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Reguldre Permutationen
und ihre Beziehungen zur Topologie

Von WALTER GRUNER, Bern

Einleitung

W. Scherrer hat mich auf das Problem aufmerksam gemacht, wie ein
Komplex regulidrer Permutationen beschaffen sein muf}, wenn er eine
Gruppe, die nur regulire Permutationen enthilt, erzeugen soll. Per-
mutationen nennt man reguldr, wenn sie in lauter, gleich viel Elemente
enthaltende elementfremde Zyklen zerlegt werden kénnen. Dieses Pro-
blem wire trivial, wenn das Produkt zweier regulirer Permutationen
stets reguldr wire. Denn dann enthielte ja offenbar auch eine durch
regulire Permutationen erzeugte Gruppe nur regulire Permutationen.

Schon das einfache Beispiel vom Grad 4:

A= (1234)
B = (12) (34)
A.B = (1) (3) (24)

(4 und B sind reguldr, 4 . B aber nicht)
ist ein Gegenbeweis.

Wir werden hier das Problem in dem Sinne l6sen, da3 wir eine not-
wendige und hinreichende Bedingung dafiir aufstellen, dafl ein Komplex
von reguliren Permutationen eine Gruppe mit lauter reguldren Per-
mutationen erzeugt. Diese Bedingung gestattet zwar nicht etwa die
Menge derjenigen Permutationen B unmittelbar zu tiberblicken, die
zusammen mit einer reguliren Permutation 4 eine Gruppe mit lauter
reguliren Permutationen erzeugen. Wohl aber gestattet sie eine an-
schauliche Interpretation des Sachverhaltes zu geben.

Die Bedeutung dieser Bedingung liegt ndmlich darin, dal3 die zu per-
mutierenden ,,Gegenstinde‘’, die ich im folgenden stets als Variable be-
zeichnen werde, innerhalb des erzeugenden Komplexes gleichgelagert sind.

Der Inhalt der Sitze, die in dieser Bedingung liegen, wurde schon von
H. Kuhn!) und G. A. Miller?) bewiesen. Doch ist dort von einer ganz
andern Problemstellung ausgegangen worden, und ich werde hier die
Séitze in etwas anderer Art formulieren und beweisen.

1) H. Kuhn, Amer. J. of Math. vol. 26, 1904, p. 67.
2) Q. A. Miller, Proc. of the Amer. Phil. Soc., vol. 50, 1911, p. 129—146.
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Die Gleichlagerung der Variabeln im erzeugenden Komplex lafit sich
topologisch auf einer Flidche veranschaulichen. Es kann dann bewiesen
werden, dal die erzeugte Gruppe als Gruppe topologischer Abbildungen
dieser Flidche in sich realisiert werden kann. Dieses Gruppenbild ent-
spricht, was den Streckenkomplex fiir sich anbelangt, vollstdndig dem
Dehn’schen®) Gruppenbild.

Die Untersuchung dieser Darstellung wird uns in einem dritten Teil
zur Untersuchung allgemeiner Uberlagerungsfliichen fiihren. Speziell wird
hier der Zusammenhang von Monodromiegruppe und Decktransforma-
tionengruppe einer Uberlagerungsfliche untersucht. Dieser Zusammen-
hang ist im Fall regulirer Uberlagerungsflichen schon lange bekannt.
Uber den allgemeinen Fall findet sich ein Hinweis bei Threlfall-Seifert?).
Doch kann dieser verallgemeinerte Satz einfacher direkt und ohne ex-
plizite Heranziehung des Begriffes der Fundamentalgruppe bewiesen
werden ; dies erweist sich im Fall verzweigter Uberlagerungsflichen als
besonders giinstig.

I. TEIL
§ 1. Grundbegriffe

Definition: KEine Permutation ist reguldr®), wenn sie sich in lauter
gleich viel Variable enthaltende elementfremde Zyklen zerlegen 148t.

Definition: Ein Permutationenkomplex ist uniform, wenn jede Variable
in jede andere durch hochstens eine Permutation iibergefiihrt wird.

Diesen neuen Hilfsbegriff fithre ich hier ein, um die folgenden Sitze
iibersichtlicher formulieren zu konnen.

Wir brauchen nun ein Kriterium, das im wesentlichen schon bei
Netto®) steht.

Satz 1: Jede Gruppe, die nur regulire Permutationen enthdlt, ist umi-
form, und wmgekehrt.

Beweis :

A: Voraussetzung : Die Gruppe enthilt nur regulire Permutationen.
Behauptung : Die Gruppe ist uniform.

S und 7T seien zwei Permutationen dieser Gruppe, die entgegen der
Behauptung beide die Variable z; in die Varable x, iiberfithren. § . 71
fiihrt dann x, in sich iiber, enthilt also einen Einerzyklus. Weil S7-1
aber reguldr ist, so muB es lauter Einerzyklen enthalten.

3) M. Dehn, Math. Ann. 69 (1900) p. 137.

4) Threlfall-Seifert, Lehrbuch der Topologie, p. 198.
8) A. Cauchy, Par. C. R. 21, p. 601.

%) Netto, Substitutionentheorie. 1. Aufl., p. 99.

43



Es folgt daher:
S.T1=FE
oder S=1T q. e. d.

B: Voraussetzung: Die Gruppe ist uniform.

Behauptung : Die Gruppe enthilt nur reguldre Permutationen.

Es sei A entgegen der Behauptung eine nichtregulire Permutation
der Gruppe und enthalte daher mindestens zwei verschieden lange Zyklen
Z,und Z,. Z, sei von der Ordnung r, und Z, von der Ordnung r,. Ferner
sei r,< ry. A™ filhrt daher alle Variabeln von Z, in sich iiber. Das tut
auch £. Weil nun die Gruppe uniform ist, ist 4™ == F. Es miiBlte also
auch Z}! = K sein, was im Widerspruch zu r,>r; steht. Es kann also
nur 7, = 7, sein, und 4 ist also reguliar. q.e.d.

Ich erinnere noch an folgenden Begrift:

Definition: Eine Gruppe heillt reguldr?), wenn jede Variable in jede
andere durch genau eine Permutation iibergefiihrt wird. Kine regulire
Gruppe kann also auch als transitive und zugleich uniforme charakte-
risiert werden. _

Nach Satz I folgt, daff uniforme Gruppen und Gruppen mit lauter
reguldren Permutationen identische Begriffe sind. Ich stelle hier einige
in der Literatur8) schon bekannte Sitze zusammen.

Satz II: Jede uniforme Gruppe ist Untergruppe einer requliren.

Satz IIL: Die transitiven Konstituenten einer wuniformen Gruppe der
Ordnung h und des Grades n bilden n/h zueinander und zur Gruppe selbst
tsomorphe Gruppen. Sie sind innerhalb thres Systems regulir.

Satz IV: Zwei tsomorphe uniforme Gruppen sind in bezug auf die sym-
metrische Gruppe aller Permutationen konjugiert.

§ 2. Numerierung der Variabeln nach einer uniformen Gruppe

$ sei eine uniforme Gruppe vom Grade n und der Ordnung A. Nach

Satz III bilden die Variabeln r :7-}:'— Transitivitdtssysteme, die ich mit
81, 8, . ..S,, numeriere. In s, sei eine bestimmte Varable mit x,, be-

zeichnet. Ebenso bezeichne ich in jedem andern System s, eine bestimmte
Variable mit #,,. H,, H,, ... H, seien die Elemente der Gruppe .

?) C. Jordan, Traité des substitutions. 1870.
8) z. B. G. A. Miller, Am. J. of Math., vol. 21, 1899, p. 287—338,
oder Netto, Substitutionentheorie.
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Speziell sei H, = E. Nun bezeichne ich mit x,, diejenige Variable, in
welche z;; durch H, iibergefiihrt wird. Alle z,, mit festem ¢ liegen im
gleichen System s,, und anderseits sind so alle Variable von s, eindeutig
bezeichnet worden, weil s, Transitivitdtssystem von £ ist, und weil
uniform ist.

Bei vorgegebener Numerierung der H, bleiben »! Moglichkeiten fiir
die Wahl der Numerierungen der Transitivitdtssysteme. Nach festge-
legter Numerierung der s; verbleiben noch A" Moglichkeiten fiir die Wahl
der z;;. So gibt es denn bei vorgegebener Numerierung der H, A" . r!
verschiedene Numerierungen der Variabeln. Jede Variable kann als z,,
gewahlt werden, denn sie liegt in einem System s, das seinerseits als s,
gewahlt werden kann. Diese einfache Tatsache ist von grundlegender
Bedeutung fiir die folgenden Sitze.

