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Regulâre Permutationen
und ihre Beziehungen zur Topologie

Von \A alter Gruner, Bern

Eînleitung

W Scherrer hat mich auf das Problem aufmerksam gemaeht, wie ein
Komplex regularer Permutationen beschaffen sem muB, wenn er eme
Gruppe, die nur regulâre Permutationen enthalt, erzeugen soll
Permutationen nennt man regular, wenn sie in lauter, gleich viel Elemente
enthaltende elementfremde Zyklen zerlegt werden konnen Dièses
Problem ware trivial, wenn das Produkt zweier regularer Permutationen
stets regular ware Denn dann enthielte 3 a offenbar auch eme durch
regulâre Permutationen erzeugte Gruppe nur regulâre Permutationen

Schon das emfache Beispiel vom Grad 4

A (1 2 3 4)

£=(12) (3 4)
A B (1) (3) (2 4)

(A und B smd regular, A B aber nicht)
ist ein Gegenbeweis

Wir werden hier das Problem m dem Sinne losen, daB wir eme not-
wendige und hmreichende Bedmgung dafur aufstellen, daB ein Komplex
von regularen Permutationen eme Gruppe mit lauter regularen
Permutationen erzeugt Dièse Bedmgung gestattet zwar nicht etwa die

Menge derjemgen Permutationen B unmittelbar zu uberblicken, die

zusammen mit einer regularen Permutation A eme Gruppe mit lauter
regularen Permutationen erzeugen Wohl aber gestattet sie eme an-
schauliche Interprétation des Sachverhaltes zu geben

Die Bedeutung dieser Bedmgung liegt namlich dann, daB die zu per-
mutierenden ,,Gegenstande", die îeh îm folgenden stets als Variable be-

zeiehnen werde, mnerhalb des erzeugenden Komplexes gleichgelagert smd

Der Inhalt der Satze, die m dieser Bedmgung liegen, wurde schon von
H Kuhn1) und G A Miller2) bewiesen Doeh ist dort von einer ganz
andern Problemstellung ausgegangen worden, und ich werde hier die
Satze m etwas anderer Art formuheren und beweisen

l) H Kuhn, Amer J of Math vol 26, 1904, p 67

2) G A Miller, Proc of the Amer Phil Soc, vol 50, 1911, p 129—146
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Die Gleichlagerung der Vanabeln îm erzeugenden Komplex laBt sich
topologisch auf emer Flache veranschaulichen Es kann dann bewiesen
werden, daB die erzeugte Gruppe als Gruppe topologischer Abbildungen
dieser Flache m sich realisiert werden kann Dièses Gruppenbild ent-
spricht, was den Streckenkomplex fur sich anbelangt, vollstandig dem
Dehn'schen3) Gruppenbild

Die Untersuchung dieser Darstellung wird uns m emem dritten Teil
zur Untersuchung allgememer Uberlagerungsnachen fuhren Speziell wird
hier der Zusammenhang von Monodromiegruppe und Decktransforma-
tionengruppe emer Uberlagerungsflache untersucht Dieser Zusammenhang

ist îm Fall regularer Uberlagerungsflachen schon lange bekannt
Uber den allgememen Fall findet sich ein Hmweis bel Threlfall-Seifert4)
Doch kann dieser verallgememerte Satz emfacher direkt und ohne ex-
plizite Heranziehung des Begriffes der Fundamentalgruppe bewiesen

werden, dies erweist sich îm Fall verzweigter Uberlagerungsflachen als
besonders gunstig

I T E I L
§ 1 Grundbegnffe

Définition: Eine Permutation ist regular5), wenn sie sich m lauter
gleich viel Variable enthaltende elementfremde Zyklen zerlegen laBt

Définition : Ein Permutationenkomplex ist uniform, wenn jede Variable
in jede andere durch hochstens eine Permutation ubergefuhrt wird

Diesen neuen Hilfsbegrifï fuhre ich hier em, um die folgenden Satze
ubersichtlicher formuheren zu konnen

Wir brauchen nun em Kriterium, das îm wesentlichen schon bei
Netto6) steht

Satz I : Jede Gruppe, die nur regulare Permutationen enthalt, ist
uniform, und umgekehrt

Beweis :

A Voraussetzung Die Gruppe enthalt nur regulare Permutationen
Béhauptung Die Gruppe ist uniform

S und T seien zwei Permutationen dieser Gruppe, die entgegen der
Béhauptung beide die Variable xt m die Varable xk uberfuhren S T-1
fuhrt dann x% m sich uber, enthalt also emen Emerzyklus Weil ST~X
aber regular ist, so muB es lauter Emerzyklen enthalten

3) M Dehn, Math Ann 69 (1900) p 137
*) Threlfall Seijert, Lehrbuch der Topologie, p 198
8) A Cauchy, Par C R 21, p 601
•) Netto, Substitutionentheone 1 Aufl p 99
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Es folgt daher:
S .T-1 E

oder 8 T q. e. d.

B: Voraussetzung : Die Grappe ist uniform

Behauptung : Die Gruppe enthalt nur regulare Permutationen.
Es sei A entgegen der Behauptung eine nichtregulare Permutation

der Gruppe und enthalte daher mindestens zwei verschieden lange Zyklen
Zx und Z2. Zx sei von der Ordnung rx und Z2 von der Ordnung r2. Ferner
sei rt< r2. Ari fuhrt daher aile Variabeln von Zx in sich uber. Das tut
auch E. Weil nun die Gruppe uniform ist, ist ATl E. Es muBte also
auch Zr2x E sein, was im Widerspruch zu r2>ri steht. Es kann also

nur rx =- r2 sein, und A ist also regular. q. e. d.

Ich erinnere noch an folgenden Begrifî:

Définition: Eine Gruppe heiBt regular1), wenn jede Variable in jede
andere durch genau eine Permutation ubergefuhrt wird. Eine regulare
Gruppe kann also auch als transitive und zugleich uniforme charakte-
risiert werden.

Nach Satz I folgt, daB uniforme Gruppen und Gruppen mit lauter
regularen Permutationen identische Begriffe sind. Ich stelle hier einige
in der Literatur8) schon bekannte Satze zusammen.

Satz II: Jede uniforme Gruppe ist Untergruppe einer regularen.

Satz III: Die transitiven Konstituenten einer uniformen Gruppe der

Ordnung h und des Grades n bilden njh zueinander und zur Gruppe selbst

isomorphe Gruppen. Sie sind innerhalb ihres Systems regular.

Satz IV : Zwei isomorphe uniforme Gruppen sind in bezug auf die sym-
metrische Gruppe aller Permutationen Jconjugiert.

§ 2. Numerierung der Variabeln nach einer uniformen Gruppe

$2 sei eine uniforme Gruppe vom Grade n und der Ordnung h. Nach

Satz III bilden die Variabeln r =- Transitivitatssysterne, die ich mit

sx, s2, sr, numeriere. In sx sei eine bestimmte Varable mit xlx be-

zeichnet. Ebenso bezeichne ich in jedem andern System st eine bestimmte
Variable mit xxX. Hly H2, Hh seien die Elemente der Gruppe £.

7) G Jordan, Traité des substitutions. 1870.

8) z. B G A. Miller, Am. J. of Math., vol. 21, 1899, p. 287—338,
oder Netto, Substitutionentheorie.
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Speziell sei Hx E Nun bezeichne ich mit xl1c diejemge Variable, m
welche xtl durch Hk ubergefuhrt wird Aile xt1c mit festem % liegen îm
gleichen System st, und anderseits smd so aile Variable von sz emdeutig
bezeichnet worden, weil st Transitivitatssystem von § ist, und weil jj)
uniform ist

Bei vorgegebener Numerierung der Hk bleiben r' Moglichkeiten fur
die Wahl der Numerierungen der Transitivitatssysteme Nach festge-
legter Numerierung der st verbleiben noch hr Moglichkeiten fur die Wahl
der xtl So gibt es denn bei vorgegebener Numerierung der Hkhr H
verschiedene Numerierungen der Vanabeln Jede Variable kann als xxl
gewahlt werden, denn sie hegt m emem System s, das semerseits als s1

gewahlt werden kann Dièse emfache Tatsache ist von grundlegender
Bedeutung fur die folgenden Satze

§ 3 Erzeugung uniformer Gruppen durch regulare Permutationen

Wir treten nach diesen Vorbemerkungen an das eigentliche Problem
heran, namlich regulare Permutationen so zu kombmieren daB daraus
nur Gruppen mit lauter regularen Permutationen erzeugt werden Bevor
wir das Problem m semer Allgememheit losen, wollen wir uns zunachst
mit emem bloB hmreichenden Kritermm begnugen

Es lautet

Satz Y: Smd zwei Permutationsgrwppen jj und $, deren Veretnigungs
komplex jj + $ uniform ist, mitemander vertauschbar, so enthalt die durch
sie erzeugte Gruppe {5j S} nur regulare Permutationen

Beweis :

Voraussetzungen

1) £ S Gruppen
2) Sj + S uniform
3) £S $£

Behauptung

{£ 5$} enthalt nur regulare Permutationen

Nach Satz I genugt es, zu zeigen, daB {$$ $} uniform ist

Aus der Voraussetzung #$ $£ folgt
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Ist $}$ nicht uniform, so enthàlt es zwei Elemente H1K1 und H2K2,
die beide xh in xk ûberfuhren.

