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Uber die Determinanten
mit liberwiegender Hauptdiagonale

Von ALEXANDER OSTROWSKI, Basel
Einleitung

In der vorliegenden Mitteilung handelt es sich in erster Linie um eine
Abschitzung des absoluten Betrages einer Determinante nach unten, die
als ein Analogon der Ungleichung

la+0b| =z|a|—|b]|
aufgefasst werden kann.

Sind ndmlich H = |h,, |, M = |m,,| zwei Determinanten n-ten Grades
und sind alle m,, nicht negativ und alle mpv(luév) nicht positiv, so
folgt aus

|hy,| = m,,, ‘kpv‘—s—_mpv’ (n=v), u,y=12,...n

fiir gewisse Determinanten M > 0 stets
|H| = M

Um alle Determinanten M mit dieser Eigenschaft charakterisieren zu
konnen, wollen wir solche Determinanten M = |m,,| mit nicht negativen
m,,, und nicht positiven m,, (v =), die mit allen Hauptminoren aller
Ordnungen nicht negativ sind, als M-Determinanten bezeichnen. Ist der
Wert einer M-Determinante nicht Null, also positiv, so nennen wir sie
etgentlich, sonst uneigentlich. Dann gilt der

Satz I: Es ser
M—':Im”vl, ﬂ:v=1:2:"'n (1)
eine Determinante mit

m,>0, m, =0, (@W=v), M=]|m,]|>0. (2)
Notwendig und hinreichend, damit aus dem Bestehen der Relationen

bl =2 m,y,,  |By,| £ —m (=) wpwrv=12..n (3)

>
fir die Determinante H = |h,,,| stets die Relation
|H| =z M (4)

folgt, ist, dap M eine eigentliche M-Determinante ist.
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Sind dann die Voraussetzungen (3) erfillt, so ist auch die Determinante
| by |, wo
b = Dhls By =—1hyl, (0 =)
gilt, eine eigentliche M -Determinante.
Sind aber dann iberdies alle h,, reell, so hat die Determinante H = |h,, |
das Vorzeichen ihres Hauptdiagonalelementproduktes hyy-hys++ h

nn*

Wir wollen im folgenden allgemein solche Determinanten H = (4, |,
fiir die H* = |h,, | mit

h;«ll = k;qu k;,v - Ihp.v B (1 = v)

eine M-Determinante ist, als H-Determinanten bezeichnen, und zwar
eigentlich, wenn H = 0 ist, sonst uneigentlich.

Um die Fille zu charakterisieren, in denen in der Relation (4) das
Gleichheitszeichen gilt, sei folgendes vorausgeschickt:

Eine M-Determinante behilt ihre M-Eigenschaft bei, wenn ihre Zeilen
und Kolonnen in gleicher Weise umgeordnet werden, so dafl also jedes
Element der Hauptdiagonale in der Hauptdiagonalen bleibt. Eine solche
Umordnung nennen wir mit Frobenius eine kogrediente Umordnung.
Wenn nun eine Determinante D nach einer kogredienten Umordnung auf
die Gestalt gebracht werden kann:

P 0

U @Q|’
wo P und @ quadratische Matrizen und O eine aus lauter Nullen be-
stehende Matrix ist, so nennt man D =zerfallend oder zerlegbar oder
reduzibel. Die Elemente der Matrix U haben dann offenbar keinen Einflul}
auf den. Wert von D. Solche Elemente einer reduziblen Determinante, die
bei einer geeigneten Zerlegung dieser Determinante in die entsprechende
Matrix U hineinkommen, nennen wir akzessorische Elemente dieser
Determinante. Unter Benutzung dieser Bezeichnung 148t sich nunmehr
zeigen:

Zusatz zu Satz I: Notwendig und hinreichend, damit unter den
Voraussetzungen des Satzes I zugleich mit (3)

H| =M (6)

gel, ist, dap H aus M durch Multiplikation der Zeilen und Kolonnen mit
geeigneten Grofen vom absoluten Betrag 1 und eine willkirliche Abdnderung
der akzessorischen Elemente hervorgeht.

D = (5)
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Unser Beweis dafiir, dafl die Bedingung des Satzes I hinreichend ist,
beruht auf den beiden folgenden Sitzen, von denen der erste einige Eigen-
schaften der M-Determinanten, der zweite aber eine sehr bemerkenswerte
Majorantenbeziehung zwischen den den Determinanten H und M des
Satzes I entsprechenden hnearen Gleichungen formuliert.

Satz II: Alle adjungierten Unterdeterminanten (n-1)-ter Ordnung einer
M-Determinante sind nicht negativ. Vergrifert man einige Elemente einer
M-Determinante, doch so, daf} sie thre Vorzeichen micht dndern, so bleibt sie
eine M-Determinante und thr Wert wird nicht kleiner.

Ist M = |m,,| eine eigentliche M-Determinante, so sind alle Haupt-
minoren aller Ordnungen von M positiv und jedes Qleichungssystem

n
2 My, T, = a,, p=12 ...n (7)
rv=1

mit nicht negativen a, ist mit nicht negativen x, auflosbar.

Uber das eventuelle Verschwinden einiger x, in den Gleichungen (7)
gibt Auskunft der folgende

Zusatz zu Satz Il: Es sei [m,,| eine eigeniliche M-Determinante.
Verschwindet fiir nicht durchweg verschuwindende a,, im Losungssystem von
(7) ein z,., so verschwindet auch das zugehorige a,.. Durchliuft « die Indizes
aller verschwindenden x,, A die Indizes aller nicht verschwindenden, also
positiven x,, so verschwinden alle m,,, deren Zeilenindex eines der x und
Kolonnenindex eines der A ist, so daf3 dann M reduzibel wird. Insbesondere
sind alle adjungierten Uniterdeterminanten (n-1)-ter Ordnung einer eigent-

lichen irreduziblen M-Determinante positiv.

Satz IIL : Uniter den Voraussetzungen des Satzes I sei M eine eigentliche
M-Determinante und es gelte (3). Es seien w,,, v,, die Elemente der zu M
bezw. zu H reziproken Matrizen. Dann gilt

|V | = v =12 ...m. (8)

Betrachtet man die Qleichungssysteme

A?lmyv Ty =0qu , (9)
(lu=1,2’n)

n

Elhp.vyv:by ’ (10)

n denen
71



|by| = a,, p=12 ...n (11)
ist, so gilt')
val éxv’ ’Vzl, 2:" (12)

Unter den obigen Sétzen héngt namentlich der Satz IT enge zusammen
mit einigen Sidtzen von Perron?) und Frobenius®) iiber Matrizen mit
nichtnegativen Elementen, deren wesentliche Teile sich bei unserer Her-
leitung mit ergeben.

Dem Beweis der Satze 1, II, I1I ist der § 1 gewidmet. DaBl die Bedin-
gung des Satzes I notwendig ist, wird in der Nr. 3 gezeigt, nachdem in
den Nrn.1 und 2 der Zusammenhang mit den Fragestellungen von
Perron-Frobenius besprochen wird. Der Satz II wird in Nr. 4, der Satz III
in Nr. 5 bewiesen. In Nr. 6 zeigen wir, dafl das Kriterium von Satz 1
hinreichend ist, und leiten in Nr. 7 die restlichen Behauptungen des
Satzes I her. Der Beweis des Zusatzes zum Satz I wird in den Nrn. 8, 9, 10
gefiihrt.

Die Definitionseigenschaften einer M-Determinante bringen in einer
etwas verklausulierten Form die Tatsache zum Ausdruck, dafB3 bei einer
solchen Determinante die Diagonalelemente in einem gewissen Sinne
iiberwiegen.

1) Der Satz III beriihrt sich, wie ich nachtraglich festgestellt habe, mit einem sehr
bemerkenswerten Satz von A. Pellet: Des équations majorantes, Bull. Soc. Math,
France, T. 37 (1909), pp. 93—101, der sich allgemeiner auf gewisse nichtlineare Glei-
chungssysteme bezieht. Spezialisiert man den Pelletschen Satz auf den Fall linearer Glei-
chungssysteme, so ergibt sich die Ungleichung (12), wobei allerdings orausgeset:t wird,
daB die y,, nicht negativsind. Versucht man aber die Pelletsche Skizze des Beweises seines
Satzes auszufithren, so muBB man dabei, wie es scheint, den Satz IIT in vollem Umfang
benutzen und auf diese Weise laBt sich auch ein Beweis des Pelletschen Satzes vollstindig
durchfithren. Bei der ungewohnlichen Knappheit der Pelletschen Darstellung ist es leider
sehr schwer, sich eine klare Rechenschaft von dem Beweis zu geben, der dem Autor vor-
geschwebt haben mag. Es sei noch hinzugefiigt, daB3 zur exakten Durchfithrung des Be-
weises eine gewisse Verallgemeinerung der Formulierung anscheinend nicht zu umgehen
ist, indem man fiir die von Pellet ausdriicklich als positiv vorausgesetzten GroBen

0 0 0
0 X%, ...... X0

noch das Verschwinden zulassen mufl.

