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Ober die Gûte der Approximation einer reellen
Zahl durch die Nâherungsbrùche ihrer halb-
regelmâBigen Kettenbruchentwicklungen
(Untersuchungen zur Théorie der halbregelmâÛigen Kettenbruchentwicklungen 11)

Von Fritz Bltjmer, Basel

Einleîtung
Die vorliegende Arbeit stellt den zweiten Teil einer dreiteiligen Unter-

suchung uber allgemeine Kettenbruche dar1).
Es handelt sich dabei uni die sog. halbregelmaBigen Kettenbruche,

d. h. um Kettenbruche mit ganzzahligen Nennern, bei denen aber die
Zahler nicht wie bei den gewohnlichen oder regelmaBigen Kettenbruchen
durchwegs + 1, sondern nach Belieben + 1 oder — 1 sein konnen. Solche

halbregelmaBigen Kettenbruche haben also die Gestalt

<h± ¦

Den Kettenbruch, den wir erhalten, wenn wir einen Kettenbruch mit
p

an abbrechen, bezeichnet man als den n-ten Naherungsbruch -^.
Die Frage nach der Periodizitat der halbregelmaBigen

Kettenbruchentwicklungen quadratischer Irrationalitaten und nach der kurzesten
Période solcher Kettenbruchentwicklungen wird im ersten Teil behandelt.
In dem vorliegenden zweiten Teil werden dagegen vor allem die Gute der

Approximation einer Zahl durch ihre Nâherungsbrùche untersueht. Der
dritte Teil endlich befaBt sich mit dem Wachstum der Naherungsnenner.

Was die Gute der Approximation anbetrifft, so sind in dieser Bezie-

hung schon eine Reihe von Resultaten fur die Nâherungsbrùche der

x) Der erste Teil ersehemt unter dem Titel ,,Ûber die verschiedenen Kettenbruch -

entwieklungen behebiger reeller Zahlen und die periodischen Kettenbruchentwicklungen
quadratischer Irrationalitaten" in den Acta Arithmetica, der dritte Teil unter dem Titel
,,Ûber das Wachstum der Naherungsnenner halbregelmafiiger Kettenbruche" in emem
spatern Heft der vorliegenden Zeitschrift. Doch sei ausdruckhch bemerkt, daÔ die
vorliegende Abhandlung vollkommen unabhangig vom ersten Teil lesbar ist
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regelmaBigen Kettenbruchentwicklung bekannt. So hat Lagrange ge-

zeigt, daB in einem regelmaBigen Kettenbruch fur aile n ^ 1

P. 1

Vahlen, daB von zwei aufeinanderfolgenden Naherungsbruchen minde-

stens fur den einen

in ¦
1

So~Q»

Borel, daB von drei aufeinanderfolgenden Naherungsbruchen mindestens

fur einen
p. i

gilt. Hurwitz hat nachgewiesen, daB es dagegen fur jedes G > j/B irra-
tionale Zahlen f0 gibt, fur welche die Ungleichung

1

nicht mehr durch unendlich viele Naherungsbruche befriedigt werden
kann. Weiter gibt Cahen fur die Kettenbruchentwicklung nach nachsten
Ganzen folgende Abschatzung an:

In unserm Fall hangen die Ergebnisse von der Einteilung der Indizes
der gegebenen halbregelmaBigen Kettenbruchentwicklung in zwei Klassen
ab. Wir bezeichnen einen Index als minimal, wenn an 2 und das Vor-
zeichen vor dem Teilbruch — 1 ist, sonst aber als ausgezeichnet — aus-
gezeichnete Indizes gibt es immer unendlich viele. Folgen sich mehrere
minimale, resp. ausgezeichnete Indizes unmittelbar, so sprechen wir von
einer minimalen, resp. ausgezeichneten Sequenz. Mit diesen Begriffen
kônnen wir unser Hauptergebnis folgendermaBen formulieren:

Ist n der i-te Index in einer minimalen Sequenz, so gilt

^2 + i
m

ist n der i-te Index in einer ausgezeichneten Sequenz, so gilt
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Il
Qr Q n

wo sich die y% mit Hilfe der Rehursionsformel yt=
y%

aus y1 2

berechnen lassen. Die oben angegebenen Schranken sind die besten.

An dieser Stelle môchte ich Herrn Ostrowski bestens danken; er hat
auch dièse Arbeit angeregt und mich bei ihrer Durchfuhrung tatkràftig
unterstutzt.
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Die angefuhrten Bûcher und Arbeiten zitieren wir einfach mit der Angabe des Namens

des Verfassers.