Es fùhre Hx xh in xt
H2 xh in x,
Kx xx in xk
K2 x3 in xk

Daher fuhrt Hl1H2 xt in xi
und Kj^K^1 xt in x3

Da nun H^1H2 in $, K1K%1 in $, und daher beide im uniformen
Komplex j£ + S! liegen, mussen sie identisch sein:

und daraus H1Kl — H2K2 q. e. d.

Dièse Bedingung ist nur hinreiehend, da es in vielen Gruppen nicht-
vertauschbare Untergruppen gibt, wie z. B. die zyklischen Untergruppen
der Ordnung 2 in der Diedergruppe der Ordnung 6.

Wenn die Vertauschbarkeitsvoraussetzung fallen gelassen wird, so
erhalten wir nun wegen Satz I wohl eine notwendige Bedingung, welche

jetzt aber nicht mehr hinreiehend ist, wie folgendes Beispiel zeigt:

E (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Si \ A (1 2 3) (4 5 6) (7 8 9) (10 11 12)

A2=(l 3 2) (4 6 5) (7 9 8) (10 12 11)

E (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
B (1 4 7) (2 5 10) (3 8 11) (6 9 12)

B2=(l 7 4) (2 10 5) (3 11 8) (6 12 9)

A*B (1 8) (6 10) (2 4 9 11) (3 5 7 12)

ist nicht mehr regulâr, obwohl § -f $ uniform ist.

Wir kommen nun zum allgemeinen Fall: Wir fùhren folgende Be-

zeiehnung ein:

Définition: Ist @ eine beliebige Gruppe und $1 ein in @ enthaltener
Elementenkomplex, so bezeichne 9R@(9t) denjenigen Elementenkomplex
von @, der aus denjenigen Elementen besteht, die mit jedem Elément
von 5( vertauschbar sind.

9R@(2t) bildet eine Gruppe.

Es gilt nun folgende Relation:
Satz VI: 3R@(2t) 5K@({9t})

wobei {$} die durch 21 erzeugte Gruppe bezeichnet.
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Beweis: Ist 8 namlich ein Elément von 3R@(3t)> so ist es mit A und B
auch mit AB vertauschbar und daher mit jedem Elément von {31} ver-
tauschbar. Ist aber S mit jedem Elément von {31} vertauschbar, so ist
es a fortiori mit jedem Elément von 3t vertauschbar, da 31 ein Teil-
komplex von {31} ist. q. e. d.

Im folgenden schreiben wir kurz 9D? (3t), wenn mit 3t ein Permutationen-
komplex und mit @ die symmetrische Gruppe aller Permutationen ge-
meint ist.

Nun konnen wir den allgemeinen Satz formulieren:

Satz VII9): Notwendig und hinreichend dafur, dafi der Permutationen-
komplex 3t eine Gruppe {3t}5 die nur reguldre Permutationen enthalt, er-
zeugt, ist, dafi 93? (31) transitiv ist.

Beweis:

Nach Satz I und Satz VI genugt es, folgenden Hilfssatz zu beweisen:

Hilfssatz: Ist eine Permutationsgruppe $ uniform, so ist 9R(J£)
transitiv; ist $R($}) transitiv, so ist $} uniform.

Wir beweisen zunachst die letztere Behauptung:

A: Voraussetzung. 3R(i2) transitiv.

Behauptung. fy uniform.

Beweis von A:
H-l und H2 seien zwei Elemente von j£, die beide x% in xk uberfuhren.

H3 H^^1 fuhrt dann xt in sich uber.

xt sei eine beliebige Variable.
Weil 9R(J2) transitiv ist, so existiert in 9R(J£) ein Elément S, das x%

in xl uberfuhrt.
Dann fuhrt 8~1HSS xt in sich uber.
Anderseits ist S^H^S H3.
Also fuhrt Hs xt in sich uber, und, weil xl beliebig ist, jede Variable

in sich uber.
Also ist H3 E, woraus folgt Hx H2. q. e. d.

B: Voraussetzung : $ uniform.

Behauptung: 3R(J3) transitiv.
Beweis von B:
Wir suchen eine Permutation S, welche erstens eine Variable in eine

9) Implizit bei G. A. Miller, Proc. of the Amer Phil. Soc vol 50 (1911), p. 129—146.
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vorgegebene Variable ûberfûhrt und mit jedem Elément von $$ ver-
tauschbar ist. Wir kônnen nach einer Bemerkung von § 2 stets zwei
Numerierungen xik und x'ik so wâhlen, daB xxl die vorgegebene Anfangs-
variable und x'xl die vorgegebene Endvariable, in die S xu uberfuhren
soll, werden.

Wir konstruieren nun die Abbildung S, indem wir den Ansatz machen :

S

S ist eine Permutation, weil bei beiden Numerierungen jede Variable

genau einmal durchlaufen wird. Ferner fûhrt S wirklich xn in xlx ûber.
Nun zeigen wir noch, daB $ mit allen Permutationen von 5^ vertausch-
bar ist.

H{ sei ein Elément von $, und xXfX eine beliebige Variable. Es fûhre
Ht xX(M in xXil. ; das tut auch die Permutation H~£ H^

Wegen der Uniformitât von jj ist also:

rr H'1 H
Ferner fûhrt H^ xx\ in xXfl

und H^ x'n in x'XH

Also fûhrt Ht H"1 H^ xXfÀ in x'^t ûber.

Nun fûhrt $ xXfl in x'Xfl

und Ht xr}(4 in xXflt

ferner S-1 x'}^t in x>lÂ%

also SH^-1 x}fl in x^t
wie dies auch H% tut.

Das gilt fur jedes xXlÂ. Also ist 8HiS~1 Hi
oder SHt Ht8 q. e. d.

§ 4. Die Reziprozitât der Begriffe ,,transitiv" und ^uniform" bei Gruppen

Die Begrifïe ,,transitiv" und ,,uniform" stehen schon rein definitions-
mâBig in einer gewissen Reziprozitât zueinander. Wàhrend nâmlich die
transitiven Gruppen jede Variable in jede andere durch mindestens eine

Permutation uberfuhren, so fûhren uniforme Gruppen jede Variable in
jede andere durch hôchstens eine Permutation ûber. Es ist nun
intéressant, daB gerade aus dem vorigen Satz eine weitere R/eziprozitàt dieser
beiden Begriffe hervorgeht.
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Es gilt namlich der folgende Satz:

Satz YIII10): Ist die Gruppe § uniform, so ist $R(fy) transitiv; ist 5j

transitiv, so ist $ft(fy) uniform.
Beweis: Der erste Teil des Satzes ist inhaltlich identisch mit der

letzten Behauptung des vorigen Satzes.
Um den zweiten Teil zu beweisen, fuhren wir den Begriff 3R2(J2)

SR(3R($)) ein. Es ist dann 9E2(#)£ $, denn 9K2($) umfafit ja aile
Elemente, die mit jedem Elément von $$($$) vertauschbar sind, und
unter ihnen finden sich ja auch die Elemente von j£. Wenn aber j£

transitiv ist, ist um so mehr 3R2(J2) transitiv und daher nach der ersten
Behauptung von Satz VII 20£(J2) uniform. q. e. d.

