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Uber die Giite der Approximation einer reellen
Zahl durch die Naherungsbriiche ihrer halb-
regelmaBigen Kettenbruchentwicklungen

(Untersuchungen zur Theorie der halbregelmaBigen Kettenbruchentwicklungen II)

Von Frirz BLUMER, Basel

Einleitung

Die vorliegende Arbeit stellt den zweiten Teil einer dreiteiligen Unter-
suchung iber allgemeine Kettenbriiche dar?).

Es handelt sich dabei um die sog. halbregelmiBigen Kettenbriiche,
d. h. um Kettenbriiche mit ganzzahligen Nennern, bei denen aber die
Zihler nicht wie bei den gewohnlichen oder regelméafBigen Kettenbriichen
durchwegs -}- 1, sondern nach Belieben -+ 1 oder — 1 sein kénnen. Solche
halbregelméfligen Kettenbriiche haben also die Gestalt

1

a, +

a, +

a, +
a; +

Den Kettenbruch, den wir erhalten, wenn wir einen Kettenbruch mit
P
a, abbrechen, bezeichnet man als den n-ten Naherungsbruch—=".

Die Frage nach der Periodizitdt der halbregelmifigen Kettenbruch-
entwicklungen quadratischer Irrationalititen und nach der kiirzesten
Periode solcher Kettenbruchentwicklungen wird im ersten Teil behandelt.
In dem vorliegenden zweiten Teil werden dagegen vor allem die Giite der
Approximation einer Zahl durch ihre Naherungsbriiche untersucht. Der
dritte Teil endlich befafit sich mit dem Wachstum der Naherungsnenner.

Was die Giite der Approximation anbetrifft, so sind in dieser Bezie-
hung schon eine Reihe von Resultaten fiir die Naherungsbriiche der

1) Der erste Teil erscheint unter dem Titel ,,Uber die verschiedenen Kettenbruch-
entwicklungen beliebiger reeller Zahlen und die periodischen Kettenbruchentwicklungen
quadratischer Irrationalitdten‘‘ in den Acta Arithmetica, der dritte Teil unter dem Titel
s»sUber das Wachstum der Naherungsnenner halbregelmaBiger Kettenbriiche* in einem
spatern Heft der vorliegenden Zeitschrift. Doch sei ausdriicklich bemerkt, daB die vor-
liegende Abhandlung vollkommen unabhiéngig vom ersten Teil lesbar ist.
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regelmiBigen Kettenbruchentwicklung bekannt. So hat Lagrange ge-
zeigt, daB in einem regelmiBigen Kettenbruch fiir alle n = 1

Q. @

Vahlen, daB von zwei aufeinanderfolgenden Nédherungsbriichen minde-
stens fir den einen

P
Eg ot

@

Borel, daB von drei aufeinanderfolgenden Néherungsbriichen mindestens
fiir einen

- 1
2Q2°

" Q. V8@

gilt. Hurwitz hat nachgewiesen, daB es dagegen fiir jedes ' > ]/B irra-
tionale Zahlen &, gibt, fiir welche die Ungleichung

P 1
fg— 2

Q.| = 0¢:
nicht mehr durch unendlich viele Néaherungsbriiche befriedigt werden

kann. Weiter gibt Cahen fiir die Kettenbruchentwicklung nach néchsten
Ganzen folgende Abschitzung an:

Pl "V5—
___3,<V5 21'
Q. = 2¢,

In unserm Fall hingen die Ergebnisse von der Einteilung der Indizes
der gegebenen halbregelmaBigen Kettenbruchentwicklung in zwei Klassen
ab. Wir bezeichnen einen Index als minimal, wenn a, = 2 und das Vor-
zeichen vor dem Teilbruch — 1 ist, sonst aber als ausgezeichnet — aus-
gezeichnete Indizes gibt es immer unendlich viele. Folgen sich mehrere
minimale, resp. ausgezeichnete Indizes unmittelbar, so sprechen wir von
einer minimalen, resp. ausgezeichneten Sequenz. Mit diesen Begriffen
konnen wir unser Hauptergebnis folgendermaflen formulieren:

€o

Ist n der i-te Index in einer minimalen Sequenz, so gilt
241
Sp— | <—5—
" @n

18t n der i-te Index in einer ausgezeichneten Sequenz, so gilt

P,
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P
Eo'—"'—-"1 <~?ﬁ2- ’

Q. »

wo sich die y; mit Hilfe der Rekursionsformel y,=

2y, 1+ 1
Y1+ 1
berechnen lassen. Die oben angegebenen Schranken sind die besten.

An dieser Stelle m6chte ich Herrn Ostrowski bestens danken; er hat
auch diese Arbeit angeregt und mich bei ihrer Durchfithrung tatkriftig
unterstiitzt.

aus Yy, = 2
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Die angefithrten Biicher und Arbeiten zitieren wir einfach mit der Angabe des Namens
des Verfassers.

l. Untersuchung der Giite der Approximation einer Zahl
durch ihre Naherungsbriiche

§ 1. Definitionen und einfachste Eigenschaften?)

Unter einem halbregelmiifigen Kettenbruch versteht man einen Ausdruck
von der Form

G — (1,1)

der den folgenden Bedingungen geniigt:

%) Der groSte Teil der hier angegebenen Definitionen und Eigenschaften ist schon in
Kapitel I des ersten Teiles erwahnt worden.
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. a, ganz, &, = 4 1;
firn =21 e, =1lunda,—e,,, =1;

w

C. falls der Kettenbruch endlich ist und auBer a, noch mindestens
einen Teilnenner hat, so ist der letzte Teilnenner grofler als 1; falls
der Kettenbruch unendlich ist, ist unendlich oft a, —¢,,, = 2.

Einen solchen halbregelméafigen Kettenbruch werden wir etwas bequemer
schreiben, namlich
_81|_€2|__83| .

2 la, |a,

22

En heiflt der n-te Teilbruch oder das m-te Glied, ¢, der n-te Teilzihler

n
und a, der n-te Teilnenner.

Bricht man den Kettenbruch mit e, ab, so erhédlt man den Ausdruck

g2l &l 2l

_—la’l |az —Ia’n ’

der nicht notwendig ein halbregelmiBiger Kettenbruch zu sein braucht.