I. Untersuchung der Gîite der Approximation eîner Zahl
durch ihre Nàherungsbrùche

§ 1. Definitionen und einfachste Eigenschaften2)

Unter einem halbregelmafiigen Kettenbriich versteht man einen Ausdruck
von der Form

(1,1)

der den folgenden Bedingungen genûgt:

¦) Der groÛte Teil der hier angegebenen Definitionen und Eigenschaften ist schon in
Kapitel I des ersten Teiles erwâhnt worden.
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A. an ganz, en ± 1 ;

B. fur n ^ 1 an :> 1 und an — en+l ^ 1 ;

C. falls der Kettenbruch endlich ist und auBer a0 noch mindestens
einen Teilnenner hat, so ist der letzte Teilnenner grôBer als 1 ; falls
der Kettenbruch unendlich ist, ist unendlich oft an — en+1 ^ 2.

Einen solchen halbregelmàBigen Kettenbruch werden wir etwas bequemer
schreiben, nâmlich

— heiBt der n-te Teilbruch oder das n-te Glied, en der n-te TeilzàhUr

und an der n-te Teilnenner.

Bricht man den Kettenbruch mit an ab, so erhàlt man den Ausdruck

der nicht notwendig ein halbregelmâBiger Kettenbruch zu sein braucht.
pWir bezeichnen den Wert dièses Ausdruckes mit ^-", wo ?„ und Qn

teilerfremde ganze Zahlen sind, die also durch dièse Festlegung bis auf

das Vorzeichen eindeutig bestimmt sind. j~ nennt man den n-ten Nahe-

rungsbruch, Pn den w-ten Nàherungszahler und Qn den n-ten Nâherungs-
nenner. Dièse Pn und Qn lassen sich nach folgenden Rekursionsformeln
berechnen: Wir definieren

P_! 1, P0 «0. Q-l 0, Qo 1 (1,2)

und berechnen daraus der Reihe nach Plt Q1} P2, Q2, nach den
Formeln

p n "P o P H Q\rn — an rn-l en rn-2 \1>Ô)

Fur dièse Pn und Qn gelten

oder
P. P«-i K
Qn Qn-1 QnQn-1 '

wo ôn e1 s2 sn ± 1 ist;
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Pn <2n_2 — Pn_2 Qn an ôn.x (1,6)

Die Naherungsbruche eines a priori gegebenen unendlichen halbregelmaBigen

Kettenbruches konvergieren gegen einen Wert ri — den Wert des

Kettenbruches. Bei einem endlichen Kettenbruch bezeichnet man den
Wert des letzten Naherungsbruches als den Wert des Kettenbruches.

Zu einem solchen halbregelmaBigen Kettenbruch kommen wir z. B.
auf folgende Weise. Gegeben sei eine réelle Zahl f. Wir setzen

Ç — ?o — ao — jr 9 Éi ~ ai — T~ >

Si S2

allgemein

£» «» — g2^ > (1,6)

wo n 0,1, 2, ew ± 1, aw ganz und fur w ^ 1 |n > 1. Es lauft dies
darauf hmaus, daB man, wenn |n mcht ganz ist, fur an eine der beiden

ganzen Zahlen nimmt, zwischen denen fw liegt, wenn aber fn ganz ist,
an fn setzt Dièses Verfahren setzt man unendlich oft fort, sofern mcht
einmal £n an wird, in welchem Falle man mit diesem an abbricht.
Den auf dièse Weise erhaltenen halbregelmaBigen Kettenbruch bezeich-

nen wir als eine halbregelmafiige Kettenbruchenhvicklung der Zahl f. Jeder
halbregelmaflige Kettenbruch ist eine halbregelmafiige Kettenbruchentwick-

lung seines Wertes.

Wir nennen fn den %-ten vollstandigen Teilnenner und rn — den

n-ten Best der betreffenden Kettenbruchentwicklung. Aus der oben

angegebenen Définition fur fn ergibt sich, daB

t —n £n+l I gn+2 1

K |

ist.

Aus (1,6) folgt sofort, daB

a) fn zwischen aw und an — en+1 liegt.

Also liegt fn+1 zwischen aw+1 und an+1 — ew+2, also sicher zwischen

an+i — 1 und an+i + 1 î daraus folgt weiter, daB

an+l
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b) |n zwischen aw
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Weiter benotigen wir die folgende Relation zwischen f0 und

oder nach £„ aufgelost
«-2 -*w

lSoQn-l — Pnr.l '

(1,7)

(1,8)

Ûber die Qn haben wir in § 2 des ersten Teiles folgende einfache Aus-

sagen bewiesen, die wir auch in diesem Teil bald gebrauchen werden:

c) ^O gilt Qn^ Qn n+1 Qn^ ^
und

d) fur n ^ 1 und an ^ 2 gilt Qn > Qn_x

Wenn an — en+1 ^2 ist, so wollen wir den Index n als einen ausge*
zeichneten, wenn aber an — en+] 1 ist, als einen minimalen Index
bezeichnen Nach C in § 1 besitzt also ein unendlicher Kettenbruch immer
eine unendliche Folge von ausgezeichneten Indizes. Wenn aile Indizes
von n0 bis % (beide Indizes inklusive) ausgezeich.net, resp. minimal sind,
so sprechen wir von der ausgezeichneten, resp. minimalen Sequenz ^no,nxy.
Unter der Lange einer Sequenz verstehen wir die Anzahl ihrer Elemente,
d. h. den Wert nx — n0 + 1. Wiederum nach C in § 1 ist die Lange
minimaler Sequenzen immer beschrankt.