Auf dièse Weise laÔt sich auch der folgende ebenfalls bekannte10) Satz
beweisen :

Satz IX: Ist £ uniform, so fallt 5K2(^) mit $ zusammen.

Beweis: Ich beweise zunachst, daB ganz allgemein gilt:

wobei

Ist A ein Elément in 3R(§), so ist A mit allen Elementen von
vertauschbar und daher in 5R3(^); ist aber A in 9R3(J3), so ist A mit
allen Elementen von 3R2(5?), worunter auch die von $} sind, vertauschbar.

Daher ist A mit jedem Elément von § vertauschbar und daher
in 9R0&).

Ferner brauchen wir noch folgenden

Hilfssatz: Die Ordnung von 9ft(J3) ist, wenn $} uniform, gleich hrr\,
d. h. gleich der Anzahl der Numerierungen nach S}.

Beweis des Hilfssatzes: Jede Numerierung liefert als Permutation
einer festen Numerierung eine Permutation von $R(fy).

Ist umgekehrt 8=1 *,k lin 9R(£), und xtk eine Numerierung nach §,

so ist auch xlh eine solche.

Ist namlich Hk ein beliebiges Elément von $}, so gilt ja:
S-WkS Hk

Es fuhrt S'1 x%1 in x%1

Hk xtl in x,k
und 8 xtk in x[k
Also 8~lHk8 Hk x%1 in x'lk

l0) G. A. Miller, Proc. of the Amer. Phil. Soc vol. 50, 1911, p. 129—146.
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Das ist aber gerade die Définition der Numerierung nach $. Somit
ist also die Ordnung von $$($}) genau gleich Tfr wobei h r n.

Nun sei die Ordnung von $R2(J2), welches j£ umfaBt, gleich h fi.
~/r\Dann wird die Ordnung von $RS($)) gleich (ha)^\-\

\fJLf

Anderseits ist 5K($)

Also folgt daraus:

hrr\

Nun ist hrr\ n(n—h) (n-—2h) (n—(r—l)h)

und (ha) f* —) =n(n—ah) (n—2ah). .An — | 1 \uh\*
\f*/ \ \A* / /

Weil nun /u als Index von j£ unter ?K2(^) eine ganze Zahl ^ 1 ist,
kann die obige Gleichung nur bestehen, wenn ju 1.

Dann ist jj %ft2(fy) q. e. d.

Bei transitiven Gruppen kann es wohl vorkommen, daB $ wirklich
kleiner ist als 3JR2(i3). Ein Beispiel ist die alternierende Gruppe fur
n > 3. Das einzige Elément, das mit allen Elementen der alternieren-
den Gruppen vertauschbar ist, ist das Einheitselement. Dièses ist aber
auch mit allen Elementen der symmetrischen Gruppe vertauschbar.

Also ist: 3R2(9U ©n ^ 9tn •

Die Relation 9K(JJ) $R?(fy) ist fur beliebige 9K@(jj) richtig, wie
man leicht am Beweis erkennen kann.

§ 5. Die regulâre Gruppe11)

Es sollen hier noch kurz die gewonnenen Resultate auf regulâre, d. h.
transitive und zugleich uniforme Gruppen angewandt werden. Hier ist
offenbar die Ordnung der Gruppe gleich dem Grad der Permutationen.
Ferner erkennt man, daB 9R(5j) die Ordnung n besitzen muB, weil auch
sie nun transitiv und uniform sein muB nach Satz VIII. Man erkennt
auch leicht, daB $} und 9K(£) konjugiert sind12) und, im Falle $ abelsch

ist, zusammenfallen. Dieser wichtige Spezialfall der regulâren Gruppe
ist schon von C. Jordan11) bearbeitet worden.

u) G.Jordan, J. de l'Ecole polytechn., 1860, tome 22, p. 113—194.
l2) A. Speiser, Gruppentheorie. 2. Aufl., p. 124.
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II T E I L
Bevor wir auf die eigentlichen topologischen Fragen eintreten, soll

hier noch eme Interprétation von Satz VII, wie sie schon in der Em
leitung beschrieben wurde gegeben werden

§ 1 Gleichlagerung der Vanabeln

Nach Satz VII ist $ft(3() transitiv, wenn 31 uniform, und umgekehrt
Wir beschranken uns hier der Emfachheit halber auf den Fall, dafi der
Komplex $( aus zwei Permutationen A und B bestehe Die Verall
gememerung kann leicht vollzogen werden Wir nennen zwei Variable
xt und xk ,,m A aufemanderfolgend", wenn A x% m xk uberfuhrt Ebenso
erklaren wir den Begnfï ,,in B aufemanderfolgend" Diejenigen Per

mutationen, die ,,in A aufemanderfolgende Variable" wieder m ,,in A
aufemanderfolgende Variable" uberfuhren, nennen wir Automorphismen
%n bezug auf A Analog werden Automorphismen m bezug auf B erklart
Diejenigen Permutationen, die sowohl in bezug auf A wie auf B
Automorphismen smd, nennen wir Automorphismen m bezug auf $1 Wir
konnen nun zwei Variable ,,m 31 gleichgelagert11 nennen, wenn es emen
Automorphismus m bezug auf 31 gibt, der die eme Variable m die andere
uberfuhrt Nun wollen wir zeigen, da6 Permutationen, die m bezug auf
A Automorphismen smd, mit A vertauschbar smd, und umgekehrt

Seien xt und xk in A aufemanderfolgende Variable und S I / I

eme solche Permutation

Dann smd aueh x\ und xk ,,in A aufemanderfolgend"
Es fuhrt nun 8 xt m x[ uber

und A x[ m xk
ferner S~x x'k m xk
also SAS'1 xt m xk

Das tut auch A, und, weil xt beliebig ist, so wird SAS'1 A Die
Umkehrung verlauft analog

Damit nun ist zugleich bewiesen, daô die Gruppe der Automorphismen
m bezug auf 91 identisch ist mit 9R(9t)

Die Transitivitat der Automorphismengruppe bedeutet nichts anderes
als die Gleichlagerung aller Vanabeln m bezug auf % Wir konnen daher
den Satz VII m folgender Form aussprechen

Satz VII*: Notwendtg und hmreichend dafiir, dafi em Komplex 3t von
Permutationen eme Gruppe {9(}, die nur regulare Permutationen enthalt,
erzeugt, ist, dafi die Vanabeln m bezug auf den Komplex 9t gleichgelagert sind.
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§ 2. Eine Konstruktion einer geschlossenen Flache mit Hilfe einer regularen

Permutationsgruppe

Die Gleichlagerung der Variabeln îm erzeugenden Komplex einer uni-
formen Grappe, speziell emer regularen, legt nahe, die Variabeln als
Eckpunkte emer Polygoneinteilung einer Flache aufzufassen und die
Automorphismengruppe m bezug auf 51 als topologische Abbildungs-
gruppe dieser Flache zu deuten.

Gegeben sei also eine regulare Permutationsgruppe @ vom Grade n
Wir stellen die n Variabeln als Punkte einer zu bildenden geschlossenen
Flache dar. Der Variablen x^ entspreche der Punkt P^. Wir wahlen
ein erzeugendes System von Elementen der Gruppe ®: il5i2, Ak.
Die Reihenfolge Ax, A2 • Ak dieser Elemente sei ebenfalls festgelegt.
At sei von der Ordnung at. Jedes At zerlegt sich daher in n/at Zyklen
mit je at Variabeln.

Zwei Punkte Px und P^ verbinden wir nun durch eine orientierte von
Px nach Pp fuhrende .4,-Strecke, wenn At die Variable xx in x^ uber-
fuhrt. Die .4,-Strecken lassen sich nun, den ^4rZyklen gemaB, zu
geschlossenen Streckenzugen verbinden. Jeder zum Elément A% gehorende
geschlossene Steckenzug besteht genau aus at Strecken.

Dièse Konstruktion werde fur £ 1,2, Je gemacht. An jeder
Ecke Px mundet also je eine Ax-, A2-, ^4^-Strecke und je eine

geht von ihm aus. Nun fullen wir die geschlossenen Streckenzuge durch
schlichte Flachenstucke aus. Die so erhaltenen Polygone, die je von
einem ^4rStreckenzug berandet werden, nennen wir ^4rPolygone. An
jeder Ecke stofit also je ein A±-, A2-, ^1^-Polygon zusammen
Jede ^4r-Strecke berandet nur ein Polygon, weil sie nur zu einem
geschlossenen Streckenzug gehort. Entsprechend der Orientierung der die
Polygone berandenden Streckenzuge kann jedes Polygon mit einer
Indikatrix versehen werden. Der so erhaltene Flachenkomplex wird
nun zu emer geschlossenen Flache erganzt durch Einfugen neuer Polygone.

