitt III, Nr. 158, S. 115 und S. 288, wo die Konstruktion der
Mittag-Lefflerschen E (z)-Funktion dargestellt ist.
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eines Randes hn in solchem Sinne durchlaufen werden, daB dabei der
Bereich 23n zur Linken liegt.

oo

Ist 9t irgend ein Bereich, der von der Rândersumme Upv einen posi-
v=l

tiven Abstand A hat, so stellt, gemàB einem bekannten Zusatz zur
Integralformel von Cauchy, das Intégral

: — z

eine in $ï regulàre analytische Funktion dar. Wegen (3) ist

im Bereiche 91. Hieraus folgt zusammen mit (2), daB U \Iv(z) \ im Bereiche

00 OO

% gleichmàBig konvergiert. Das liber den gesamten Rand Uipv

erstreckte Intégral ^

stellt also im Bereiche ?I eine dort regulàre analytische Funktion dar.
00

Da \t — z | > èv, wenn z in 27S0lw und tinpv enthalten ist, so haben die

Festsetzungen (3) und (1) zur Folge, daB

I(z)\ ^Z\IA*)\<i:-~h-<e inZmn (4)
l \^7l0 ln=l

AuBerdem strebt I(z) in ZWln gleichmàBig gegen 0, wenn z->oo. Zu

einer beliebig kleinen positiven Zabi rj kann nàmlich eine so groBe
positive Zahl N gewâhlt werden, daB

y €vlv ^l
ist, und auBerdem kann ein so groBer Radius R gewàhlt werden, daB
fur |z|> R

N-l
Z -

v-1

1

gilt, denn jeder der endlich vielen Summanden strebt in der ganzen
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Ebene gleichmâBig gegen 0, wenn z->oo. Fur diejenige Teilmenge von
00

fur die \z\> R ist, gilt also

Da zu einer beliebig kleinen positiven Zahl r\ ein solcher Radius R
existiert, ist somit

lim I(z) 0 gleichmâBig auf S $Rn (5)
2->oo n—1

Das Intégral /(a;) stellt insbesondere in jedem der Gebiete, aus denen

sich das Komplement von U^8n zusammensetzt, eine dort regulàre

analytische Funktion dar. Es soll gezeigt werden, daB durch analytische
Fortsetzung dieser Funktionen eine einzige meromorphe Funktion F2(z)
entsteht. Dazu wàhlt man einen Punkt z z0 auf dem Rande bn des

Bereiches Sn und ein so kleines Kreisgebiet il um diesen Punkt, daB sein
Durchschnitt mit bn aus einem einzigen Streckenzug t besteht. Das

Kreisgebiet ${ wird durch r in zwei Teilgebiete zerschnitten ; das eine, Rl9

gehôrt zur Komplementârmenge von £ 23w î das andere, 5l2, ist eineTeil-

menge vom Bereich SBn. Die Begrenzung von $i2 besteht aus dem Streckenzug

r und aus einem Bogen l der Peripherie von R. Da r zu bw gehôrt, ist
f(z) fn(z) auf r. Fur z z0 ist sowohl die Funktion fn(z), wie die an-
nâhernde Funktion Fx (z) regulàr und deshalb darf angenommen werden,
daB das Kreisgebiet Si so klein sei, daB beide Funktionen auch noch in
ihm und auf seinem Rande regulâr und eindeutig sind. Nach dem

Integralsatze von Cauchy ist in R±

J tt — z J t — z
l

wenn bei der Bildung dieser Intégrale die Kurven r und l so durchlaufen
werden, daB das Gebiet $t2 links liegt. Ist also F2(z) die analytische
Funktion, die im Gebiete 5lx durch das Intégral I(z) dargestellt wird, so

ist inftx

Der Ausdruck auf der rechten Seite dieser Gleichung stellt aber nicht nur
im Gebiete $tl9 sondern im ganzen Kreisgebiet Si eine dort regulàre
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analytische Funktion dar. Also kann die Funktion F2(z) durch die
Gleichung (6) auf den Randteil t und die innere Teilmenge 5l2 des Be-
reiches 23

n fortgesetzt werden. Im Gebiete 5l2 ist jedoch nach der Intégral-
formel von Cauchy

j *W fn{Z>

+
und somit

F2(z) I(z)-F1(z) + fn(z) (7)

Da im ganzen Innern des Bereiches 23n durch I(z) dieselbe analytische
Funktion dargestellt wird und da dort die Funktionen Fx(z) und fn(z)
bis auf Pôle regulàr sind, wird die Funktion F2 (z) durch die Gleichung (7)
auf das ganze Innere von 23

w fortgesetzt und ist dort bis auf Pôle regulàr.
Im Vorangehenden spielte es keine Rolle, um welchen Randpunkt

z z0 das Kreisgebiet Si gelegt wurde, also auch nicht, von welchem
Gebiet der Komplementârmenge von 23n man ausging und uber welchen
Teil des Randes bn die analytische Fortsetzung der in jenem Gebiete
durch I(z) dargestellten Funktion erfolgte. Da dièse tïberlegungen fur
n 1, 2, gelten, kann also die Funktion F2(z), die in irgend einem

00

Teilgebiet des Komplementes von £ 23n durch das Intégral I(z) darge-

stellt wird, auf die ganze Ebene fortgesetzt werden, ist dort bis auf Pôle

regulàr und genugt im Innern des Bereiches 23n, also insbesondere
auf der Menge S0în, der Gleichung (7). Die meromorphe Funktion

hat die geforderten Eigenschaften, denn da auf 9Jln

F(z) I(z) + fn(z)

ist, so folgt aus Ungleichung (4), daB auf 50ln

\F(z)-fn(z)\<e (8)
ist und aus (5), daB

lim[^(z)-/n(z)] 0
2->00

gleichmâBig auf 2Rn gilt, n 1, 2, ...27).

27) Dieser Beweis mufi nur wenig geàndert werden, um zu zeigen, dafi in Satz III fur
i ede Funktion fn (z eine im Gebiete ©n eindeutige und bis auf Pôle regui are Funktion
genommen werden darf.
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2. Abkurzungshalber moge von einer offenen Menge £> gesagt werden,
sie habe die Eigenschaft E, wenn sie folgende Bedingungen erfullt:
1. aile Komponenten23) von £) sind unbeschrankt ; 2. zu jeder Umgebung
U des unendlich fernen Punktes gibt es eine solche in U enthaltene
Umgebung 93 des unendlich fernen Punktes, da8 von jedem Punkt von
£> • 95 ein in £) • U liegender, stetig ins Unendliche fuhrender Streckenzug
ausgeht.