§ 3. Erzeugung uniformer Gruppen durch regulire Permutationen

Wir treten nach diesen Vorbemerkungen an das eigentliche Problem
heran, ndmlich regulire Permutationen so zu kombinieren, daf3 daraus
nur Gruppen mit lauter reguliren Permutationen erzeugt werden. Bevor
wir das Problem in seiner Allgemeinheit 16sen, wollen wir uns zunédchst
mit einem bloB hinreichenden Kriterium begniigen.

Es lautet:

Satz V: Sind zwer Permutationsgruppen §) und K, deren Vereinigungs-
komplex § + & uniform ist, mitesnander vertauschbar, so enthdilt die durch
sie erzeugte Gruppe {§) , &} nur regulire Permutationen.

Beweis:

Voraussetzungen :
1) , & Gruppen
2) $ + & uniform
3) HE = 89

Behauptung :

{$, &} enthilt nur regulire Permutationen.
Nach Satz I geniigt es, zu zeigen, da {§) , &} uniform ist.

Aus der Voraussetzung R = K§ folgt:
{,8=9%.
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Ist & nicht uniform, so enthilt es zwei Elemente H, K, und H,K,,
die beide z, in x, iiberfiithren.

Es fiihre H, z, in =z,
H, z, in z,
K, z, in z,
K, z; in z,
Daher fiihrt HH, z; in z;
und K. K;' z;, in z;.

Da nun H{'H, in §), K,K;! in &, und daher beide im uniformen
Komplex $ + & liegen, miissen sie identisch sein:
H'H, = K, K;!
und daraus H,K, = H,K, q.e.d.

Diese Bedingung ist nur hinreichend, da es in vielen Gruppen nicht-
vertauschbare Untergruppen gibt, wie z. B. die zyklischen Untergruppen
der Ordnung 2 in der Diedergruppe der Ordnung 6.

Wenn die Vertauschbarkeitsvoraussetzung fallen gelassen wird, so
erhalten wir nun wegen Satz I wohl eine notwendige Bedingung, welche
jetzt aber nicht mehr hinreichend ist, wie folgendes Beispiel zeigt:

S E = (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
5;Q A =(1 2 3)@4 5 6 (T 8 9)(lo 11 12)

(
A2=(1 3 2)4 6 5) (T 9 8)(l0 12 11)
E = (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
R B=@1 4 7@ 510)(3 811)(6 9 12)
B2=(1 7 4)(210 5)(311 8 (6 12 9

A2B = (1 8)(610)(2 4 911)(3 5 7T 12)
A?B ist nicht mehr reguldr, obwohl £ 4 & uniform ist.
Wir kommen nun zum allgemeinen Fall: Wir fiihren folgende Be-
zeichnung ein:
Definition: Ist & eine beliebige Gruppe und Y ein in & enthaltener
Elementenkomplex, so bezeichne Mg(Y) denjenigen Elementenkomplex
von @&, der aus denjenigen Elementen besteht, die mit jedem Element

von Y vertauschbar sind.
Mg (A) bildet eine Gruppe.

Es gilt nun folgende Relation:

Satz VI: Mg (U) = Mg ({U}) ,
wobei {¥} die durch ¥ erzeugte Gruppe bezeichnet.
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Beweis: Ist § nidmlich ein Element von Mg (), so ist es mit 4 und B
auch mit 4 B vertauschbar und daher mit jedem Element von {9} ver-
tauschbar. Ist aber § mit jedem Element von {9} vertauschbar, so ist
es a fortiori mit jedem Element von 9 vertauschbar, da % ein Teil-
komplex von {¥} ist. q. e. d.

Im folgenden schreiben wir kurz i (A), wenn mit Y ein Permutationen-
komplex und mit & die symmetrische Gruppe aller Permutationen ge-
meint ist.

Nun koénnen wir den allgemeinen Satz formulieren:

Satz VII®): Notwendig und hinreichend dafir, daf3 der Permutationen-
komplex Y eine Gruppe {W}, die nur regulire Permutationen enthilt, er-
zeugt, ist, dafp M(W) transitiv wst.

Beweis:
Nach Satz I und Satz VI geniigt es, folgenden Hilfssatz zu beweisen:

Hilfssatz: Ist eine Permutationsgruppe §) uniform, so ist M (H) tran-
sitiv; ist M () transitiv, so ist § uniform.

Wir beweisen zunéchst die letztere Behauptung:
A: Voraussetzung : M ($) transitiv.
Behauptung : $ uniform.

Beweis von A:

H, und H, seien zwei Elemente von §), die beide z; in z, tberfithren.
H, = H,H;! fihrt dann «; in sich iber.

x, sei eine beliebige Variable.

Weil R ($) transitiv ist, so existiert in M () ein Element 8, das =z,
in z; iberfiihrt.

Dann fithrt S-*H,;S8 =z, in sich iiber.

Anderseits ist S-'H,8 = H,.

Also fithrt H, z, in sich iiber, und, weil z; beliebig ist, jede Variable
in sich iiber.

Also ist Hy = E, woraus folgt H, = H, . q.e.d.

B: Voraussetzung : § uniform.
Behauptung : M (£) transitiv.

Beweis von B:
Wir suchen eine Permutation S, welche erstens eine Variable in eine

%) Implizit bei Q. A. Miller, Proc. of the Amer. Phil. Soc., vol. 50 (1911), p. 129—146.

47



vorgegebene Variable iberfithrt und mit jedem Element von § ver-
tauschbar ist. Wir konnen nach einer Bemerkung von § 2 stets zwei
Numerierungen z,, und z;, so wihlen, dal z,, die vorgegebene Anfangs-
variable und z;, die vorgegebene Endvariable, in die 8 z,, iiberfithren
soll, werden.

Wir konstruieren nun die Abbildung S, indem wir den Ansatz machen:

-6
Ly &

S ist eine Permutation, weil bei beiden Numerierungen jede Variable
genau einmal durchlaufen wird. Ferner fiihrt S wirklich z,; in z;, iber.
Nun zeigen wir noch, daf3 § mit allen Permutationen von §) vertausch-
bar ist.

H, sei ein Element von £, und z,, eine beliebige Variable. Es fiihre
H; %, in @, ; das tut auch die Permutation H,' H,, .

Wegen der Uniformitdt von £ ist also:

H i Hl_‘-l H/‘z’
Ferner fiihrt H, z,, in =,
und H,, %, in w,, .
Also fiihrt H,=H;H, =, in x,, iber.
Nun fiihrt S =, Iin x;\“
und H, x;M in x;m.
ferner 87 @, in w,,,
also SH; 871 x, in x,

wie dies auch H, tut.
Das gilt fiir jedes x,,. Also ist SH,S~' = H,,
oder SH, = H,S . q.e.d.

§ 4. Die Reziprozitit der Begriffe ,transitiv‘‘ und ,,uniform‘ bes Gruppen

Die Begriffe ,,transitiv’‘ und ,,uniform‘ stehen schon rein definitions-
méBig in einer gewissen Reziprozitit zueinander. Wahrend namlich die
transitiven Gruppen jede Variable in jede andere durch mindestens eine
Permutation iiberfiihren, so filhren uniforme Gruppen jede Variable in
jede andere durch hdchstens eine Permutation iiber. KEs ist nun inter-
essant, daf gerade aus dem vorigen Satz eine weitere Reziprozitéit dieser
beiden Begriffe hervorgeht.
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Es gilt namlich der folgende Satz:

Satz VIIIY®): Ist die Gruppe £ wuniform, so ist M() transitiv; ist §
transitiv, 8o ist M () uniform.

Beweis: Der erste Teil des Satzes ist inhaltlich identisch mit der
letzten Behauptung des vorigen Satzes.

Um den zweiten Teil zu beweisen, fiilhren wir den Begriff JR2(§)) =
= M(M(H)) ein. Es ist dann M2(H) 2 H, denn M2(H) umfabt ja alle
Elemente, die mit jedem Element von R (£)) vertauschbar sind, und
unter ihnen finden sich ja auch die Elemente von §. Wenn aber §
transitiv ist, ist um so mehr MN?(§) transitiv und daher nach der ersten
Behauptung von Satz VII 9 ($)) uniform. q.e. d.

