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Uber faserungstreue Abbildungen der Sphéren
Von H. Hopr und M. RuEgrr, Ziirich

1. Wir erinnern zunéchst an einen bekannten Satz iiber die n-dimen-
sionalen Sphiren und eine Folgerung aus ihm; ein analoger Satz mit einer
analogen Folgerung wird den eigentlichen Inhalt dieser Note bilden.

Ist x ein Punkt der n-dimensionalen Sphére 87, so bezeichnen wir durch
—« seinen Antipoden auf S™ Eine Abbildung f der §* in sich heille
,.gerade‘, falls

f(—2x) = f(x) , (1a)

und ,,ungerade‘‘, falls

f(—x) = —f() (1b)

fir jeden Punkt « der S” ist; ein Antipodenpaar wird also durch eine
gerade Abbildung auf einen Punkt, durch eine ungerade Abbildung
wieder auf ein Antipodenpaar abgebildet. Es gilt

Satz A. Jede gerade Abbildung der S™ in sich hat geraden, jede
ungerade Abbildung ungeraden Abbildungsgrad?!).

Der Teil des Satzes, der sich auf die geraden Abbildungen bezieht, ist
sehr leicht zu beweisen: durch Identifizierung je zweier antipodischer
Punkte der S™ entsteht ein projektiver Raum P sowie eine Abbildung p
der 8* auf P; unter der Voraussetzung (1a) gibt es eine Abbildung f’ von
P in 8 mit f = f'p; sind ¢,, ¢, ¢, die Abbildungsgrade mod. 2 der
genannten Abbildungen, so ist ¢, = ¢, - ¢,, also, da ¢, = 0 ist, auch
¢; = 0 mod. 2.

Der zweite Teil des Satzes A ist nicht so einfach zu beweisen; er
stammt von K. Borsuk?). Es lassen sich aus ihm interessante Folgerungen
ziehen, von denen wir hier die folgende anfiihren3):

P>

Satz B. Auf der Sphire 8, die durch

Jai=1 (2)

1) Unter einer ,,Abbildung‘‘ soll immer eine stetige Abbildung verstanden werden.

?) Fund. Math. 20 (1933), S. 177. — Neue Darstellung des Beweises : Alexzandroff-Hopf,
Topologie I (Berlin 1935), S. 483. — Anderer Beweis: G. Hirsch, Bull. Acad. r. d. Bel-
gique (Classe des Sciences) XXIII (1937), p. 219. — Noch ein Beweis ergibt sich, wenn man
in Nr. 7 und 8 der vorliegenden Arbeit den komplexen projektiven Raum K, durch den
reellen Pn ersetzt.

3) Alexandroff-Hopf, a. a. O., S. 485, Satz VIII.
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erklirt ist, seien n stetige reelle Funktionen f.(x,, ..., %), r =1,...,n,
gegeben, die ungerade sind, d. h. die Gleichungen

fr(_xla "'s_xn+1) = —‘fr(xla cevy xn+1) (3)
erfilllen. Dann besitzen die f, auf der S™ gemeinsame Nullstellen.

Demnach besitzt insbesondere jedes Gleichungssystem

fr @y, oo, ) =0, r=1,...,n, (4)
in welchem die f, fiir alle (z,, ..., z,,,) stetig und homogen von ungeraden
Graden sind, eine nicht-triviale, d. h. von (0, ..., 0) verschiedene, Losung.

Dies ist in dem Spezialfall, in dem die f, Linearformen sind, ein bekannter
elementarer Satz.

2. Dieser elementare Satz bleibt bekanntlich giiltig, wenn man unter
den z; und den f, komplexe Veranderliche und komplexe Funktionen ver-
steht; es erhebt sich die Frage nach allgemeineren Bedingungen, unter
denen das System (4) im Komplexen eine nicht-triviale Losung besitzt,
also im wesentlichen die Frage nach einem ,, komplexen Analogon‘ des
Satzes B.