Wir bezeichnen den Wert dieses Ausdruckes mit Py , wo P, und @,

Q.

teilerfremde ganze Zahlen sind, die also durch diese Festlegung bis auf

das Vorzeichen eindeutig bestimmt sind. % nennt man den n-ten Ndhe-
rungsbruch, P, den n-ten Ndherungszihler und @, den n-ten Ndherungs-
nenner. Diese P, und @, lassen sich nach folgenden Rekursionsformeln

berechnen: Wir definieren

P—1=1:Po=ao,Q—-1=OsQ0=1 (1:2)
und berechnen daraus der Reihe nach P,, @,, P,, @,, ... nach den
Formeln

Pn = a, Pn—l — & Pn—2 (133)
Qn =a, Qn—-l —— €& YWn—2 -
Fiir diese P, und @, gelten
Pn Qn—l - Pn—l Qn = 67» (1a4)
oder

_‘E@_ - P'n—l . an
Qn Qn-—l Qn Qn-—l ’

wWo 0, =& & .... g, = + 1 ist;
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Pn Qn-—z - P'n.—2 Qn == a’n 6n—1 . (1’5)

Die Niherungsbriiche eines a priori gegebenen unendlichen halbregel-
méfBigen Kettenbruches konvergieren gegen einen Wert 5 — den Wert des
Kettenbruches. Bei einem endlichen Kettenbruch bezeichnet man den
Wert des letzten Niaherungsbruches als den Wert des Kettenbruches.

Zu einem solchen halbregelméfigen Kettenbruch kommen wir z. B.
auf folgende Weise. Gegeben sei eine reelle Zahl £. Wir setzen

5'—'50:%"‘2—11, 51=al—§2‘ )
allgemein
87&
§n=an—§ :: » (1’6)

won =20,1,2,..,¢, =+ 1, a, ganz und fir n = 1 &, > 1. Es lduft dies
darauf hinaus, dafl man, wenn &, nicht ganz ist, fiir a, eine der beiden
ganzen Zahlen nimmt, zwischen denen ¢, liegt; wenn aber &, ganz ist,
a, = &, setzt. Dieses Verfahren setzt man unendlich oft fort, sofern nicht
einmal ¢, = a, wird, in welchem Falle man mit diesem a, abbricht.
Den auf diese Weise erhaltenen halbregelméfigen Kettenbruch bezeich-
nen wir als eine halbregelmifige Kettenbruchentwicklung der Zahl &. Jeder
halbregelmdfige Kettenbruch ist eine halbregelmdifige Kettenbruchentwick-
lung seines Wertes.

Wir nennen &, den n-ten wollstindigen Teilnenner und r, = Z}— den
n

n-ten Rest der betreffenden Kettenbruchentwicklung. Aus der oben
angegebenen Definition fiir &, ergibt sich, daf3

_8n+1|____8n+2 | — .
|@ 1 | @tz

E'ﬂ = a’n
ist.
Aus (1,6) folgt sofort, dafl

a) &, zwischen a, und a, — ¢,,, liegt.

Also liegt &,., zwischen a,,, und @, , — ¢,,,, also sicher zwischen
@,y — 1 und a,,, + 1; daraus folgt weiter, dall

. € € .
b) &, zwischen a, ——" _und a, — —2— liegt.
Qpiy— 1 Antr+ 1
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Weiter benctigen wir die folgende Relation zwischen &, und &,:

— En P —l—snPn—2
En Qn—l — &y Qn—z

oder nach &, aufgelost

‘50 » WO EnQn-l _enQn-—~2 Z 1 iSt’ (1:7)

e EOQn—Z_Pn—2
" §0Qn—-1—Pn—-1

€n = (1,8)
Uber die @, haben wir in § 2 des ersten Teiles folgende einfache Aus-
sagen bewiesen, die wir auch in diesem Teil bald gebrauchen werden:

c) firn =0 gilt €, =Z1und @, —¢,,,¢,—, =1
und
d) firn Z1unda, =22¢ilt Q,>Q,_, .

Wenn a, — ¢,,, = 2 ist, so wollen wir den Index n als einen ausge-
zeichneten, wenn aber a, —e¢, ; = 1 ist, als einen minimalen Index
bezeichnen. Nach Cin § 1 besitzt also ein unendlicher Kettenbruch immer
eine unendliche Folge von ausgezeichneten Indizes. Wenn alle Indizes
von n, bis n, (beide Indizes inklusive) ausgezeichnet, resp. minimal sind,
so sprechen wir von der ausgezeichneten, resp. minimalen Sequenz {ng, 1, .
Unter der Ldnge einer Sequenz verstehen wir die Anzahl ihrer Elemente,
d. h. den Wert n, — ny + 1. Wiederum nach C in § 1 ist die Lange
minimaler Sequenzen immer beschrankt.

§ 2. Allgemeine Formeln und zweiter Beweis der Konvergenz der Folge
der Niherungsbriiche?)
Wir leiten zunéchst die folgenden allgemeinen Formeln ab:

fir n =1 gilt |£§Q,—P,| =117 - Thi1%); (2,1)

3) Den ersten Beweis findet man in § 3 des ersten Teiles.

4) Aus (2,1) folgt die schon im ersten Teil in (2,4) erwiahnte Relation |&,@Qn-1 —

Pp1|=>|§ @, — P,| fur n=1; dariiber hinaus ergibt sich aber noch die folgende
Beziehung :
P, Tn+1@Qn-1 Pp_1 .
e B | = TSEOTR —_ fir n=1
| §0 Qn Qn §0 Qn—l s
oder also:
n+1@Qn-1 . . Py . Py
Wenn ———— =1 ist, so gilt —_—— =< — .
Qn g §0 Q" §0 Qn—-l
90 e b r - . . =,
Damit ubrigens -ﬁili"—lg 1 ist, mufl notwendig Qg 1 =1 sein, was, wie wir im
n n

dritten Teil sehen werden, nur méglich ist, wenn n ein singuléarer Index ist.
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P Qn6n+1
[T

1 n
— = En+1 €nt1 QQ l> 0 und

(%
Opt1== € *** Exyy = £ 1 (siche (1, 4)) ist ;

fir n = 1 gilt §,— , %) wo (2,2)

fir n =1 gilt Ont+1 = Qn + f ) (2:3)

n+2 n+8

Beweis von (2,1): Aus (1,8), fiir » 4 1 geschrieben, folgt, wenn man

noch beriicksichtigt, daB £,,; = - L ist, | £0@u— P, | = 700 | £0@por —

n+1

P, _,|. Durch fortgesetzte Anwendung dieser Formel erhilt man
l §0 Qn - Pn l =Tpt1%n -1 l EOQ—I — P-—l L und da nach (1:2) 1 §0Q~1 -
P_, | = 1 ist, so ist damit (2,1) bewiesen.