Zusatz zu Satz III : Wenn die in Satz III vorkommenden Mengen
<SR1, S0î2, speziell noch so beschaffen sind, daji die Komplementarmenge

00

von £ 9Jîn die Eigenschaft E hat, so kann fur die Annaherungsfunktion F (z)
n=l

eine ganze Funktion genommen werden28) 29).

Um diesen Zusatz zu beweisen, konnte man zeigen, dafi bei diesen

speziellen Voraussetzungen bereits fur die beim Beweis von Satz III
benutzte Hilfsfunktion Fx (z) eine ganze Funktion eintreten kann. Jedoch
kann auch so vorgegangen werden, da8 man zunachst die meromorphe
Funktion F (z), wie es beim Beweise von Satz III geschildert wurde,
konstruiert und dann nachtraglich ihre Pôle wegraumt. Die Pôle von F(z)
befinden sich, da auf 5Dtn die Ungleichung (8) gilt und da fn(z) dort regular

00

ist, auBerhalb der abgeschlossenen Menge £ 50in. So kann der Zusatz

offenbar zuruckgefuhrt werden auf den folgenden

Hilfssatz 5: Ist 501 eine (beschrankte oder unbeschrankte) abgeschlossene

Menge, deren Komplement die Eigenschaft E hat, so gibt es zu jeder mero-
morphenFunktionF(z), deren Pôle aujierhalb 9K liegen und zu einer beliebig
kleinen positiven Zahl e eine ganze Funktion 0(z), fur welche

\O(z)—F(z)\<e auf SR

Km [O(z)—F(z)] 0 gleichmajUg auf 501

0->oo

Note 23) s S. 103

28) Irrtumlicherweise fehlt in der a a O 10) zitierten C. R.-Note îm Théorème IV, das
von emer solchen Approximation dureh ganze Funktionen handelt, die notwendige Voi
aussetzung, daÔ die dortigen Bereiehe Dl9 D2, sieh nieht îm Endlichen haufen

29) Es gilt auch der folgende Zusatz zu Satz III Falls jedes der m Satz III
vorkommenden Gebiete (&l9 ©2, emfachzusammenhangend ist und keines
eme Umgebung des unendlich fernen Punktes enthalt, kann fur die
Annaherungsfunktion F(z) eme ganze Funktion genommen werden. Man kann
diesen Zusatz auf den obenstehenden zuruckfuhren, mdem man zeigt, daB unter diesen
Voraussetzungen in jedem Gebiete ©w eme solche die Menge <JKJln enthaltende abgeschlossene

Teilmenge 5Rn gewahlt werden kann, daô die Komplementarmenge von 23^ln die
Eigenschaft E hat. (Man nehme fur ^ln z B emen einfachzusammenhangenden Bereich,
dessen Rand sich aus Strecken zusammensetzt, die sich nicht im Endlichen haufen.)
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Dièse Môglichkeit, eine meromorphe Funktion auf einer gewissen
Menge durch eine ganze Funktion anzunàhern, ist von H. Bohr an einem
speziellen Beispiel dargestellt worden30). Die dort verwendete allgemeine
Konstruktionsmethode enthàlt ailes Wesentliche des nachfolgend skiz-
zierten Beweises von Hilfssatz 5. Zunàchst einige vorbereitende Bemer-
kungen :

a) Da die Pôle z px, z p2, von F(z) im Komplement von 501

liegen und da sie sich nicht im Endlichen hàufen, folgt aus der Eigen-
schaft E des Komplementes von 501: von jedem Pôle z pv(v 1, 2,

aus gibt es einen auBerhalb der Menge 501 stetig ins Unendliche fiihrenden
Streckenzug fv, und zwar kônnen die Streckenzuge fx, f2, so gewàhlt
werden, daB sie sich nicht im Endlichen hâufen.

b) Auf jedem Streckenzug [„ kann eine Folge von Punkten z pvl,
z pv2, so gewâhlt werden, daB das zwischen dem Punkte z pvn
und dem unendlich fernen Punkte liegende Teilstùck von fv auBerhalb der
durch \z\ ^ n definierten Kreisscheibe $tn liegt, n 1, 2,

c) Sei H1(z) eine meromorphe Funktion, z zx ein auBerhalb 501

liegender Pol von H1(z)i

wo Px(C) ein Polynom von C ohne konstantes Glied und K (z) eine
meromorphe Funktion ist, die fur z zx regulàr ist. Ist z z2 ein ebenfalls
auBerhalb 501 liegender Punkt, der mit dem Punkte z zx durch einen 501

nicht treffenden Streckenzug verbunden werden kann, so gibt es nach
Runge zu einer beliebig positiven Zahl rj ein solches Polynom P2(f) von C

ohne konstantes Glied, daB

gilt, wenn z in 501 enthalten ist. Die meromorphe Funktion

hat fur z zx keinen Pol, dafur aber fur z z2 ; aile ubrigen Pôle liegen
an denselben Stellen wie die Pôle von H1(z). In 501 ist

\H2(z)— H^Iktj
und fur die ganze Ebene gilt gleichmâfiig

Iim[iï2(z) — I
30) H. Bohr, Sitzungsberiehte der preuÛischen Akademie der Wissenschaften, phys.

math. Klasse, 1929, XXVI.
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Sei nun elt e2, eine Folge positiver Zahlen, fur die £ sn<s ist; Rn
n=-l

sei die Kreisscheibe \z\ ^ n (n 1, 2, ; ft0 sei die leere Menge;
ferner sei F0(z) F(z) gesetzt. Durch wiederholte Anwendung der vor-
angehenden Ûberlegungen a), b) und c) gelingt es leicht, nacheinander die
Existenz meromorpher Funktionen F1(z), F2(z), mit folgenden Eigen-
schaften einzusehen :

1. |i^(z)—i<V_i (*)!<*« auf m + K-i l

2. lim [Fn(z) —JPn-i(s)] 0 gleichmàBig fur die ganze Ebene;

3. die Pôle von Fn(z) liegen auBerhalb $01 + Rn und zwar so, daB von
jedem dieser Pôle aus ein stetig ins Unendliche ftihrender Streckenzug
ausgeht, der auBerhalb 901 + 5tn liegt; n 1, 2,

Die Folge der meromorphen Funktionen F1(z),F2(z), konvergiert in
jedem beschrânkten Bereiche gleichmàBig, denn fur irgend zwei positive
ganze Zahlen n und Je gilt im Kreisbereich ${n

n+k n+k
\Fn+k(z)—Fn(z)\ \ I (Fv(z)—Fr.l(z))\< Z ev<e.