Die im kiirzlich erschienenen ungewohnlich reichhaltigen Werk von H. T. Davis:
The Theory of linear operators, The Principia Press, Bloomington, Indiana 1936,
pp- 130—131 gemachte Angabe, der hier zitierte Satz von Pellet stainde im wesentlichen
schon bei E. Lindeldf : Demonstration élémentaire de I'existence des fonctions
implicites, Bulletin des Sciences Mathématiques, vol. 23, 2me gérie (1899), dirfte auf
einem Irrtum beruhen, da bei Lindeldf es sich um Potenzreihenmajoranten im Cauchy-
schen und Poincaréschen Sinne handelt.

2) Math. Ann. 64 (1907), pp. 47-52, 259-263.
3) Berliner Sitzungsber. (1908), pp. 471-476 (1909), pp. 514-518 (1912), pp.456-477.
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Dies 148t sich noch besser erkennen, indem man eine M-Determinante
durch eine geeignete Transformation auf eine Form bringt, bei der das
Uberwiegen der Hauptdiagonalelemente in noch expliziteren Unglei-
chungen zum Ausdruck kommt.

Wir wollen namlich eine Determinante M = |y, |, psv=1, 2,...n,
mit nicht negativen m,, und nicht positiven m,, (u=v) als eine
Minkowskische Determinante bezeichnen, wenn in ihr jede der Zeilen-
summen nicht negativ ist. Dann ist offenbar in jeder Zeile das Diagonal-
element nicht kleiner als die Summe der absoluten Betrige aller iibrigen
Elemente der betreffenden Zeile. Sind in einer Minkowskischen Deter-
minante alle Zeilensummen positiv, so nennen wir sie eigentlich, sonst
uneigentlich.

Wir betrachten daneben allgemein solche Determinanten H =:|h,,|,
bei denen die n-Groflen

n n
Py —‘Mgllkuvl = 2| hyp| —vglhﬂv | (13)
Y

nicht negativ sind. Solche Determinanten haben offenbar die Eigenschaft,

daB}, wenn
“”wl =m,,, |hpwl =—Mmy, (‘LL<>:’V)

gesetzt wird, die Determinante |m,,| eine Minkowskische wird. Sind ins-
besondere alle Ausdriicke (13) positiv, so ist die Determinante |m,,|
eigentlich. Wir wollen nun Determinanten mit nicht negativen Aus-
driicken (13) als Hadamardsche Determinanten bezeichnen und insbeson-
dere als eigentlich, wenn alle Ausdriicke (13) positiv sind, sonst uneigentlich.

Fiir eigentliche Minkowskische Determinanten hat nun Minkowski?)
bewiesen, dafl ihre Werte positiv sind. Andererseits hat 4. A. Markoff®)
gezeigt, daB eine unzerlegbare Minkowskische Determinante dann und nur
dann verschwindet, wenn ihre simtlichen Zeilensummen verschwinden.
(Ein Beweis des Markoffschen Satzes wird sich aus unseren spiteren Uber-

4) Gottg. Nachr. (1900), pp. 90—93. Ges. Abh. Bd. 1, pp. 316—317. Vgl. auch H.Min-
kowski: Diophantische Approximationen, Leipzig (1907), pp. 143—144. Ein weiterer
Beweis findet sich bei A. Besikovitch, Journal der Physik.-Mathematischen Gesellschaft
bei der Staatsuniversitat von Permj, Bd. 1 (1918). Daselbst wird auch der auf das Glei-
chungssystem (7) beziigliche Teil des Satzes II fiir den Fall der Minkowskischen Deter-
minanten bewiesen.

Wie wir ferner nach Abschlul des Manuskriptes dem oben in der FuBnote !) zitierten
Werk von Davis entnehmen, ist dieser Satz bereits lange vor Minkowski in der Note von
L. Levy : Sur la possibilité de I’équilibre électrique, C. R. vol. 93,2 (1899) aufge-
stellt und bewiesen worden im wesentlichen mit dem gleichen Beweis wie der Minkows-
kische.

5) A. A. Markoff, Denkschr. Petersb. Akademie (8), 22,9 (1908).
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legungen am Schlusse von Nr. 14 mit ergeben.) Fiir eigentliche Hada-
mardsche Determinanten hat Hadamard®) gezeigt, dafl sie von Null ver-
schieden sind.

Da ein Hauptminor einer Minkowskischen Determinante wiederum
eine solche Determinante ist, folgt, daf} eine Minkowskische Determinante
zugleich eine M-Determinante ist. Dabei kann aber eine uneigentliche
Minkowskische Determinante sehr wohl von Null verschieden, also eine
eigentliche M-Determinante sein. Andererseits ist klar, daf3, wenn man
die Zeilen und Kolonnen einer M -Determinante mit beliebigen, positiven
Faktoren multipliziert, sie eine M-Determinante bleibt.

Auf diese Weise lifit sich eine jede M-Determinante aus einer Min-
kowskischen Determinante erhalten. Es gilt etwas schérfer:

Satz IV: Jede M-Determinante M lift sich aus einer Minkowskischen
Determinante M* durch Multiplikation der Kolonnen von M* mit geeigneten
positiven Zahlen erhalten, wobei, wenn M eine eigentliche M -Determinante
1st, sich M* als eine ergentliche Minkowskische Determinante wdhlen lif3t.

Daraus folgt offenbar, wenn man die Definition der H-Determinanten
beriicksichtigt, dal genaue analoge Beziehungen zwischen den H-Deter-
minanten und den Hadamardschen Determinanten bestehen.

Es sei nun M eine uneigentliche M-Determinante. Ist dann M* irgend
eine M vermége des Satzes IV entsprechende Minkowskische Deter-
minante, so miissen nach dem Markoffschen Satz bei einer der irreduziblen
Komponenten von M* alle Zeilensummen verschwinden. Da aber M
offenbar in gleicher Weise zerféllt wie M *, 143t sich also bei einer uneigent-
lichen M-Determinante eine ihrer irreduziblen Komponenten durch
Multiplikation von Kolonnen mit geeigneten positiven Zahlen in eine
Minkowskische Determinante mit durchweg verschwindenden Zeilen-
summen iberfiihren. Und damit sind offenbar die uneigentlichen M-
Determinanten vollstdndig charakterisiert.

Ist nun H eine uneigentliche H-Determinante, so sind auch alle irredu-
ziblen Komponenten von H H-Determinanten und wenigstens eine unter
ihnen verschwindet, ist also uneigentlich. Fiir irreduzible uneigentliche
H-Determinanten H gilt nun die bemerkenswerte Tatsache, daf sie sich
von der zugehorigen Determinante H* nur um Zeilen- und Kolonnen-
faktoren vom absoluten Betrag 1 unterscheiden. Noch scharfer gilt
der Satz:

8) J. Hadamard: Leg¢ons sur la propagation des ondes (1898—1899), Paris,
Hermann & fils (1903), pp. 13—14.
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Satz V: Es ses H=|h,,|eine irreduzible uneigentliche H-Determinante
und M = |my,| etne uneigentliche M-Determinante, derart, dafi die Rela-
tronen (3) erfillt sind. Dann laSt sich H durch Multiplikation der Zeilen und
Kolonnen mit Groflen vom absoluten Betrag 1 in M diberfithren und M ist
mit H* identisch :

My = | I

’mu': mpv:_‘hyvi’ (/‘27’)

Aus dem Markoffschen Satz und dem Satz V folgt, dal auch eine un-
eigentliche Minkowskische oder Hadamardsche Determinante noch von
Null verschieden bleibt, wenn nur etner der Ausdriicke (13) verschwindet,
sofern nicht simtliche Elemente der betreffenden Zeile gleich Null sind.