Beweis von (2,2): Unter Beriicksichtigung von (1,7) und (1,4) gilt

51 —_ §n+1Pn_'8n+1Pn—l__Iiy=
Qn §n+1Qn—8n+l Qn—l Qn

§n+1 Pn Qn — €pt1 Pn—-] Qn - §n+1 PnQn + En+1 PnQn-—l
(§n+1 Qn — €pt+1 Qn—l) Qn

5n+1 On 5n+1

N (§n+1 — €p+1 et ) Qz N Qi

0, > 0 gilt, weil der Nenner in (1,7) und nach §1C) auch @, fiir » =1
positiv sind.

o —

5) Diese Formel findet man z. B. bei Cahen (S. 420).

Aus (2,2) folgt ubrigens, da 9n = 0 ist,
P
On+1 = sign (§0 : y

und daraus, da nach (1,4) dn41 = én+19dn ist,
Pp-
sign (§o~———) = Ent1 sign (§o ) 1) ,

d. h, wenn ép41 = — 1 ist, so liegen die Naherungsbriiche -—'—‘— und —— auf un-

Qn Qn-1
gleichen Seiten, ist aber ¢n+1 = + 1, auf der gleichen Seite von &;.

) Diese Relation (2,3) verdanke ich einer freundlichen Mitteilung von Herrn Heierle,
der sie in seinen Untersuchungen iiber komplexe Kettenbriiche abgeleitet hatte. Doch
hatte ich die fiir uns wichtige Folgerung § 2 a) schon vorher auf anderm Wege abgeleitet.
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Beweis von (2,3): Es ist

1 . 1

On+1 = - .
n+2 n+2 Qn+1 nt2 —

@n-1
ant1—&n+1 + Entl — énti1 ]
n

Nun ist nach (1,6) @,y — &1 = ;"“ und nach (2,2)
n+2

l Qn-—l

=&, — €1 0 ; also erhdlt man
n

On
On+1 = 5 _ en+2 - on Ent2 —
2 ente 1 Ente— on + én+2 Snt2
§n+2 on

___Qn "I" Ente §n+2 ____en+29n + 1
"" - 2

5 , W.Z.b.w.
8'n+2 §n+2 n+2 £n+2

Mit Hilfe der Formel (2,1) kann man den in § 3 des ersten Teiles

erwihnten zweiten Beweis fiir die Konvergenz der Folge Py erbringen.

n

Konvergenzbeweis fiir die Folge Py ?)

Q.
) Wir haben im ersten Teil (§ 3) betont, daB man bei diesem zweiten Konvergenz.-
beweis die Tatsache, daB @n & >0 mit n—> oo gilt, nicht benétigt. Wir wollen nun in

P
dieser FuBinote zeigen, daB man aus der Konvergenz der Q—n— schlieBen kann, daB fur
n

jeden unendlichen halbregelmifigen Kettenbruch @n — oo mit n = oo gilt. Wir be-
weisen zwar diese Behauptung in Kapitel I des dritten Teiles; aber dort erscheint
unsere Behauptung als eine Folgerung aus einer Reihe an sich sehr wichtiger Resultate,
so daBl wir auf dem in dieser FuBBnote begangenen Weg viel schneller zum Ziel gelangen.
Wir beniitzen dabei eine Uberlegung, die Herr Prof. Ostrowski im Fall komplexer
Kettenbriiche angewandt hat, némlich:

Wir nehmen an, in einem unendlichen Kettenbruch seien die @, , die zu einer gewissen
unendlichen Teilfolge n; der n gehoren, beschriankt, d. h. es gelte Qn< M fiir alle ng.
Wir zeigen nun, da8 diese Annahme auf einen Widerspruch fithrt. Nach dem oben Bewie-

P P

senen gilt ~——X —» £ mit k—» oo, d.h, also fir k= K(J) gilt |&— ¥ | < J .
Q rg - Qny,

Daraus folgt ﬁ <|& |+ 9 oder |Pup|<<(|&]|+ 0)@nz<(|&]|+9)M. Unter

. P
dieser Annahme muB also auch Pn; beschriankt sein und an kann also nur endlich viele
g
: P
verschiedene Werte annehmen. Es muB also mindestens ein Wert ) unendlich oft
P

unter den —¥ vorkommen, ja noch mehr, fir = ¥k, muB immer g—m’.: P gelten, denn

ng ng
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Da nach § 1¢) fir n =0 @, =1 ist, so gilt nach (2,1)

P,
‘50_‘@; =7 Tatr -
Ist der Kettenbruch endlich und ist i der letzte Naherungsbruch,

Q.
. . P, P,
dann ist 7,4, = 0 und es gilt also &, — 0.~ 0 oder also &, = g Ist

der Kettenbruch unendlich, dann sind zugéi,chst zwel Fille méglich:

n+1 n41
entweder gilt mit n— oo II 7, | 0 oder II r, | R>07*). Im ersten Fall
y=1 y=1

gilt wirklich LENN & mit n— co. Der zweite Fall aber ist gar nicht

moglich. Im zweiten Fall mufl ndmlich r,— 1 mit n—oc gelten, d.h.
z.B. fir n>Ny(3) ist 1>7r,>1—4=2. Nun gilt nach (1,1)

Ent1

3 oder also a, = -rl— 4+ &,11 7,41 - Man erhilt also die fol-
n+1 n

genden Ungleichungen:

§n=a’n—

fir e,, =41 gilt
' 12<a,<2; (2.4)
fir e,,=—1 gilt

0 <a,< (2,5)

o |

Die Ungleichung (2,5) kann durch kein a,, erfiillt werden, die Ungleichung
(2,4) durch a,=2. Es miilte also, wenn IIr, | R>0 gelten soll, fir
n > N (6) immer a, = 2 und ¢,,, = -+ 1 sein, was nach der Eigenschaft C
in § 1 unmoglich ist, w. z. b. w.