v*n+l
Die Grenzfunktion

O(z) ]im Fn+k(z)=Fn(z)+ 1 (F^—F
ist in $tn regulàr, da die Funktionen Fn (z), Fn+1 (z), in Rn regulàr sind.
Weil dies fur beliebig groBe Werte von n gilt, ist G (z) eine ganze Funktion.
Auf der Menge 301 ist

\G(z) -F(z)\ \0(z) — F0(z)\ | 1 (Fn(z) —F^(z))\ < f en< s
n»l n=-l

Zudem strebt G (z) — F (z) auf der Menge $01 gleichmàBig gegen 0, wenn
z-> oo. Zu einer beliebig kleinen positiven Zahl rj gibt es nàmlich eine so

00

groBe positive Zahl N, daB £ en < \ rj ist ; ferner gibt es einen so groBen

Radius R, daB fur \z\ > R

ist, denn jeder der endlich vielen Summanden strebt in der ganzen Ebene

gleichmàBig gegen 0, wenn z-> oo. Also ist

\O(z)—F(z)\ <î:\Fn(z)-Fn

wenn z in SOI liegt und \z\> R ist. Die ganze Funktion G (z) hat also die
im Hilfssatz 5 angegebenen Eigenschaften.
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§ 4. Meromorphe Funktionen mit Strahlengrenzwerten.

1. F(z) F(re%(p) sei eine meromorphe Funktion, die auf jedem vom
Nullpunkte ausgehenden Strahl gegen einen endlichen Grenzwert oder

gegen den Grenzwert oo strebt, wenn r \z\ gegen oo strebt. Fur eine
solche Funktion ist also der Strahlengrenzwert

f(<p) ]imF(re*r)

eine fur jeden Punkt z e%(p der Einheitskreislinie e existierende Funktion.

Sie ist von der Klasse 0 oder 1 (d. h. stetig oder unstetig, aber
Grenzfunktion einer Folge stetiger Funktionen), denn ist rl9 r2, eine

Folge von Radien, die gegen oo streben und die so gewàhlt werden, da6
auf den entsprechenden Kreislinien | z | r1, \ z \ r2, keine Pôle der
Funktion F(z) liegen, so ist f(cp) Grenzfunktion der fiir 0 ^ (p ^ 2 n
stetigen Funktionen F{r^\ F(r2ei(p),

Die Analytizitàt der Funktion F(z) bewirkt jedoch, da8 die Funktion
f(<p) speziellere Eigenschaften hat. Sie hângen mit der Verteilung der-
jenigen Winkelràume, in denen F(z) fur z-> oo gleichmâBig gegen eine
Konstante strebt, zusammen. Ein abgeschlossener Winkelraum mit dem

Nullpunkt als Scheitel

oc ^ arc z ^ ^ (oc und fi reell, oc<P^oc + 2tz)

môge dann als ein Konvergenzwinkelraum der Funktion F(z) bezeichnet
werden, wenn entweder eine solche endliche Konstante c existiert, daB

lim (F(re^)-c) 0
r->-oo

gleichmâBig fiir oc ^ cp ^ p gilt, oder wenn

gleichmâBig fur oc ^ cp ^ p gilt. Ich werde zeigen, daB in jedem beliebigen
Winkelraum

ocq ^ arc z ^ /So (oco und /30 reell, oco < fiQ ^ oc0 + 2 n) (I)

ein Konvergenzwinkelraum der Funktion F (z) enthalten ist.
Dies soll vorerst fur denFall, daB F(z) eine grande Funktion ist und daB

der Strahlengrenzwert in jedem Punkt der Einheitskreislinie endlich ist,
nachgewiesen werden. Dann gehôrt F(z) einer von H. Bohr31) unter-

81) H. Bohr, Opuscula mathematica A. Wiman dedicata (Upsala 1930), S. 39—46,
s. S. 40.
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suchten Funktionenfamilie an, namlich der Familie derjenigen ganzen
Funktionen, die auf jedem vom Nullpunkte ausgehenden Strahl be-
schrankt sind. H. Bohr hat unter Anwendung eines bekannten Satzes

von Osgood bewiesen, daB bei einer solchen Funktion in jedem Winkel-
raum (I) ein abgeschlossener Winkelraum

oc ^ arc z ^ p (II)

#o ^S#< P ^S Po> enthalten ist, indem sie beschrankt ist Da fur die hier
betraehtete Funktion F(z) vorausgesetzt wird, da8 sie auf jedem vom
Nullpunkt ausgehenden Strahl (insbesondere also auf den Randstrahlen
des Winkelraumes (II)) gegen einen Grenzwert strebt, folgt aus dem
Lindelofschen Konvergenzsatze32), daB sie im Winkelraum (II) gleich-
maBig gegen eine Konstante strebt.

Um die Existenz eines solchen abgeschlossenen Konvergenzwinkel-
raumes (II) auch im allgemeinen Falle (d. h., wenn die meromorphe
Funktion F(z) nicht ganz ist und wenn auch der Wert oo als Strahlen-
grenzwert vorkommt) nachzuweisen, mussen die Bohrschen Ùberlegungen
etwas verallgemeinert werden33). Ich zeige, daB in jedem Winkelraum (I)
ein Winkelraum (II) enthalten ist, indem entweder |i^(z)| ^2 oder
|J^(z)| ^1 ist fur genugend groBe Werte von \z\. Die Annahme, ein
solcher Winkelraum existiere nicht, wurde nacheinander fur n — 1, 2

folgende Schlusse ermôglichen:

a) Da nicht fur jeden Wert von z, fur den \z\ > 2 n — 1 und #2n_2<
arc z < P2n~2 is^> \F (z) I ^ 1 gîlt, gibt es einen Wert z2n^1, fur den r2n-i z==z

l^2n-il>2^—h ot2n-2< BTcz2n^< P2n-2, und fur den \F(z2n^)\ < 1

ist. Wegen der Stetigkeit von F(z) im Punkte z z2w-i g^t es auch
noch einen diesen Punkt enthaltenden Bogen: \z\ r2n^1, (%2w_1< arc z

c2n-2<oc2n-lL< /S2w_x< ^2n_2, auf dem \F(z)\< 1 ist.

b) Da nicht fur jeden Wert von z, fur den | z\ > 2 n und oc2n-.x< arc z

< ^n-i ist, \F (z)\ ^2 gilt, gibt es einenWert z2 n, fur den r2n | z2n\> 2n,
&2n-1< arc z2n< f}2n-x, und fur den \F(z2n)\> 2 ist. Wegen der Stetigkeit

von -=--r im Punkte z z2n gibt es auch noch einen diesen Punkt

enthaltenden Bogen: \z\ r2n, oc2n< arc z < /?8tt, wobei a2tt-1< oc2n< (}2n

< p2n-i> auf dem \F(z)\> 2 ist.
82) E Lmdelàf, Acta Soc. Fenmcae, 35 (1909), Nr 7, s S 28