Um ein solches Analogon aussprechen zu konnen, stellen wir dem
Begriff der Ungeradheit einer Funktion, der durch (3) gegeben ist, sowie
dem &hnlichen der Geradheit den folgenden an die Seite: Die komplexe
Funktion f(z,, ..., 2,,,) der komplexen Veranderlichen z; heile ,,schwach
homogen vom Grade m‘‘, wenn fiir jedes komplexe A vom Betrage 1 die
Funktionalgleichung

f(lzh""zzn-{-l)::A‘m'f(zlbﬂ'azn—}-l) (5)

erfiillt ist. Zum Beispiel sind
2, - w2 -2 -3 P -
212 — 2123 21 +212, 2121 1 2529

Funktionen, die schwach homogen von den Graden -+ 1, —2 bzw. 0 sind.
Jede Funktion, die im gewohnlichen Sinne homogen vom m-ten Grade ist,
ist natiirlich schwach homogen von demselben Grade.

Nun gilt, in Analogie zum Satz B,

Satz II. Fir n+l
2 2z, =1 (6)
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seien n stetige komplexe Funktionen f.(z,,...,2,.,), r=1,...,n, der
komplexen Verdnderlichen z, ..., z,., gegeben; sie seien schwach homogen
von Graden m, , die simtlich £ 0 sind. Dann besitzen die f, auf der Sphire (6)
gemeinsame Nullstellen.

Darin ist enthalten, dal sich die Frage, die wir an das System (4)
angekniipft haben, folgendermaflen beantworten lafit: Das komplexe
Gleichungssystem

Fl#n, roms Bpgn) = @, r=1,...,7n, (47)
in dem die f, fiir alle (z,, ..., 2,,,) stetig seien, besitzt gewil dann eine von
(0, ..., 0) verschiedene Losung, wenn jede Funktion f, schwach homogen

mit einem von 0 verschiedenen Grade ist.

3. Der Satz IT wird sich als Korollar eines Satzes I ergeben, der seiner-
seits ein Analogon zum Satz A darstellt und den wir auch an sich, abge-
sehen von seiner Anwendbarkeit auf den Beweis des Satzes II, fiir inter-
essant halten; seine Behandlung ist unser eigentliches Ziel. Um zu ihm zu
gelangen, iibertragen wir die Begriffe, die im Satz A auftreten, ins
Komplexe. Hierfiir betrachten wir die Sphare S?+1, die in reellen Koordi-

naten x, durch
2n42

2
k=1
gegeben ist, oder, wenn wir
Xgjmq + 1Xg; = 2; , 1=1...,n+1,

setzen, durch (6).

Die Zusammenfassung von Punkten der Sphéare (2) zu Antipodenpaaren
geschieht durch die Festsetzung: die Punkte (z,,...,z,.,) und

(¢1, ..., z,,,) gehoren zu einem Paar, wenn
x; = Ax;, j=1,...,n+1,
mit A = + 1 oder 4 = —1 ist; hiermit gleichbedeutend ist die Be-
dingung:
Ty DXyt e Xy =y Ly Xy
In analoger Weise fassen wir jetzt Punkte (z,, ..., 2,,;) und (2, ..., 2,,1)

in eine Klasse zusammen, wenn es ein 1 = e?f gibt, so dal

Zy=¢z;, j=1,...,n4+1, (7a)

ist, oder, was damit gleichbedeutend ist, wenn die Proportion
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A ANNRT PR LT TG (7b)
besteht.

Man iiberzeugt sich leicht von den folgenden Tatsachen: durch diese
Vorschrift wird die Menge aller Punkte der S2*+! in zueinander fremde
Klassen zerlegt; jede dieser Klassen ist ein GroBkreis; es geht also durch
jeden Punkt genau einer dieser Kreise; variiert ein Punkt stetig auf der
S+l g0 variiert auch der durch ihn gehende Kreis stetig; durch eine
unitare Transformation der z, kann man die 82*+1 topologisch so auf sich
abbilden, daf3 dieses System von Kreisen in sich iibergeht und dabei ein
willkiirlich vorgeschriebener unserer Kreise auf einen willkiirlich vor-
geschriebenen Kreis des Systems abgebildet wird?). Alles dies 1a8t sich
dahin zusammenfassen: es liegt eine ,,Faserung“ der S2*+! vor, deren
Fasern GrofBkreise sind und die homogen ist, d. h. keine Ausnahmefaser
besitzt’). Wir bezeichnen diese Faserung immer durch .