’
sonst miiBte mindestens noch ein zweiter Wert —— existieren, der auch von unendlich

Q
P
vielen =% angenommen wiirde. Das ist aber nicht méglich, weil in diesem Fall die kon-

an

P
vergente Folge der - zwei unendliche konvergente Teilfolgen mit verschiedenen

On
P P
Grenzwerten besée. Also muB fir k >k, Q—"—’cz 5= &o gelten. Nun ist aber firr k= k,
ng
P
8o @np — Py = 7] Q— P = 0, also muB} nach (2,1) r; ry ... 7441 = 0 sein, was nur

moéglich ist, wenn ein 7, = 0 ist. Dann wére aber im Gegensatz zur Annahme die
Kettenbruchentwicklung endlich, denn sobald ein r, = 0 ist, bricht die Entwicklung ab.
Damit ist gezeigt, daB die Annahme, die @y, irgend einer unendlichen Teilfolge seien
beschréankt, falsch war; damit ist aber unsere Behauptung @, —> co bewiesen.

7*) Die Zeichen 4 , bezw. | bedeuten die mit monotonem Wachsen bezw. mono-
tonem Fallen verbundene Konvergenz.
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Aus Formel (2,3) ergibt sich, daB g,., < ¢, + 1 ist, und daraus
a) Oprp<@p+kfirn=1und k = 1.
Nach (2,1) und (2,2) ist

Eo___ﬂ Nt Turn_ On
Q. Q. 5
woraus
On = 7172 Tn+1Q'n (2,6)
folgt. Aus (2,6), fiir » und n + 1 geschrieben, ergibt sich:
Q'n+1 = %—ﬂ rn+2 Qn . (2:7)

In dem soeben hergeleiteten Beweis des Konvergenzsatzes haben wir
gezeigt, dafl in einem unendlichen halbregelmifigen Kettenbruch

ITr, | 0 mit n— oo gilt. Somit folgt aus (2,1) und (2,6) sofort:

v=1
Satz I: In evnem unendlichen halbregelmdfigen Kettenbruch gilt
l EOQn—PnI \]{ 0 mit n — oo oder

50-——% =0 (Ql;)s) und
en=0(Qs) -

§ 3. Hilfshetrachtungen

Wir wollen in diesem Paragraphen einige Tatsachen ableiten, die wir
in den folgenden Paragraphen gebrauchen werden, um g, unter gewissen
Bedingungen abschitzen zu koénnen.

1 Qn—-l

Fir — — £,y = — £,40 221 (siche die Definition von — in (2,2))

On Q@ On

konnen wir leicht eine bekannte Kettenbruchentwicklung?®) herleiten.
Qv Qv—- 2
=, — £, ———

Qv— 1 g g Qv— 1
1 Qn—l . En+1 ‘ Enl . P l . (3’1)

k= L — —
On n wh Qn . Ian Ian——l Ial

Da némlich allgemein ist, so gilt

8) Unter a, = o(b,) versteht man bekanntlich, da8 lim * — 0 gilt. Der erste Teil
n>oo Un

des Satzes ist ein Spezialfall eines analogen Satzes iiber die Entwicklung komplexer
Zahlen, den ich einer Mitteilung von Herrn Prof. Ostrowski verdanke.

%) Diese Kettenbruchentwicklung beniitzt z. B. Cahen (8. 427).
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Es muB} allerdings betont werden, daf der Kettenbruch in (3,1) kein
halbregelmiBiger zu sein braucht. Bezeichnen wir nimlich den Ketten-
bruch in (3,1) mit

bp—5—— - — 2=, WO i, =¢nya—pund b,=a,,1_, fir v=1,2,---,n

ist, so gilt nach B in §1 6,—+4, = 1, d. h. bei diesen Kettenbriichen
41

in (3,1) gibt es keine - Glieder, dafiir kann aber sehr wohl auf den
Teilnenner 1 der Teilzidhler + 1 folgen.

Jetzt wollen wir eine Reihe von Kettenbriichen abschitzen. Durch
eine einfache Rechnung stellt man das Folgende fest:

a) Es sei £, ,=2— —§1~ und ¢ eine ganze Zahl > 0. Dann gilt mit

n

1. 1
.51+ —g—-lmmer §,.1514+ ——, wo in den beiden Relationen ent-

g+1
weder gleichzeitig das Gleichheitszeichen oder das gleiche Ungleichheits-

zeichen gilt.

Aus a) folgt sofort:

b) Es sei‘.§o=2———|1—%—Tl—2l——----—-ll§|——ll§| , £, >1, wo also n

gleich der Anzahl der Teilnenner 2 vor &, ist. Dann gilt &, <1 + s
(da ¢, <1 +— ist) und allgemein mit £, 514 - glelchze1t1g & = +
3:1}:—7; , wo in den beiden Relationen entweder glelchzeltlg das Gleich-
heitszeichen oder dasgleiche Ungleichheitszeichen gilt!?).

Nun betrachten wir Kettenbriiche von der Form

ja—
fd
[a—

1
|

el

—

—— —

l

— 0§ 8 emm——

Wir zeigen :

o
w
Uy

| I

| 1) 1 1

12| 13|

10) Da die in a) und b) angegebenen Beziehungen umkehrbar sind, so 1a8t sich eine

|

1]
Do

[o—)
fay

o ¢ die Anzahl

|

!
|

c) Es sei w;(§) =

[\

[\
w2
e

1 1 . .
Zahl §,, die der Ungleichung 1 +_,c} =& =1+ o] geniigt, in halbregelméaBige Ketten-

briiche entwickeln, die mit einer minimalen Sequenz von der Liénge ! beginnen, wo !
jeden der Werte 1, 2, ..., g annehmen kann.
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der Glieder } ist, mit denen der Kettenbruch w,(&) beginnt. Dann gilt
fir

C+1)g+2i+1

(t+2)g+2i+3 °

1
5§1+—§' w; (&) =

wo in den beiden Relationen entweder die Gleichheitszeichen oder die
entgegengesetzten Ungleichheitszeichen gelten.

Beweis : Wir zeigen zunéchst, dal unsere Behauptung fiir &,(&) richtig

ist. Esist fir £=1 4 1

)

1 1 . 1 _g+1
e s weieb it T 2
S 1+i g+1
g
. 1 1 "
fir E<1—|——g— wo (&) > wy (1 +—g~) und far

1 1 .