8S) Anregung zur folgenden Ûberlegung gab aufîer 81) ein von Herrn P Montel (Leçons
sur les Familles Normales, Paris 1927, s. S 209) und von Herrn C Carathéodory
(Bull. Amer. Math. Soc. 1928, S 721—725) bewiesener Satz uber konvergente Folgen
meromorpher Funktionen
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Ist y ein Wert des Durchschnittes aller ineinander geschachtelten
Intervalle (<xl9 pt), (oc2, (32), so ist

^1<fy)\<l und

Da sowohl Km r2n-i oo wie lim r2n= oo ist, wurde dies bedeuten, daB

die Funktion F(z) auf dem Strahle arc z y nicht konvergiert, wenn
| z | -> oo. Also gibt es im Winkelraum (I) einen abgeschlossenen Teil-
winkelraum

a ^ arc z ^ p {oco ^ oc < p ^ p0) (II)

und dazu einen so groBen Radius R, daB in derjenigen Teilmenge des

Winkelraumes (II), fur die \z\ > R ist, entweder |jF(2)| ^2 oder

nj-T ^ 1 ist34). Nach Lindelôf muB also im Winkelraum (II) entweder

F(z) oder-^r— gleichmàBig gegen eine endliche Konstante streben, wenn

z~>oo Der Winkelraum (II) ist somit ein Konvergenzwinkelraum.

Da in einem beliebigen Winkelraum (I) ein solcher Konvergenzwinkelraum

(II) enthalten ist, liegen diejenigen abgeschlossenen Winkelrâume
mit dem Nullpunkt als Scheitel, die Konvergenzwinkelrâume sind, dicht
in der Ebene. Daraus folgt insbesondere, daB die Konstanzintervalle des

Strahlengrenzwertes / (q>) auf der Kreislinie e dicht liegen, denn auf dem

Durchschnittsbogen eines jeden dieser Konvergenzwinkelrâume mit der
Kreislinie e ist f((p) konstant.

Zur Herleitung einer weiteren Eigenschaft der Funktion F (z) beachte

man, daB der Lindelôfsche Konvergenzsatz bereits unter der Voraus-
setzung, daB eine Funktion in einem Winkelraum bis auf Pôle regulàr ist
und daB sie dort mindestens drei Ausnahmewerte hat, anwendbar ist35) ;

d. h., wenn unsere Funktion F (z) in einem abgeschlossenen Winkelraum
mit dem Nullpunkt als Scheitel drei verschiedene Werte (von denen einer
oo sein darf) hôchstens endlich oft annimmt, so ist dieser Winkelraum
ein Konvergenzwinkelraum. Falls also ein vom Nullpunkt auslaufender
Strahl \ keinen Konvergenzwinkelraum der Funktion F(z) halbiert,
nimmt die Funktion F(z) in jedem Winkelraum, der durch f halbiert

84) Die bisherigen Ûberlegungen gelten nicht nur fur eine meromorphe Funktion F(z),
sondern fur jede Funktion F(z), bei der fur jeden endlichen Wert von z entweder F{z) oder
l:F(z) stetig ist.

85) Vgl. a. a. O. 82), S. 32 und P. Montel, Annales de l'Ecole Normale, 3, 29 (1912),
S. 487—535, s. S. 519; fur das folgende genûgt bereits das von Lindelôf Bewiesene.
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wird, aile Werte (einschlieBlich oo) mit Ausnahme von hôchstens zweien
unendlich oft an ; die Riehtung des Strahles \ ist demnaeh eine Juliasche
Bichtung der Funktion F(z) Andererseits ist die Riehtung des Halbie-
rungsstrahles eines Konvergenzwinkelraumes selbstverstândlich keine
Juliasche Riehtung. Somit ist die Menge der Juliaschen Richtungen
der Funktion F (z) identisch mit der Menge der Richtungen derjenigen im
Nullpunkt entspringenden Strahlen, die keinen Konvergenzwinkelraum
halbieren. Die Gesamtheit dieser Strahlen kann durch die Menge b ihrer
Schnittpunkte mit der Kreislinie e gekennzeichnet werden. Es ist un-
mittelbar ersichtlich, daB die Menge b abgeschlossen ist. Da in jedem
beliebigen Winkelraum (I) ein Konvergenzwinkelraum (II) enthalten ist,
ist die Menge b nirgendsdicht auf der Kreislinie e36).

Sei oc ^ arc z ^ fi ein Winkelraum, der keinen Punkt der Menge b

enthâlt. Jeder Strahl arc z cp, oc^<p^ fi, halbiert also einen
Konvergenzwinkelraum der Funktion F(z). Dann ist auch der ganze Winkelraum

oc^ arc z ^ fi ein Konvergenzwinkelraum. Ist nàmlich y die obère
Grenze aller reellen Zahlen tp, ip> oc, fur die der Winkelraum oc ^ arc
z 5j y) Konvergenzwinkelraum ist, so muB y > fi sein ; sonst gàbe es

eine positive Zahl e, der ein Konvergenzwinkelraum y — e ^ arc
z ^ y + s entspricht ; ofifenbar wàre dann auch der Winkelraum
oc ^ arc z ^ y + e ein Konvergenzwinkelraum. Setzt man insbesondere

fi oc + 2 n, so ergibt sich : wenn die meromorphe Funktion F (z) keine
Juliasche Riehtung besitzt, so strebt sie in der ganzen Ebene gleichmàBig
gegen eine endliche Konstante oder gegen oo, wenn z-> oo ; dann ist F(z)
eine rationale Funktion.