Auf diese Weise 148t sich auch der folgende ebenfalls bekanntel®) Satz
beweisen :

Satz IX: Ist § uniform, so fdillt M2 (H) mit  zusammen.

Beweis: Ich beweise zunichst, daB ganz allgemein gilt:

M3(8H) = M(D)
wobei M2(H) = M(M2(H)) .

Ist A ein Element in M ($), so ist 4 mit allen Elementen von % (%)
vertauschbar und daher in IM3(H); ist aber 4 in M3(H), so ist 4 mit
allen Elementen von I?%($)), worunter auch die von §) sind, vertausch-
bar. Daher ist A mit jedem Element von § vertauschbar und daher
in M(H).

Ferner brauchen wir noch folgenden

Hilfssatz: Die Ordnung von M($)) ist, wenn § uniform, gleich A7r!,
d. h. gleich der Anzahl der Numerierungen nach £).

Beweis des Hilfssatzes: Jede Numerierung liefert als Permutation
einer festen Numerierung eine Permutation von ().

Ist umgekehrt S = (zi,k) in M(H), und z,, eine Numerierung nach $,

Tk

so ist auch z;, eine solche.

Ist ndmlich H, ein beliebiges Element von $, so gilt ja:

SH,S = H,
Es fihrt St x;, in z;,

H, x, in
und Sz in g,
Also S-H,8 = H, x;, in x;; .

10) Q. A. Miller, Proc. of the Amer. Phil. Soc., vol. 50, 1911, p. 129—1486.
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Das ist aber gerade die Definition der Numerierung nach §. Somit
ist also die Ordnung von M (£)) genau gleich A™r!, wobei h.r=mn.
Nun sei die Ordnung von M2(§)), welches § umfaBt, gleich & . u.
r

Dann wird die Ordnung von R3(§) gleich (kﬂ)ﬁ(i) .

Anderseits ist M(H) = M(H)
Also folgt daraus: .
Wrl = (hu)# - (—’3)!
(hp) u

Nun ist  A'r! = n(n—~h) (n—2h) ... (n—(r—1)h)

und (hu) u (-;—) '=n(n—uh) (n—2uh). .. (n — (ﬁ—w l)uh)-
Weil nun g als Index von § unter %(§)) eine ganze Zahl =1 ist,
kann die obige Gleichung nur bestehen, wenn u = 1.

Dann ist H = M2(H) q.e.d.

Bei transitiven Gruppen kann es wohl vorkommen, dafl § wirklich
kleiner ist als M2(5). Ein Beispiel ist die alternierende Gruppe fiir
n > 3. Das einzige Element, das mit allen Elementen der alternieren-
den Gruppen vertauschbar ist, ist das Einheitselement. Dieses ist aber
auch mit allen Elementen der symmetrischen Gruppe vertauschbar.

Also ist: m2(AY,) =6, %, .

Die Relation () = M3(H) ist fiir beliebige Mg (H) richtig, wie
man leicht am Beweis erkennen kann.

§ 5. Due regulire Gruppe'l)

Es sollen hier noch kurz die gewonnenen Resultate auf regulére, d. h.
transitive und zugleich uniforme Gruppen angewandt werden. Hier ist
offenbar die Ordnung der Gruppe gleich dem Grad der Permutationen.
Ferner erkennt man, dafl M ($) die Ordnung » besitzen muB, weil auch
sie nun transitiv und uniform sein mufl nach Satz VIII. Man erkennt
auch leicht, dafl £ und M($) konjugiert sind!2) und, im Falle § abelsch
ist, zusammenfallen. Dieser wichtige Spezialfall der reguldren Gruppe
ist schon von C. Jordan!!) bearbeitet worden.

1) C.Jordan, J. de I’Ecole polytechn., 1860, tome 22, p. 113—194.
12) A. Speiser, Gruppentheorie. 2. Aufl., p. 124.
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II. TETI L

Bevor wir auf die eigentlichen topologischen Fragen eintreten, soll
hier noch eine Interpretation von Satz VII, wie sie schon in der Ein-
leitung beschrieben wurde, gegeben werden.

§ 1. Qlewchlagerung der Variabeln

Nach Satz VII ist M (Y) transitiv, wenn Y uniform, und umgekehrt.
Wir beschrianken uns hier der Einfachheit halber auf den Fall, da3 der
Komplex 9 aus zwei Permutationen 4 und B bestehe. Die Verall-
gemeinerung kann leicht vollzogen werden. Wir nennen zwei Variable
x; und z, ,,in A aufeinanderfolgend“, wenn A4 =z, in z, iiberfithrt. Ebenso
erkliren wir den Begriff ,,in B aufeinanderfolgend“. Diejenigen Per-
mutationen, die ,,in 4 aufeinanderfolgende Variable* wieder in ,,in 4
aufeinanderfolgende Variable* iiberfithren, nennen wir Automorphismen
in bezug auf A. Analog werden Automorphismen in bezug auf B erklirt.
Diejenigen Permutationen, die sowohl in bezug auf 4 wie auf B Auto-
morphismen sind, nennen wir Automorphismen in bezug auf Y. Wir
konnen nun zwei Variable ,,in U gleichgelagert’* nennen, wenn es einen
Automorphismus in bezug auf ¥ gibt, der die eine Variable in die andere
iiberfiihrt. Nun wollen wir zeigen, dafl Permutationen, die in bezug auf
A Automorphismen sind, mit A vertauschbar sind, und umgekehrt.

z
Seien z; und z, in A aufeinanderfolgende Variable und 8§ = (a;i')
i
eine solche Permutation.

Dann sind auch z; und =z, ,,in 4 aufeinanderfolgend*‘.
) k

Es fiithrt nun: S x; in x; iiber
und A z; in z,
ferner S-1 g, in x,
also SAS1 z, in x, .

Das tut auch 4, und, weil z; beliebig ist, so wird SAS8-1 = 4. Die
Umkehrung verlduft analog.

Damit nun ist zugleich bewiesen, dafl die Gruppe der Automorphismen
in bezug auf Y identisch ist mit N (A).

Die Transitivitdt der Automorphismengruppe bedeutet nichts anderes
als die Gleichlagerung aller Variabeln in bezug auf 9. Wir kdnnen daher
den Satz VII in folgender Form aussprechen:

Satz VII*: Notwendig und hinreichend dafiir, daf3 ein Komplex Y von
Permutationen eine Gruppe {W}, die nur reguldre Permutationen enthdlt,
erzeugt, ist, daf die Variabeln in bezug auf den Komplex Y gleichgelagert sind.
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§ 2. Evne Konstruktion einer geschlossenen Fliche mit Hilfe einer requliren
Permutationsgruppe

Die Gleichlagerung der Variabeln im erzeugenden Komplex einer uni-
formen Gruppe, speziell einer reguliren, legt nahe, die Variabeln als
Eckpunkte einer Polygoneinteilung einer Fliche aufzufassen und die
Automorphismengruppe in bezug auf Y als topologische Abbildungs-
gruppe dieser Flidche zu deuten.

Gegeben sei also eine regulare Permutationsgruppe & vom Grade .
Wir stellen die n Variabeln als Punkte einer zu bildenden geschlossenen
Flache dar. Der Variablen z, entspreche der Punkt P,. Wir wihlen
ein erzeugendes System von Elementen der Gruppe &: 4,, 4,,... 4,.
Die Reihenfolge 4, , 4,,... 4, dieser Elemente sei ebenfalls festgelegt.
A, sei von der Ordnung a;. Jedes A, zerlegt sich daher in n/a; Zyklen
mit je a, Variabeln.

Zwei Punkte P, und P, verbinden wir nun durch eine orientierte von
P, nach P, fihrende A4,-Strecke, wenn A; die Variable z, in z, iiber-
filhrt. Die A;-Strecken lassen sich nun, den 4;-Zyklen gemi8, zu ge-
schlossenen Streckenziigen verbinden. Jeder zum Element 4; gehérende
geschlossene Steckenzug besteht genau aus a; Strecken.