Hiebei wird nun die vorgelegte Reihenfolge der At wesentlich sein.
Die Konstruktion dieser neuen Polygone verlauft folgendermaBen :

Wir bilden zunachst aus den ArStrecken neue geschlossene Streckenzuge.

Wir beginnen mit einer J.rStrecke, fugen an îhren Endpunkt die
dort beginnende ^42-Strecke, an deren Endpunkt die dort beginnende
J.3-Strecke u. s. f., bis wir bei einer ^-Strecke angelangt sind. An
deren Endpunkt schlieBen wir die dort beginnende ^-Strecke und
setzen an ihren Endpunkt die dort beginnende A^Strecke usw. Mehr-
maliges Passieren eines Eckpunktes ist fur diesen Streckenzug durchaus
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zulassig Falls nun der Streckenzug erst dann als geschlossen erklart
wird, wenn die erste verwendete .4rStrecke wieder an die Reihe kommt,
so passiert der Streckenzug jede Strecke nur einmal, weil jede Strecke
des Zuges die vorangehende und folgende emdeutig bestimmt Smd
noch nicht aile Strecken in diesem neuen Streckenzug untergebracht,
so konstruieren wir weitere solche Zuge unter Berucksichtigung der
gleichen Reihenfolge der At SchlieBhch erhalten wir so ein System
neuer geschlossener Streckenzuge, so daB jede Strecke genau zu emem
dieser Zuge gehort Wir fullen nun dièse neuen geschlossenen Streckenzuge

durch neue schlichte Polygone aus Wir konnen dann folgenden
Satz aussprechen

Satz X: Das so erhaltene Polygonsystem bildet eme geschlossene onen-
tierbare Flache

Beweis:

Um dies zu beweisen, zeigen wir Punkt fur Punkt, daB die Définition
der geschlossenen orientierbaren Flache13) erfullt ist

1) Die Polygone smd m endlicher Anzahl vorhanden

Das ist selbstverstandhch, denn die Anzahl der Ecken und Kanten
ist endlich

2) An jeder Kante stoJBen genau zwei Polygone zusammen
Jede Strecke berandet genau em ,<4t-Polygon Sie gehort zu emem

und nur zu emem der neuen geschlossenen Zuge und berandet daher
auch genau em neues Polygon

3) In jedem Eckpunkt bilden die anstoBenden Polygone emen Zyklus
An jede Ecke stoBt genau em ^4rPolygon An die einmundende Ax-

Strecke schlieBt sich emerseits das ^-Polygon, anderseits emes der
neuen Polygone Die fortfuhrende A 2-Strecke bildet nach Konstruktion
den andern Schenkel des Wmkelraums dièses neuen Polygons

1)

18) Kerek'jarto, Vorlesungen uber Topologie I, p 132 Die dort auf Dreiecke bezogene
Définition kann leicht auf behebige schlichte Polygone ausgedehnt werden
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An sie schlieBt sich das J.2-Polygon an ; an dièses wiederum ein neues,
dessen anderer Schenkel die fortfuhrende ^3-Strecke bildet. Der so ent-
stehende Zyklus enthalt daher aile an dièse Ecke stoBenden ^LrPolygone,
und ein weiterer Zyklus muBte daher aus lauter neuen Polygonen be-
stehen. Das ist unmoglich, weil neue Polygone nicht langs Strecken
zusammenstoBen.

4) Die Flache ist zusammenhangend.
@ ist ja transitiv vorausgesetzt. Es konnen daher irgend zwei

Variable durch Elemente von @ ineinander ubergefuhrt werden. Den
Elementen entsprechend lassen sich Wege aus Strecken aufbauen, die
infolge der Transitivitat von jedem Endpunkt zu jedem andern gefuhrt
werden konnen.

5) Die Mâche ist orientierbar.
Die einzelnen A t-Strecken wurden als orientierte Strecken eingefuhrt.

Dièse Orientierung konnen wir, wie schon oben erwahnt, auf die At -Polygone

ubertragen. Die neuen Streckenzuge sind ebenfalls nach Kon-
struktion durch die At-Strecken orientiert, weil ja immer der Endpunkt
der einen Strecke mit dem Anfangspunkt der folgenden zusammenfallt.
Orientieren wir nun die neuen Polygone mit der umgekehrten Indikatrix,
so sind die beiden Ufer jeder Strecke tatsachlich mit entgegengesetzten
Orientierungen versehen, weil an jede Strecke je ein altes und ein neues

Polygon stoBt. Damit ist eine koharente Orientierung der Flache ge-
geben, also die Flache orientierbar. q. e. d.

In § 1 wurde gezeigt, daB 9R(@) identisch ist mit der Automorphismen-
gruppe in bezug auf den erzeugenden Komplex. Die Konstruktion des

Streckenkomplexes, abgesehen von den ausfullenden Polygonen, ent-
spricht dem Dehn'schen14) Gruppenbild. Die obige Automorphismen-
gruppe ist vermoge ihrer Définition so beschafïen, daB sie aile Beran-
dungsrelationen des Streckenkomplexes invariant laBt.

Es liegt die Vermutung nun nahe, daB auch die hier durchgefuhrte
Flachenkonstruktion so beschafïen ist, daB dièse Automorphismengruppe
zu emer Gruppe topologischer Abbildungen der Flache ausgebaut werden
kann. Da sie identisch ist mit 9R(@), dièse wiederum nach I § 5 iso-

morph zu &, so ware hiemit zugleich gezeigt, daB die Flache, die mit
Hilfe von @ konstruiert wurde, auch eine Gruppe topologischer
Abbildungen zulaBt, die isomorph ist zu @. Wir werden sehen, daB dies

zutrifft.

14) M. Dehn, Math Ann 69 (1900), p 137.
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§ 3. Die konstruierte Flàche als Ûberlagerungsflache der Kugel

@ sei wieder die regulàre Gruppe von oben mit den Erzeugenden
Ai > A% > • • Ak.

Wir konstruieren nun nach Hurwitz15) eine Ûberlagerungsflache der
Kugel auf folgende Weise : Wir wahlen auf der Kugel einen Punkt O

und setzen um 0 eine positive Orientierung fest. Nun wahlen wir k-\-1
weitere Punkte Vx, V2, Vk Vk+1 und fuhren von O einfache
Schnitte lt zu den Vt in der Weise, daB die Schnitte in positiver
Orientierung um O in der Reihenfolge: lx, l2, -lk ,lk+1 ,li folgen. Nun
stellen wir n Blatter der so aufgeschnittenen Kugel her und heften dièse

so zusammen, dafi bei negativer Umkreisung von 0 beim Ûberschreiten
des i-ten Schnittes man vom g-ten zum ^-ten Blatt gelangt, wobei

Bei Ùberschreiten von lk+1, soll dabei das q te Blatt in das Qk+1-te

ubergehen, wo I (A± A2 ^l^)"1 Ak+1

Bei vollstandigem Umkreisen von O gelangt man so wieder zum ur-
sprunglichen Blatt.

Définition: Die Monodromiegruppe16) der Ûberlagerungsflache wird
folgendermaôen erklart : M sei ein beliebiger Punkt auf der Kugel, der
nicht auf dem Schnittsystem liège. Mx M2 Mn seien die entspre-
chenden Punkte auf der Ûberlagerungsflache. y sei eine geschlossene
Kurve auf der Kugel durch M, die nur in innern Punkten die Schnitte lt
trifft und nur in endlich vielen Malen. Der Kurve y auf der Kugel ent-
sprechen dann n verschiedene Kurven y% auf der Ûberlagerungsflache,
die je von einem der Punkte Mt ausgehen und y als Spurkurve haben.
Die Kurve y% fuhrt im allgemeinen nicht nach Mt zuruck, sondern etwa

nach-flf^. Die Permutationenl - I bilden dann die Monodromiegruppe.