Dièse Ergebnisse kônnen folgendermaBen zusammengefaBt werden:
Satz IVa : Ist F(z) eine meromorphe Funktion, die auf jedem vom

Nullpunkt ausgehenden Strahl gegen einen endlichen Grenzwert oder gegen oo

strebt, wenn \z\-^>- oo, so schneiden diejenigen im Nullpunkt entspringenden
Strahlen, die Juliasche Richtungen aufweisen, die Einheitskreislinie e in
einer auf ihr nirgendsdichten abgeschlossenen Menge b. Der Strahlengrenz-
wert f((p) limF(rei(p) ist eine Funktion der Klasse 0 oder 1, deren

r-»*oo

Konstanzintervalle auf der Kreislinie e dicht liegen; f(<p) ist nâmlich min-
destens auf jedem zu b fremden Einheitskreisbogen konstant. In jedem

86) Es ist intéressant, dafi andererseits zu jeder abgeschlossenen Menge von Richtungen
eine ganze Funktion existiert, welche dièse Richtungen als Juliasche Richtungen besitzt ;
vgl. G. Pôlya, Math. Zeitsehrift 29 (1929) S. 549—640, s. S. 617. Aus den obenstehenden
Ûberlegungen folgt, dafi aber diejenigen vom Nullpunkt ausgehenden Strahlen, die zu-
gleich Juliasche Richtungen aufweisen und Konvergenzwege sind, in der Ebene nirgendsdicht

liegen, d. h., keine Winkelrâume bilden.
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abgeschlossenen Winkelraum, der den Nullpunkt als Scheitel besitzt und der
keinen Punkt der Menge b enthdlt, strebt F (z) sogar gleichmafîig gegen den

entsprechenden konstanten Strahlengrenzwert.

2. Durch den Satz IV a ist sowohl die Strahlengrenzwertfunktion der
meromorphen Funktion F(z), wie die Verteilung ihrer Juliaschen Rich-
tungen vollstàndig charakterisiert ; dies zeigt

Satz IVb : Zu jeder abgeschlossenen Teilmenge b der Einheitskreislinie e,
die auf e nirgendsdicht ist, und zu jeder auf e definierten Funktion f(cp), die
von der Klasse 0 oder 1 ist (die auch den Wert oo annehmen darf) und die
mindestens auf jedem zu b fremden Einheitskreisbogen konstant ist, gibt es

eine ganze Funktion G(z), welche 1. f(cp) als Strahlengrenzwertfunktion
besitzt, welche 2. in jedem abgeschlossenen Winkelraum mit dem Nullpunkt
als Scheitel, der keinen Punkt von b enthalt, gleichmâfitig gegen den

entsprechenden konstanten Strahlengrenzwert strebt und bei welcher S. die
Richtungen der vom Nullpunkt durch die Punkte der Menge b gelegten
Strahlen die Juliaschen Richtungen sind.

Da die Funktion / (ç?) von der Klasse 0 oder 1 ist, gibt es eine Folge von
Funktionen fi((p), f2(<p)> die auf der Kreislinie e stetig sind und die

gegen f(cp) konvergieren. Setzt man

und fur n 1, 2, :

Hre*) - fn(<p) + (n — r) (fn^{q>) — fn(<p)), wenn n — 1< r ^ n

so ist h(z) h(rei(p) eine in der ganzen Ebene stetige Funktion. Weil fur
n—1< r ^n

\ /M_x (<p) — fn

ist und die rechts stehende Difïerenz fur irgend einen festen Wert von cp

beliebig klein wird, wenn n genûgend groB ist, so ist

d. h., die stetige Funktion h (z) hat den Strahlengrenzwert f(q>).

Die Menge S, die aus allen vom Nullpunkt durch die Punkte der Menge
b fûhrenden Strahlen besteht, ist abgeschlossen und in derEbene nirgendsdicht.

Nach Satz II gibt es eine ganze Funktion 6?s (z), fur welche auf S
gleichmàfiig
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— h(z)\ O

z->oo

gilt und daher
Km Qçire*?) lim h(re*P) f((p)

ist, wenn e%<p in b enthalten ist.
Als offene Teilmenge der Kreislinie e besteht die Komplementârmenge

g e — b aus abzàhlbar vielen paarweise fremden ofïenen Bogen
g1? g2, 2Bn sei derjenige ofifene Winkelraum, der den Nullpunkt als
Scheitel besitzt und fur den 2Bn • e Qn ist. Ferner fn die abgeschlossene
Menge, die aus allen denjenigen Punkten des Winkelraumes 2Bn besteht,
deren Abstand von seiner Begrenzung gleich 1 ist, und 23n diejenige
abgeschlossene Teilmenge des Winkelraumes 2Bn, deren Punkte von der
Begrenzung von 2Bn mindestens den Abstand 2 haben. Einfache tïber-
legungen zeigen:

a) \n ist eine Kurve, die entweder aus zwei (nicht vom Nullpunkt aus-
gehenden) Strahlen oder (falls gM grôBer als der Halbkreis ist) aus einem
Kreisbogen und zwei von seinen Endpunkten ausgehenden Strahlen
besteht.

b) 93n ist ein Bereich, dessen Rand von derselben Art wie die eben

geschilderte Kurve fn ist.

c) Jeder abgeschlossene Winkelraum, der den Nullpunkt als Scheitel
hat und dessen Durchschnitt mit der Kreislinie e ganz im Bogen gn
enthalten ist, ist mit Ausnahme einer beschrànkten Teilmenge ganz im
Bereiche 33n enthalten.

d) Umgibt man jede der Mengen S, 93l5 232, fi, f2' ••• m^ dem-

jenigen Gebiet, das aus allen Punkten besteht, deren Abstand von der
Menge kleiner als ^ ist, so sind dièse Gebiete paarweise fremd und hàufen
sich nicht im Endlichen25).

e) Die Komplementârmenge von Q +^(58n + [n) hat die Eigenschaft,

die in § 3, 2. Abschnitt, als Eigenschaft E bezeichnet wurde.

Die Funktion f(<p) hat nach Voraussetzung auf dem Bogen gn einen
konstanten Wert cn, n 1, 2, Wir ordnen nun dem Bereiche 23n

dièse Konstante cn zu, falls sie endlich ist; hingegen ordnen wir ihm die
Funktion z zu, falls cn oo ist. Ferner wird der Kurve fn eine von cn

verschiedene endliche Konstante kn zugeordnet. SchlieBlich ordnet man
noch der Strahlenmenge S die bereits konstruierte ganze Funktion

6) g
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Gq(z) zu. Wendet man auf die abgeschlossenen Mengen S, JB1, 33 2, ••>

[x, f2, und die ihnen solchermaBen zugeordneten Funktionen und
Konstanten den Satz III und seinen Zusatz an, so ergibt sieh (unter
Beachtung der Bemerkungen d) und e)) die Existenz einer ganzen
Funktion G(z) mit folgenden Eigenschaften :

0 auf S ; (1)
Z->-0O

falls cn endlich: lim(G(z) — cn) =0 gleiehmàBig auf 23n
z + oo (^)

falls cn oo: lim(G(z) — z) 0 gleichmàBig auf <Sn}n l,2,...;
z-^oo

lim{O(z) — kn) 0 auf fn, n=l,2, (3)
Z->OO

Da lim ^(re*^) /(ç?) ist, wenn e*90 in b enthalten ist, so folgt aus (1),
r -> oo

daB lim G(ret9P) f(cp) ist, wenn et9P in b enthalten ist. Weil jeder vom
r ->-oo

Nullpunkt durch einen Punkt des Bogens Qn fûhrende Strahl mit Aus-
nahme einer beschrànkten Teilstrecke im Bereiche 23n verlâuft, so folgt
aus (2), daB lim.G(ret<p) cn f(cp) ist, wenn e%<p in Qn enthalten ist,

r->oo

n 1, 2, Da jeder Punkt der Kreislinie e entweder zur Menge b oder

zu einem der Bogen gl5 g2, gehôrt, hat somit die ganze Funktion G(z)
die vorgelegte Funktion f(cp) zut Strahlengrenzwertfunktion.