Diese Konstruktion werde fiir ¢ = 1,2,...k gemacht. An jeder
Ecke P, miindet also je eine A;-, 4,-,... A,-Strecke und je eine
geht von ihm aus. Nun fiillen wir die geschlossenen Streckenziige durch
schlichte Fliachenstiicke aus. Die so erhaltenen Polygone, die je von
einem A,-Streckenzug berandet werden, nennen wir 4,-Polygone. An
jeder Ecke stoBt also je ein A4,-, 4,-,...A4,-Polygon zusammen.
Jede A,-Strecke berandet nur ein Polygon, weil sie nur zu einem ge-
schlossenen Streckenzug gehoért. Entsprechend der Orientierung der die
Polygone berandenden Streckenziige kann jedes Polygon mit einer
Indikatrix versehen werden. Der so erhaltene Flichenkomplex wird
nun zu einer geschlossenen Flidche erginzt durch Einfiigen neuer Poly-
gone. Hiebei wird nun die vorgelegte Reihenfolge der A, wesentlich sein.
Die Konstruktion dieser neuen Polygone verlduft folgendermafen:

Wir bilden zunédchst aus den A4,-Strecken neue geschlossene Strecken-
ziige. Wir beginnen mit einer A4,-Strecke, fiigen an ihren Endpunkt die
dort beginnende A,-Strecke, an deren Endpunkt die dort beginnende
Aj-Strecke . . . u.s. f., bis wir bei einer A4,-Strecke angelangt sind. An
deren Endpunkt schlieBen wir die dort beginnende A4,-Strecke und
setzen an ihren Endpunkt die dort beginnende A,-Strecke usw. Mehr-
maliges Passieren eines Eckpunktes ist fiir diesen Streckenzug durchaus
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zuldssig. Falls nun der Streckenzug erst dann als geschlossen erklart
wird, wenn die erste verwendete A,-Strecke wieder an die Reihe kommt,
so passiert der Streckenzug jede Strecke nur einmal, weil jede Strecke
des Zuges die vorangehende und folgende eindeutig bestimmt. Sind
noch nicht alle Strecken in diesem neuen Streckenzug untergebracht,
so konstruieren wir weitere solche Ziige unter Beriicksichtigung der
gleichen Reihenfolge der A,. Schliefilich erhalten wir so ein System
neuer geschlossener Streckenziige, so dall jede Strecke genau zu einem
dieser Ziige gehort. Wir fiillen nun diese neuen geschlossenen Strecken-
ziige durch neue schlichte Polygone aus. Wir kénnen dann folgenden
Satz aussprechen:

Satz X: Das so erhaltene Polygonsystem bildet eine geschlossene orien-
tierbare Fldche.

Beweis:

Um dies zu beweisen, zeigen wir Punkt fiir Punkt, daf3 die Definition
der geschlossenen orientierbaren Fldche!3) erfiillt ist:

1) Die Polygone sind in endlicher Anzahl vorhanden.

Das ist selbstverstdndlich, denn die Anzahl der Ecken und Kanten
ist endlich.

2) An jeder Kante stoflen genau zwei Polygone zusammen.

Jede Strecke berandet genau ein A4,-Polygon. Sie gehort zu einem
und nur zu einem der neuen geschlossenen Ziige und berandet daher
auch genau ein neues Polygon.

3) In jedem Eckpunkt bilden die anstoflenden Polygone einen Zyklus.

An jede Ecke stoBt genau ein 4,-Polygon. An die einmiindende A,-
Strecke schlieBt sich einerseits das A,-Polygon, anderseits eines der
neuen Polygone. Die fortfiihrende 4,-Strecke bildet nach Konstruktion
den andern Schenkel des Winkelraums dieses neuen Polygons.

(Fig. 1)

A; — Polygon

Ay — Polygon

13) Kerekjarto, Vorlesungen iiber Topologie I, p. 132. Die dort auf Dreiecke bezogene
Definition kann leicht auf beliebige schlichte Polygone ausgedehnt werden.
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An sie schlieBt sich das A4,-Polygon an; an dieses wiederum ein neues,
dessen anderer Schenkel die fortfithrende 4,-Strecke bildet. Der so ent-
stehende Zyklus enthélt daher alle an diese Ecke stoBenden A4,-Polygone,
und ein weiterer Zyklus miilte daher aus lauter neuen Polygonen be-
stehen. Das ist unmoglich, weil neue Polygone nicht lings Strecken
zusammenstoBen. v

4) Die Fliche ist zusammenhéingend.

@ ist ja transitiv vorausgesetzt. Es konnen daher irgend zwei
Variable durch Elemente von & ineinander iibergefiihrt werden. Den
Elementen entsprechend lassen sich Wege aus Strecken aufbauen, die
infolge der Transitivitit von jedem Endpunkt zu jedem andern gefiihrt
werden konnen.

5) Die Flache ist orientierbar.

Die einzelnen 4,-Strecken wurden als orientierte Strecken eingefiihrt.
Diese Orientierung kénnen wir, wie schon oben erwéahnt, auf die 4,-Poly-
gone iibertragen. Die neuen Streckenziige sind ebenfalls nach Kon-
struktion durch die A4,-Strecken orientiert, weil ja immer der Endpunkt
der einen Strecke mit dem Anfangspunkt der folgenden zusammenfallt.
Orientieren wir nun die neuen Polygone mit der umgekehrten Indikatrix,
so sind die beiden Ufer jeder Strecke tatsdchlich mit entgegengesetzten
Orientierungen versehen, weil an jede Strecke je ein altes und ein neues
Polygon stoBt. Damit ist eine kohdrente Orientierung der Fliche ge-
geben, also die Fliche orientierbar. q.e.d.

In § 1 wurde gezeigt, dall I (&) identisch ist mit der Automorphismen-
gruppe in bezug auf den erzeugenden Komplex. Die Konstruktion des
Streckenkomplexes, abgesehen von den ausfiillenden Polygonen, ent-
spricht dem Dehn’schen!t) Gruppenbild. Die obige Automorphismen-
gruppe ist vermoge ihrer Definition so beschaffen, dall sie alle Beran-
dungsrelationen des Streckenkomplexes invariant laft.

Es liegt die Vermutung nun nahe, daB3 auch die hier durchgefiibrte
Flichenkonstruktion so beschaffen ist, dafl diese Automorphismengruppe
zu einer Gruppe topologischer Abbildungen der Fliche ausgebaut werden
kann. Da sie identisch ist mit 9% (@), diese wiederum nach I § 5 iso-
morph zu &, so wire hiemit zugleich gezeigt, daB} die Fliche, die mit
Hilfe von @& konstruiert wurde, auch eine Gruppe topologischer Ab-
bildungen zuldBt, die isomorph ist zu &. Wir werden sehen, daf dies
zutrifft.

14) M. Dehn, Math. Ann. 69 (1900), p. 137.
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§ 3. Die konstruierte Fliche als Uberlagerungsfliche der Kugel

& sei wieder die regulire Gruppe von oben mit den Erzeugenden
A,,A4,,... 4,.

Wir konstruieren nun nach Hurwitz!®) eine Uberlagerungsfliche der
Kugel auf folgende Weise: Wir wihlen auf der Kugel einen Punkt O
und setzen um O eine positive Orientierung fest. Nun wahlen wir k4 1
weitere Punkte V., V,,...V,,V,,, und fiilhren von O einfache
Schnitte I, zu den V, in der Weise, daB die Schnitte in positiver Orien-
tierung um O in der Reihenfolge: 1,,1,,...7,,?;,,,!, folgen. Nun
stellen wir n Blitter der so aufgeschnittenen Kugel her und heften diese
so zusammen, daB bei negativer Umkreisung von O beim Uberschreiten
des ¢-ten Schnittes man vom p-ten zum g,-ten Blatt gelangt, wobei
A,.:(;’) i=1,2,.. .k

Bei Uberschreiten von 7,,,, soll dabei das o te Blatt in das g,,,-te
iibergehen, wo( e ) =(4,.4,...4,)1= AHI .

Or+1

Bei vollstdndigem Umkreisen von O gelangt man so wieder zum ur-

spriinglichen Blatt.

Definition: Die Monodromiegruppe') der Uberlagerungsfliche wird
folgendermaBlen erklart: M sei ein beliebiger Punkt auf der Kugel, der
nicht auf dem Schnittsystem liege. M, , M,, ... M, seien die entspre-
chenden Punkte auf der Uberlagerungsfliche. y sei eine geschlossene
Kurve auf der Kugel durch M, die nur in innern Punkten die Schnitte [,
trifft und nur in endlich vielen Malen. Der Kurve y auf der Kugel ent-
sprechen dann n verschiedene Kurven y; auf der Uberlagerungsfliche,
die je von einem der Punkte M, ausgehen und y als Spurkurve haben.