Zu jedem Mt gehort ein Blatt der Ûberlagerungsflache, und so kann
ich die Monodromiegruppe auch als Permutationsgruppe der Blatter auf-
fassen. Die Kurven yr erfahren nun bloB bei Ùberschreiten der Schnitte
Permutationen der Blatter, und zwar gerade die Permutationen A%y

resp. A'1, so daB die Monodromiegruppe identisch ist mit der Gruppe @,

die unsrer Flachenkonstruktion zugrunde gelegt wurde.
Die Ûberlagerungsflache nennt man regular17), wenn entweder aile zu
15) A. Hurwitz, Math. Ann. 39 (1891), p 1—61.
16) Threlfall Seifert, Lehrbuch der Topologie, p 198

17) KereJcjarto, Vorlesungen uber Topologie I, p. 162
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einer geschlossenen Spurkurve y gehorenden y% geschlossen oder aile ofîen
sind. Das ist offenbar der Fall, wenn die Monodromiegruppe nur regulare
Permutationen enthalt, und das ist hier der Fall. Wir haben es also mit
einer regularen Ûberlagerungsflache zu tun.

Définition: Unter einer Decktransformation17) emer Ûberlagerungsflache

verstehen wir eine topologische Abbildung der Ûberlagerungsflache

in sich, die nur Punkte uber dem gleichen Spurpunkt permutiert.

Nun gilt der Satz:

Satz XI18): Bei regularen Ùberlagerungsflachen ist die Gruppe der
DecJctransformationen isomorph zur Monodromiegruppe; sie permutiert
die Blatter der Ûberlagerungsflache, wie 9R(@), wenn @ die Monodromiegruppe

darstellt.

Wir konstruieren nun um die Verzweigungspunkte V% (i 1... k) ein-
fache geschlossene Wege W%, die m 0 begmnen und enden, so daB fur
k 2 folgende Figur auf der Kugel entsteht.

(Fig. 2)

Dem einmaligen Umlauf w1 um Vt entsprechen auf der Ûberlagerungsflache

n Wege, die gerade die Permutation A± auf 0 ausuben. Dièse

Wege lassen sich also als ^j-Strecken emfuhren. Entsprechend die
andern. Nach a± Umlaufen (ax Ordnung von Ax) schlieBen sich die
dem Spurweg wx entsprechenden Wege. Sie beranden die dem Dreieck
(Fx—lx 0 — wx—0—lt — Fx) entsprechenden schlichten Polygone,
die wir als J.rPolygone emfuhren konnen Entsprechendes gilt fur die
andern ^4^-Polygone. SchlieBlich entsprechen dem ÀuBern der Kugel
Polygone auf der Ûberlagerungsflache, die genau durch die den Kanten-
zugen, welche die neuen Polygone in unsrer Konstruktion beranden,

17) Kerekjarto, Vorlesungen uber Topologie I, p 162

18) W. Scherrer, Zur Théorie der endl Gruppen top. Abb geschl. Flachen
in sich C M H vol. 2, pag. 88
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entsprechenden Kantenzuge berandet werden. So finden wir unsre
Konstruktion auf dieser Ûberlagerungsflache wieder. Mit @ als Mono-
dromiegruppe und mit Hilfe von Satz XI bestatigt sich mm unsere Ver-
mutung, da6 die oben erwahnte Automorphismengruppe als Gruppe
topologischer Abbildungen der konstruierten Flache aufgefaBt werden
kann.

Dyck19) hat eine ahnliche Konstruktion, ausgehend von der freien
Gruppe gefunden. Die Figur auf der Kugel, durch die duale ersetzt und
auf die Ûberlagerungsflache ubertragen, laBt die Dyck'sche Darstellung
als duale der unsrigen erkennen. Es ist intéressant, wie von zwei ganz
verschiedenen Ausgangspunkten : freie Gruppen, regulare Permutationen,
das gleiche Gruppenbild gewonnen werden kann.

Die so in § 2 mit Hilfe einer regularen Gruppe konstruierte Flache
ist nicht nur von der Wahl der Erzeugenden, sondern auch von ihrer
Reihenfolge abhangig.

Schon mit Hilfe der Hurwitz'schen Relation erkennt man die Moglich-
keit, mit der Tetraedergruppe als Ausgangsgruppe zwei verschiedene
Flachen, den Torus und die Kugel, zu konstruieren. Die Hurwitz'sche
Relation fur regulare Ûberlagerungsflachen lautet namlich, wenn wir
beachten, daB die Ordnung von A% — a% ist, folgendermaBen :

l \2
2 — 2p n(2 — 2tz)— n ^Al

i \ «*

p Geschleeht der Ûberlagerungsflache
n Geschleeht der Grundflache
n Blatterzahl.

In unserm Fall ist rc 0 und n gleich der Ordnung der Gruppe @.

Fur den Fall der Tetraedergruppe konnen wir uns auf zwei Erzeugende
beschranken. Es wird dann a3 gleich der Ordnung des Produktes der
Erzeugenden.

Wir erhalten also:

2 — 22>=12(-L- + —

Die Tetraedergruppe kann auf folgende zwei Arten erzeugt werden:

1. Indem wir zwei Elemente der Ordnung 3 nehmen, die in der gleichen
Nebenreihe der Vierergruppe liegen. Ihr Produkt ist dann in der andern

19) W. V. Dyck, Math. Ann 20 (1882), p. 1—44

20) Kerekjarto, Vorlesungen uber Topologie I, p. 162.



Nebenreihe der Vierergruppe, weil die Vierergruppe Normalteiler ist;
es ist daher von der Ordnung 3.

Es wird also ax 3

a2 3

a3 3

und daher p 1 : Fall des Torus.

2. Indem wir zwei Elemente der Ordnung 3 nehmen, die in verschie-
denen Nebenreihen der Vierergruppe, jedoch nicht in der gleichen
zyklischen Grappe liegen. Ihr Produkt liegt dann in der Vierergruppe
und ist daher von der Ordnung 2.

Wir erhalten ax 3

«3=2
und daher p — 0 : Fall der Kugel.

III. T E I L

§ 1. Der Zusammenhang zwischen Monodromie- und Decktransformationen-

gruppe einer Uberlagerungsflache

Bei der vorigen Untersuchung wurde der Satz benutzt, daB bei einer
regularen Ûberlagerungsflache Monodromiegruppe und Decktransforma-
tionengruppe sich so zueinander verhalten, wie eine regulare Gruppe @

zu der ihr zugeordneten Gruppe $)?(©) Dieser Sachverhalt laBt sich

nun verallgemeinern, indem die Regularitat der Uberlagerungsflache
und damit auch die Regularitat der Monodromiegruppe fallen gelassen
wird. Trotzdem bleibt dann die Tatsache bestehen, daB 30£ (@) als

Decktransformationengruppe der Ûberlagerungsflache aufgefaBt werden
kann.

Wir werden dièse Erweiterung in zwei Fallen aufzeigen konnen:

1) Fur aile verzweigten Ûberlagerungspolyederflachen von Polyeder-
flachen.

2) Fur aile unverzweigten zusammenhangenden simplizialen Ûber-
lagerungskomplexe ebensolcher Komplexe.