E>1+4 r wo (&) <wy(1 +—5) . Wir nehmen nun
an, unsere Behauptung sei fiir w;_ (§) richtig, und zeigen dann, daf
unsere Behauptung auch fiir w;(§) = 1t richtig ist. Fir

2—w;—1(§)
. 1 . g +421—1 y
= 1+—g— gilt also w;_, (&) = GrDgF+2iF1’ und damit
w; (&) = . _tDg+Zitl g dagegen

g __19+2i—1 — (1+2)g+2¢+3°
C+1g+2i+1

E> 14 & , also nach Annahme w,_,(§) <w,_,(1 +—gL) , SO ist

wy(§) < w; (1 —}—gi) , und ist & <1 —l——gL , also nach Annahme

w;— (8) > w;— (1 + 5—) , 8o ist w;(&) >w,(1 + —;—) , wW.z.b.w.
Weiter wollen wir die Folge der Werte von der Form

17 T3 |3**'°-—ﬁ-————~—-1~ berechnen und zwar, da es die Be-

trachtung vereinfacht, zunichst als Funktion eines variablen letzten
Teilnenners, fiir den erst hinterher 1 gesetzt wird. Es gilt:
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1]__1] 1] _1] wo k gleich der Anzahl

d) ES sel Zk(Z) = —I-?‘,—‘—Tg'—- w8 —'—l“——' I 2 N
der Glieder < vor dem Ghed—— ist, und y,(2) = ————. Dann gilt
3 1—2,(?)

_ 2y (2) 1
) =@ 1
Setzen wir
Py (2) =32—1
7, () =2z—1
Pr (2) = 241 (2) + @1—1(2)
9, (2) = Pp-1(2) + ¢1-1(2) = P (2) — Pp—1(2),
ilt firk =1
PR R = yu2) = P
95 (2)
Speziell gilt fiir z =1
2 5 13 34
n)=+, Ya(1) = 5 Ys(l) =4, va(l) = o1 ¥r(l) < ¥ (1)
und _
yk(l)¢}_/5_2'i—_1 mit k—oco.
. 1 .
Beweis: Da z,(z) = ) so ist
1 1
A =N R S
3—2p,(2)
Andrerseits ist (2) = - oder 1—z,_,(z) = 1
£k 1 —2;4(2) w Ye-1(2)
Somit erhalten wir
1 2y,-1(2) +1
z) = = .
T S O RS
Yg—1(2)
1] 1] 1| 32—1 . P1(2)
D el el Nl PO _
a ¥,(z) M3 Tz 22—1 ist, so gilt ¥, () 7. Nehmen

(2

wir nun an, die Behauptung y,(z) = Ps X7 ; sei fiir alle 7+ < k—1 richtig,

dann gilt
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pk—l(z) +

Pr(2) 2P 1(2) + qry (z) _ 2 95—y (?) 2y 4(2) +1

= = 2) .
6@ " Pl F @ Bl Gl 5 2)
Qg (
Da y,(2) = g::; ist, so gilt ¥, (1)=2 > ! +2 V5. Wir zeigen nun,

daB aus ¥, (1) >-1—+2--V—g ¥, (1) > 1i2—V—5 folgt. Es ist némlich

29,1 (1) + 1 1 2 1+]/5

B == = 2 — > 2 —

s (2) Yr-1(1) + 1 Yr—1(1) + 1 3+ ]/5 2

Damit koénnen wir zeigen, dafl y,(1) < y,—, (1) gilt. Es ist

— Yse—1 (1) . 1
() =1+ 2y = y“‘)@k()+wﬂur+0<
2 2

Die Folge der y, (1) ist also nach unten beschrinkt und nimmt monoton

ab, besitzt also einen Grenzwert y. Dieser Grenzwert ¥ mufl der Relation

oder also y2 — y — 1 = O geniigen. Aus dieser Relation

1+ V5
2

+1

findet man y = , W.Z. b. w.

§ 4. Allgemeine Abschiitzung des Approximationsfehlers

Wir wollen in diesem Paragraphen obere Schranken herleiten fiir den
Fehler, den man begeht, wenn man &, durch den n-ten Néherungsbruch
approximiert.

Satz ITA: Fir n =1 gilt

P
Eo_él:: <

Es sei > 0. Dann gibt es halbregelmifige Kettenbriiche, bei denen fiir die
endliche Folge der aufeinanderfolgenden Indizes n = 1,2, ..., N, wo N
beliebig grof vorgegeben werden kann,

n -+ 1
Q
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P n+1—e
" Qn Cn
glt.
B) Firn =1 gilt E_I_’l<2+i
" Qn @’
wo 1 angibt, der wievielte Index n in der betreffenden minimalen Sequenz
ist; st a,— e, # 1, so wird i = 0 gesetzt. Es sei wiederum &> 0.

Dann gibt es halbregelmdifiige Kettenbriiche, bet denen fiir eine gewisse un-
endliche Teilfolge der Indizes

241—e¢

Qn

P,
fo‘“é— >

gult.

Bewers von A : Um eine obere Schranke fiir p, zu finden, miissen wir
blof} eine obere Schranke fiir g, bestimmen und auf diesen Wert § 2a)
anwenden. Es ist wegen a; — &, = 1

also ist nach §2 a) o, <24+n—1=mn+ 1.

Um die zweite Teilbehauptung von A) zu beweisen, betrachten wir
den Kettenbruch

go—go— 11 1] 1]
T 2 2 |2 [éx4r’

1] mit aN+2>(N+1—s) (N—|—1)+1
| @w 42 €

und wo N gleich der Anzahl der Glieder } vor

st

wo &ypi=1+

ist. Wir behaup-

Eni1
ten, daB} fiir diesen Kettenbruch
P nt+1—e ..
fo— 2 |> ———— firn<N
* Q. Q:
ilt, d. h. also, daB3 fiir 0O<n<N ——1—-———5 — Q""1< - ist
g ] v e ’ = R n+1 n+1 Q" n—}-l-——-s .
Nun ist nach (3,1) -
1 Qn—-l ]‘ I ____ﬂ___ _____l_l_
PR R EX
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wo der Kettenbruch aus »n Gliedern } besteht Nach § 3b) hat dieser

Kettenbruch den Wert — 2 + (1 + n + 1) rEe Schitzen wir
nun noch §,,, =2 ———-—1—1 —_— ——-—1——|—— ] ab, wo der Kettenbruch
|2 12 [évtr
mit einer minimalen Sequenz von der Linge N —mn beginnt. Da nun
nach §1b) &y,1 zwischen den Werten 1 + cﬁ“i——_l und 1+ &;;L—ﬁ
liegt, so gilt &ypi<< 1+ ————1————-— und somit nach §3b)
ayNte—
E <1+ L <1+ - <
n+l <~ aN+2——l +N—n (.N+ l_-;)(N_*—l)—f—N—-—n
<1+ 1 =1+ ¢
(n+1—e) (n+1) m+1—e) (R+1)°
£
Also erhalten wir schlieBlich
_l__ <14 e o n 1 . £ <
On m+1—e) (m+1) =n+1 2+l m+1—e) (n41)
1
< m 3 w.z.b.w.