Die geraden und die ungeraden Abbildungen der Sphare S*, die wir in
Nr. 1 betrachtet haben, sind unter allen Abbildungen der 8" in sich da-
durch ausgezeichnet, daB jedes Antipodenpaar « in ein Antipodenpaar o’
abgebildet wird; indem wir die Punktepaare als 0-dimensionale Spharen
auffassen, konnen wir jeder Abbildung von « in «’ einen Abbildungs-
grad ¢ mod. 2 zuordnen, und zwar ist dieser = 0 oder = 1, je nachdem
« nur auf einen der beiden Punkte von &’ oder auf das ganze Paar «’ ab-
gebildet wird. Ist nun f eine gerade oder ungerade Abbildung der S§* in
sich, fiir welche ¢, den Grad mod. 2 der durch f bewirkten Abbildungen
der Paare « in die ihnen zugeordneten Paare «’ bezeichnet, wiahrend c, der
Grad von f selbst ist, so 148t sich der Satz A in der Kongruenz

¢ = ¢ mod. 2
zusammenfassen.

In analoger Weise betrachten wir jetzt Abbildungen f der §2**1 in sich,
welche beziiglich § ,,faserungstreu‘ sind, d. h. durch welche jede Faser 8
von § in eine Faser 8/ von § abgebildet wird. Alle Fasern seien im Sinne
des wachsenden Parameters ¢, der in (7a) auftritt, orientiert; dann hat fir
jedes B die Abbildung von B in p’ einen bestimmten Grad; aus nahe-
liegenden Stetigkeitsgriinden héangt er nicht von der speziellen Faser § ab;
wir bezeichnen ihn mit ¢,. Die Frage ist nun die, was fiir ein Zusammen-

4) Man kann dieses System von Kreisen auch charakterisieren als den Schnitt der
Sphéare S2n+1 mit dem Biindel der ,,komplexen Geraden‘ durch den Nullpunkt des
euklidischen Raumes R2n+2, wenn dieser als (n -}- 1)-dimensionaler komplexer Raum auf-
gefallt wird.

5) H. Setfert, Acta math. 60 (1932), S. 147.
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hang zwischen dem Grade ¢, der Abbildung f und dem Grade ¢, besteht;
sie wird durch den folgenden Satz beantwortet®).

Satz 1. Es sei f eine Abbildung®) der Sphdre S2+1 in sich, welche beziiglich

& faserungstreu ist; der Grad der Abbildungen der einzelnen Fasern sei ,.
Dann ist der Grad c, von f durch

— n+1
¢ = ¢

bestimmdt.

Per Beweis wird in den Nummern 7—10 erbracht werden.

4. Beispiele zum Satz I mit beliebigem n = 0 und beliebigem ¢, =~ 0
sind leicht anzugeben. Eine Abbildung f der 82#+! in sich, die durch

2 = f3 (Bys 0ues Bppa) s j=1,...,n4+1,

gegeben ist, ist offenbar dann und nur dann faserungstreu, wenn die f,
Funktionalgleichungen

fa'(e” Rys oy eit zn—}-l) = eilp .fj (zla tee zn—[—l) (8)
erfiillen, wobei y eine stetige Funktion von ¢ und den z; ist, welche

folgende Periodizitats-Eigenschaft hat — wir schreiben statt (2, ..
kurz z —:

"zn-i-l)
pyt+2m;2)=9p(;2)+c 27 ; (9)

hierin ist ¢ eine ganze Zahl, und zwar ist diese offenbar mit dem oben
eingefiihrten Grad ¢, identisch.

Insbesondere sieht man: Sind die Funktionen f; schwach homogen von
dem gleichen Grade m, so ist die Abbildung f faserungstreu, und es ist
¢, = m. Denn die schwache Homogenitat der f; driickt sich in den
Gleichungen (8) mit

p (t;2) = mt (9)
aus?).

%) Fiir n = 1 bereits von M. Rueff, Comp. Math. VI (1938), S.[39], bewiesen; die
dortige Beweismethode ist vorlaufig nur fiir 3-dimensionale Mannigfaltigkeiten schliissig,
dann allerdings nicht nur fiir die Sphéire (a. a. O., S.[41]). Es ist anzunehmen, da8 es
Verallgemeinerungen des obigen Satzes I gibt, die sich auf faserungstreue Abbildungen
beliebiger Mannigfaltigkeiten beziehen.