§ 2. AUgemeine Formeln und zweiter Beweis der Konvergenz der Folge
der Nâherungsbriiche3)

Wir leiten zunachst die folgenden allgemeinen Formeln ab :

fur w à 1 gilt ') (2,1)

3) Den ersten Beweis findet man m §3 des ersten Telles.

4) Aus (2,1) folgt die schon îm ersten Teil m (2,4) erwahnte Relation \£0Qn-l —
Pn-l | > | £o Qn — -Pf» I ^ur n 1 ' daruber hinaus ergibt sich aber noch die folgende
Beziehung

Qn
oder also :

Wenn
Qn

rn+lQn-l

1 ist, so gilt

Pn-1
Qn-l

Damit ubngens > 1 ist, mui3 notwendig -1 sein, was, wie wir îm
dntten Teil sehen werden, nur mogheh ist, wenn n ein smgularer Index ist.
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fur n ^ 1 gilt $0 — -7^
Qn n+1, 5) wo (2,2)

<5w+i =«!••• e«+i ± (siehe (1,4) ist ;

fur n ^ 1 gilt Qn+l -p±*- Qn + ^i- e) (2j3)

Beweis von (2,1): Aus (1,8), fur n + 1 geschrieben, folgt, wenn man

noch berucksichtigt, daB fn+1 ist, | f0 Qn — Pn | rn+11 |0 Qn_x —

Pn_! |. Durch fortgesetzte Anwendung dieser Formel erhalt man
| £0Qn — Pn | rn+1 rn rx \ S0Q-! — P-x |, und da nach (1,2) | ÇQQ_t —
P_11 1 ist, so ist damit (2,1) bewiesen.

Beweis von (2,2): Unter Berucksichtigung von (1,7) und (1,4) gilt

jQn Sn+lQn en+lQn-l Qn

(ên+1 — en+l -q^J Qn Qn

gn > 0 gilt, weil der Nenner in (1,7) und nach § 1 C) auch Qn fur n ^
positiv sind.

6) Dièse Formel findet man z B bei Cahen (S 420)

Aus (2,2) folgt ubrigens, da Qn >• 0 ist,

und daraus, da nach (1,4) ôn+i ên+làn ist,

d. h. wenn £n+l — 1 ist, so hegen die Nâherungsbruche -£- und ~— auf un-
Qn vw-l

gleichen Seiten, ist aber £n+l + 1
> auf der gleichen Seite von £0.

6) Dièse Relation (2,3) verdanke ich emer freundhchen Mitteilung von Herrn Heierle,
der sie m seinen XJntersuchungen uber komplexe Kettenbruche abgeleitet hatte Doeh
hatte ich die fur uns wichtige Folgerung § 2 a) schon vorher auf anderm Wege abgeleitet.
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Beweis von (2,3) ; Es ist

1

Qn+l — q—

On+1 — |n+l + èn+1 — *n+l -75

Nun ist nach (1,6) an+1 — fn+1 -^ und nach (2,2)
f«+2

fn+1 — en+1 -t—^ ; also erhalt man
Qn Qn

1 1

gn+2

+2 i J_
+2 ç

Mit Hilfe der Formel (2,1) kann man den in § 3 des ersten Teiles
perwahnten zweiten Beweis fur die Konvergenz der Folge ¦— erbringen.

P
Konvergenzbeweis fur die Folge ^r '• 7)

7) Wir haben un ersten Teil (§3) betont, dafi man bei diesem zweiten Konvergenzbeweis

die Tatsache, daû Qn ->- ;:>o mit n->~ ^o gilt, mcht benotigt Wir wollen nun m

dieser Fufinote zeigen, dafi man aus der Konvergenz der ^— schhefien kann, daû fur

]eden unendliehen halbregelmafiigen Kettenbruch Qn -> oo mit n -?• oo gilt Wir be-
weisen zwar dièse Behauptung m Kapitel I des dritten Telles; aber dort erscheint
unsere Behauptung als eine Folgerung aus einer Reihe an sich sehr wichtiger Resultate,
so dafi wir auf dem in dieser FuÛnote begangenen Weg viel schneller zum Ziel gelangen.
Wir benutzen dabei eine Ûberlegung, die Herr Prof Ostrowski îm Fall komplexer
Kettenbruche angewandt hat, namlich:

Wir nehmen an, m emem unendliehen Kettenbruch seien die Qn, die zu einer gewissen
unendliehen Teilfolge n^ der n gehoren, beschrânkt, d h es gelte Qnk ^z M fur aile n^.
Wir zeigen nun, daû dièse Annahme auf einen Widersprueh fuhrt Nach dem oben Bewie-

p
senen gilt ^~ —>? £0 mit k —> oo d h. also fur k rT K(ô) gilt

Pnk
: d

oder \Pnk\<(\Ç0\ + ô)Qnk<(\Ç0\ + d)M. Unter
[nie

Daraus folgt

dieser Annahme muû also auch Pnk beschrânkt sem und ~- kann also nur endheh viele

verschiedene Werte annehmen Es muû also mmdestens ein Wert — unendheh oft
Pnk Pnu Punter den-r—- vorkommen, ja noch mehr, fur k-^1 kx muû immer—?= — gelten, denn
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Da nach § le) fur n ^0 Qn ^ 1 ist, so gilt nach (2,1)

£ Vl

pIst der Kettenbruch endlich und ist -^ der letzte Naherungsbruch,

p pdann ist rn+1 0 und es gilt also f0 — ~ 0 oder also Jo ^. Ist
der Kettenbruch unendlich, dann sind zunachst zwei Falle moglich :

n+l n+1
entweder gilt mit w-> oo 77 rv ^ 0 oder FI rv ^ B>07*). Im erstenFall

pgilt wirklich r~ ->f0 mit %-> oo. Der zweite Fall aber ist gar nicht

moglich. Im zweiten Fall muB namlich rw-> 1 mit n->oc gelten, d.h.
z.B. fur n>N0(i) ist 1 > rn > 1—| f • Nun gilt nach (1,1)

i
fn an — ~r^ °der also an — h en+1 rn+1. Man erhalt also die fol-

Sn+l rn
genden Ungleichungen :

fur en+1 + 1 gilt
l|<an<2|- (2,4)

fur en+1 — 1 gilt
0 <an< f (2,5)

Die Ungleichung (2,5) kann durch kein an erfullt werden, die Ungleichung
(2,4) durch an 2. Es muBte also, wenn IJrv | R>0 gelten soll, fur
n > N(ô) immer an 2 und en+1 + 1 sein, was nach der Eigenschaft C

in § 1 unmoglich ist, w. z. b. w.

sonst muBte mindestens noch ein zweiterWert -r-t existieren, der auch von unendlich
T>

vielen -~^ angenommen wurde. Das ist aber nicht moglich, weil in diesem Fall die kon-

vergente Folge der rr— zwei unendhehe konvergente Teilfolgen mit verschiedenen
V n

P h P
Grenzwerten besàfie. Also mufi fur k ^ kx tt-^= ~q ^o gelten Nun ist aber fur fc — k-,

^o Qnk — Pnk ~ ~n Q— P 0, also muB nach (2,1) rx r2 rnje+l ~ 0 sein, was nur

moglich ist, wenn ein rv 0 ist Dann ware aber im Gegensatz zur Annahme die
Kettenbruchentwicklung endlich, denn sobald em rv 0 ist, bricht die Entwicklung ab.
Damit ist gezeigt, daB die Annahme, die Qnic irgend emer unendhehen Teilfolge seien
beschrankt, falsch war, damit ist aber unsere Behauptung Çn-^oo bewiesen.

7*) Die Zeichen ^ bezw \> bedeuten die mit monotonem Wachsen bezw mono-
tonem Fallen verbundene Konvergenz.
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Aus Formel (2,3) ergibt sich, da6 £w+1 < çn + 1 ist, und daraus

Nach (2,1) und (2,2) ist
T1 T2 • • • Yn+\ Qn

woraus

Ç"~Q~n

folgt. Aus (2,6), fur n und n + 1 geschrieben, ergibt sich:

(2,7)

In dem soeben hergeleiteten Beweis des Konvergenzsatzes haben wir
gezeigt, daô in einem unendlichen halbregelmâBigen Kettenbruch

n

Tlrv | 0 mit n-> oo gilt. Somit folgt aus (2,1) und (2,6) sofort:
v l

Satz I : In einem unendlichen halbregelmafligen Kettenbruch gilt
I SoQn — ^n\ I 0 mit n->oo oder

P >)

g- — yj | ^-1 und

§ 3. Hilfsbetrachtungen
Wir wollen in diesem Paragraphen einige Tatsachen ableiten, die wir

in den folgenden Paragraphen gebrauchen werden, um £n unter gewissen
Bedingungen abschâtzen zu kônnen.