AuBerdem folgt aus (2), daB die Funktion G (z) in jedem abgeschlossenen
Winkelraum, der den Nullpunkt als Scheitel hat und dessen Durchsehnitt
mit der Kreislinie e ganz im Bogen gn enthalten ist, gleichmàBig gegen die
Konstante cn strebt, wenn z-> oo, n 1, 2, Es soll gezeigt werden,
daB die Funktion G (z) andererseits in jedem abgeschlossenen Winkelraum
2B*, der den Nullpunkt als Scheitel besitzt und dessen Durchsehnitt
SB* • e mit der Kreislinie e nicht ganz in einem der Bogen g1? g2,
enthalten ist, nicht gleichmàBig konvergiert, wenn z-> oo. (Jedoch ist es

môglich, daB f(cp) auf dem Durchschnittsbogen 2B*- e konstant ist, da
zwar vorausgesetzt wurde, daB f(<p) auf jedem Teilbogen gw konstant sei,
aber nicht umgekehrt, daB jeder Bogen, auf dem f(cp) konstant ist, in
einem der Bogen g1? g2, enthalten sei.) Da die Bogen g1? g2, auf e

dicht liegen, enthàlt der Bogen 2B* • e mindestens einen Teil eines ge-
wissen Bogens gn. Eine einfache Ûberlegung zeigt, daB der Winkelraum
2B* entweder die ganze Kurve ]n oder mindestens einen Teilstrahl dieser
Kurve enthàlt. Somit hat G (z) im Winkelraum 2B* einerseits den Wert cn,
andererseits, wegen (3), den davon verschiedenen Wert kn als asympto-
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tischen Wert und konvergiert also nicht gleichmaBig in 2B*, wenn z-+ oo
Insbesondere ist also keiner der Winkelraume, die durch einen vom Null-
punkt durch einen Punkt der Menge b gelegten Strahl halbiert werden,
ein Konvergenzwinkelraum der Funktion G(z). Nach dem bei der Her-
leitung von Satz IV a Gesagten ist jeder solche Strahl eine Juliasche
Richtung der Funktion (?(z)37).

3. Eine auf der Kreislinie e definierte Funktion / (99) kann also dann und
nur dann als Strahlengrenzwert einer meromorphen Funktion aufgefaBt
werden, wenn f(<p) von der Klasse 0 oder 1 ist und wenn die Bogen, auf
denen f(q>) konstant ist, auf e dicht liegen. Dasselbe gilt fur den
Strahlengrenzwert einer ganzen Funktion. So reduziert sich jede weitere Unter-
suchung des Strahlengrenzwertes f(cp) auf die Frage nach den Eigen-
schaften dieser besonderen Funktionen der Klassen 0 und l38). Die
folgenden Hilfssatze 6 und 7 dienen dazu, eine solche vervollstandigende
Untersuchung fur einen speziellen Fall durchzufuhren, namlich fur den
Fall, daB die Funktion f(q>) nur endlich viele verschiedene Werte an-
nimmt. Eine derartige Funktion ist ofïenbar in einem Punkt der Kreislinie

nur dann stetig, wenn dieser Punkt im Innern eines Konstanz-
intervalles liegt. Wenn f(<p) nur endlich viele, aber mindestens zwei
verschiedene Werte annimmt, ist demnach f(<p) nicht stetig, sondern von
der Klasse 1.

Hilfssatz 6 : Nimmt eine auf der Kreislinie e definierte Funktion f (9?) der
Klasse 1 nur endlich viele verschiedene Werte cx, c2, cn (wobei der Wert 00
vorkommen darf) an, so liegen die Konstanzintervalle von f (99) dicht auf der

37) Wahrend bei der hier konstruierten Funktion O(z) kem abgeschlossener Kon\ergenz-
wmkelraum vorkommt, der einen Strahl mit Juliascher Riehtung (wenn auch blofî als
Randstrahl) enthalt, gibt es ganze Funktionen, bei denen aile vom Nullpunkt aus-
gehenden Strahlen Konvergenzwege smd und bei denen abgeschlossene Konvergenz-
winkelraume vorkommen, deren Randstrahlen Juliasche Richtungen aufweisen. Beispiele
solcher Funktionen konnen mit den hier angewandten Methoden leicht gewonnen werden.

88) Aus dem Beweis von Satz IVb geht hervor, dafi aufier der Voraussetzung, dafi f(<p)
auf jedem zu b fremden Kreisbogen konstant ist, nur die Voraussetzung notig ist, dafi f(<p)
auf der Menge b von der Klasse 0 oder 1 ist; die Funktion f(<p) wird dann von selbst auf der
ganzen Kreislmie von der Klasse 0 oder 1. Dièse zweite Voraussetzung braucht sogar blofi
fur den perfekten Kern der Menge b gemacht zu werden. — Die Funktion f(q>) kann von
der Klasse 0, d. h. stetig sem; eme nicht konstante stetige Funktion kann sie jedoch nur
dann sein, wenn die Menge b die Mâchtigkeit des Kontmuums hat. — Daraus, dafi eme
perfekte nirgendsdichte Teilmenge der Kreislmie stetig auf emen Kreisbereich abgebildet
werden kann, folgt- 1. f{<p) kann eme stetige Funktion sem, die aile Werte emes Kreis-
bereiches annimmt; 2. f{<cp) kann eme Funktion sem, die aile Werte (emschliefihch den
Wert 00) annimmt; vgl. hiezu das Beispiel von W. Grofi, Math. Annalen 79 (1918),.
S. 201—211.
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Kreislinie e. Dieser Satz ist eine unmittelbare Folgerung aus dem be-
kannten Baireschen Satze uber Funktionen der Klasse 1. Es genugt, den
Fall zu betrachten, wo die von /(ç?) angenommenen Werte reell und be-
schrankt sind. Ist namlich a ein Wert, der von f(cp) nicht angenommen
wird und der auBerdem so gewahlt wird, da6 die absoluten Betrage
\ct — a |, | c2 — a\, \cn — a\ aile voneinander versehieden sind, so ist

7-7—7 r eine beschrankte réelle Funktion der Klasse 1, die nur endlich
\f(v)— a\
viele verschiedene Werte annimmt und deren Konstanzintervalle mit
denen der Funktion f((p) zusammenfallen. Nach Baire liegen bei einer
reellen endlichen Funktion, die auf e definiert und von der Klasse 1 ist, die
Stetigkeitspunkte dieht auf e39). Da im Falle, wo eine Funktion nur endlich

viele Werte annimmt auf e, jeder Stetigkeitspunkt im Innern eines
Konstanzintervalles enthalten sem muB, liegen somit auch die Konstanzintervalle

von f{cp) dicht auf e.