Beweis von B: Wir bezeichnen die ausgezeichneten Indizes einer
bestimmten halbregelmafBligen Entwicklung der Reihe nach mit m,,
My, ... und zeigen, daf} fiir m;, =1 o, <2 gilt. Nach (2,2) ist

1 £ Emp+-1
= = 1
Omy T Skamk 2’
Qfmk 1
ka — “kamk—l - 8kamra—2 = G — Emg ka 2ist. Tst Empr1 = —1,
ka 1 Q'Ink—-l ka-l
80 ist oﬁenbari >Empr1> 1. FUr ey 41 = + 1 ist a,;, =3, da ja nach
Omy
der Definition der ausgezeichneten Indizes in § 1 @y, — emp+1 =2 ist.
Ist dazu noch ey, = —1, so ist
L, L 12
ka mE+1 amk 3 - 3 ’

ist dagegen ep, = + 1, so gilt nach B in § 1 ay,—1=2 und also nach
§1d) Qmp—1> @umy—2. Somit finden wir
1 1 1 1

E‘;l;c>§mk+1 é—“:izfm’c“—7>? .

3 Commentarii Mathematici Helvetici 33



Also ist wirklich sowohl fiir &,,,1 = —1 wie auch fir ey = +1
Omp<< 2 und somit nach §2a) gpm,+: <2+ 7.

Um die zweite Teilbehauptung von B zu beweisen, bestimmen wir
zum vorgegebenen 1>¢>0 die Zahl

/ €
€ = < &

)

und betrachten dann den Kettenbruch, der folgendermafBen definiert

) : 3 .
ist: es sei m1>—£,— + 1 und m,=km,; im Kettenbruch haben simt-

liche ¢, den Wert 4+ 1, die a, die Werte 2 oder 3, wobei nur die
am, = 3 sind. Der Kettenbruch ist also periodisch und hat die Gestalt
1 1]

1 1] 1] 1] 1
BN P

—_— s iy i e e e——

BT T2 T

wo die Periode aus m;—1 Teilnennern 2 und einem (letzten) Teil-
nenner 3 besteht. Wir zeigen, dafl in diesem Kettenbruch fiir

. 1 1
0=1=—(<—5<m)
e €

50 - Q . 2
. 1 1 .
gilt, d. h. daB < . ist.
Omp+i 2-+1—¢€
Nach (2,2) ist
I Qmp+i—1
= 5mk+i+1"“8mk+i+1 —_—
Omp+3 ka+i
Wi hi d ka+i—1 - ka—i—i—l .
ir schitzen nun Emk+i+1 una —&mp4i+1 -—Q—— = ——Q—-———— ein-
mp+1 mp+v
zeln nach oben ab. Es ist
E +ir1 =& +.+1__8_mk_+i-l_-ﬁl_..._’Smk+1—l|__8mk+1l_....:
mp+i+1 = Omp+i
| @i | @mpsa—1 | Bmgy
, 1l 11
|2 12 |3 ’

wo der Kettenbruch also mit einer minimalen Sequenz von der Lénge
Myry— (My 41 4 1) =m; —1—1 beginnt. Nach §3b) ist also
Empritr <1+ —ml—i—l .
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Andererseits ist nach (3,1)

Qui+i—1 1| emeta ___...__sm"+2‘_8m'°+1|—~-——
Qi+ N | @i+ |“mk+i——1 | @mg+1 lamk B
SR VU DR B VR 5 G
127 |2 12 13 In’

wo also der Kettenbruch mit m,+4 ¢4 1—(m;+ 1) =1 Gliedern 3}
gilt, da der Kettenbruch

beginnt und wo nach §3b) n< 1+ p- -
By

fiir # mit einer minimalen Sequenz von der Linge m; — 1 beginnt.
Nach §3c¢) gilt also

Qmjpt+i—1 ~ (t+1)(my+1)+ 20+1
Qmp+s (¢4 2) (my+1) + 20+ 3

Aus den Abschétzungen fir &,,4.+1 und Q%l“ﬂ:}— erhdlt man nun:
mp+4
1 1 (5 + 1) (my—1) + 24 + 1

1 : —_— 3
@mk+i< _{_7"7/1—"7/“‘1 (*+2)(my—1) +2¢+3

_1 1 it1 (1) (mg—1) 42541
S ire T =1 T ir 2 G F2) m—1) L 2i+3

1 1 1
et i1 T (DG m—1) T 20+ 3]

1 1 1
<’5+2+_?f____1_+ 2[2.81,_;_3]

7 7
€

1 g g 1 ,
<zt s t<igte

1+ 2 ]
1 € 1 €
= = < = o :
z+2+F+¢)G+2_% T2 (79 (i+2—9
€ £
1
=m, w.z. b.w.
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§ b. Abschiitzung des Approximationstehlers bei ausgezeichneten
Sequenzen

In diesem Paragraphen wollen wir den Fehler bei der Approximation
einer Zahl &, durch ihre Naherungsbriiche unter der Voraussetzung, da3
gewisse Indizes ausgezeichnet sind, abschétzen. Es gilt:

Satz [I1: Sind n,n — 1, ..., n — k + 1 ausgezeichnet, so gilt

P
50 —-= < 'y_]% ’
@n n
wo sich die y,, nach der Rekursionsformel
"y = 2Yr—1+1
P g+ 1

aus y, = 2 berechnen lassen 1) .