Fur — — fw+1 — sn+1^^ (siehe die Définition von— in (2,2))
Qn Qn Qn

kônnen wir leicht eine bekannte Kettenbruehentwicklung9) herleiten.

mlich allgemein ^
v

av — ev^

J t _ B
Qn-l _ gn+1

Da nâmlich allgemein ^
v

av — ev^v~2 ist, so giltVi Vi
Qn

8) Unter an o(6n) versteht man bekanntlich, dafi lim — 0 gilt. Der erste Teil
n->« On

des Satzes ist ein Spezialfall eines analogen Satzes liber die Entwicklung komplexer
Zahlen, den ich einer Mitteilung von Herrn Prof. Ostrowski verdanke.

•) Dièse Kettenbruchentwicklung benutzt z. B. Cahen (S. 427).
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Es muB allerdings betont werden, daB der Kettenbruch in (3,1) kein
halbregelmaBiger zu sein braucht. Bezeichnen wir namlich den Kettenbruch

in (3,1) mit

h — tt -rr- wo iv — £w+2- v und 6v=an+i_v fur v= 1,2, • • •, n

ist, so gilt nach B in §16, — % ^ 1, d. h. bei diesen Kettenbruchen

in (3,1) gibt es keine-——Glieder, dafur kann aber sehr wohl auf den

Teilnenner 1 der Teilzahler +1 folgen.

Jetzt wollen wir eine Reihe von Kettenbruchen abschatzen. Durch
eine einfache Rechnung stellt man das Folgende fest :

a) Es sei Sn-i =2 — -j- und g eme ganze Zahl > 0. Dann gilt mit

fn 1 H immer Sn-i J 1 H 7—r, wo in den beiden Relationen ent-

weder gleichzeitig das Gleichheitszeichen oder das gleiche Ungleichheits-
zeichen gilt.

Aus a) folgt sofort :

b) Es sei fo=2 — li— ii_ —*A—ll9 fn>l, wo also n
M I Z I l \ Sn 1

gleich der Anzahl der Teilnenner 2 vor |n ist. Dann gilt |0 < 1 H

1 1 n
(da SM-i < 1 + y ist) und allgemein mit |M 1 + - gleichzeitig f0

1 +
wo in den beiden Relationen entweder gleichzeitig das Gleich-

g-\-n
heitszeichen oder das gleiche Ungleichheitszeichen gilt10).

Nun betrachten wir Kettenbruche von der Form

11 11 11 11 11

c) Es sei w,(S) j+ — j^ J2~j3~"ff ' W° * die Anzahl

10) Ba die in a) und b) angegebenen Beziehungen umkehrbar sind, so lafit sich eine

Zahl £0 » die der Ungleichung 1 H— r>^0>>lH -—r genugt, m halbregelmafiige Kettenbruche

entwickeln, die mit einer mmimalen Sequenz von der Lange l begmnen, wo l
jeden der Werte 1,2, g annehmen kann.
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der Glieder \ ist, mit denen der Kettenbruch wt(Ç) beginnt. Dann gilt
fur

,<1+
1 > {i + Dg

wo in den beiden Relationen entweder die Gleichheitszeichen oder die

entgegengesetzten Ungleichheitszeichen gelten.

Beiveis : Wir zeigen zunachst, daB unsere Behauptung fur |0(|) richtig

ist. Es ist fur f 1 -|
9

wi,)- 1
_

1 - * - 9+1

fur f < 1 H wo(£) > w?0 (1 H und fur
y y

f > 1 H Wo(f) <wo(l H • Wn* nehmen nun
^ «7

an, unsere Behauptung sei fur w;t_x (f) richtig, und zeigen dann, daB

unsere Behauptung auch fur wt (f — richtig ist. Fur

!- 1 +j gilt l\^J1

f > 1 -| also nach Annahme M\_l(f) <^t_i(l -| so ist
y y

w4(£)< wt(\ -\ und ist f < 1 -\ also nach Annahme

^_x(f)> w?t_1(l + —) so ist wt($) >wt(l H w.z.b.w.
y y

Weiter wollen wir die Folge der Werte von der Form

tt— 75 — Tir •——! — ~ berechnen und zwar, da es die Be-
I l \* I à \6 | 1

trachtung vereinfacht, zunachst als Funktion eines variablen letzten
Teilnenners, fur den erst hinterher 1 gesetzt wird. Es gilt :
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d) Es sei zk(z) t~—-—— • • y-J-— ~ wo 1c gleich der Anzahl
|à \6 \é \ Z

der Glieder — vor dem Glied — ist, und yk (z) - -—-. Dann gilt

_ 2y>_1(8) + l
y« {Z)

Setzen wir
px (z) 3z—l
q1(z) 2z—l
P*(»)=2p»_1(«) + g

ï*-i («) Vie (z) —

so gilt fur k ^ 1

Speziell gilt fur z 1

2 5 13

und ,-
mit

Beweis : Da 2;^ (2) — so ist
3 — 2&-i (z)