Hilfssatz 7 : Eine Funktion f((p), die auf der Kreislinie e definiert ist und
die dort nur endlich viele, mindestens aber zwei verschiedene Werte (unter
denen der Wert 00 vorkommen darf) annimmt, ist dann und nur dann von
der Klasse 1, wenn jeder dieser Werte auf einer Teilmenge von e angenommen
wird, die Summe von abzahlbar vielen abgeschlossenen Mengen ist. Dieser
Satz ist aus der Théorie der reellen Funktionen bekannt40); man sieht
leicht ein, daB er auch fur komplexe Funktionen gultig ist.

Die Verbindung der Satze IV a und IVb mit diesen Hilfssatzen ergibt:

Satz V : Damit eine auf der Kreislinie e definierte Funktion f(<p), die nur
endlich viele, jedoch mindestens zwei verschiedene Werte (unter denen der
Wert 00 vorkommen darf) annimmt, als Strahlengrenzwert einer mero-
morphen Funktion aufgefafit werden kann, ist nicht nur notwendig, sondern
auch hinreichend, dafi f (cp) von der Klasse 1 ist ; es ist also notwendig und
hinreichend, dafî jeder Wert in einer Teilmenge von e, die Summe abzahlbar
vieler abgeschlossener Mengen ist, angenommen wird. Die Bedingung ist
sogar hinreichend dafur, daB f(cp) als Strahlengrenzwert einer ganzen
Funktion aufgefaBt werden kann. Insbesondere ist damit die Antwort
auf die Frage, welche durch die in der Einleitung zitierte Pôlya-Szegosche
Aufgabe geweckt wurde, gegeben: Dafilr, dafi eine ganze Funktion
existiere, die auf einer vorgelegten Menge von Strahlen, die vom Nullpunkt

39) Vgl. z. B. C. de la Vallée Poussin, Intégrales de Lebesgue, Fonction
d'ensemble, Classe de Baire (Pans 1934), S. 136.

40) Vgl. a. a. O. "), S. 128.
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ausgehen, gegen 0, auf der Menge aller andern vom Nullpunkt ausgéhenden
Strahlen hingegen gegen oo strebt, wenn \ z | -> oo, ist notwendig und hin-
reichend, daji jede der beiden Strahlenmengen Summe abzdhlbar vieler ab-

geschlossener Mengen von Strahlen ist.

§ 5. Weitere Anwendungsmôglichkeiten

1. Anmerkungen zu den Sâtzen IVa und IVb: Aus dem Beweis von
Satz IVa geht unmittelbar hervor, daB bei einer meromorphen Funktion,
die zwar nicht auf allen vom Nullpunkt ausgéhenden Strahlen, aber
wenigstens auf allen vom Nullpunkt ausgéhenden Strahlen eines Winkel-
raumes gegen einen Grenzwert strebt, ein entsprechender Satz uber das
Verhalten der Funktion in diesem Winkelraum besteht. Ferner war es

unnôtig, vorauszusetzen, daB die Funktion F(z) in der ganzen Ebene
bis auf Pôle regulàr sei, vielmehr hâtte es geniigt, vorauszusetzen,
daB die Funktion F(z) in einer Umgebung der wesentlichen Singularitàt
z — oo eindeutig und bis auf Pôle regulâr sei.

Aueh kônnten die Sàtze IVa und IVb dadurch verallgemeinert werden,
daB an Stelle der Schar aller im Nullpunkt entspringenden Strahlen eine

gewisse allgemeinere Schar von kongruenten Kurven genommen wird.
Eine dieser Kurven wird dargestellt durch z f(t), wo f(t) eine fur
0 ^ t< oo stetige Funktion ist, bei der /(0) 0 ist und |/(<i)|< |/(*a)|
gilt, wenn tx < 12 ist ; die ganze Kurvenschar besteht aus allen zu dieser
Kurve kongruenten Kurven, welche ebenfalls vom Nullpunkt ausgehen.
(Dièse Ersetzung der Strahlen durch allgemeinere Kurven ist wohl-
bekannt bei der Juliaschen Verschàrfung des Picardschen Satzes.) Die
Hilfsmittel, die in dieser Arbeit benutzt wurden, genligen auch zum
Beweis dieser allgemeineren Sâtze. Man hàtte vorgangig zu zeigen, daB

im Satze II die dort vorkommende Strahlenmenge ersetzt werden dûrfe
durch eine in der Ebene nirgendsdichte abgeschlossene Menge, die sich aus
Kurven der eben geschilderten Art zusammensetzt. Dies gelingt durch
eine geringfiïgige Modification des Beweises von Satz II, denn der dort
benutzte Hilfssatz 3 c ist auch fur diesen allgemeineren Fall brauchbar.

2. Ganze Funktionen mit teilweise vorgegebenen Strahlengrenzwerten :
Beim Beweise von Satz IVb wurde der Satz II herangezogen, um eine

ganze Funktion O^z) zu gewinnen, die auf der nirgendsdichten abge-
schlossenen Teilmenge b der Kreislinie e eine (dort beliebige) Funktion
der Klasse 0 oder 1 als Strahlengrenzwert aufweist. Der Satz II erlaubt
eine etwas allgemeinere Anwendung, nâmlich
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Satz VI : Zu jeder Teilmenge m der Kreislinie e, welche Summe ist von
abzâhlbar vielen auf e nirgendsdichten abgeschlossenen Mengen, und zu jeder
Funktion f(cp), die auf m definiert und von der Klasse 0 oder 1 ist (und die
auch den Wert oo annehmen darf), gibt es eine ganze Funktion G(z), welche

auf der Menge m die Funktion f(cp) zur Strahlengrenzwertfunktion
UmG(rei<p)hat.
f->00