7) Der Beweis des Satzes II (Nr. 8) zeigt, daB sich dieser Satz auch auf Funktionen aus-
dehnen 1a8t, die insofern allgemeiner sind als die schwach homogenen, als an Stelle der
Funktionalgleichung (9’) auch (9) treten darf.
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Dieser Spezialfall liegt in den folgenden Beispielen vor:

m
! %

= —_ fiir m=0, 10a
VT oo
e
™
2= —»t—— fir m<o0 ; 10b
P Ve How
e

sie zeigen, dal} es fiir jedes n faserungstreue Abbildungen f mit willkiir-
lichem ¢, = m gibt.

b. Die Abbildung f, die durch (10b) mit m = — 1, also durch

) -
z; = 2;

gegeben ist, gibt zu der folgenden Bemerkung AnlaB. Sie ist offenbar ein-
eindeutig, und sie hat den Grad ¢, = (— 1)**!; letzteres ergibt sich sowohl
aus Satz I als auch durch eine ganz elementare Betrachtung; bei geradem
n hat sie also den Grad — 1; andererseits hat nach Satz I bei ungeradem
n eine faserungstreue Abbildung niemals negativen Grad?®). Wir sehen
also:

Bei geradem m, jedoch micht bei ungeradem m, gibt es topologische und
faserungstreue Abbildungen der S+l aquf sich, welche die Orientierung
umkehren.

Hierzu ist kein ,,reelles’“ Analogon im Rahmen der Betrachtungen aus
Nr. 1 vorhanden; denn fiir jedes n ist die Spiegelung der 8" an einer
n-dimensionalen Ebene durch ihren Mittelpunkt eine topologische und
antipodentreue Abbildung, welche die Orientierung umkehrt.

6. Wir zeigen jetzt, daBl der Satz IT (Nr. 2) aus dem Satz I folgt.

Es seien f, die im Satz II genannten n Funktionen. Wir setzen
|my - my ... - m,| = m und

m
, m
f,.=f™ ., wenn m,>0 ,
m_
/= f, ™  wenn m,<0

ist; (dabei bezeichnet f, den zu f, konjugiert komplexen Wert). Die f/ sind
ebenfalls auf der §%"+!, die durch (6) gegeben ist, stetig, und sie sind
samtlich schwach homogen vom Grade m.

8) Man beachte iibrigens, da sowohl das Vorzeichen von c¢; unabhéngig von der
Orientierung der S2#+1 als auch das Vorzeichen von ¢, unabhéngig von der in Nr. 3 fest-
gelegten Orientierung der Fasern ist.
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Hitten die f,, und damit auch die f,, keine gemeinsame Nullstelle, so
waren die n -+ 1 Funktionen

I
gr:——-_:_———___—; ’
LSIVAE

[

gn+1 = 0

ebenfalls stetig auf der §2+1; sie wiren schwach homogen vom Grade m —
(die identisch verschwindende Funktion g, , ist homogen von jedem

Grade) —, und es ware
n+1

2 giP=1;

j=1
durch .
2 =0;(2, s 2p), J=1,...,n+1

wire daher eine Abbildung g der §2#+1 in sich gegeben, die faserungstreu
mit ¢, = m % 0 ware (Nr. 4); andererseits lage das Bild g(82*t!) ganz
in der Ebene z,,, = 0, es wire also ein echter Teil von §2*+1, und daher
wire ¢, = 0. Man wiirde also einen Widerspruch zum Satz I erhalten;
folglich haben die f, eine gemeinsame Nullstelle.