Die Abschitzung (4) des Satzes 1 gestattet offenbar, positive untere
Grenzen fiir H zu finden, sobald solche fiir M bekannt sind. Andererseits
lassen sich nach Satz IV M-Determinanten in Minkowskische Deter-
minanten iiberfiihren.

Fir eine Minkowskische Determinante M = |[m,,,| aber 1aBt sich die
genaue Bestimmung der unteren und oberen Grenze durchfiihren, wenn
alle Quotienten ¢, der Zeilensummen durch die entsprechenden Diagonal-
elemente gegeben sind. Die gleiche Bestimmung 1403t sich zugleich, was
namentlich fiir die Untersuchung der oberen Grenzen wesentlich ist, auch
fir Hadamardsche Determinanten durchfiihren.

Bei der Untersuchung der unteren und oberen Schranke einer Hada-
mardschen oder Minkowskischen Determinante darf man offenbar jede
Zeile durch das zugehorige Diagonalelement durchdividieren, da eine
Hadamardsche oder Minkowskische Determinante, in der ein Diagonal-
element verschwindet, den Wert Null haben mufl. Wir kénnen uns daher
bei der ins Auge gefafiten Untersuchung auf die Betrachtung der Deter-
minanten vom Typus

1hyy - by,
= k?ll k2n (14)
hyhy ... 1
beschrinken, wobei jede der Summen
8y = 3 || (15)
pEEY

hochstens gleich 1 ist.

Handelt es sich insbesondere um eine Minkowskische Determinante, so
miissen alle Elemente %,, auBerhalb der Hauptdiagonale in H als nicht
positiv angenommen werden.
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Bei der Untersuchung der Determinante (14) kann man weiter an-
nehmen, daf} die s, fallend geordnet sind:

8§ =8 =... =28,

da dies durch eine kogrediente Umformung sofort zu erreichen ist. Dann
lautet unser Resultat:

Satz VI: Sind bei etner Determinante (14) die Summen (15) gegeben, isi
l1=zs8, =28 =...25,, (16)

und setzt man ferner m =2m bezw. n=2m -1, je nachdem ob n gerade
oder ungerade 1ist, so gilt

Hl(l_szv—-lsiv) é IH‘ é H(l +82v-—182v) . (17)
V== p=1

Sind aber die h,, in (14) reell und nicht positiv, ist also H = M eine
Minkowskische Determinante, so gilt

m m
H(1—82v_182v) = 1H| §H(1—8] Sg - .. Sn) . (18)
y=1

v=1

Die unteren Schranken in den Abschitzungen (17), (18) sind erreichbar fir
jedes den Relationen (16) geniigende Wertsystem der s,, und zwar fir
gerade n fiir eine symmetrische Minkowskische Determinante. Ebenso sind
die oberen Schranken in (17), (18) erreichbar, wobet insbesondere auch die
obere Schranke in (17) fur reelle h,, erreichbar ist und zwar fiar gerade n
fur exne schiefsymmetrische Determinante H.

Aus dem Satz folgt offenbar, daBl der Wert einer beliebigen Hadamard-

schen Determinante héchstens gleich dem Produkt der absoluten Betrige
n

der Hauptdiagonalelemente multipliziert mit 2[5] ist. Ist andererseits H
eine H-Determinante, die den Relationen (3) geniigt, wo M irgend eine
M -Determinante ist, und fiihrt man M durch Multiplikation der Kolonnen
mit positiven Zahlen nach Satz IV in eine Minkowskische Determinante
iiber, so wird H durch die gleiche Operation in eine Hadamardsche
Determinante iibergefiihrt. Dabei werden zugleich die Hauptdiagonal-
elemente von H mit den entsprechenden Kolonnenfaktoren multipliziert.
Daher gilt fiir jede H-Determinante |k, |, u, v=1, 2,...n die Abschatzung

|H| < 2[2}1_'?11 Py | - (19)

v

Dem Beweis des Satzes VI sind die Nrn.15—19 des § 3 gewidmet. In
der letzten, 20-ten Nr. von § 3 beweisen wir eine leichte Erweiterung
des Satzes VI:
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Zusatz zu Satz VI: Werden wn der Formulierung des Satzes VI die
Relatronen (16) ersetzt durch

81 =8y =83 = ... =8, 818, <1, (20)

80 bleiben die Behauptungen des Satzes VI unverdndert richiig.

Aus diesem Zusatz ergibt sich insbesondere von neuem, daB eine
Minkowskische oder Hadamardsche Determinante auch dann von Null
verschieden bleibt, wenn nur eine der Zeilensummen bezw. nur eine der
GroBen (13) verschwindet — sofern nicht séimtliche Elemente der ent-
sprechenden Zeile gleich Null sind.

Fir den absoluten Betrag der Hadamardschen Determinante vom
Typus (14) finden sich in der Literatur bereits verschiedene, weniger
scharfe Abschitzungen nach unten, die im Folgenden zusammengestellt
sein mogen. Wir beniitzen dabei neben den Bezeichnungen (15) noch
die folgenden:

Max s, =8, X8, =8, Max |hu| =b , VS1hwli=0. (21)
v r=1 v=M ®=v
Dann gilt: s
|H| = eS(1—s)° (22)
|H| = I(1—s,) , (23)
=1
|H| ze®(1—s)" (24)
b bs
|H|=e® (1—s)%2 . (25)

Endlich gilt unter der Annahme ¢ < 1 fiir die Determinante (14), wobei
die Annahme s, < 1 unnétig wird:

|H| = € (1 — o). (26)

Unter diesen Ungleichungen riihrt (22) von H. v. Koch her?), die iibrigen
vom Verfasser?).

Wegen b < s ist (22) in (25) enthalten und wegen ¢2 < b8 enthilt (24)
die Ungleichung (25).

Es sei noch bemerkt, daB der im § 3 erbrachte Beweis des Satzes VI,
des Hauptergebnisses dieser Arbeit, ohne Kenntnis der §§ 1, 2 gelesen
werden kann.

7) Helge von Koch, Jahresber. d. D. Math.-Ver. XXII (1913), pp. 285—291.
8) A. Ostrowsk:, Bull. d. sciences math. (2) LXI (1937), pp. 1—32.
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§ 1. Die Minoranteneigenschaft einer M-Determinante

1. Ist M = |m,,| eine Determinante n-ten Grades, fiir die die Bedin-
gungen

mvvgoﬁ m‘u,véo (/’sz)a

erfiillt sind, so setzen wir fiir irgend ein m = Max m,,:
14
. . =
m — My, = Gy, My, = Ay (w=7),

und bezeichnen die aus den nicht negativen Zahlen a,, gebildete Matrix
mit 4. Setzen wir dann allgemein

Al = |2E—A],
wo K die Einheitsmatrix n-ten Grades ist, so ist offenbar
M = A(m).

Ist umgekehrt 4 = (a,,) eine Matrix mit nicht negativen Elementen

und m = Max a,,, so ist die aus 4 gebildete Determinante
14

yy?

A(m) = |mE — A4]|
eine Determinante M mit den obigen Eigenschaften.

Ist nun M insbesondere eine M -Determinante, so ist leicht zu sehen,
daf3 A(A) ebenso wie alle Hauptminoren von A (1) aller Ordnungen fiur
A > m positiv sind.

In der Tat ist dies fiir Determinanten der Ordnung 1 trivial. Da alle
Hauptminoren einer M -Determinante wiederum M-Determinanten sind,
kann man annehmen, daf3 die obige Behauptung fiir alle Hauptminoren

von A (A) richtig ist. Da aber &:}(ﬁ)

minoren von A (2) ist, folgt, daB dé;ﬂ) >0 fir A>m ist, und da

gleich einer Summe von Haupt-

A (m) = M nach Voraussetzung nicht negativ ist, ist die obige Behaup-
tung allgemein bewiesen. Wir sehen also, daf die einer M-Determinante
entsprechende Funktion A (1) keine positive Wurzel > m haben kann.

2. Wir bendtigen nun die folgende Tatsache iiber die Matrizen
4 = (a,,) mit nicht negativen Elementen:

Ist die zu einer Matriz A = (a,,) mil nichi negativen Elementen gehdrende
Funktion A(A) = |AE — A| fir alle 2> m positiv, so sind fir A =m
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alle adjungierten Unterdeterminanten (n-1)-ter Ordnung von A(A) nicht
negativ und filr A > m alle Hauptminoren aller Ordnungen positiv.