§ 2. Ûberlagerung von Polyederflachen

Unter einer Polyederflâche sei eine berandete oder geschlossene tri-
angulierte Flache verstanden.
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Bei Untersuchung21) der topologischen Gruppen von Polyederflachen
hat es sich als nutzhch erwiesen, Faltverzweigungen emzufuhren Wir
betrachten hier den allgememen Fall von gefalteten oder ungefalteten
Ùberlagerungsflachen von Polyederflachen Es ergibt sich daher eme

gewisse Modifizierung der Définition verzweigter Ùberlagerungsflachen
von Kerekjarto22)

Wir definieren diesen Begrifl: folgendermaBen

Définition: Eme Polyederflache F ist Ûberlagerungsflache emer Poly-
ederflache 0, wenn folgende Beziehungen gelten

1) Jedem Dreieck A von F ist em Dreieck A von 0 zugeordnet durch
eme topologische Abbildung von A auf A, bei der den Eckpunkten und
Kantenpunkten von A, die Eckpunkte, bzw die Kantenpunkte von A

entsprechen

2) Zwei Dreiecken Ax und A2, die eme Kante gememsam haben,
entsprechen

a) entweder zwei solche Dreiecke Ax undzl2, die ebenfalls eme Kante
gememsam haben, auf der gememsamen Kante von Ax und A2 ist die
Abbildung auf die gememsame Kante von Ax und A2 m beiden
Dreiecken dieselbe

b) oder emem Dreieck A auf 0 mit emer Randkante, die der gemem
samen Kante von Ax und A2 entspricht, auf dieser gememsamen Kante
ist die Abbildung auf die Randkante von A m beiden Dreiecken dieselbe

3) Smd Ax und A2 zwei benachbarte Dreiecke von 0 und ist Ax em
beliebiges dem Dreieck Ax entsprechendes Dreieck von F, so soll es em
Dreieck A2 von F geben, welches dem Dreieck A2 entspricht und Ax be

nachbart ist
Es folgt aus der Définition, daB uber jedem Dreieck A von 0 die

gleiche Anzahl von Dreiecken A von F liegen Dièse Zahl nennen wir
die Blatterzahl der Uberlagerungsflache

§ 3 Korrespondenz der Wege auf Uberlagerungs- und Grundflache

Wir teilen die Punkte von 0 m drei Kategorien

1) Regulare Punkte Aile mnern Punkte der Dreiecke und mnern
Kanten

21) W Scherrer, Zur Théorie der endl Gruppen top Abb geschl Flachen
in sich

22) Kerekjarto, Vorlesungen uber Topologie I, p 158

59



2) Halbsingulàre Punkte: Aile innern Randkantenpunkte.

3) Singulare Punkte: Aile Eckpunkte.

Bemerkung : Die hier eingefiïhrte Einteilung ist lediglich der Einfach-
heit halber so gewahlt worden. Man kann auch bloB diejenigen Punkte
zu singularen Punkten zahlen, die wirklich Verzweigungspunkte sind.

Wir fuhren nun auf 0 und F den Begrifï des normalen Weges ein.

Auf 0 nennen wir einen Weg normal, wenn er keine singularen und
nur endlich viele halbsingulàre Punkte besitzt.

Auf F nennen wir einen Weg normal, wenn sein Spurweg auf normal,
und wenn er uber den halbsingularen Punkten die Faltungskanten uber-
schreitet.

Unter Faltungskanten verstehen wir dabei diejenigen Kanten von F,
die Randkarten von 0 entsprechen, ohne selbst Randkanten von F zu
sein. Wir betrachten nun einen Weg y auf 0, der im Innern nur regulare
Punkte enthalt. M sei ein solcher Punkt. n sei die Blatterzahl von F.
Dann entsprechen dem Punkt M auf 0 n verschiedene Punkte Mx auf F.
Wir betrachten nun eine Kreisumgebung von M. Ihr entsprechen auf
F n verschiedene Kreisumgebungen, falls die Umgebung genugend klein
gewahlt wird. Es laBt sich daher zu dem Weg y auf 0 in der Umgebung
von M% auf F eindeutig ein Weg y% bestimmen, dessen Spurweg y ist.
Durch Fortsetzung dieser Umgebungen erreichen wir so das ganze ab-
geschlossene Stuck des Weges y samt den berandenden Punkten, die
eventuell halbsingular sind. Wenn wir uns nun auf normale Wege auf F
beschranken, so konnen wir dièse Wege auch in den halbsingularen
Punkten fortsetzen, d. h. eindeutig einen Weg auf F bestimmen, der
einen vorgegebenen normalen Weg auf 0 als Spurweg hat. Den
halbsingularen Punkten auf 0 entsprechen namlich auf F entweder Rand-
punkte oder Punkte auf Faltungskanten. Im ersten Fall bedarf es keiner
weitern Festsetzung, indem der Halbumgebung auf 0 eine Halbum-
gebung aufF entspricht, in welcher der Weg eindeutig fortgesetzt werden
kann. Im andern Fall entspricht der Randkante von 0 eine innere Kante
von F. Der Halbumgebung auf 0 entspricht jetzt eine gefaltete voile
Umgebung auf F. Somit ist zu entscheiden, auf welcher Halfte der Weg
fortgesetzt werden soll. Das ist nun aber schon entschieden durch die
Festsetzung, daB ein normaler Weg auf .F die Faltungskante ûberschreitet.
Wir sehen also, daB es zu jedem einen Punkt M enthaltenden normalen
Spurweg y einen und nur einen Weg yt gibt, der normal auf F liegt und
durch den Punkt Mi geht.
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§ 4. Monodromiegruppe und Decktransformationengruppe

Erst auf Grund dieser Tatsachen ist es nun moglich, die Monodromie-

gruppe zu definieren. Die Définition ist die Erweiterung der gewohn-
lichen Définition23) auf unsern Fall.

Définition: Wir wahlen einen beliebigen regularen Punkt M auf 0.
Mt seien die entsprechenden Punkte auf F. Statt nun uberhaupt aile
geschlossenen Wege zuzulassen, betrachten wir nur die normalen ge-
schlossenen Wege auf 0. y sei ein solcher in M begmnender normaler
Weg. Der in Mt beginnende y entsprechende normale Weg yt auf F

endige in MQi. Die Abbildungen I konnen wir als Permutationen auf-

fassen. Die Permutationsgruppe dieser so erhaltenen Permutationen der
Mt bildet die Monodromiegruppe.

Sie hangt, wie man leicht sieht, nur unwesentlich von der Wahl des

Punktes M ab, solang dieser regular gewahlt wird. Die Monodromiegruppe

ist transitiv, weil die Polyederflachen zusammenhangend sind,
und irgend zwei Punkte M% und Mk daher durch einen normalen Weg
verbunden werden konnen.

Définition: Die Deektransformationen24), im folgenden kurz mit D.T.
bezeichnet, sind definiert als topologische Abbildungen der Ûber-
lagerungsflache F in sich, bei der jeder Punkt von F m einen uber
demselben Spurpunkt liegenden Punkt ubergeht. Die Gesamtheit der
D.T. bildet die D.T.-Gruppe.

M sei wieder der vorhin betrachtete regulare Punkt. Bei jeder D.T.
erfahren die Punkte Mt eine Permutation, die wir als die der D.T. zu-
geordnete Permutation bezeichnen. Wir zeigen nun, daB jede solche
Permutation aber auch nur einer D.T. zugeordnet ist.

Sind namlich Tx und T2 zwei D.T., denen die gleiche Permutation
der Mt entsprieht, so entspricht der D.T.: T^T2 die identisehe
Permutation. Wenn nun Tx ^ T2, so gibt es einen Punkt Px auf F, der
durch T~xlT2 in einen von P1 verschiedenen Punkt P2 ubergeht. Ver-
binden wir Mx mit Px durch einen normalen Weg yl9 so wird yx in einen

Weg mit dem gleichen Spurweg transformiert.
Ist er auch normal, so ist er durch Mx und y eindeutig bestimmt und

daher mit yx identisch. Es folgt daraus Px P2, und also TXXT2 E.
Wir haben nun noch zu zeigen, daB jede D.T. normale Wege in normale

23) Threlfall Seifert, Lehrbuch der Topologie, p 198

24) KereJcjarto, Vorlesungen uber Topologie, p 162
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uberfuhrt. Sei yx ein normaler Weg von F, der durch die D.T. T in
den Weg y2 ubergeht. Der Spurweg y von y1 ist auch der Spurweg von
y2. Daher ist der Spurweg von y2 normal. Ferner gehen bei einer D.T.
Rander von F in Rander uber und, da die Rander von 0 invariant
bleiben, so mussen auch Faltungskanten in Faltungskanten ubergehen.
Wurde nun im Punkte, welcher dem Punkte entspricht, wo yx eine

Faltungskante uberschreitet, der Bildweg y2 dies nicht tun, so wurde
er sich topologisch anders verhalten, als der Urweg yx. Daher ist y2
normal. Es entspricht als der D.T.-Gruppe eine isomorphe Permuta-
tionsgruppe der Mt.

Die Frage, wie nun dièse der D.T.-Gruppe zugeordnete Permutations-

gruppe mit der Monodromiegruppe in Zusammenhang steht, wird nun
durch folgenden Satz, der eine Verallgemeinerung von Satz XI dar-
stellt, béantwortet:

Satz XII: Ist jj die Monodromiegruppe, so ist $R(fy) die der D.T.-
Gruppe zugeordnete Permutationsgruppe.