7. Beweis des Satzes I (Nr. 3). Unter K, verstehen wir die Mannigfaltig-
keit der komplexen Punkte des n-dimensionalen projektiven Raumes,
also die Mannigfaltigkeit aller Verhéaltnisse z,:2z,:...:2,,, komplexer
Zahlen, 0:0: ...: 0 ausgeschlossen; bekanntlich ist K, eine 2n-dimen-
sionale geschlossene orientierbare Mannigfaltigkeit?). Ordnen wir jedem
Punkt (z,, 2,, ..., 2,,,) unserer durch (6) gegebenen Sphare S%*+! das
Verhaltnis z,:2,:...:2,,, zu, so entsteht eine stetige Abbildung p von
82741 auf K, ; dabei sind, wie aus der Charakterisierung (7b) der Faserung
& hervorgeht, die Urbilder der einzelnen Punkte von K, gerade die
Fasern von .

Ist f eine faserungstreue Abbildung der S2»+! in sich, und bezeichnen
wir fiir jede Faser B diejenige Faser, in welcher f(8) liegt, mit ¢(f), so

kann ¢ als eine stetige Abbildung von K, in sich aufgefaBt werden, die
durch L
pivt=¢

bestimmt, also mit f und p durch die Funktionalgleichung

pf=gp (11)
verkniipft ist.

%) H. Hopf, Journ. f. d. r. u. a. Math. 163 (1930), S. 71, § 5.
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' Der Grad von g sei ¢,. Wir zerlegen die Behauptung des Satzes I in die
folgenden beiden Teile:
Cp = €5 , (12)

6 =1¢ "¢ (13)

b &
8. Beweis von (12). In K, wird eine zweidimensionale Homologiebasis
von einem Zyklus Z gebildet, der einer komplexen projektiven Geraden
entspricht und mit einer Kugelfliche homéomorph ist?). Die Abbildung ¢
bewirkt eine Homologie
p(Z) ~uz .

Man weil}, dal zwischen der ganzen Zahl » und dem Grade ¢, die
Beziehung?)

Cp = U (14)

besteht; daher ist (12) bewiesen, sobald gezeigt ist, daf3

ist, und wir brauchen also nur zu beweisen, daf

¢pZ)~ ¢ Z (12')
gilt.
Hierfiir stellen wir eine vorbereitende Betrachtung an.
Die Sphiare §27+1, die durch (6) gegeben ist, wird von der dreidimen-
sionalen Ebene
Iz, =0, Zg =" =125, =0

in einer zweidimensionalen Kugelfliche geschnitten; deren durch
Rz, =0

bestimmte Halbkugel heile H; diese Halbkugel wird durch den Kreis g
berandet, der auf S27+1 durch

By =23 ="' =2,y =0

gegeben ist; f ist diejenige Faser aus der Faserung §, die durch den Punkt
(1, 0, ..., 0) geht. Fiir die in Nr. 3 festgesetzte Orientierung von § und eine
geeignete Orientierung von H gilt die Berandungsrelation auch im
algebraischen Sinne'?): )
H=g. (15)
10) Wie bei Alexandroff-Hopf, a. a. O., wird der Rand eines algebraischen Komplexes H
mit H bezeichnet.
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Durch die Abbildung p (Nr.7) wird H auf die komplexe projektive
Gerade in K, abgebildet, deren Gleichung

g ="' =24, =0

ist; und zwar geht dabei der ganze Rand f§ in den einen Punkt mit 2z, = 0
iiber; jeder andere Punkt der projektiven Geraden entspricht aber gena,u~
einem Punkt von H, da es, wie man leicht nachrechnet, zu jeder kom-
plexen Zahl w # oo genau ein Zahlenpaar {z,, z,} mit

m22>0, 322:0, zl—él+22§2:1, 212Z2:’w

gibt. Die Abbildung p von H auf die projektive Gerade ist also im wesent-
lichen eineindeutig, nur der Randkreis  wird auf einen einzigen Punkt
abgebildet. Daher gilt, wenn wir die — mit einer Kugelflaiche homoo-
morphe — komplexe projektive Gerade noch geeignet orientieren!?),

die Homologie
s p(H) ~Z . (16)

Was wir in (15) und (16) fiir die spezielle Faser § festgestellt haben, gilt
ebenso fiir jede Faser 8’ — man erkennt das etwa dadurch, dal man durch
eine unitire Drehung der §27+1 die Faser g in eine beliebige andere Faser 8’
transformiert — : zu jeder Faser B’ gibt es einen zweidimensionalen
Komplex H’, so daB .

H' = B ", (157)
pH')~Z (16")
gilt.