Dieser Satz steckt in gewissen Resultaten, die man Perron und
Frobenius verdankt. Aus einem Satz von Perron folgt ndmlich, daQ3
A (A) eine nicht negative ,,Maximalwurzel* r besitzt, so dafl der absolute
Betrag jeder anderen Wurzel von 4 (1) 7 nicht iibertrifft. Ankniipfend an
diese Tatsache hat nun Frobenius weitere Eigenschaften von 4 (1), in
denen die obige Behauptung enthalten ist, bewiesen. Der Perronsche
Beweis seines Satzes beruht auf gewissen Grenzbetrachtungen — im
wesentlichen auf dem der Graeffeschen Methode zugrunde liegenden
Konvergenzsatz. Frobenius hat den Perronschen Satz rein algebraisch
bewiesen und auch alle weiteren Betrachtungen rein algebraisch durch-
gefithrt. Man gelangt allerdings, wie uns scheint, zum obigen Satz auf dem
kiirzesten und natiirlichsten Wege, wenn man noch weniger elementar
als Perron vorgeht und die komplexe Funktionentheorie benutzt.

Entwickelt man nédmlich die zur Matrix AE — A von A (4) gehérende

1 . . . '
reziproke Matrix nach Potenzen von 70 80 ergibt sich die Entwicklung

oo Av
v§0 lv—}-l

(2,1)

in der n? Potenzreihenentwicklungen mit nicht negativen Koeffizienten
zusammengefallt sind.

Es sei nun g der ,,Konvergenzradius‘‘ von (2, 1), also eine solche Zahl,

daf} fir -/}l-< 0(2, 1) konvergiert, wahrend fiir }%,\ o (2,1) (d. h. eine der

n? Komponenten von (2, 1)) stets divergiert. Daher folgt aus einem

bekannten Satz iiber Potenzreihen mit nicht negativen Koeffizienten, daf3

1 1 . I .
= = g, also A = = eine ,,Singularitét‘ von (2, 1) (d. h. also von einer der n?
Y

A

in (2, 1) steckenden Potenzreihen) ist, wihrend alle {ibrigen Singularititen
: 1.
von (2, 1) auBerhalb des Kreises oder auf dem Kreise | 1| = = liegen. Da

aber die einzigen Singularitdten von (2, 1) die Nullstellen von A4 (2) sind,
besitzt also A(A) eine nicht negative Maximalwurzel 4 = r. Ist nun
A (A) fiir alle 2 > m positiv, so mull m = r sein und daher ist die Ent-
wicklung (2, 1) fiir 2 > m konvergent. Da aber die Elemente der Matrizen
A" nicht negativ sind, sind fiir 2 > m die Elemente der zu 4 (1) reziproken
Determinante und daher wegen A4 (1) > 0 auch die adjungierten Unter-
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determinanten (n-1)-ter Ordnung von A4 (1) nicht negativ. Und fiir A = m
gilt die gleiche Behauptung aus Stetigkeitsgriinden.

Entwickelt man nun A4 (1) fiir 2 > m nach den Elementen der u-ten Zeile,
so folgt, wenn 4, die adjungierten Minoren von A4 (1) sind,

AR = (A—ap)Apy — Sop A, .
o
Da hier aber kein 4,, negativ sein kann, ist 4,, positiv, da sonst 4(4)
negativ oder Null wire.

Nunist aber 4,, = 4,,,(4) eine zu 4 (1) analog gebildete Determinante,
die zu einer Matrix (n-1)-ten Grades mit nicht negativen Elementen
gehort. Und da 4,,(4) fir alle 2> m positiv ist, sind auch die Haupt-
minoren (n—2)-ter Ordnung von A4 (4) fiir 4> m positiv. Indem wir
diese Schluflweise weiter fortsetzen, sehen wir, daBl alle Hauptminoren
von 4 (4) fiir A > m positiv sind, womit die obige Behauptung vollstindig
bewiesen ist. — Offenbar folgt aus der obigen Behauptung, da3 4 (4) fiir
A = m eine M-Determinante ist.

An die so bewiesene Tatsache ankniipfend, lielen sich auch die iibrigen
Resultate von Perron und Frobenius unschwer ableiten. Doch soll darauf
nicht weiter eingegangen werden.

3. Mit Hilfe der oben bewiesenen Tatsache 148t sich nun leicht folgern,
daf} die Bedingung des Satzes I notwendig ist. Denn folgt fiir die Deter-
minante M des Satzes I aus (3) stets (4), so setze man insbesondere fiir
ein nicht negatives «:

hvv=K+mvv’ h’yvzmp.v’ (/,L<’V
Dann ist offenbar
H=A4(m + «),

und aus (4) folgt, daB A4 (m + «) fiir jedes « = 0 von Null verschieden ist,
also positiv bleibt, da dies fiir M = 4 (m) der Fall ist. Dann ist aber nach
dem am Schlusse der letzten Nummer Bemerkten 4 (1) fir A = m eine
M-Determinante und insbesondere auch M = A (m).

4. Um aber zu beweisen, dafl die Bedingungen des Satzes I auch hin-
reichend sind, miissen wir zunichst die Satze 11, I1I herleiten.

Was den Satz IT anbetrifft, so ist er offenbar nur eine andere Formu-
lierung des in der Nummer 2 bewiesenen Perron-Frobeniusschen Satzes.
Denn schreibt man M wie in Nummer 1 in der Form 4 (m), so sind alle
adjungierten Unterdeterminanten (rn—1)-ter Ordnung von A (m) nach
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dem Perron-Frobeniusschen Satze nicht negativ. Die Behauptung iiber
das Gleichungssystem (7) des Satzes II ergibt sich dann offenbar aus
den Cramerschen Formeln sofort.

Entwickelt man ferner M nach irgend einer Zeile, so folgt, da3 der Wert
von M eine nicht abnehmende Funktion der einzelnen Elemente ist, und
dasselbe gilt natiirlich auch fiir alle Hauptminoren von M. VergroBert
man also irgendwelche Elemente von M, so bleiben M und alle Haupt-
minoren aller Ordnungen von M nicht negativ. Andern dabei die Ele-
mente von M ihre Vorzeichen nicht, so bleibt M eine M-Determinante.

Ist ferner M eigentlich, also von Null verschieden, so gilt nach dem in
Nummer 1 Gesagten dasselbe auch fiir 4 (4) fir A = m und es 148t sich
ferner eine Zahl m, < m finden, die so nahe bei m liegt, dafl auch noch
A () fir my £ 4 <m von Null verschieden ist. Dann kann man im
Perron-Frobeniusschen Satz m durch m, ersetzen, und es folgt insbeson-
dere, daB alle Hauptminoren aller Ordnungen von 4 (m) positiv sind.

Der in der Einleitung formulierte Zusatz zu Satz II ergibt sich aber fast
unmittelbar direkt. Denn verschwindet ein z, in (7), so ist die linke Seite
der x-ten Gleichung in (7) nicht positiv, wihrend a, nicht negativ ist. Dar-
aus folgt einerseits, dal a, verschwinden muf}. Andererseits mul} aber

dann auch
n

S My X

v=1
verschwinden, so daf}, wenn z, alle nicht verschwindenden, also positiven
x, durchlauft, die zugehoérigen m,, = 0 sind. Und da die einer Zeile von M
entsprechenden adjungierten Unterdeterminanten Losungen eines Glei-
chungssystems vom Typus (7) sind, folgt auch die letzte Behauptung des
Zusatzes zu Satz II. ;

5. Was den Satz IIT anbetrifft, so geniigt es offenbar zu seinem Beweis,
die Ungleichung (8) herzuleiten, da die Relation (12) sodann aus den
Cramerschen Formeln unmittelbar folgt. Beim Beweis von (8) darf man
aber offenbar die einzelnen Zeilen von H mit beliebigen GréBen vom ab-
soluten Betrag 1 multiplizieren, da dabei die GréBen |v,,| unverdndert
bleiben. Wir diirfen daher wvon vornherein annehmen, daf3 die Haupt-
diagonalelemente h,,,, von H nicht negativ sind.