Die Kurve y, filhrt im allgemeinen nicht nach M, zuriick, sondern etwa

]

nach M, . Die Permutafoionen( A) bilden dann die Monodromiegruppe.

Zu jedem M, gehért ein Blatt der Uberlagerungsfliche, und so kann
ich die Monodromiegruppe auch als Permutationsgruppe der Blitter auf-
fassen. Die Kurven y, erfahren nun bloB bei Uberschreiten der Schnitte
Permutationen der Blitter, und zwar gerade die Permutationen A4,
resp. 4;', so dafl die Monodromiegruppe identisch ist mit der Gruppe &,
die unsrer Flichenkonstruktion zugrunde gelegt wurde.

Die Uberlagerungsfliche nennt man regulir'?), wenn entweder alle zu

15y A. Hurwitz, Math. Ann. 39 (1891), p. 1—61.

18) Threlfall-Seifert, Lehrbuch der Topologie, p. 198.
17) Kerekjarto, Vorlesungen iber Topologie I, p. 162.

5b



einer geschlossenen Spurkurve y gehorenden y, geschlossen oder alle offen
sind. Das ist offenbar der Fall, wenn die Monodromiegruppe nur regulire
Permutationen enthilt, und das ist hier der Fall. Wir haben es also mit
einer reguliren Uberlagerungsfliche zu tun.

Definition: Unter einer Decktransformationl?) einer Uberlagerungs-
fliche verstehen wir eine topologische Abbildung der Uberlagerungs-
fliche in sich, die nur Punkte iiber dem gleichen Spurpunkt permutiert.

Nun gilt der Satz:

Satz XI'8): Bei reguliren Uberlagerungsflichen ist die Gruppe der
Decktransformationen isomorph zur Monodromiegruppe; sie permutiert

die Blitter der Uberlagerungsfliche, wie (&), wenn & die Monodromie-
gruppe darstellt.

Wir konstruieren nun um die Verzweigungspunkte V,(:=1...k) ein-
fache geschlossene Wege W,, die in O beginnen und enden, so daf} fiir
k = 2 folgende Figur auf der Kugel entsteht.

I

V3

(Fig. 2)

Wa

Dem einmaligen Umlauf w, um V, entsprechen auf der Uberlagerungs-
fliche n Wege, die gerade die Permutation 4, auf O ausiiben. Diese
Wege lassen sich also als A4,-Strecken einfiilhren. Entsprechend die
andern. Nach a, Umliufen (¢; = Ordnung von A,) schlieBen sich die
dem Spurweg w, entsprechenden Wege. Sie beranden die dem Dreieck
(V,—1l, O—w;—O0—I1,—V,) entsprechenden schlichten Polygone,
die wir als 4,-Polygone einfithren kénnen. Entsprechendes gilt fiir die
andern A,-Polygone. SchlieBlich entsprechen dem AuBern der Kugel
Polygone auf der Uberlagerungsfliche, die genau durch die den Kanten-
ziigen, welche die neuen Polygone in unsrer Konstruktion beranden,

17) Kerekjarto, Vorlesungen iiber Topologie I, p. 162.
18) W. Scherrer, Zur Theorie der endl. Gruppen top. Abb. geschl. Flachen
in sich. C.M. H., vol. 2, pag. 88.
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entsprechenden Kantenziige berandet werden. So finden wir unsre
Konstruktion auf dieser Uberlagerungsfliche wieder. Mit & als Mono-
dromiegruppe und mit Hilfe von Satz XI bestétigt sich nun unsere Ver-
mutung, dafl die oben erwihnte Automorphismengruppe als Gruppe
topologischer Abbildungen der konstruierten Fliche aufgefalt werden
kann.

Dyck?®) hat eine dhnliche Konstruktion, ausgehend von der freien
Gruppe gefunden. Die Figur auf der Kugel, durch die duale ersetzt und
auf die Uberlagerungsfliche iibertragen, 14Bt die Dyck’sche Darstellung
als duale der unsrigen erkennen. Es ist interessant, wie von zwei ganz
verschiedenen Ausgangspunkten: freie Gruppen, reguldre Permutationen,
das gleiche Gruppenbild gewonnen werden kann.

Die so in § 2 mit Hilfe einer reguliren Gruppe konstruierte Fliche
ist nicht nur von der Wahl der Erzeugenden, sondern auch von ihrer
Reihenfolge abhingig.

Schon mit Hilfe der Hurwitz’schen Relation erkennt man die Moglich-
keit, mit der Tetraedergruppe als Ausgangsgruppe zwei verschiedene
Flichen, den Torus und die Kugel, zu konstruieren. Die Hurwitz’sche
Relation fiir regulire Uberlagerungsflichen lautet nidmlich, wenn wir
beachten, dall die Ordnung von 4, = a, ist, folgendermaflen:

k+1 1 20)
2—2p=n(2—27m)—mn Y, (1———)
1

a;

p = Geschlecht der Uberlagerungsfliche
7 Geschlecht der Grundfliche
n = Blatterzahl.

I

In unserm Fall ist # =0 und n gleich der Ordnung der Gruppe &.

Fiir den Fall der Tetraedergruppe kénnen wir uns auf zwei Erzeugende
beschrinken. Es wird dann a; gleich der Ordnung des Produktes der
Erzeugenden.

Wir erhalten also:
1 1 1
Die Tetraedergruppe kann auf folgende zwei Arten erzeugt werden:

1. Indem wir zwei Elemente der Ordnung 3 nehmen, die in der gleichen
Nebenreihe der Vierergruppe liegen. IThr Produkt ist dann in der andern

9) W. V. Dyck, Math. Ann. 20 (1882), p. 1—44.
20) Kerekjarto, Vorlesungen iiber Topologie I, p. 162.
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Nebenreihe der Vierergruppe, weil die Vierergruppe Normalteiler ist;
es ist daher von der Ordnung 3.

Es wird also a, = 3
Ay = 3
ag = 3

und daher p = 1:Fall des Torus.

2. Indem wir zwei Elemente der Ordnung 3 nehmen, die in verschie-
denen Nebenreihen der Vierergruppe, jedoch nicht in der gleichen
zyklischen Gruppe liegen. Ihr Produkt liegt dann in der Vierergruppe
und ist daher von der Ordnung 2.

Wir erhalten a, = 3
a2 = 3
und daher p = 0: Fall der Kugel.
ITI. TETI L

§ 1. Der Zusammenhang zwischen Monodromie- und Decktransformationen-

gruppe einer Uberlagerungsfliche

Bei der vorigen Untersuchung wurde der Satz benutzt, daB3 bei einer
reguliiren Uberlagerungsfliche Monodromiegruppe und Decktransforma-
tionengruppe sich so zueinander verhalten, wie eine regulire Gruppe &
zu der ihr zugeordneten Gruppe M (). Dieser Sachverhalt 148t sich
nun verallgemeinern, indem die Regularitit der Uberlagerungsfliche
und damit auch die Regularitit der Monodromiegruppe fallen gelassen
wird. Trotzdem bleibt dann die Tatsache bestehen, daB M (S) als
Decktransformationengruppe der Uberlagerungsfliche aufgefaBt werden
kann.

Wir werden diese Erweiterung in zwei Fillen aufzeigen koénnen:

1) Fiir alle verzweigten Uberlagerungspolyederflichen von Polyeder-
flichen.

2) Fiir alle unverzweigten zusammenhiingenden simplizialen Uber-
lagerungskomplexe ebensolcher Komplexe.

§ 2. Uberlagerung von Polyederflichen

Unter einer Polyederfliche sei eine berandete oder geschlossene tri-
angulierte Flache verstanden.
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Bei Untersuchung®') der topologischen Gruppen von Polyederflichen
hat es sich als niitzlich erwiesen, Faltverzweigungen einzufiihren. Wir
betrachten hier den allgemeinen Fall von gefalteten oder ungefalteten
Uberlagerungsflichen von Polyederflichen. Es ergibt sich daher eine
gewisse Modifizierung der Definition verzweigter Uberlagerungsflichen
von Kerekjarto??).

Wir definieren diesen Begriff folgendermaflen:

Definition: Eine Polyederfliche F ist Uberlagerungsfliche einer Poly-
ederfliche @, wenn folgende Beziehungen gelten:

1) Jedem Dreieck 4 von F ist ein Dreieck 4 von @ zugeordnet durch
eine topologische Abbildung von 4 auf 4, bei der den Eckpunkten und
Kantenpunkten von A4, die Eckpunkte, bzw. die Kantenpunkte von 4
entsprechen.