Beweis :

Der Beweis zerfallt in zwei Teile, entsprechend den zwei Behauptungen,
die in Satz XII enthalten sind.

Behauptung A: Jede D.T.-Permutation ist mit jeder Monodromie-
permutation vertauschbar.

Behauptung B : Jede Permutation, die mit jeder Monodromiepermu-
tation vertauschbar ist, ist eine D.T.-Permutation.

Beweis von A :
T sei eine D.T.-Permutation,
S sei eine Monodromiepermutation.

Wir betrachten einen normalen geschlossenen Weg y auf 0, der S

entspricht. Dann erfahren die yt durch T eine Permutation, da ja
normale Wege in normale ubergehen. Dièse Permutation der yt ergibt fur
die Endpunkte der y4 eine entsprechende Permutation, die wiederum
mit T identisch sein mufi.

Es fûhre S Mt in MQl
und T Mt in Mk.

T fuhrt also auch yt in yk und daher auch MQt in MQk. Also fuhrt
8T8r1M% in Mk ûber.

Das tut auch T, und da M{ beliebig, so wird

ST8-1 T
8T =T8. q.e.d.
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Beweis von B
Der Beweis ist weit komphzierter als der Beweis von A, da nun eme

topologische Abbildung zu konstruieren ist mit Hilfe emer Permutation
der M%

Im folgenden seien die regularen bzw halbsmgularen oder smgularen
Punkten auf <P entsprechenden Punkte auf F ebenfalls als regulare, bzw
halbsmgulare oder smgulare Punkte auf F bezeichnet

T sei nun eme Permutation der Mt, die mit allen Monodromieper-
mutationen vertauschbar ist T fuhre den Punkt Mx in M2 uber Wir
erklaren zunachst m jedem regularen Punkt P1 von F eme Abbildung
auf emen uber dem gleichen Spurpunkt liegenden Punkt P2 mit Hilfe
der Abbildung T und emem M1 mit Px verbmdenden normalen Weg yY

y2 sei der von M2 ausgehende y1 entsprechende Weg Er fuhre zum
Punkte P2

Wir erklaren nun die Abbildung

Ty{Px) P2

Dièse Abbildung hangt schembar noch von yx ab Dem ist aber mcht
so Es sei àx em anderer normalerWeg, der Mx mit P1 verbmdet Den
Wegen yx und ô1 mogen die Spurwege y und ô entsprechen Dem ge
schlossenen Spurweg y ô'1 entspreche die Permutation S der Mono-
dromiegruppe

Nun fuhrt T-1 M2 m M1
und 8 Mx m Mlt weil ja yx ô^ der uber y ô"1 von Mx
ausgehende normale Weg ist

Ferner fuhrt T wieder M1 m M2 uber Also fuhrt T~X8T M2 in sich
uber

Weil nun T~XST 8 ist, so fuhrt auch S M2 in sich uber
Es sei a der von P2 ausgehende, uber d"1 hegende normale Weg Somit

ist y2a der von M2 ausgehende, uber yô~x hegende normale Weg Daher
fuhrt a P2 m M2 uber a~x ist also der Weg, welcher uber ô von M2
ausgeht Nach Définition muB also T8(Pt) — P2 sem, oder

Tr(PJ Tt(Px)

Um nun die Abbildung T(Pt) auch auf halb- und ganzsmgulare
Punkte von F zu ubertragen, bemerken wir, daB zu jedem Punkt P
von 0 eme Umgebung (kann auch eme Halbumgebung sem) U(P)
derart angenommen werden kann, daB zu jedem der verschiedenen
Punkte Px, P2 Pr (r ^ n) auf F eme Umgebung U(P{) existiert,
die nur Bilder von U(P) enthalt, so daB aile £7(P*) mit festem P unter-
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einander punktfremd sind, und daB jeder Punkt Xx von F, dessen Spur X
in U(P) liegt, auch in einer der Umgebungen U(Pt) liegt. Ferner enthàlt
jede der Umgebungen U{Pt) regulare Punkte, und je zwei solche, die
in der gleichen Umgebung U (Pt) liegen, lassen sich auch innerhalb dieser
dureh einen normalen Weg verbinden.

Es sei nun Vt ein singularer Punkt von F. Wir wahlen eine Folge
regularer Punkte P^\\ P^, von F, die gegen Vx konvergiert und
die aile schon in U(VX) liegen. P^, seien die durch T(P1) vermit-
telten Bilder. Ich behaupte nun, daB die Bildfolge ebenfalls konvergiert.
Die Folge der Spurpunkte konvergiert jedenfalls gegen den Spurpunkt
F von Vt. Es genugt offenbar, zu zeigen, daB zwei Punkte P(^ und Pty
in der gleichen Umgebung U F2) liegen, wo F2 einer der uber F liegen-
den Punkte ist. Es liège nun im Gegenteil Pty in U(V2) und P^ in
U(V2). Wir verbinden P^ mit P(^ durch einen normalen Weg e1? der

ganz in U(V^) verlauft. Es sei ferner Mx mit P(^ durch den normalen
Weg y1 verbunden. Pty ist dann durch den von M1 ausgehenden uber
yx liegenden normalen Weg y2 definiert. Ebenso ist P^ durch den von
M2 ausgehenden normalen Weg y2 e2, der yx e± entspricht, definiert.
Der Spurweg von e1 und e2 liegt ganz in U(V), weil ex ganz in U(V^)
liegt. Also liegt auch e2 ganz in U(V2) und daher ist auch P^Q in U(V2),
also V'2= V2.

Wir definieren nun: T{VJ F2

Dièse Erklarung ist scheinbar von der Wahl der Folge P^ abhangig.
Wenn aber eine andere Folge Q^ eine Bildfolge definieren wurde, die
nicht gegen F2 konvergiert, so muBte doch die aus P(|) und Qty kom-
binierte Folge konvergieren, weil die Urfolge konvergiert. Pty und Q^
konvergieren ja beide gegen Vx. Weil aber die Teilfolge Pty gegen F2

konvergiert, so muB auch die Teilfolge Q^ gegen F2 konvergieren.
Somit ist die Erklarung T(V1) V2 unabhangig von der Wahl der Folge.

Wir haben jetzt eine Abbildung T(PX) P2 fur die ganze Flache F
eindeutig erklart, und es gilt nun noch folgendes zu zeigen, damit wir
erkennen, daB wir es hier mit einer Decktransformation zu tun haben :

1) T(PX) laBt die Spurpunkte invariant.
2) T(PX) ist stetig.
3) T(Pt) ist umkehrbar eindeutig.

1) T(P1) laBt die Spurpunkte invariant.

Dies folgt unmittelbar aus der Définition von T(P1).

2) T(P±) ist stetig.
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Es sei Px ein beliebiger Punkt von F. Es genugt zu zeigen, daB der
Bildpunkt X2 jedes Punktes Xlt der in UiP^ liegt, in U(P2) liegt. Fur
regulare Punkte wurde dies schon durch die Art der Erklarung von T Vj)
gezeigt. Sx sei ein regularer Punkt, der in UiX^ liège. Ferner sei noch
U{X1) ganz in U{P1) gewahlt. Dann liegt T{8X) S2 m U(P2) und
anderseits in £7(X2). U(X2) liegt ganz in einer bestimmten Umgebung
U(P'2). Da sie aber S2 enthalt, liegt sie in U(P2). Also liegt X2 in U{P2).

3) T{P^) ist umkehrbar eindeutig.

Dies ergibt sich daraus, daB ich ja eine Abbildung T~1(P2) Px
konstruieren kann, indem ich die Abbildung T~X(M2) M1 stetig fort-
setze Die Abbildungen erganzen sich offenbar zur Identitat.

T(P-j) ist also eine Decktransformation. Es ist bloB noch zu zeigen,
daB T{P^) nicht nur M1 in M2, sondern auch die andern Punkte Mt so

permutiert, wie die vorgegebene Permutation T. Dies ergibt sich durch
folgende Ûberlegung:

Nach Behauptung A ist die D.T.-Gruppe Untergruppe von 3R(i")).
Dièse ist uniform, weil die Monodromiegruppe $ transitiv ist (Satz VIII).
Somit ist die D T. T(PX) als Elément von 9R(#) eindeutig durch die

Abbildung Mx -> M2 bestimmt und daher mit T identisch. Damit ist
auch Behauptung B vollstandig bewiesen. q. e. d.