Andrerseits ist yk^ (z) ^——_. oder 1 — g^^g)

Somit erhalten wir

-ag. Nehmen

wir nun an, die Behauptung yt(z)= sei fur aile i^k—1 richtig,
9.1 \z)

dann gilt
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2ptr.1(z)
pM(z)

Da ^(2) 2^~1 ist, so gilt ^ (1) 2 > J— Wir zeigen nun,

daB aus yk-x(\) > o
' VkW > o

' folg*. Es ist nâmlich

Damit kônnen wir zeigen, daB yk(l) < ^^(l) gilt. Es ist

Die Folge der yk(l) ist also nach unten beschrânkt und nimmt monoton

ab, besitzt also einen Grenzwert y. Dieser Grenzwert y muB der Relation

y 1 -{ —— oder also y2 — y — 1 0 genugen. Aus dieser Relation
y i

n A 1 + V5 -iindet man y —4r— » w< z* "• w-
2

§ 4. Allgemeine Abschâtzung des Approximationsfehlers

Wir wollen in diesem Paragraphen obère Schranken herleiten fur den
Fehler, den man begeht, wenn man f0 durch den n-ten Nàherungsbrucb
approximiert.

Satz IIA : Fur n^l gilt

Es sei e>0. Dann gibt es halbregelmâflige Kettenbrûche, bei denen fur die
endliche Folge der aufeinanderfolgenden Indizes n 1, 2, N, wo N
béliebig grofi vorgegeben werden kann,
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t —Vl
'0 r\

n + 1—e

B) FUr n^l gilt
Ql '

wo i angibt, der wievielte Index n in der betreffenden minimalen Sequenz
ist; ist an— en+1 ^ 1, so wird i 0 gesetzt. Es sei wiederum s > 0.

Dann gibt es halbregelmaflige Kettenbrtiche, bei denen fur eine gewisse un-
endliche Teilfolge der Indizes

* *±

gilt.
Beweis von A : Um eine obère Schranke fur gn zu finden, miissen wir

bloB eine obère Schranke fur q± bestimmen und auf diesen Wert § 2 a)
anwenden. Es ist wegen ax — e2 ^1

1 1 1

Qo
o

also ist naeh §2 a) Qn<2 + n — 1 n + 1.

Um die zweite Teilbehauptung von A) zu beweisen, betrachten wir
den Kettenbruch

t n i i i

wo
1

mit l—e) (N+l)

und wo N gleich derAnzahl der Glieder i vor

ten, dafi flir diesen Kettenbrueh

gilt, d.h. also, dafi fur
Nun ist nach (3,1)

12 12'

ist

ist. Wïrbehaup-

— e
-ist.

12 '
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wo der Kettenbruch aus n Gliedern \ besteht Nach § 3 b) hat dieser

Kettenbruch den Wert — 2 + 1 -) ¦—-) —- Schatzen wir
71 -j- 1 71 -j— I

nun noch fn+1 2—y-j— —-r-^—, ab, wo der Kettenbruch

mit einer mmimalen Sequenz von der Lange N — n begmnt Da nun

nach § 1 b) f^+i zwischen den Werten 1 -\ und 1 +Un+2—1 ^jv+2 + 1

hegt, so gilt Sn+i< 1 H 7 und somit nach § 3 b)
aN+2 — 1

^1+ 1+
e

1 +(n + l—e) (n+1) (w + 1 — e) (w + 1)
*

e

Also erhalten wir schlieBlich
1 e n
J< +(+1) (+l)~r+7r+l~^+l(^+l —e) (n

w z b ww+ 1 — e

Beweis von B Wir bezeichnen die ausgezeichneten Indizes einer
bestimmten halbregelmaBigen Entwicklung der Reihe nach mit ml9

m2, und zeigen, daB fur mk ^ 1 qmk < 2 gilt Nach (2,2) ist
1 t gmfc+l

ic-2 __
Çm&-2 f T — 1— amk — em]c -^ ist ist ew^+i — — 1,

so ist offenbar— >fWA.+i> 1 Fur emk+i + 1 ist amk^3, da ja nach

der Définition der ausgezeichneten Indizes m § 1 am — emk+i ^ 2 ist
Ist dazu noch smjc — 1, so ist

ist dagegen emjc + 1, so gilt nach B m § 1 amk-i ^ 2 und also nach

§ld) Qm]c-\ > Qmic-2 Somit finden wir
_^ — £ i — — > —

3 Commentani Mathematici Helvetici ****



Also ist wirklich sowohl fur emJe+i — 1 wie auch fur emk+i — + 1

Qmk< 2 und somit nach §2a) Qmk+t <2 + i
Um die zweite Teilbehauptung von B zu beweisen, bestimmen wir

zum vorgegebenen 1 > s > 0 die Zahl

<e

und betrachten dann den Kettenbruch, der folgendermaBen definiert

ist: es sei m1> — + 1 und mk km1; im Kettenbruch haben samt-

liehe ev den Wert -f- 1, die av die Werte 2 oder 3, wobei nur die
amjc — 3 sind. Der Kettenbruch ist also periodisch und hat die Gestalt