Sei nàmlich m m1 + îtt2 + * " > wobei jede Menge mn (n 1,2,...)
eine nirgendsdichte abgesehlossene Teilmenge der Kreislinie e ist, und sei

f(cp) — Uni fn((p), wobei jede Funktion fn(<p) (n 1,2,...) auf der Menge
n->oo

m definiert und stetig ist. Ist Qn die Streckenmenge, fur welche (n — 1) ^
z

r \z\ < n gilt und fur welche ê9 j--r in der nirgendsdichten abge-
n \Z\ oo

schlossenen Teilmenge E mv der Kreislinie e enthalten ist, so ist Z Sn S
v=l n==l

eine Strahlenmenge, fur welche die Voraussetzungen von Satz II erfullt
sind. Setzt man

h(0) 0 fo(<p)

und fur jeden in der Menge Sn enthaltenen Wert z

so ist h(z) eine auf der Menge Q stetige Funktion. Wenn (n — 1) ^ r < n
n

ist und e%<p in Z mv enthalten ist, so gilt

Ist eirp in m 2"^ enthalten, so ist also

lim (h(re^) — f(q>)) 0

Nach Satz II existiert eine solche ganze Funktion G(z), da6 auf der
Strahlenmenge S r lrn ^ A& lim ((?(^) — A (z)) 0

ist. Wenn ei(p in m enthalten ist, so gilt somit

lim (G(re^)-h(re^)) 0
r ->oo

und daher
lim (G(re%9) — f(cp)) 0
f->00
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Da auf einer abzàhlbaren Punktmenge jede Funktion von der Klasse 0

oder 1 ist, so folgt aus Satz VI insbesondere, da6 zu jeder abzàhlbaren

Menge rtt von Punkten der Kreislinie e und zu irgend einer auf m definierten
Funktion f(<p) (die auch den Wert oo annehmen darf) eine ganze Funktion
existiert, die auf der Menge m die Funktion f(q>) zur Strahlengrenzwert'
funktion hat. Durch nochmalige Spezialisierung ergibt sich z. B. die
Existenz einer ganzen Funktion, die auf einer in der Kreislinie e dicht
liegenden Punktfolge nti den Strahlengrenzwert 0, auf einer zu nti
fremden, in der Kreislinie e dicht liegenden Punktfolge m2 hingegen den
Strahlengrenzwert oo hat und bei der somit (gemàfi den beim Beweise

von Satz IV a ausgefiihrten Ûberlegungen) auf einer ebenfalls dichten
Teilmenge der Kreislinie e kein Strahlengrenzwert existieren kann.

3. Sàtze ûber Funktionen, die in einem Kreisgebiet bis auf Pôle regular
sind: Wenn man in den Beweisen der Sàtze I und II die dort vorkom-
mende Radienfolge 1, 2, n, ersetzt durch eine wachsende Radien-
folge rx, r2, rn, fur die lim rn 1 ist, so gehen aus jenen Beweisen

«->-00

die Beweise der folgenden Sâtze I' und II7 hervor.

Satz V : Zu jeder Teilmenge 501 des Einheitskreisgebietes \z\ < 1, welche

in diesem Gebiet abgeschlossen ist und welche das Flàchenmafi 0 hat, zu jeder
auf 501 stetigen Funktion f (z) und zu irgend einer fur 0 fg r < 1 stetigen
positiven Funktion e(r), fur welche lim e(r) 0 sein darf, gibt es eine der-

r->i

artige im Einheitskreisgebiet bis auf Pôle regulare Funktion F(z), daji auf
der Menge 501

F(z)—f(z)\<e(\z\)
gilt.

Satz IV : Zu jeder Teilmenge 9JI des Einheitskreisgebietes, welche in
diesem Oebiete abgeschlossen und nirgendsdicht ist und welche dis Summe

von lauter Radienteilstrecken, von wdchen ein Endpunkt auf der Kreislinie

| z | 1 liegt, aufgefa/it werden kann, zu jeder auf 501 stetigen Funktion
f(z) und zu irgend einer fur 0 <£ r < 1 stetigen positiven Funktion e(r), filr
welche lim s (r) 0 sein darf, gibt es eine derartige im Einheitskreisgebiet

regulare Funktion F (z), dafi auf der Menge 501

\F(z)~f(z)\<e(\z\)
gilt.

Bei beiden Sàtzen ist zu beachten, da8 die Funktion / (z) nicht auf der
abgeschlossenen Huile der Menge 501 stetig zu sein braucht, sondern nur
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auf der im Gebiete | z \ < 1 enthaltenen (und in ihm abgeschlossenen)
Menge SOI selbst. Dièse Sâtze kônnen benutzt werden, um die Existenz
von Funktionen, die im Innern einer Kreislinie bis auf Pôle regulâr sind
und die gewisse Randbedingungen erfullen, nachzuweisen. Zum Beispiel
folgt aus dem Satz II ' (ganz entsprechend wie aus dem Satz II der Satz VI
hergeleitet wurde)

Satz VI': Zu jeder Teilmenge m der Kreislinie \z\ 1, welche Summe
ist von abzâhlbar vielen auf der Kreislinie nirgendsdichten abgeschlossenen

Mengen und zu jeder Funktion f(<p), die auf m definiert und von der
Klasse 0 oder 1 ist (und die auch den Wert oo annehmen darf), gibt es eine

fur \z\ < 1 regulàre Funktion F(z), welche auf der Menge m den radialen
Grenzwert f((p) hat, d. h., fur welche UmF(rei(p) f((p) gilt, wenn e%cp in m
enthalten ist. r~>1

Ist m eine abzâhlbare Menge von Punkten, so kann fur f(<p) irgend eine
dort definierte Funktion genommen werden, da f(cp) dann von selbst von
der Klasse 0 oder 1 ist. 40)

(Eingegangen den 14. September 1938.)

40) Von anderen Anwendungsmôglichkeiten hebe ich einen Satz von G. D. Birkhoff
(Comptes Rendus Paris 189 (1929), S. 473—475) und einen Satz von A. Haar (Gôttinger
Nachrichten 1914, S. 115—123, vergl. auch G. Pôlya, Annals of Mathematics, Bd. 34
(1933), S. 731 — 777, insbesondere S. 738—741) hervor, die beide leicht aus den Ûber-
legungen von § 3 folgen. Eine Verallgemeinerung des Satzes von Haar, betreffend die
Zerlegung einer singulâren Linie, befindet sich bei N. Aronszajn, Sur les décompositions
des fonctions analytiques uniformes et sur leurs applications (Thèse, Paris 1935).
Satz III von § 3 weist Beruhrungspunkte auf mit dem Théorème B der interessanten
Abhandlung des Herrn Aronszajn, die mir erst wàhrend der Korrektur der vorliegenden
Arbeit bekannt wurde.
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