Es sei ferner 0 < ¢ < . Dann gibt es halbregelmdfige Kettenbriiche mit
dem Wert &,, bei denen fiir eine gewisse unendliche Teilfolge der ausgezeich-
neten Indizes, die in der betreffenden ausgezeichneten Sequenz an k-ter
Stelle stehen

P Y — &
fp——| T
Q. @
Beweis: Nach (2,2) gilt [50——6; == %2;, WO —Q—; =&,11— €pt1 in
. Qn-—l . . 1 1 . sy
ist. Da nach §1lc) 0 > 0 ist, so ist —Q— > 1 — 5 Wwo 8, eine positive
n n 1
@

untere Schranke der Werte von in den Kettenbriichen mit ¢,

Qn——l 1
= -+ 1 ist (denn fiir ¢,,, = + 1 gilt ja Q—> 1). Da nun = ausge-
zeichnet ist, d.h. da a,—e¢, ; =2 ist,n so gilt a,=3 und, da

—2 . 1 .
~Q—'i— =aq, ——sniQ—l’-—?‘ ist, so kann man s; =3 — —setzen, wo s, eine
Q@ Qn— 83

11) Diese y sind identisch mit den yz(1) in § 3d). Sie lassen sich also auch mit Hilfe
der Rekursionsformeln
Pr = 2Pp-1 T Q-1
% = Pr-1 + Q-1 = Pk — Pr-1

k
aus p; = 2, ¢; = 1 ausrechnen, indem man y;, = % setzt.

36



Qn—-l

positive untere Schranke der Werte von in den Kettenbriichen

Qn-—?..
mit ¢, = + 1 ist. Allgemein: Ist s, fiir » <k eine positive untere
Schranke der Werte von Dnv 1 = @,_ V+1—sn_,+1Q"_ 1 in den
Qn—v Qn—v
. 1
Kettenbriichen mit ¢,_, ;= -+ 1, so kann s,,g3—-8 — gesetzt wer-
v+1
den, wo 8,1 eine positive untere Schranke der Werte von QQ""" in
n—r—1
den Kettenbriichen mit ¢,_,,.; = + 1 ist. So finden wir
1 1| 1] 1| 1]
SIE N, N4 V... NIRBPUNWIG--1 WU S, B W
e 303 3 Tour el
WO 8,,, eine positive untere Schranke der Werte von QQ"—" in den
n—k—1

Kettenbriichen mit ¢, ,., = -+ 1 ist. Obgleich n—#% nicht mehr aus-
gezeichnet ist, so ist nach der Eigenschaft B) in § 1 immer noch

a,—, =2 und also nach §1d) Qs > 1, so dall wir also s,., =1

. Qn*k-l
setzen diirfen und somit
1 1 1| 1| 1]
Sl TPl SR BN Sl S GRS |
o 3773 EBE (1)
oder also
1

erhalten, wobei wir in Satz IIT fir y,(1) kurz y, setzten, w.z.b.w.

Nun zeigen wir, dall dieses y, auch die beste allgemeine Schranke fiir
0, ergibt, wenn n der k-te Index in einer ausgezeichneten Sequenz ist.
Es geniigt einen entsprechenden Kettenbruch aufzustellen, fiir den
0, > Yy, — ¢ gilt, wo 0 < e < § ist.

Zu diesem Zweck bestimmen wir zunéchst eine ganze Zahl g, derart,

> . &
@M —a = VD =

<€) und eine zweite ganze Zahl g, derart, daB

2 .
daBl ¢, > a gilt, wo ¢’ <

£

< —= =
Vo+1 (V41 1
g 2 T2

fiir alle g>g¢, 2, (14 %)>zk(1)——~—;—ist. DaB ein solches g, be-

stimmt werden kann, folgt aus der Stetigkeit von 2, (z) fiir z = 1. Ferner
wahlen wir eine Zahl m so, dal sowohl m > ¢,-+k als auch m > g,+k gilt.
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Jetzt definieren wir den folgenden Kettenbruch: Sdmtliche ¢, sind
-+ 1, die a,(» = 1) haben die Werte 2 oder 3 und zwar gilt fiir alle ganzen
pz0und v=1,2,...m—k a,,,;,=2 und fire =m—%k + 1, ..., m

@ymii = 3. Der Kettenbruch ist also periodisch und hat die Gestalt
| 1]

[
fom—
fr—
[y
j—

I 1] 1]

—— . s —_———

TR

|
|
|

ao.___.__..______.___...-___.

12 |2 |

[\
w
o

13 |

wo die Periode aus m — k Gliedern } und k Gliedern 1 besteht. Fiir
diesen Kettenbruch wollen wir nun nachweisen, dafl fiir alle 4 = 0

___P[.Lm ' yk'——e
2
pm

[—

|

11
2

1
|

|
|
3
[
|
|
|
|
|
|
|
|
|

w

wo die Linge der ausgezeichneten Sequenz am Anfang k, die der darauf-
folgenden minimalen Sequenz m — k betrigt. Wir kénnen also den
Kettenbruch auf der rechten Seite nach der Definition in § 3d) auch mit
— 24 (%) bezeichnen, wo fiir

1] 1] 1] 1]

i D o T o e e e s

ER 12 |3

nach §3b) z <1+ 7—7:1__—76 gilt. Nun haben wir m>g, + k gewihlt,

so dafl also zy<1-+ gi ist und damit nach Annahme
2

2e(20) > (1) — 5

Andrerseits beginnt nun aber

fpm+1=2———|1-?|:-——il—2‘——---————ll—§l———ll—§|-——---- mit einer minimalen Se-

quenz von der Linge m—£k, so daB also &ump<<1+4 ist. Da

m—k

aber nach Annahme m>g, + % und g, > }2—; ist, so gilt Eumyr <1+
1 e
—_— <14 — .

38



Wir finden also

1 e e 1
— <14 —z()+o=— + &
O T3 )+ 3 Y, (1)
oder

Yr(1)

> 2 >y, —e, W.Z.b.w.