Nach dieser Vorbereitung kommen wir zum Beweis von (12/). Nach
Definition von ¢, ist

f(ﬁ) = cfﬂ, ’

wobei B’ eine gewisse Faser ist; also, nach (15) und (15")
fUH) = ¢ H' ;

andererseits ist immer 12)
f(H) = f(H) ;

folglich ist
X = f(H)— ¢,H'

ein zweidimensionaler Zyklus; er ist ~ 0 in der Sphare S27+1, also ist auch

11) Die Orientierung von Z hat auf den Koeffizienten in der Homologie (12’) keinen
Einflug.

12) Alezandroff-Hopf, a. a. 0., S. 176. Die obigen Komplexe H und X sind ,,stetige*‘
Komplexe im Sinne des zitierten Buches, S. 332 ff.
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?(X) = pf(H) — ¢p(H') ~0 in K, ;
hieraus und aus (11) folgt

ep(H) ~ ¢,p(H') ;
dies ist aber infolge (16) und (16’) die Behauptung (12/).

9. Vorbemerkungen zum Beweis von (13). Diese Bemerkungen handeln
nicht von den Abbildungen f und ¢, sondern nur von der Faserung &. Sind

Y= (Y1, ..., Ypp) und z = (24, ..., 2,,,,) Punkte auf den Fasern g bzw. y,
so diirfen wir

|Zy555! = a(B, y)

setzen, da dieser Ausdruck von der speziellen Wahl der Punkte y und z
auf f bzw. y nicht abhingt. Es ist ¢(8, g) = 1, also

S o(fy) #£0, (17)

wenn f und y nicht zu weit voneinander entfernt sind; es gibt eine Zahl
d > 0 mit folgender Eigenschaft: sind &, » irgend zwei Punkte von K,
deren Abstand <d ist — wir setzen K, als metrisiert voraus —, so gilt (17)
fir f = p=1(§), y = p~(n).

Erfiillen § und y die Bedingung (17), so wird durch die Bedingung, daf3

2y;z;  reell und positiv (18)

sei, jedem Punkt y von f genau ein Punkt z = R(y) von y zugeordnet,
und zwar ist R eine topologische Abbildung von g auf y, welche die
Orientierung (Nr. 3) erhalt. In der Tat ist, wenn y°, 2° feste Punkte auf
bzw. y sind und wir

y=eng, oz =eg

setzen, die Bedingung (18) gleichbedeutend mit
v =u + arg (Xy;z) (mod. 2 7) .

Der Punkt R(y) variiert auch eindeutig und stetig, wenn man die Faser y
stetig abéandert; es ist also

z= R(y,7)

eine eindeutige und stetige Funktion von y und y, solange die Faser 8,
die durch y geht, und die Faser y die Bedingung (17) erfiillen.
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Ist 7' eine Teilmenge von K,, deren Durchmesser kleiner ist als die
oben eingefiihrte Zahl d, so kann man in der Teilmenge p~—1(7') von S?*+1
folgendermaflen Parameter einfithren: y sei eine feste Faser in p~1(7') und
s = 8(z) ein Parameter auf ihr, der um 2xn wéachst, wahrend y einmal
positiv von z durchlaufen wird; dann setzen wir fiir jeden Punkt y aus

pU(T):
s(y) = s(R(y,»)) ;%)

dies ist erlaubt, da (17) fir jede Faser § aus p~1(7') gilt. Bezeichnet jetzt

noch & einen in 7" variablen Punkt, so kéonnen wir die Punkte y von p~1(7')
durch

charakterisieren, wobei

ist; dies bedeutet, dal man p~1(7") als topologisches Produkt von 7' mit
einer Kreislinie, aus welcher s Parameter ist, auffassen kann.