2) Zwei Dreiecken 4, und 4,, die eine Kante gemeinsam haben, ent-
sprechen:

a) entweder zwei solche Dreiecke 4, und 4,, die ebenfalls eine Kante
gemeinsam haben; auf der gemeinsamen Kante von 4, und 4, ist die
Abbildung auf die gemeinsame Kante von 4; und 4, in beiden Drei-
ecken dieselbe.

b) oder einem Dreieck A auf @ mit einer Randkante, die der gemein-
samen Kante von 4, und 4, entspricht; auf dieser gemeinsamen Kante
ist die Abbildung auf die Randkante von 4 in beiden Dreiecken dieselbe.

3) Sind 4, und 4, zwei benachbarte Dreiecke von @ und ist 4, ein
beliebiges dem Dreieck 4, entsprechendes Dreieck von F, so soll es ein
Dreieck 4, von F geben, welches dem Dreieck A, entspricht und 4, be-
nachbart ist.

Es folgt aus der Definition, dal iiber jedem Dreieck 4 von @ die
gleiche Anzahl von Dreiecken 4 von F liegen. Diese Zahl nennen wir
die Blitterzahl der Uberlagerungsfliche.

§ 3. Korrespondenz der Wege auf Uberlagerungs- und Grundfliche
Wir teilen die Punkte von @ in drei Kategorien:

1) Regulire Punkte: Alle innern Punkte der Dreiecke und innern
Kanten.

21y W, Scherrer, Zur Theorie der endl. Gruppen top. Abb. geschl. Flachen
in gich.
22) Kerekjarto, Vorlesungen iiber Topologie I, p. 158.
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2) Halbsinguldre Punkte: Alle innern Randkantenpunkte.
3) Singuldre Punkte: Alle Eckpunkte.

Bemerkung : Die hier eingefiihrte Einteilung ist lediglich der Einfach-
heit halber so gewahlt worden. Man kann auch bloB diejenigen Punkte
zu singularen Punkten zéhlen, die wirklich Verzweigungspunkte sind.

Wir fithren nun auf @ und F den Begriff des normalen Weges ein.

Auf @ nennen wir einen Weg normal, wenn er keine singuldren und
nur endlich viele halbsinguldre Punkte besitzt.

Auf F nennen wir einen Weg normal, wenn sein Spurweg auf normal,
und wenn er iiber den halbsingulidren Punkten die Faltungskanten iiber-
schreitet.

Unter Faltungskanten verstehen wir dabei diejenigen Kanten von F,
die Randkarten von @ entsprechen, ohne selbst Randkanten von ¥ zu
sein. Wir betrachten nun einen Weg » auf @, der im Innern nur regulédre
Punkte enthélt. M sei ein solcher Punkt. n sei die Blitterzahl von F'.
Dann entsprechen dem Punkt M auf @ » verschiedene Punkte M, auf F'.
Wir betrachten nun eine Kreisumgebung von M. Ihr entsprechen auf
F n verschiedene Kreisumgebungen, falls die Umgebung geniigend klein
gewahlt wird. Es 148t sich daher zu dem Weg » auf @ in der Umgebung
von M, auf F eindeutig ein Weg y, bestimmen, dessen Spurweg y ist.
Durch Fortsetzung dieser Umgebungen erreichen wir so das ganze ab-
geschlossene Stiick des Weges y samt den berandenden Punkten, die
eventuell halbsinguldr sind. Wenn wir uns nun auf normale Wege auf ¥
beschrinken, so kénnen wir diese Wege auch in den halbsinguldren
Punkten fortsetzen, d. h. eindeutig einen Weg auf F bestimmen, der
einen vorgegebenen normalen Weg auf @ als Spurweg hat. Den halb-
singuldren Punkten auf @ entsprechen nidmlich auf F entweder Rand-
punkte oder Punkte auf Faltungskanten. Im ersten Fall bedarf es keiner
weitern Festsetzung, indem der Halbumgebung auf @ eine Halbum-
gebung auf F entspricht, in welcher der Weg eindeutig fortgesetzt werden
kann. Im andern Fall entspricht der Randkante von @ eine innere Kante
von F. Der Halbumgebung auf @ entspricht jetzt eine gefaltete volle
Umgebung auf F. Somit ist zu entscheiden, auf welcher Halfte der Weg
fortgesetzt werden soll. Das ist nun aber schon entschieden durch die
Festsetzung, daB ein normaler Weg auf F' die Faltungskante iiberschreitet.
Wir sehen also, daB es zu jedem einen Punkt M enthaltenden normalen
Spurweg y einen und nur einen Weg y; gibt, der normal auf F liegt und
durch den Punkt M, geht.
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§ 4. Monodromiegruppe und Decktransformationengruppe

Erst auf Grund dieser Tatsachen ist es nun mdéglich, die Monodromie-
gruppe zu definieren. Die Definition ist die Erweiterung der gewdéhn-
lichen Definition??) auf unsern Fall.

Definition: Wir wihlen einen beliebigen regularen Punkt M auf @.
M, seien die entsprechenden Punkte auf F. Statt nun iiberhaupt alle
geschlossenen Wege zuzulassen, betrachten wir nur die normalen ge-
schlossenen Wege auf @. y sei ein solcher in M beginnender normaler
Weg. Der in M, beginnende y entsprechende normale Weg y, auf F

endige in M,,. Die Abbildungen (z

fassen. Die Permutationsgruppe dieser so erhaltenen Permutationen der
M, bildet die Monodromiegruppe.

Sie hangt, wie man leicht sieht, nur unwesentlich von der Wahl des
Punktes M ab, solang dieser reguldr gewihlt wird. Die Monodromie-
gruppe ist transitiv, weil die Polyederflichen zusammenhingend sind,
und irgend zwei Punkte M; und M, daher durch einen normalen Weg
verbunden werden kénnen.

) konnen wir als Permutationen auf-

1

Definition: Die Decktransformationen?®), im folgenden kurz mit D.T.
bezeichnet, sind definiert als topologische Abbildungen der Uber-
lagerungsfliche F' in sich, bei der jeder Punkt von F in einen iiber
demselben Spurpunkt liegenden Punkt iibergeht. Die Gesamtheit der
D.T. bildet die D.T.-Gruppe.

M sei wieder der vorhin betrachtete reguldre Punkt. Bei jeder D.T.
erfahren die Punkte M, eine Permutation, die wir als die der D.T. zu-
geordnete Permutation bezeichnen. Wir zeigen nun, daBl jede solche
Permutation aber auch nur einer D.T. zugeordnet ist.

Sind ndmlich 7', und 7, zwei D.T., denen die gleiche Permutation
der M, entspricht, so entspricht der D.T.: T7'T, die identische Per-
mutation. Wenn nun 7'; # T,, so gibt es einen Punkt P, auf F, der
durch T7'T, in einen von P, verschiedenen Punkt P, tubergeht. Ver-
binden wir M, mit P, durch einen normalen Weg y,, so wird y, in einen
Weg mit dem gleichen Spurweg transformiert.

Ist er auch normal, so ist er durch M, und y eindeutig bestimmt und
daher mit y, identisch. Es folgt daraus P, = P,, und also T7'7T, = K.
Wir haben nun noch zu zeigen, dal jede D.T. normale Wege in normale

23) Threlfall-Seifert, Lehrbuch der Topologie, p. 198.
24) Kerekjarto, Vorlesungen iiber Topologie, p. 162.
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iiberfithrt. Sei yp, ein normaler Weg von F, der durch die D.T. 7 in
den Weg y, iibergeht. Der Spurweg y von y, ist auch der Spurweg von
ys. Daher ist der Spurweg von y, normal. Ferner gehen bei einer D.T.
Rinder von F in Rénder iiber und, da die Ridnder von @ invariant
bleiben, so miissen auch Faltungskanten in Faltungskanten tibergehen.
Wiirde nun im Punkte, welcher dem Punkte entspricht, wo y,; eine
Faltungskante iiberschreitet, der Bildweg v, dies nicht tun, so wiirde
er sich topologisch anders verhalten, als der Urweg v,. Daher ist y,
normal. Es entspricht als der D.T.-Gruppe eine isomorphe Permuta-
tionsgruppe der M,.