, und daher erst recht gréBer als alle m

Ist nun m groBer als alle A, g3

i
80 setze man

By == == My, (sz)’ Gy = M — My 4= (a“”)’
b;w = —h;w: (u =), bmw = m_“hmu B = (bw,);
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dann gilt durchweg wegen (3)
lbyvl = a’p.v (5, 1)

und zugleich gilt fiir die Matrizen von M und H

(my,)=mE—A, (h,)=mE— B. (5, 2)

(197

Wie in der Nummer 2 gezeigt wurde, ist dann die zu AE — A reziproke
Matrix durch die Entwicklung gegeben

© AK
K;::O Ax+1 0

die fiir A > r konvergiert, wo » die Maximalwurzel von | AE — A | ist. Aus
Nr. 1 und 2 folgt aber, daf} fiir eine eigentliche M-Determinante

Max |m,,, |
v

grofer als r ist. Daher gilt erst recht m > r und die zu M reziproke Matrix
ist durch die konvergente Entwicklung

oo AK
(ul“’) Z,:__‘d:) mr+1 (5> 3)
gegeben. Aus (5, 1) folgt aber, dal auch die Entwicklung ¥ prem fiir
k=0 A¥

A > r konvergiert und daher die zu A¥ — B reziproke Matrix darstellt.

Dabher gilt insbesondere fiir 4 = m

w© BK
(vl“’) = 2 mK+1 (5, 4:)

k=0

Der Vergleich der Entwicklungen (5, 3) und (5, 4) ergibt (8) unmittelbar.
Damit ist der Satz III bewiesen.

6. Nunmehr ist leicht zu zeigen, daf3 die Bedingungen des Satzes I auch
hinreichend sind. Fiir Determinanten der Ordnung 1 und der Ordnung 2
ist dies trivial. Man darf daher beim Beweis voraussetzen, daf3 dies bereits
fiir Determinanten von der Ordnung n—1 bewiesen ist. Es seien nun die
h,, resp. m,, entsprechenden Unterdeterminanten von H und M mit H,,
M, bezeichnet. Dann sind fir H,, M, die Voraussetzungen des Satzes I

erfiillt und es gilt
|H,| = M, .
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Andererseits ist nach Satz T11
H
| v44 | = l !

= uu

i
e

wie behauptet. \M ’

7. Sind nun alle %, reell und multipliziert man alle Elemente von H, die
aullerhalb der Hauptdiagonalen liegen mit ¢, so sind fiir die entstehenden
Determinanten H, die Relationen (3) fir 0 =<t < 1 erfiillt, so daB} jede
dieser Determinanten H, von Null verschieden ist. Da aber H, eine
stetige Funktion von ¢ ist, hat H = H, das gleiche Vorzeichen wie
Hy="h hy...h,,.

Bildet man nun unter den Voraussetzungen des Satzes I die Deter-
minante H* = |h*w,|, WO

k}t}l«: |h‘u.y,la h;v:_lky.vla (MZV)

ist, und beachtet man, dall nach Satz II alle Hauptminoren aller Ord-
nungen von M wiederum eigentliche M-Determinanten sind, so folgt,
dafl die Relation (4) auf die Hauptminoren von lh:w\ anwendbar ist.
Daher sind alle Hauptminoren von lk’:vl von Null verschieden und
haben nach dem soeben Gezeigten das Vorzeichen des Produktes ihrer
Hauptdiagonalelemente — sind also positiv. Daher ist |h;wl eine M-
Determinante, womit der Satz I in allen Teilen bewiesen ist.

8. Es moége nun unter den Voraussetzungen des Satzes I | H|= M sein.
Zerfallt dann M in die irreduziblen Komponenten M,, M,,... M,,
so folgt aus den Ungleichungen (3), daf3 in H alle Elemente aulerhalb der
Hauptdiagonalen verschwinden, denen in M verschwindende Elemente
entsprechen, so dafl H in gleicher Weise zerfillt wie M, wobei aber die
Komponenten H,, H,, ... H,, die M,, M,, ... M, entsprechen, zunichst
nicht irreduzibel zu sein brauchen. Auf jeden Fall bestehen zwischen
den H, und den entsprechenden M, wiederum die Relationen (3). Daher
ist |H,| = M, und daher

k k
|H|=II|H,|zIM =M,
k=1 k=1
so daB nach der obigen Annahme fiir jedes «
|H| = M,
ist. Dabei spielen offenbar die Werte der Elemente von H, die den

akzessorischen Elementen von M entsprechen, keine Rolle.
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Wir kénnen daher bei der weiteren Diskussion annehmen, dal M
irreduzibel ist und daher nach dem Zusatz zum Satz II alle adjungierten
Unterdeterminanten von M positiv sind. Nunmehr folgt aus der Un-
gleichung (8) des Satzes III fiir die einander entsprechenden adjungierten
Unterdeterminanten H,,, M, von H bzw. M :

pv?

Hyv| _ | My
H|=| M|
| Byl = | MU, | (8, 1)

Fiir p = » folgt hieraus, da zwischen den Elementen von H,, und M,
die Ungleichungen (3) gelten und daher nach Satz I |H,, | = M, ist:

IHVVI :MVV>O’ (83 2)

9. Ist aber x=v und bezeichnet H, die Unterdeterminante (n— 2)-ter
Ordnung von H, die nach Weglassen der Zeilen und Kolonnen mit den
Indizes u, v entsteht, und M, die analoge Unterdeterminante von M, so
gilt nach dem Sylvesterschen Determinantensatz

HHO:— Hp,p Hyy"“‘ Hp,v HV;L )

(9,1)
MMy= MuypuMy, — My, My, .

Andererseits folgt, wenn man die Relation (8, 2) auf die Determinanten
H,,, M, und ihre entsprechenden Unterdeterminanten H,, M ,anwendet:

|Ho| = My> 0.
Daher folgt aus (9, 1) unter Beachtung von (8, 1) und (8,2)

|HH,y| = |H,,| - |H,, | — [ Hy,| - [Hyy|
=M, M, — M, M, =MM,
Und da |HH,| = MM, ist, folgt, daBl in den Ungleichungen
|H,, H,,| =M, M,, das Gleichheitszeichen gelten mufB. Daraus folgt

aber wiederum nach den Ungleichungen (8, 1), da M - M yu VOI Null
verschieden sind, allgemein

|H,,| =M, >0, pr=12..n (9, 2)

Wendet man die Uberlegung, die uns zur Relation (8, 2) fiihrte, auf
einander entsprechende Hauptunterdeterminanten von H und M an und
fahrt so fort, so sieht man sukzessive, dafl die absoluten Betrige der
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Hauptminoren von H von der Ordnung n—1, n—2, ..., 1 gleich den
(positiven) Werten der entsprechenden Minoren von M sind. Insbesondere
folgt, daB fiir jedes »

|,y | = my,s Ry, =06,m,, |6,]=1 (9, 3)
ist.

10. Betrachten wir nun fir ein «(1 < « < n) die Gleichungssysteme

hyy Yy + ‘E:lkvu Yo = - s (10:1)
s
n
Myy 2y + X Myp2, = Oy, (10,2)
=1
bty
wo
0, .
By == sk ist.
1,v=xk
Es ergibt sich
Hy. M,
YW="F T M
und daher wegen (9, 2)
|yul =2,>0, (10, 3)
Yo =Vu%, lyul=Lu=12 ..n. (10, 4)

Andererseits folgt aus (10, 1), (9, 3), (3), (10, 3) und (10, 2)

Oy = |y Y, + Ehvp.yp.l = My, 2, — E |hvy.lz
=1
Z#v mﬁv
= My, 2, + Emvyzv = by -

p=1
piv

Daher gilt in allen diesen Ungleichungen das Gleichheitszeichen und es
folgt wegen (9, 3), (10, 4) jetzt

h’vvyv - vav vy v’

Pop Yu _ Mop Zp
hvv Yv Myy 2y

b]

hm Yyu__ Yy
=My, , byp = Oy — my, , 10,5
und daher insbesondere

I vl = myv’ (,qu),
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sodaB H irreduzibel ist, wenn dies fiir M/ der Fall ist. Die Formeln (10, 5)
bedeuten aber, dafl H in M iibergeht, wenn die Zeilen und Kolonnen von

. . 1
H mit gewissen Zahlen 6,y,, o vom absoluten Betrag 1 multipliziert

werden. Damit ist auch der Zusatz zu Satz I bewiesen.

§ 2. Die Darstellung eigentlicher und uneigentlicher M- und H-Deter-
minanten durch Minkowskische bezw. Hadamardsche Determinanten.