10. Beweis von (13). Wir werden f stetig so abandern, daf} die Abbildung
dabei immer faserungstreu bleibt — so daB also die Werte von ¢, ¢, ¢,
ungeiandert bleiben — und dafl fiir die resultierende Abbildung die
Richtigkeit von (13) durch eine einfache Abzéhlung der Bedeckungen, die
ein Teilgebiet von S27+1 durch das Bild f(S?"+1) erleidet, bestatigt werden
kann. Diese Abdnderung wird in zwei Schritten geschehen

Erster Schritt: Es sei {¢,} eine stetige Abanderung von ¢ mit 0 <t <1
und ¢, = @, und zwar eine so kleine Abanderung, daf} die Entfernung

o(p(&), .(8))<d

fiir jeden Punkt £ von K, und jedes ¢ ist. Dann erfiillen fiir jeden Punkt z
der S2n+1 die Faser

B=r"ep (),
auf welcher der Punkt f(z) liegt, und die Faser
Y = P 9:P(2)

die Bedingung (17), und wir diirfen daher

fe2) = R ({(2) , p9,p(2))
%) Man beachte: fir yey ist R(y,y) = ¥.

—————
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setzen. Die f, sind faserungstreue Abbildungen, die in K, gerade die
gegebenen Abbildungen ¢, induzieren. Infolge der stetigen Abhangigkeit
von ¢t &ndern sich die Zahlen c,,, ¢,,, ¢y, nicht. Man kann die Schar {¢,}
so wihlen, dafl ¢, simplizial ist; folglich diirfen wir — indem wir statt f,
wieder f schreiben — von vornherein ¢ als simplizial annehmen.

Zweiter Schritt (bei dem ¢ nicht mehr gedndert wird): Bei der simpli-
zialen Abbildung ¢ seien 7'/ ein 2n-dimensionales Bildsimplex in K, und
T,,..., T, seine Urbilder; die Durchmesser aller dieser Simplexe diirfen
wir als < d annehmen. Vorldufig &ndern wir f nur in p~1(7,). Dazu fithren
wir, wie es in Nr. 9 besprochen wurde, in den Mengen p~1(7',) und p—1(7")
Parameter (&,, s,) bzw. (£’, 8') ein; die Abbildung f von p~1(T),) ist durch

. f(&1,8) = (&',8)
mit
5,:¢(EI) ’ 8,2"/)(51981)

gegeben, wobei y die Periodizitadtseigenschaft

p(& 8+ 2n) =y(8,8)+ ¢, 2n
besitzt.

Es sei nun U’ ein 2n-dimensionales Simplex, das ganz im Inneren von
T'liegt, U, sein Urbild in 7', . Wir verstehen unter 7 (&,) eine in 7', erklarte
stetige reelle Funktion, die auf dem Rande von 7', verschwindet und auf
U, den Wert 1 hat; dann setzen wir fir 0 <¢ < 1:

pi(&1, 81)=17(&) " ((1 — 1) (&1, 8)+E- Cr-* 31) + (1 — 7(51)) (&, 8y)

und

fi(&1,8) = (‘P(fl)a (€15 81)) -

Wihrend ¢ variiert, bleibt f, auf dem Rande von p~*(T,) fest; in p~1(T)
wird die Abbildung jeder einzelnen Faser, ohne daf3 das Bild die urspriing-
liche Bildfaser verliBt, modifiziert; und zwar sind diese Abbildungen am
Schlufl (also fiir ¢t = 1) in U, (also fiir T = 1) durch

Y1(£1,8;) = €5 8

charakterisiert: das Bild jeder Faser durchlauft die Bildfaser monoton
¢, mal.
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Diese ,,Monotonisierung‘‘ nehmen wir nicht nur in p~1(7',), sondern in
jeder einzelnen Menge p~(7',) vor. Bei der schliefllich resultierenden
Abbildung wird ein (27 + 1)-dimensionales Element £, das in der Menge
p~1(U’) liegt, durch das Bild von p~1(U,) genau |c,| mal schlicht bedeckt;
dabei ist die algebraische Bedeckungszahl gleich ¢, oder gleich — ¢, je
nach dem Vorzeichen der Abbildung ¢ von 7', auf 7" 1%); dies gilt fiir
1=1,2,..., m; andere Bedeckungen erleidet £ nicht. Hieraus ist die
Richtigkeit der Behauptung (13) ersichtlich.

14) Die Orientierungen der 7T'; und 7" sind durch eine Orientierung von K, gegeben;
welche der beiden méglichen Orientierungen von K, dabei gewahlt ist, ist gleichgiiltig.

(Eingegangen den 31. August 1938.)
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