2-
1 11 1 11 11 1

wo die Période aus m1 — 1 Teilnennern 2 und einem (letzten) Teil-
nenner 3 besteht. Wir zeigen, daB in diesem Kettenbruch fur

1 1

e ef

2 + i— s

0

gilt, d. h. daB

Nach (2,2) ist
H-2+» —e

ist.

Qmk+%-

Wir schàtzen mm |mi+l+1 und —smk+l+1 9^+lrL _ «5l±-* ~=

tymb+i
ein-

zeln nach oben ab. Es ist

çmk+l+1 - amk+t+1

"" |2 '" |2 |3

wo der Kettenbruch also mit einer minimalen Sequenz von der Lange
mk+1 — (mk + i + 1) mx — * — 1 beginnt. Nach § 36) ist also

IW~.<i + =-V-r.
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Andererseits ist nach (3,1)

Qmk+%-1 1 1

^

Qmjc+% \amk+i \amk+i-l \amjc+l \amjc

|2 |2 "¦ |2 |3 h'
wo also der Kettenbruch mit mk + i + 1—(rnh+\) i Gliedern \
beginnt und wo nach § 3 b) r\ < 1 -| gilt, da der Kettenbruch

wij — 1

fur y) mit einer minimalen Sequenz von der Lange m1 — 1 beginnt.

Nach §3c) gilt also

(tQmk+i (i +- 2) {m1 + 1) + 2% + 3

Aus den Abschatzungen fur Çmk+l+i und ^+t~ erhalt man nun:

Qmk+% ^ m1 — i—l {i + 2){m1~l) +2i + 3

i —i —1 '

t + 2
»+l (»

i + 2 ^ mx — i—\ ^ (i + 2) [(» + 2) (m! —1) + 2i + 3]

_ _ | — - i ^

-r W. Z. b. W.
Z B
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§ 5. Abschâtzung des Approximationsfehlers bei ausgezeichneten

Sequenzen

In diesem Paragraphen wollen wir den Fehler bei der Approximation
einer Zahl f0 durch ihre Naherungsbruche unter der Voraussetzung, da6
gewisse Indizes ausgezeichnet sind, abschatzen. Es gilt:

Satz III : Sind n, n — 1, n — k + 1 ausgezeichnet, so gilt

Qn ^Ql'
wo sich die yk nach der Rekursionsformel

aus 2/i 2 berechnen lassen n).

Es sei ferner 0 < s < \. Dann gibt es halbregelmafiige Kettenbruche mit
dem Wert |0, bei denen fur eine gewisse unendliche Teilfolge der ausgezeichneten

Indizes, die in der betreffenden ausgezeichneten Sequenz an Jc-ter

Stelle stehen

£0 ~x~
Qn Ql

p n 1 Q _tBeweis: Nach (2,2) gilt ||0—---*¦ f£-, wo — fw+1 — en+1 -r-
ist. Da nach § le) -^^ > 0 ist, so ist — > 1 wo sx eine positive

Qn Qn Sl

untere Schranke der Werte von Jfn in den Kettenbruchen mit en+]
Qn-l

+ 1 ist (denn fur en+l + 1 gilt ja — > 1). Da nun n ausge-
Qn

zeichnet ist, d. h. da an — en+1 ^ 2 ist, so gilt an ^ 3 und, da

0 Q -9 lw
aw — ew ~-= ist, so kann man sx ^3 setzen, wo s2 eine

11 Dièse y% smd identisch mit den 2/#(l) m § 3d) Sie lassen sich also auch mit Hilfe
der Rekursionsformeln

Pk 2pk-i + Qk-l

qh pi-i + qjc-i pi — pjc-i
Pk

aus px 2, qx — 1 ausrechnen, mdem man yk — setzt.
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positive untere Schranke der Werte von *Xn 1 in den Kettenbrtichen
Qn-2

mit en + 1 ist. Allgemein: Ist sv fur v ^ k eine positive untere

Schranke der Werte von J!~v+1 gw__v+1— en_ v+1 T~ v"~1 in den

Kettenbrtichen mit ew_v+2 + 1, so kann sv^3 gesetztwer-

den, wo sv+± eine positive untere Schranke der Werte von ^n~v in
Qn-v—l

den Kettenbrtichen mit en- v+i + 1 ist. So finden wir

1 11 11 1| 1|

Qn |3 |3 |3

wo sk+1 eine positive untere Schranke der Werte von n~k in den

Kettenbrtichen mit en-k+1— + 1 ist. Obgleich n—k nicht mehr aus-
gezeichnet ist, so ist nach der Eigenschaft B) in § 1 immer noch

an-k ^ und also nach § 1 d) **n~k > 1, so daB wir also sk+1 1

Vw-fc-l
setzen dtirfen und somit

Qn 1^1^ I 3 I 1

oder also
1

erhalten, wobei wir in Satz III fur yk(l) kurz yk setzten, w.z.b.w.
Nun zeigen wir, daB dièses yk auch die beste allgemeine Schranke fur