11. Der Beweis des Satzes IV 1af3it sich sehr kurz fithren, wenn
M = |m,,| als eine eigentliche M-Determinante vorausgesetzt wird.
Denn betrachten wir dann das Gleichungssystem

n
yp—{—EmWyv::l, p==12, ... n, (11, 1)
Sib

so ist g, die Summe aller Adjungierten von M, die den Elementen der
u-ten Kolonne von M entsprechen, und daher nach Satz II positiv, da
alle diese Adjungierten nicht negativ und die Hauptminoren positiv sind.
Dann besagen die Gleichungen (11, 1), daf3 die Determinante M*, die aus
M entsteht, wenn man die »-te Kolonne fiir v = 1, 2, ... n mit y, multi-
pliziert, eine eigentliche Minkowskische Determinante ist. Und M ent-
steht aus M*, wenn man die »-te Kolonne von M* fir v = 1, 2, ... » mit
X multipliziert.
Yv

12. Es sei nun M:lmp,vlr‘:o, M:"’:L 2,...m (12’ 1)

eine uneigentliche M-Determinante. Wir betrachten dann das Gleichungs-

system n
E mp,vyv =0 (12& 2)
v=1

und behaupten zunichst, dal es eine Losung mit nicht negativen und nicht
durchweg verschwindenden y, besitzt. Fiir n =1 ist die Behauptung trivial.
Wir diirfen daher annehmen, dafl unsere Behauptung fiir Determinanten
(n—1)-ter Ordnung bereits bewiesen ist.

Wegen des Verschwindens von M sind die Gleichungen (12, 2) von-
einander abhingig, so da eine gewisse unter ihnen eine Folge der n—1
iibrigen ist. Indem wir eine kogrediente Umformung ausiiben und die y,,
entsprechend umnumerieren, kénnen wir erreichen, dafl eine solche von
den iibrigen abhingige Gleichung 4 = 1 entspricht. Wir brauchen daher
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nur die n—1 letzten Gleichungen zu betrachten, die wir in der Form
schreiben konnen

n
2 My Y, = —mMy, Y, p=23,...n. (12, 3)
y=2

Verschwindet nun hier die Determinante M,, der n—1 Linearformen auf
der linken Seite, so setzen wir ¥, = 0 und beachten, daBl M,; die zu m,,
adjungierte Unterdeterminante von M, daher eine J/-Determinante ist.
Dann haben aber nach der obigen Annahme die Gleichungen (12, 3) eine
Losung mit nicht negativen und nicht durchweg verschwindenden y,.

Es seinun M, + 0. Dann ist M, eine eigentliche M-Determinante, auf
die daher der Satz II anwendbar ist. Setzen wir in diesem Falle y, = 1,
so sind die rechten Seiten der Gleichungen (12, 3) nicht negativ.

Dann ist aber das Gleichungssystem (12, 3) dem Gleichungssystem (7)
des Satzes II analog und aus dem Satze II folgt, dal y,, s, ..., ¥, nicht
negativ sind. y, ist aber positiv. Damit ist die obige Behauptung tiber das
Gleichungssystem (12, 2) bewiesen.

13. Ist nun M im Satze IV eine uneigentliche M-Determinante, so denke
man sich M in irreduzible Komponenten zerlegt, von denen jede wieder
eine M-Determinante und wenigstens eine uneigentlich ist. Es geniigt, die
Behauptung von 1V fiir jede einzelne Komponente zu beweisen, so dafl wir
uns auf den Fall beschréinken kénnen, wo M eine uneigentliche irreduzible
M-Determinante ist.

Es sei M = |m,,| = 0 eine solche irreduzible uneigeniliche M-Deter-
minante, und betrachten wir das dazugehérende Gleichungssystem (12, 2),
das nach dem in Nr. 12 Bewiesenen ein Losungssystem mit nicht durch-
weg verschwindenden und nicht negativen y, besitzt.

Wir behaupten, dal alle y, in einem solchen Losungssystem positiv sind.

Denn verschwinden einige unter diesen y,, so kann nach einer geeig-
neten kogredienten Umordnung verbunden mit entsprechender Um-
numerierung der y, vorausgesetzt werden, daf3

Y= Y= ... ¥ = 0,
Y1>0, ..., 4, >0

ist. Ist aber « eine der Zahlen 1, 2, ... k, so liefert (12, 2) fir y = «

n n
mevyv'___ = My Yy = 0,
v=1 v=k+1

da ja die ersten k y, verschwinden. In dieser Gleichung sind aber m,,
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nicht positiv und alle y, positiv. Daher verschwinden alle m,, mit
k = k,v > k; dann ist aber M reduzibel entgegen der obigen Annahme.

Sind aber alle y, in den Gleichungen (12, 2) positiv, so bedeutet dies,
daB3 M durch eine Multiplikation der Kolonnen mit resp. y,, ¥,, ... ¥, in

eine Minkowskische Determinante M* iibergeht und umgekehrt aus M*
1

durch Multiplikation der Kolonnen mit resp. 5—,?/——, oaps hervorgeht.
1 2 n

Damit ist der Satz IV vollstdndig bewiesen.

14. Beim Beweis des Satzes V darf vorausgesetzt werden, da3 M eine
Minkowskische Determinante ist, da man nach IV M durch Multipli-
kation der Kolonnen mit geeigneten positiven Zahlen in eine Minkow-
skische Determinante iiberfithren kann, und, wenn die Kolonnen von H
mit gleichen Faktoren multipliziert werden, die Voraussetzungen und
Behauptungen von V in dquivalente Aussagen iibergehen.

Wir betrachten nunmehr das Gleichungssystem

n
hvvyv_{_zhvp.yp.:o ) v=1,2,...m, (14, 1)
p=1
1= 34
das wegen H = 0 mit nicht verschwindenden y, auflosbar ist.

Wir konnen annehmen, daB8 das Maximum von |y, | gleich 1 ist und daB3
etwa die ersten k y,: ¥,,...y, den absoluten Betrag 1 haben, wihrend die
iibrigen |y,| < 1 sind, da man dies durch eine kogrediente Umordnung

sofort erreichen kann.
Ist dann « einer der Indizes 1, 2, ... k, so folgt aus (14, 1) und (3), da M
cine Minkowskische Determinante ist:
n n n
0= IkKKyK+ Ehkuypl -—2—Ihm<l - Elkkp.l | yp.l ~2—‘ mKK+ Elmxp, Z 0, (14: 2)
=1 =1 -
bt hix bt

sodaB in allen diesen Ungleichungen das Gleichheitszeichen gelten muB.

Daher ist fiir « == 1, 2, ... kh,, + 0, da sonst nach (3) m,, = 0, nach
(14,2) m,, =0 (x =1, 2,...n) und nach (3) b =0(p=1,2,...n),
d. h. H reduzibel wire.

Ferner miissen alle kw , denen Yu < 1 entsprechen, verschwinden, so daf3
also nur die h,, von Null verschieden sind, bei denen u einen der Werte
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1,2, ...« durchlauft. Da aber H irreduzibel ist, ist daher k=mn.
Sodann folgt weiter aus den obigen Relationen fiir jedes u, u=1,2,...n:

hkﬂy/,t:-—“lhk}t!
P Ve el
Y h
b, = — 2K kKR ],
BT Ty The] e

Multipliziert man daher die u-te Spalte von H fir u =1, 2, ... n resp.
mit y, und dividiert die «-te Zeile von H fiir « = 1, 2, ... n resp. mit der

Zahl }Ibz" Y 'l‘ vom absoluten Betrage 1, so werden alle Elemente von H
reell, und zwar die Hauptdiagonalelemente positiv und die iibrigen

Elemente nicht positiv. Zugleich werden die Zeilensummen in jeder
Zeile verschwinden. Aus der Ungleichung (3) folgt aber sodann, daB
firk=1,2,...n

n n
O"—:lhmcl'—zlkxy.l r—>——n7’xx+ Emkp, (14, 3)
ﬁhf bt K

ist. Da aber die m,,, zu einer Minkowskischen Determinante gehoéren, gilt
fiir jedes « n
— ¥ My = Myye -

p=1

sty

Somit folgt weiter, dafl in (14,3) iiberall das Gleichheitszeichen gilt,
daher auch in den Ungleichungen (3) das Gleichheitszeichen gilt, so daf}
insbesondere die Elemente von H die gleichen absoluten Betrige wie
die Elemente von M haben. Endlich sind nach (14,2) simtliche Zeilen-
summen von M gleich 0.