Die Frage, wie nun diese der D.T.-Gruppe zugeordnete Permutations-
gruppe mit der Monodromiegruppe in Zusammenhang steht, wird nun
durch folgenden Satz, der eine Verallgemeinerung von Satz XI dar-
stellt, beantwortet:

Satz XII: Ist § die Monodromiegruppe, so ist MM () die der D.T.-
Gruppe zugeordnete Permutationsgruppe.

Beweis :
Der Beweis zerfillt in zwei Teile, entsprechend den zwei Behauptungen,
die in Satz XII enthalten sind.

Behauptung A : Jede D.T.-Permutation ist mit jeder Monodromie-
permutation vertauschbar.

Behauptung B : Jede Permutation, die mit jeder Monodromiepermu-
tation vertauschbar ist, ist eine D.T.-Permutation.

Beweis von A :
T sei eine D.T.-Permutation,
S sei eine Monodromiepermutation.

Wir betrachten einen normalen geschlossenen Weg y auf @, der 8
entspricht. Dann erfahren die y, durch 7' eine Permutation, da ja nor-
male Wege in normale iibergehen. Diese Permutation der y, ergibt fiir
die Endpunkte der y, eine entsprechende Permutation, die wiederum
mit 7' identisch sein mufl.

Es fiithre S M, in M,
und TM, in M,.

T fiihrt also auch y; in y, und daher auch M, in M, . Also fiihrt
STS1M, in M, iiber.

Das tut auch 7', und da M, beliebig, so wird

ST8S1 =T
ST =T1T8. q. e. d.
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Beweis von B :

Der Beweis ist weit komplizierter als der Beweis von A, da nun eine
topologische Abbildung zu konstruieren ist mit Hilfe einer Permutation
der M,.

Im folgenden seien die regularen, bzw. halbsinguldren oder singulidren
Punkten auf @ entsprechenden Punkte auf F ebenfalls als regulére, bzw.
halbsingulédre oder singuldre Punkte auf F bezeichnet.

T sei nun eine Permutation der M,, die mit allen Monodromieper-
mutationen vertauschbar ist. 7' filhre den Punkt M, in M, iber. Wir
erkldren zunichst in jedem regulidren Punkt P, von ¥ eine Abbildung
auf einen iiber dem gleichen Spurpunkt liegenden Punkt P, mit Hilfe
der Abbildung 7' und einem M, mit P, verbindenden normalen Weg y,.

y, sei der von M, ausgehende y, entsprechende Weg. Er fithre zum
Punkte P,.

Wir erklidren nun die Abbildung:

Ty(P ) = P,. _

Diese Abbildung hingt scheinbar noch von y, ab. Dem ist aber nicht
so. Es sei 4, ein anderer normaler Weg, der M, mit P, verbindet. Den
Wegen y; und d; mogen die Spurwege ¢ und 6 entsprechen. Dem ge-
schlossenen Spurweg y 6! entspreche die Permutation § der Mono-
dromiegruppe.

Nun fithrt 71 M, in M,
und S8 M, in M,, weil ja y, 6; der iiber y ! von M, aus-
gehende normale Weg ist.

Ferner fithrt 7' wieder M, in M, iiber. Also fithrt T-*ST M, in sich
iber.

Weil nun 7187 = 8 ist, so fiihrt auch § M, in sich iiber.

Es sei ¢ der von P, ausgehende, iiber 6-! liegende normale Weg. Somit
ist y,0 der von M, ausgehende, iiber yd~! liegende normale Weg. Daher
fiithrt o P, in M, iiber. o' ist also der Weg, welcher iiber § von M,
ausgeht. Nach Definition mul} also 7'5(P,) = P, sein, oder

Ty(Pl) = Ta(P1) .

Um nun die Abbildung 7'(P,) auch auf halb- und ganzsingulédre
Punkte von F zu iibertragen, bemerken wir, dafl zu jedem Punkt P
von @ eine Umgebung (kann auch eine Halbumgebung sein) U (P)
derart angenommen werden kann, daB zu jedem der verschiedenen
Punkte P,, P,,... P, (r<n) auf F eine Umgebung U (P,) existiert,
die nur Bilder von U (P) enthilt, so daf alle U (P;) mit festem P unter-
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einander punktfremd sind, und daB jeder Punkt X, von F, dessen Spur X
in U (P) liegt, auch in einer der Umgebungen U (P,) liegt. Ferner enthilt
jede der Umgebungen U (P;) regulire Punkte, und je zwei solche, die
in der gleichen Umgebung U (P,) liegen, lassen sich auch innerhalb dieser
durch einen normalen Weg verbinden.

Es sei nun V; ein singuldrer Punkt von F. Wir wihlen eine Folge
regulirer Punkte PP, P® .. . von F, die gegen V, konvergiert und
die alle schon in U(V,) liegen. P, ... seien die durch 7'(P,) vermit-
telten Bilder. Ich behaupte nun, daf} die Bildfolge ebenfalls konvergiert.
Die Folge der Spurpunkte konvergiert jedenfalls gegen den Spurpunkt
V von V,. Es geniigt offenbar, zu zeigen, daB zwei Punkte P% und P®
in der gleichen Umgebung U (V,) liegen, wo V, einer der iiber V liegen-
den Punkte ist. Es liege nun im Gegenteil P in U(V,) und P® in
U(V,). Wir verbinden P¥ mit P% durch einen normalen Weg ¢,, der
ganz in U(V,) verlduft. Es sei ferner M, mit P%® durch den normalen
Weg y, verbunden. P% ist dann durch den von M, ausgehenden iiber
v, liegenden normalen Weg y, definiert. Ebenso ist P% durch den von
M, ausgehenden normalen Weg y,¢&,, der y, e, entspricht, definiert.
Der Spurweg von &, und &, liegt ganz in U (V), weil ¢, ganz in U (V,)
liegt. Also liegt auch e, ganz in U (V,) und daher ist auch P%) in U(V,),
also V, = V,.

Wir definieren nun: 7(V,) = V,.

Diese Erklirung ist scheinbar von der Wahl der Folge P% abhingig.
Wenn aber eine andere Folge Q% eine Bildfolge definieren wiirde, die
nicht gegen V, konvergiert, so miiBte doch die aus P und Q% kom-
binierte Folge konvergieren, weil die Urfolge konvergiert. P® und Q%
konvergieren ja beide gegen V,. Weil aber die Teilfolge P gegen V,
konvergiert, so muB3 auch die Teilfolge @ gegen V, konvergieren.
Somit ist die Erklarung 7'(V,) =V, unabhéngig von der Wahl der Folge.

Wir haben jetzt eine Abbildung 7'(P,) = P, firr die ganze Fliche F
eindeutig erklirt, und es gilt nun noch folgendes zu zeigen, damit wir
erkennen, daf3 wir es hier mit einer Decktransformation zu tun haben:

1) T(P,) laBt die Spurpunkte invariant.
2) T (P,) ist stetig.
3) 7T (P,) ist umkehrbar eindeutig.

1) T'(P,) laBt die Spurpunkte invariant.
Dies folgt unmittelbar aus der Definition von 7'(P,).
2) T(P,) ist stetig.
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Es sei P, ein beliebiger Punkt von F. Es geniigt zu zeigen, da3 der
Bildpunkt X, jedes Punktes X,, der in U (P,) liegt, in U (P,) liegt. Fiir
regulidre Punkte wurde dies schon durch die Art der Erklarung von 7'(V,)
gezeigt. S, sei ein regulidrer Punkt, der in U (X,) liege. Ferner sei noch
U(X,) ganz in U (P,) gewédhlt. Dann liegt 7'(S,) = 8, in U (P,) und
anderseits in U (X,). U(X,) liegt ganz in einer bestimmten Umgebung
U (P,). Da sie aber S, enthilt, liegt sie in U (P,). Also liegt X, in U (P,).

3) T(P,) ist umkehrbar eindeutig.

Dies ergibt sich daraus, dall ich ja eine Abbildung T-1(P,) = P,
konstruieren kann, indem ich die Abbildung 7-(M,) = M, stetig fort-
setze. Die Abbildungen erginzen sich offenbar zur Identitit.

T (P,) ist also eine Decktransformation. Es ist blol noch zu zeigen,
daB T (P,) nicht nur M, in M,, sondern auch die andern Punkte M, so
permutiert, wie die vorgegebene Permutation 7'. Dies ergibt sich durch
folgende Uberlegung:

Nach Behauptung A ist die D.T.-Gruppe Untergruppe von R($).
Diese ist uniform, weil die Monodromiegruppe §) transitiv ist (Satz VIII).
Somit ist die D.T. 7'(P,) als Element von () eindeutig durch die
Abbildung M, — M, bestimmt und daher mit 7' identisch. Damit ist
auch Behauptung B vollstindig bewiesen. q. e. d.