Man kann sich nun noch fragen, ob man die oben angegebenen Schran-
ken verbessern kann, wenn man auch noch eine gewisse Anzahl der auf
n( = um) folgenden Indizes als ausgezeichnet voraussetzt. Das ist aber
nicht der Fall. Denn um zu zeigen, dafl unsere Schranken die besten sind,
muBten wir einen Kettenbruch angeben, dessen &, (= &,,,,,) moglichst
nahe bei 1 war. Wir erreichten das dort, indem wir &, (= &,,4,) durch
einen Kettenbruch, der mit einer geniigend langen minimalen Sequenz
begann, definierten. Das gleiche Ziel hétten wir aber auch erreicht, wenn
1 l €nts I

I Atz o | At
angesetzt hétten. Daraus folgt, dal unsere Schranken auch die besten

sind, wenn der Kettenbruch nur ausgezeichnete Indizes aufweist.

wir &,., =1+ . mit einem geniigend groflen a,_,

Setzen wir nun die speziellen Werte, die wir in § 3d) fiir die y, aus-
gerechnet haben, in den Satz III ein, so erhalten wir das

Korollar zu Satz 111 : Ist n =1 ausgezeichnet, so gilt

PR, QL
sind n = 2 und n— 1 ausgezeichnet, so gilt
§ Y L I
P Q. 3@
sind n = 3, n—1 und n— 2 ausgezeichnet, so gilt
o — i <13
N T
Sind alle Indizes ausgezeichnet, so gilt
Po| _ Yn
&g — é—;, < "‘i'
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§ 6. Zweiter Beweis einer schon frither bewiesenen Tatsache

Wir haben im ersten Teil in § 9 das folgende, fiir das ganze Kapitel ITI
des ersten Teiles dullerst wichtige Korollar aus Satz IX hergeleitet:

Unter den vollstindigen Teilnennern &, einer beliebigen, aber festen halb-
regelmdfigen Entwicklung eimer quadratischen Irrationalitit kommt stets
etn bestimmter Zahlenwert = unendlich oft vor.

In der FuBnote 16 des ersten Teiles haben wir einen zweiten Beweis
dieses Korollars in Aussicht gestellt. Diesen zweiten Beweis wollen wir
nun in diesem Paragraphen erbringen.

Beweis'?): Die Zahl §&,, die wir in den halbregelméafigen Kettenbruch

&l

—Ta . . entwickelt haben, geniige der quadratischen Gleichung
1

@y
Aofg + B0§0 + Oo = 0, (6’1)

wo 4,, By, C,, ganze Zahlen sind. Wenden wir nun auf diese quadratische
Gleichung die lineare Substitution (1,7) an, so erhalten wir, nachdem
wir mit dem Nenner ¢,, , — ¢,6,-, = 1 multipliziert haben,

AO( EnPn——l" 8nPn——2)2+ BO( EnP -1 snPn—z) (SnQn—l— 8nQn—2)+ 00( SnQn—-l_ EnQn—z)z =0

oder anders geordnet

A& + B,&, + C, =0, wo (
A, =A,P,; + By P, 1Qus + Coly, (
B, =-2¢e,4,P, P, y-2,B¢(P, 1@, o+P; @0 1) ~28,00@y1@r-2  (6,4)
C,=AyP; s+ BoPp 5@y 5 + Coldps - (
Vergleicht man (6,3) und (6,4), so findet man

On _— An—l' (6:6)

12) Die Uberlegungen, die wir hier beniitzen, verlaufen analog den Uberlegungen von
Charves. Der Charves’sche Beweis fiir die Periodizitat regelmaBiger Kettenbruchent.
wicklungen quadratischer Irrationalitdten beniitzt ndmlich in besonders expliziter Weise
die Tatsache, daB fiir alle Naherungsbriiche der regelméiBigen Kettenbriche ein quadra-
Pn|l_ ¢
@n| Q.
1, ist) gilt. Fiir unsere Betrachtung ist nun wesentlich, da3 wir das Bestehen eines quadra-
tischen Naherungsgesetzes fiir eine unendliche Teilfolge der Indizes beniitzen und daraus
eine entsprechend abgeschwiichte Folgerung ziehen.

tisches Niherungsgesetz vom Typus | &, — (wo ¢ eine feste Zahl, némlich
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Aus der invarianten Eigenschaft der Diskriminante einer quadra-
tischen Form folgt unter Beriicksichtigung von (1,4)

Pn—l Pn-z 2
Qn—l Q n—-2

B; — 44,0, ist sicher nicht Null, da ja sonst &, rational wire. Daher
kénnen sicher nicht alle drei GréBen 4,, B, und C, verschwinden, d. h.
die Gleichung (6,2) kann keine identische sein.

Es geniigt nun zu zeigen, dal} die drei ganzen Zahlen 4,, B, und C,
fiir eine gewisse unendliche Teilfolge der Indizes », namlich fiir die un-
endliche Teilfolge m, + 2, wo m, alle ausgezeichneten Indizes durch-
lauft, absolut genommen unter einer von % unabhingigen Schranke
bleiben; denn ist dies der Fall, dann miissen notwendig unendlich viele
&, der gleichen Gleichung geniigen und damit ist die Existenz unendlich
vieler gleicher &, nachgewiesen.

B —_44,0,=(B—44,0,) =B:—-44,C,. (6,7)

Nach Satz IIB gilt g, <2 und gm,+1<3. Ist aber g < 3, so gilt

Py, Py, 30)
&y — < — oder also & — — ,
’ QP« QZ ’ Qu i

ist. Daraus ergibt sich

nach (2,2) wo |w|<1

3
PVZSOQIL‘}"Q(? .

Setzen wir nun in (6,3), fir m, 4+ 2 geschrieben, den aus (6,8) fir u =
my + 1 erhaltenen Wert fiir P, ,, ein, so erhalten wir

(6,8)

3w

Amk+2 =A (Eonk+1 + ) ‘|‘ BOka+1(§0ka+1 ka_'_l)"l'OOQMk-l-l

9w24,
= (A0 + By &g+ O Q@1+ 60 Ay gt 30 By Do

mp +1
<6|A4o& | +3|By| +9]|4,] .

Da nach (6,6) C,, .,=4,, ., ist und da (6,8) auch fir u=m, gilt, so
bleibt auch C,, ., unter der gleichen Schranke. Ferner folgt aus (6,7)
unter Beriicksichtigung der soeben erhaltenen Schranken von 4,, ., und
C ppr2 €ine Schranke fiir B, ,,. Esist B;Hz 44,400 st B:-44,0,

Qm}ﬁ— 1

<4[6] Ag& | + 3| By| + 9| 4o |1P+ | Bs— 44,0, ].

Damit haben wir den zweiten Beweis der obigen Behauptung erbracht.

(Eingegangen den 27. Mirz 1937.)
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