Damit ist der Satz V bewiesen. Zugleich ergibt sich aus dem am Schluf}
des obigen Beweises Gesagten, wenn M als eine beliebige verschwindende
irreduzible Minkowskische Determinante und H als mit M identisch
angenommen wird, daf3 alle Zeilensummen von M verschwinden miissen.

Dies ist aber der Satz von Markoff.

§ 3. Schranken fiir Hadamardsche und Minkowskische Determinanten

15. Wir kommen nunmehr zum Beweis des Satzes VI. Wir betrachten
zunédchst fiir gegebene, nicht negative s; =8, =83 = ... 2 8, die alle
kleiner als 1 sind, die Gesamtheit § aller Determinanten der Gestalt (14),
fiir deren Elemente die Relationen (15) gelten, und suchen fiir die Deter-
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minanten aus § die untere sowie die obere Grenze des absoluten Betrages.
Es sei H eine Determinante aus §. Entwickeln wir sie nach den Elementen
der »-ten Zeile, so nimmt sie die Gestalt an:

n
HzHuv+Zkvﬂ HVP-’ va=ewjl H,|, (15,1)
p=1
pFv
wo die H,, die adjungierten Minoren zu den Elementen der »-ten Zeile

sind.
Es sei nun H, =¢®°H,| (15,2)

eines der unter dem Summenzeichen rechts stehenden H,,, dessen
absoluter Betrag am groBten ist. Wir ersetzen dann die Elemente der

v-ten Zeile von H durch h,,, wo

k:v:]" h:K:_ei(w—(B)'sv’ k:p-:O (v, p¥tx)
ist. Die iibrigen Zeilen von H bleiben die gleichen. Die so entstehende
Determinante gehort wieder zu § und hat den Wert

eiw(Ival_slevx!) * (15:3)

Der Klammerausdruck in (15,3) ist positiv fiir s, = 0. Denn H,, ist
selbst eine eigentliche Hadamardsche Determinante. Wére nun der
Klammerausdruck fiir ein s, zwischen 0 und 1 negativ, so miillte er fiir
einen geeigneten Wert von s, zwischen 0 und 1 aus Stetigkeitsgriinden
verschwinden, wihrend die entsprechende Determinante als eine eigent-
liche Hadamardsche Determinante nicht verschwinden kann. Anderer-
seits folgt aus (15,1)

n n
|H|z |H,,|— X |yl |H,y | 2 Hy | —|Hy X by | = Hy | —8, [ H
p=1 p=1
k+v pFv
sodaB also durch unsere Transformation der absolute Betrag von H
nicht vergroBert wird.

Verfahren wir ganz analog mit den iibrigen Zeilen von H, so erhalten
wir schlieBlich eine Determinante H*, die die Eigenschaft hat, daf} sie
in jeder Zeile auBerhalb der Hauptdiagonalen hochstens ein von 0 ver-
schiedenes Element besitzt. Die Gesamtheit der Determinanten aus §
mit dieser Eigenschaft sei mit §* bezeichnet. Da beim Ubergang von
H zu H* der absolute Betrag nicht groBler wird, darf man sich bei der
Bestimmung der unteren Grenze der Determinanten aus § auf die Unter-

suchung der Determinanten aus §* beschrénken.
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Genau analog kann man bei der Bestimmung der obern Grenze des
absoluten Betrages der Determinanten aus § vorgehen. Es sei wieder
H, eines unter den H,,(u=1,...n, p+v) in der Entwicklung (15,1)
von H mit dem groften absoluten Betrag und es gelte (15,2). Ersetzt
man dann die Elemente der »-ten Zeile von H durch die Zahlen 4;,, wo

3

vy

=1, h,=e" 5, h,=0utv, pt«)

ist, wihrend die tibrigen Zeilen unverédndert bleiben, so ergibt sich fiir
die so entstehende Determinante aus (15,1) der Wert:

V(| H, | +s,|H,l),

und dies ist sicher nicht kleiner als der absolute Betrag von (15,1). Indem
nun diese Transformation sukzessive auf jede Zeile von H angewandt
wird, gelangen wir zum Resultat, daf3 man sich auch bei der Bestimmung
der oberen Grenze des absoluten Betrages der Determinanten aus § auf
die Untersuchung der Determinanten aus §* beschrinken kann.

16. Bei der Untersuchung der Determinanten aus §* kann man wie-
derum annehmen, dal3 auch in jeder Kolonne einer solchen Determinante
aulerhalb der Hauptdiagonalen hochstens ein von 0 verschiedenes
Element vorkommt, wobei der Grad n eventuell erniedrigt wird. Denn
gibt es in einer Kolonne mehr als ein von 0 verschiedenes Element
auBerhalb der Hauptdiagonale, so gibt es dann eine andere Kolonne,
in der auBerhalb der Hauptdiagonalen samtliche KElemente ver-
schwinden, da die Anzahl der von O verschiedenen Elemente aullerhalb
der Hauptdiagonalen hochstens 7 ist. Kine solche Determinante
reduziert sich daher auf eine Determinante (n—1)-ter Ordnung.
Indem man diese SchluBlweise wiederholt auf Kolonnen und eventuell
auf Zeilen anwendet, gelangt man schlieBlich zu einer Determinante
HU der Ordnung k& =< n, bei der die Elemente der Hauptdiagonalen
durchweg gleich 1 sind, wihrend auBlerhalb der Hauptdiagonalen in
jeder Zeile und in jeder Kolonne genau ein von 0 verschiedenes Element
vorkommt. Und zwar gilt fiir diese von 0 verschiedenen Elemente auBler-

halb der Hauptdiagonalen A,, ...k, in der ersten, zweiten, ..., k-ten
Zeile

lhll =8v1:|h2| :‘sz"""kkl:svk: (16,1)
wo die Zahlen (16, 1) eine Kombination aus den Zahlen s,,8,, ...,s, zu k
sind.

Es handelt sich nunmehr darum, den Wert einer derartigen Deter-
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minante zu berechnen. Der einfachste Fall einer solchen Determinante
ist die Determinante von der Gestalt

1 A4 0...0
0 1 bhy...0
Hy=|" "~ " | =14 (D1hhy... 0 . (16,2)
0 0 0...h_
by 0 0...1

17. Wir behaupten nun, dafl im allgemeinen Falle H®) gleich dem
Produkte der Determinanten vom Typus (16,2) ist, wobei in den ein-
zelnen Faktoren H, von H¥) lauter h, mit verschiedenen Indizes vor-
kommen.

Um diese Zerlegung zu bewerkstelligen, bringe man durch eine kogre-
diente Umordnung %, in der ersten Zeile von H*) durch Vertauschung
der Kolonnen in die zweite Kolonne von H ). Liegt dann A, in der ersten
Kolonne, so sind alle Elemente der ersten beiden Zeilen von H® die
aullerhalb der beiden ersten Kolonnen liegen, gleich 0. Damit ist aber
von H® der Faktor abgespalten

1 A,
H,= hy, 1 ‘ )

und der tbrigbleibende Faktor ist eine Determinante H %2 auf die
man die gleichen Uberlegungen anwenden kann.

Liegt aber nach der ersten Operation A, weder in der ersten noch in der
zweiten Kolonne von H", so bringen wir es durch eine kogrediente
Umordnung an die dritte Stelle. Liegt dann A, in der ersten Kolonne, so
ist damit von H® eine Determinante H, abgetrennt, und der iibrige
Faktor ist analog weiter zu behandeln. Liegt aber A, nicht in der ersten
Kolonne, so mul} es, da die zweite und dritte Kolonne bereits besetzt
sind, in einer der weiteren Kolonnen liegen und kann daher wiederum
durch eine kogrediente Umordnung in die vierte Kolonne gebracht
werden.

Setzt man dieses Verfahren fort, so wird sich entweder einmal eine
Determinante H,, « <k, abtrennen, oder diese Operation 148t sich
(k—1)-mal ausfiihren. Dann sind aber die k—1 letzten Kolonnen von
H®) besetzt, sodafl k, in der ersten Kolonne liegen muf}, und unsere
Determinante H¥) mit H, identisch ist.