Bevor ich nun zu der zweiten der in § 1 beschriebenen Erweiterungen
von Satz XTI iibergehe, mochte ich an einem einfachen Beispiel zeigen,
wie dieser Satz funktioniert.

Gegeben sei ein Rechteck, das, wie Fig. 3 zeigt, in 8 Teile geteilt sei.

112]13]4

Fig. 3
516|718 (Hig. 3)

Man falte nun das Rechteck an der Lingsachse, so da die Rechtecke
1 und 5
2 und 6
3 und 7
4 und 8
aufeinanderzuliegen kommen.

Nun falte man noch an der Querachse und schliefllich noch an der
einzig iibrigbleibenden innern Kante, so daB schlieBlich alle 8 Teile
iibereinanderliegen.
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Das so gefaltete Rechteck bildet nun eine 8-blittrige Uberlagerungs-
fliche irgendeines Rechtecks. Die erzeugenden Monodromiepermutationen
werden erhalten bei Uberschreiten der Rinder des Spurrechtecks. Man
erhilt so die folgenden Bléatterpermutationen:

Sy = (1) (23) (4) (5) (67) (8)
Sy = (15)(26)(37)(48)
S5 = (1 2) (3 4) (5 6) (78
8, = (1) (2) (3) (4) (5) (6) (7) (8)
Durch Ausrechnen erhilt man aus diesen 4 Permutationen eine Gruppe

der Ordnung 16.
Die D.T.-Gruppe kann nur aus den Spiegelungen an der Léngsachse
und Querachse und der Drehung um I7 um den Mittelpunkt bestehen.

Es muBl die Vierergruppe sein.

Ihre Permutationen sind
T, = B
T, = (15) (2 6) (37) (48)
Ty =1(14)(23)(58)(67)
+=(18)(27) (3 6)(45)
Man erkennt nun leicht, daf8 diese 7' mit samtlichen S vertauschbar

sind.

$ ist von der Ordnung 16 M (H) ist von der Ordnung 4 und Grad 8.
Also ist M2(H) von der Ordnung 422! = 32. Das ist ein weiteres Bei-
spiel dafiir, daBl 9MN2($) bei transitiven Gruppen nicht mit §) identisch
zu sein braucht.

§ 5. Ubertragung auf allgemeine unverzweigte Uberlagerungskomplexe

Nach Threlfall-Seifert?®) kann der unverzweigte Uberlagerungskomplex
folgendermafen definiert werden.

Definition: & und & seien zwei endliche oder unendliche zusammen-
hingende (simpliziale) Komplexe. & ist eine Uberlagerung von f, wenn
eine stetige Abbildung G von & auf & gegeben ist, die folgende Bedin-
gungen erfiillt:

UL 1: In jedem Punkt P von & bildet sich mindestens ein Punkt P
von & ab. P ist der Grund-(Spur-)punkt von P.

25) Threlfall-Seifert, Lehrbuch der Topologie, p. 181 und p. 184.
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UL 2: Sind P, , P,, ... die simtlichen iiber P liegenden Punkte, so
gibt es ausgezeichnete Umgebungen U(P), U(I~)1) ,... von der Art,

daB sich U(P,), U(P,), ... durch @ topologisch auf U(P) abbilden,
und daf

UL 3: ein Punkt von & , der iiber einem Punkte von U (P) liegt, min-
destens zu einer der ausgezeichneten Umgebungen U (P,) gehort.

Eine Unterscheidung in reguldre und singulire Punkte ist hier nicht
notwendig. Auch brauchen wir uns nicht auf besondere Wege zu be-
schrianken, sondern kénnen gleich folgenden Satz aussprechen:

Satz XIII: Ist W ein von A nach B fihrender Weg in & und A ein
iiber A liegender Punkt in &, so gibt es genau einen Weg W mit dem
Anfangspunkt A, der W iberlagert.

Die Monodromiegruppe und die D.T.-Gruppe lassen sich wie in § 4
definieren. Die D.T.-Gruppe ist auch hier wieder isomorph zu der Per-
mutationsgruppe der Punkte M, die sie durch die D.T. erfahren.

Wir kénnen also sogleich zum Analogon von Satz XII iibergehen.

Satz XIV: Ist § die Monodromiegruppe eines unverzweigten zusammen-
hingenden Uberlagerungskomplexes, so ist M ($) die der D.T.-Gruppe
zugeordnete Permutationsgruppe.

Beweis: Der Beweis braucht nur skizziert zu werden, da er demjenigen
von Satz XII ganz analog lauft.

Behauptung A : Jede D.T.-Permutation ist mit jeder Monodromie-
permutation vertauschbar.
Der Beweis von A verlduft genau wie in § 4.

Behauptung B: Jede Permutation, die mit jeder Monodromie-
permutation vertauschbar ist, ist eine D.T.-Permutation.

Beweis von B: T sei eine Permutation von 9 ($)) und fithre M, in
M, iber.

Nun erkliren wir wieder die Abbildung: 7',(P;), und zeigen, wie in
§ 4 mit Hilfe der Vertauschbarkeit: T',(P,) = Ts(P,) .

Die in § 4 betrachteten Umgebungen sind hier schon in Ul. 2 und Ul. 3
direkt garantiert, so daB also auch die Stetigkeit und Umkehrbarkeit
von 7'(P,;) gezcigt werden kann. Der SchluBl des Beweises verliuft
entsprechend.
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Um diesen Satz im Falle unverzweigter Uberlagerungskomplexe mit
den Untersuchungen iiber die Fundamentalgruppe in Zusammenhang
zu bringen, benutzen wir einen Satz von Kuhn?®), der dort zwar nicht
explizit steht, der aber aus den dortigen Ausfithrungen unmittelbar
gefolgert werden kann:

Satz XV: Ist & eine transitive Gruppe, und $§ diejenige Untergruppe
von &, welche eine Variable festhilt, so ist WM (®) isomorph zur Faktor-
gruppe 3/, wo 3 der Normalisator von §) in & ist.

Der dortige Satz gibt zwar nur die Gleichheit der Ordnungen von
M(G) und 3/%, aber der dort gegebene Beweis 1Bt unmittelbar auch
auf die Isomorphie schlieBen. Diesen Satz kénnen wir hier anwenden,
wenn wir fiir & zunéchst die Monodromiegruppe einsetzen. Da aber bei
unverzweigten Uberlagerungskomplexen die Monodromiegruppe homo-
morph zur Fundamentalgruppe § von { ist, so kénnen wir alles auf die
Fundamentalgruppe beziehen: Wir kénnen dann unsern Satz XIV so
formulieren :

Die D.T.-Gruppe ist isomorph der Faktorgruppe 3/$, wo § die der
Fundamentalgruppe des Uberlagerungskomplexes entsprechende Unter-
gruppe der Fundamentalgruppe § von & ist und 3 der Normalisator
von §) in §.

Dieser Satz ist aber identisch mit der Losung einer Aufgabe in Threlfall-
Seifert??). Umgekehrt 148t sich mit Hilfe des Satzes von Kuhn schlie8en,
daB die D.T.-Gruppe isomorph ist zu (&), nicht aber folgt daraus,
daB die M, unter der D.T.-Gruppe gerade die Permutation der Gruppe
M () erfahren.

Der Satz liBt sich nur bei unverzweigten Uberlagerungskomplexen
mit den Sdtzen iiber die Fundamentalgruppe in Zusammenhang bringen.
Bei verzweigten Uberlagerungsflichen ist die Monodromiegruppe im
allgemeinen nicht mehr homomorph zur Fundamentalgruppe der Grund-
fliche. Es besteht aber auch kein unmittelbarer Zusammenhang. Darum
war es wichtig, gerade fiir diesen Fall den Satz XII ausfiihrlich zu
beweisen.

28) H. Kuhn, Amer. J. of Math., vol. 26 (1904), p. 67.
27) Threlfall-Seifert, Lehrbuch der Topologie, p. 198, 57, Aufgabe 1.

(Eingegangen den 25. Juli 1937.)

68



	Reguläre Permutationen und ihre Beziehungen zur Topologie.