Bevor ich nun zu der zweiten der in § 1 beschriebenen Erweiterungen
von Satz XI ubergehe, mochte ich an einem einfachen Beispiel zeigen,
wie dieser Satz funktioniert.

Gegeben sei ein Rechteck, das, wie Fig. 3 zeigt, in 8 Teile geteilt sei.

(Fig. 3)

Man faite nun das Rechteck an der Langsachse, so daB die Rechtecke
1 und 5

2 und 6

3 und 7

4 und 8

aufeinanderzuliegen kommen.

Nun faite man noch an der Querachse und schlieBlich noch an der

einzig ûbrigbleibenden innern Kante, so daB schlieBlich aile 8 Teile
ubereinanderliegen.

5 Commentarii Mathematici Helvetici ""

1

5

2

6

3

7

4

8



Das so gefaltete Eechteck bildet nun eine 8-blàttrige Ûberlagerungs-
flâche irgendeines Rechtecks. Die erzeugenden Monodromiepermutationen
werden erhalten bei Ûberschreiten der Rânder des Spurrechtecks. Man
erhàlt so die folgenden Blâtterpermutationen :

8t (1) (2 3) (4) (5) (6 7) (8)
S2 (1 5) (2 6) (3 7) (4 8)

8S (1 2) (3 4) (5 6) (7 8)

S, (1) (2) (3) (4) (5) (6) (7) (8)

Durch Ausrechnen erhâlt man aus diesen 4 Permutationen eine Gruppe
der Ordnung 16.

Die D. T.-Gruppe kann nur aus den Spiegelungen an der Lângsachse
und Querachse und der Drehung um II um den Mittelpunkt bestehen.
Es muB die Vierergruppe sein.

Ihre Permutationen sind

T1 E
T2 (1 5) (2 6) (3 7) (4 8)
Tz (1 4) (2 3) (5 8) (6 7)

T, (1 8) (2 7) (3 6) (4 5)

Man erkennt nun leicht, dafi dièse T mit sâmtlichen S vertauschbar
sind.

S} ist von der Ordnung 16 9R(#) ist von der Ordnung 4 und Grad 8.

Also ist 9R2(J2) von der Ordnung 422! 32. Das ist ein weiteres Bei-
spiel dafiïr, da6 9R2(J2) bei transitiven Gruppen nicht mit § identisch
zu sein braucht.

§ 5. Ûbertragung auf allgemeine unverzweigte Uberlagerungskomplexe

Nach Threlfall-Seifert25) kann der unverzweigte tïberlagerungskomplex
folgendermaBen definiert werden.

Définition : S und S seien zwei endliehe oder unendliche zusammen-

hângende (simpliziale) Komplexe. ^ ist eine Ûberlagerung von $, wenn
eine stetige Abbildung G von $ auf S gegeben ist, die folgende Bedin-

gungen erfullt:

tîl. 1 : In jedem Punkt P von S bildet sich mindestens ein Punkt P
von S ab. P ist der Grund-(Spur-)punkt von P.

25) Threlfalï-Seifert, Lehrbuch der Topologie, p. 181 und p. 184.
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Ûl. 2 : Sind Pt, P2 die sàmtlichen uber P liegenden Punkte, so

gibt es ausgezeichnete Umgebungen U(P) U^P-^ von der Art,
daB sich U(P1) U(P2) • dureh G topologisch auf U (P) abbilden,
und daB

"01. 3 : ein Punkt von $ der uber einem Punkte von U(P) liegt, min-
destens zu einer der ausgezeichneten Umgebungen U(Pi) gehôrt.

Eine Unterscheidung in regulàre und singulâre Punkte ist hier nicht
notwendig. Auch brauchen wir uns nicht auf besondere Wege zu be-
schrànken, sondern kônnen gleich folgenden Satz aussprechen:

Satz XIII: Ist W ein von A nach B fûhrender Weg in $ und A ein

uber A liegender Punkt in S so gibt es genau einen Weg W mit dem

Anfangspunkt A, der W ûberlagert.

Die Monodromiegruppe und die D.T.-Gruppe lassen sich wie in § 4

definieren. Die D.T.-Gruppe ist auch hier wieder isomorph zu der Per-
mutationsgruppe der Punkte Mi9 die sie durch die D.T. erfahren.

Wir kônnen also sogleich zum Analogon von Satz XII ubergehen.

Satz XIV: Ist Si die Monodromiegruppe eines unverzweigten zusammen-
hàngenden Ûberlagerungskomplexes, so ist 9K(i?) die der D.T.-Gruppe
zugeordnete Permutationsgruppe.

Beweis : Der Beweis braucht nur skizziert zu werden, da er demjenigen
von Satz XII ganz analog lâuft.

Behauptung A: Jede D.T.-Permutation ist mit jeder Monodromie-

permutation vertauschbar.
Der Beweis von A verlâuft genau wie in § 4.

Behauptung B: Jede Permutation, die mit jeder Monodromie-

permutation vertauschbar ist, ist eine D.T.-Permutation.

Beweis von B: T sei eine Permutation von 3R($) und fiihre Mx in
M2 iiber.

Nun erklâren wir wieder die Abbildung : Ty (Px), und zeigen, wie in
§ 4 mit Hilfe der Vertauschbarkeit: Ty(Px) Th(Px)

Die in § 4 betrachteten Umgebungen sind hier schon in Ùl. 2 und tîl. 3

direkt garantiert, so daB also auch die Stetigkeit und Umkehrbarkeit
von T(P1) gezeigt werden kann. Der SchluB des Beweises verlâuft
entsprechend.
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Um diesen Satz im Falle unverzweigter Ûberlagerungskomplexe mit
den Untersuchungen ûber die Fundamentalgruppe in Zusammenhang
zu bringen, benutzen wir einen Satz von Kuhn26), der dort zwar nicht
explizit steht, der aber aus den dortigen Ausfuhrungen unmittelbar
gefolgert werden kann:

Satz XV: Ist © eine transitive Gruppe, und fy diejenige Untergruppe
von @, welche eine Variable festhâlt, so ist 5K(@) isomorph zur Faktor-
gruppe 3/$, wo g der Normalisator von fy in @ ist.

Der dortige Satz gibt zwar nur die Gleichheit der Ordmmgen von
3R(@) und 3/jj, aber der dort gegebene Beweis lâfît unmittelbar auch
auf die Isomorphie schlieBen. Diesen Satz kônnen wir hier anwenden,
wenn wir fur @ zunâchst die Monodromiegruppe einsetzen. Da aber bei
unverzweigten Ùberlagerungskomplexen die Monodromiegruppe homo-
morph zur Fundamentalgruppe § von $ ist, so kônnen wir ailes auf die
Fundamentalgruppe beziehen: Wir kônnen dann unsern Satz XIV so
formulieren :

Die D. T.-Gruppe ist isomorph der Faktorgruppe £/£, wo j£ die der
Fundamentalgruppe des Ûberlagerungskomplexes entsprechende
Untergruppe der Fundamentalgruppe $ von $ ist und g der Normalisator
von $ in §f.

Dieser Satz ist aber identisch mit der Lôsung einer Aufgabe in Threlfall-
Seifert27). Umgekehrt làfît sich mit Hilfe des Satzes von Kuhn schlieBen,
daB die D.T.-Gruppe isomorph ist zu 9R(@), nicht aber folgt daraus,
daB die M{ unter der D.T.-Gruppe gerade die Permutation der Gruppe
SK(@) erfahren.

Der Satz lâBt sich nur bei unverzweigten Ûberlagerungskomplexen
mit den Sàtzen liber die Fundamentalgruppe in Zusammenhang bringen.
Bei verzweigten Ûberlagerungsflâchen ist die Monodromiegruppe im
allgemeinen nicht mehr homomorph zur Fundamentalgruppe der Grund-
flâche. Es besteht aber auch kein unmittelbarer Zusammenhang. Darum
war es wichtig, gerade fur diesen Fall den Satz XII ausfuhrlich zu
beweisen.

26) H. Kuhn, Amer. J. of Math., vol. 26 (1904), p. 67.
27) Threlfall-Seifert, Lehrbuch der Topologie, p. 198, 57, Aufgabe 1.

(Eingegangen den 25. Juli 1937.
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