Es ergibt sich daher, da3 die allgemeinste Determinante aus §* gleich
einem Produkt von der Form
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l
T(1—(—1)*BPKP. . kD) (17,1)

A=1

ist, wo die absoluten Betrige der Zahlen

. . plr 2). .
h(]_l),oo. h(l) ""h(l)’ .oo,k() .'o,h({),ocaykgl)

ERAC ny?
eine Permutation der Zahlenmenge
81y -nvs Sy (17,2)

oder einer Teilmenge dieser Zahlenmenge darstellen und jedes n) wenig-
stens gleich 2 ist. Wir haben daher die obere Grenze des absoluten
Betrages der Determinanten aus § unter den Zahlen

!
I+, . .89 (17,3)
A=1
und die untere Grenze von § unter den Zahlen
! A A
H1—sP...s)) (17,4)
A=1
zu suchen, wobei die Zahlen
P }\ . . Q
EAPPII . CRIGIF, F sﬁﬁ, R L .,!s(,f; (17,5)

eine Permutation der Zahlen (17,2) oder einer Teilmenge von (17,2)
darstellen. Und zwar ist (17,5) eine beliebige Permutation einer aus
wenigstens 2 Elementen bestehenden Teilmenge von (17,2), und die
Zusammenfassung der Zahlen (17,5) in einzelne A-Gruppen unterliegt
nur der einen Bedingung, daf} jedes der ») wenigstens gleich 2 ist.

18. Ist ein Faktor von (15,3) gleich

14 sPsP ... P

ny ?

wo m) > 2 ist, so wird er offenbar vergréfert, wenn unter den in ihm vor-
kommenden s alle bis auf zwei weggelassen werden, da ja alle s, <1
sind.

Durch die gleiche Operation werden die einzelnen Faktoren von (17,4)
verkleinert, so daB3 wir also von vornherein annehmen diirfen, dafl in
(17,3) und (17,4) alle n) den Wert 2 haben.

Kommt ferner unter dem Produktzeichen in (17,3) irgend ein s, nicht
vor, wihrend ein s, mit »,>» ,s, <s, dort auftritt, so wird der zuge-

hérige Faktor in (17,3) nicht verkleinert, wenn man s, mit s, vertauscht.
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Man kann daher annehmen, daf} die Indizes derjenigen s, die am Produkt
(17,3) nicht beteiligt sind, durchweg grofler sind als die dort auftretenden
Indizes. Solange aber noch zwei s,, etwa s,, s,,; am Produkt (17,3)
nicht beteiligt sind, wird das Produkt (17,3) nicht verkleinert, wenn in
ihm als weiterer Faktor 1-s,s,,, eingefiihrt wird. Wir diirfen daher
von vornherein annehmen, dafl im Produkt (17,3) fiir gerade n alle s,
vorkommen und fiir ungerade » nur s, fehlt. Ganz analog 148t sich auch
fiir das Produkt (17,4) schlief3en.

Wir betrachten nun irgend zwei Faktoren des Produktes (17,3). Die

an diesen beiden Faktoren beteiligten s, seien der Gréfle nach geordnet:
A, 24,24, 24, . (18,1)

Unter den mit diesen vier s, gebildeten Produkten

(1 + 4,4,) (1 + A4,) , (18,2)
(1 + A1A3) (1 + A2A4) ’ (18:3)
(14 4,4,) (1 + 4,4,) (18,4)

ist nun das erste sicher am grof3ten, wie aus der Identitét
(1+4,4,) 1+4,4,)—(14+4,4,) (1+4:4,)=(4,—4,) (4,—45)

sowie der aus ihr durch Vertauschung von 4 ; und 4, unmittelbar hervor-
gehenden Identitdt folgt. Man erhilt also das grofte unter den drei
Produkten (18,2), (18,3), (18,4), wenn man die beiden gréBten und ebenso
die beiden kleinsten der 4, zusammen nimmt.

Benutzt man nun diese Tatsache wiederholt, so gelangt man schlie3-
lich zum Produkte

m
IT(1+483,.18,), n=2m, 2m+41,

v=1
als dem groflten unter den in Betracht kommenden Produkten (17,3).

Ganz analog kann man aus den vier Groflen A, die drei Produkte

(1—4,4,)(1—A4,4,), (18,5)
(1—4,4,)(1—4,4,), (18,8)
(1—A4,4,)(1— 4,4,) (18,7)

bilden und aus den Identititen
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(1—A4,4,)(1—A4 34 ,)—(1—A4,4,) (1—A4,4 )= (4,—A4,) (4 5—A,)
(I_AlAz) (1_‘A | 4)_(1_‘A1A 4) (I—AzA 3):(A1—A 3) (A 4—A2)

folgt, dafl unter den 3 Produkten das erste am kleinsten ist, also das-
jenige, bei dem wiederum die beiden groften der 4, zusammengenommen
werden und ebenso die beiden kleinsten. Wendet man diese Tatsache auf
das Produkt (17,4) mit n), = 2 wiederholt an, so gelangt man zum Produkt

m

]71(1 — 82,153,)
als dem kleinsten unter den Produkten (17,4), wodurch die Ungleichung
(17) bewiesen ist, solange alle s, kleiner als 1 bleiben. Daraus ergibt sie
sich aber auch fiir s, < 1 durch Grenziibergang unmittelbar.

Zugleich tiberblickt man sofort, daf3 die in (17) angegebenen Grenzen

erreicht werden, und zwar fiir vollstdndig zerfallende Determinanten, die
je m Komponenten vom Typus

1 — 8y v—1

Sap 1
bezw.

1 8 2v—1

S2, 1

besitzen. Wie man sieht, wird fiir gerade n die obere Schranke in (17)
fiir eine schiefsymmetrische und die untere fiir eine symmetrische
Minkowskische Determinante erreicht.

19. Handelt es sich nun insbesondere um die Minkowskischen Deter-
minanten aus der Gesamtheit §, so lassen sich dann die vorigen Betrach-
tungen fast unverdndert durchfiithren, wenn sie auch etwas einfacher aus-
fallen, da ja bei einer eigentlichen Minkowskischen Determinante die
Adjungierten nicht negativ sind. Es ergibt sich wiederum, daf3 man sich
bei der Bestimmung der unteren und der oberen Grenze der Minkow-
skischen Determinante aus § auf die Untersuchung der Minkowskischen
Determinanten aus §* beschrinken kann. Die von Null verschiedenen
aullerhalb der Hauptdiagonale liegenden Elemente einer solchen Deter-
minante aus F'* sind also beziehungsweise gleich

—8, ,—8 y =83

vy vy? °®

WO vy, %,... v, eine Permutation der Zahlen 1, 2, ... n darstellen.
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Stellt man nun eine solche Determinante als Produkt von Determi-
nanten vom Typus H, dar, so ergibt sich wegen (16,2) fiir allgemeines
H, der Wert

1—s, -8, -8,

Daher sind die Schranken einer Minkowskischen Determinante aus §

unter den Produkten von der folgenden Form

l
N (O A
IT(1—dPdP... 05,?3)
A=1

zu suchen, wo die Zahlen o'P...,0%),..., 09, ... affl) eine Permutation

der Zahlenmenge s,, 8,, ... s, oder einer Teilmenge dieser Zahlenmenge
darstellen und alle n), = 2 sind.

Das kleinste unter diesen Produkten ist aber, wie bereits oben gezeigt
wurde, das Produkt I7(1—s,,_, . s,,), wihrend das grofSte offenbar mit
der Differenz 1 —s, . s, ... s, identisch ist. Damit ist der Satz VI be-
wiesen.

20. Um endlich den Zusatz zum Satz VI zu beweisen, beachte man,
daf} die Determinanten vom Typus (14), fiir die (20) gilt, offenbar eigent-
liche H-Determinanten sind. Denn ist s; = 1, so geniigt es, den Fall zu
betrachten, wo s, > 0 ist. Dividiert man dann die erste Zeile von (14)
mit gl , und multipliziert man die erste Kolonne mit VEE , SO verwan-

2 1
delt sich (14) in eine eigentliche Hadamardsche Determinante. Daraus
folgt aber, dafl (14) eine eigentliche H-Determinante ist und es bleibt,
wenn die Werte der s, beliebig verkleinert werden. Dann ist aber die
SchluBweise, die uns zum Beweis des Satzes VI gefiihrt hat, ohne weiteres
anwendbar. —

(Eingegangen den 30. Juli 1937.)
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