Qn ergibt, wenn n der &-te Index in einer ausgezeichneten Sequenz ist.
Es gentigt einen entsprechenden Kettenbruch aufzustellen, fur den

Qn> Vk — e gilt, wo 0 < e < J ist.
Zu diesem Zweck bestimmen wir zunàchst eine ganze Zahl g1 derart,

O e g
gt> — gilt, WO S < -rT-7 -rr-. r (<S Weil -r^—, 777 r <*ë y(i)(y(i)—e) y(i) (y(i)—e)

< —
j—p= < e) und eine zweite ganze Zahl g2 derart, dafi

2

ftir aile g > g2 zk 1 + —) > zk 1 — -§- ist. DaB ein solches gr2 be-

stimmt werden kann, folgt aus der Stetigkeit von zk(z) ftir z 1. Ferner
wahlen wir eine Zahl m so, daB sowohl m>g1+k als auch m>02+& gilt.
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Jetzt defimeren wir den folgenden Kettenbruch Samthche ev smd

+ 1, die av(v ^ 1) haben die Werte 2 oder 3 und zwar gilt fur aile ganzen

li ^ 0 und * 1, 2, m — k afim+t 2 und fur % — m — k + 1, m

afim+z — ^ Der Kettenbruch ist also periodisch und hat die Gestalt

°|2|2 |2|3|3 |3|2
wo die Période aus m — k Gliedern \ und k Gliedern \ besteht Fur
diesen Kettenbruch wollen wir nun nachweisen, daB fur aile n ^ 0

Ppn

ist — Nach (3,1) ist

J t =_ii_ii_ li M 11 H
C»

?"M+1 |S |3 |3 |2 |2 [3 '

wo die Lange der ausgezeichneten Sequenz am Anfang k, die der darauf-
folgenden minimalen Sequenz m — k betragt Wir konnen also den
Kettenbruch auf der rechten Seite nach der Définition in § 3d) auch mit
— zk (z0) bezeichnen, wo fur

o 11 11 M M
2

nach § 3b) zo<l-| =- gilt Nun haben wir m>g2-{-k gewahlt,
771/ —— le

ao daB also z0 < 1 H ist und damit nach Annahme
9

Andrerseits beginnt nun aber

ffiWl+1=2 — ~ — -r-^— —~ — ~— mit einer minimalen Se-
I 2 \Z \Z \S

quenz von der Lange m—k, so daB also £jKt»+i< 1 H t ist Da
TfYt " Ki

2
aber nach Annahme m > g1 + k und gx > -y ist, so gilt Çpm+i < 1 +
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Wir finden also

oder

—

Man kann sich nun noch fragen, ob man die oben angegebenen Schranken

verbessern kann, wenn man auch noch eine gewisse Anzahl der auf
n jbim) folgenden Indizes als ausgezeiehnet voraussetzt. Das ist aber
nicht der Fall. Denn um zu zeigen, daB unsere Schranken die besten sind,
muBten wir einen Kettenbruch angeben, dessen !w+i(= fum+i) môglichst
nahe bei 1 war. Wir erreichten das dort, indem wir fn+1(= f^m+i) durch
einen Kettenbruch, der mit einer genûgend langen minimalen Sequenz
begann, definierten. Das gleiehe Ziel hàtten wir aber auch erreicht, wenn

1 I g, I

wû1 £w+i 1 +1— — mit einem geniigend groBen an+2
I an+2 I an+3

angesetzt hàtten. Daraus folgt, daB unsere Schranken auch die besten
sind, wenn der Kettenbruch nur ausgezeichnete Indizes aufweist.

Setzen wir nun die speziellenWerte, die wir in § 3d) fur die yk aus-
gerechnet haben, in den Satz III ein, so erhalten wir das

Korollar zu Satz III : Ist n ^ 1 ausgezeiehnet, so gilt

P« 2

sind n ^ 2 und n— 1 ausgezeiehnet, so gilt

_P_W 5

sind n^Z, n — 1 und n — 2 ausgezeiehnet, so gilt

__Pn 13

Sind aile Indizes ausgezeiehnet, so gilt

Q,
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§ 6. Zweiter Beweis einer schon friiher bewiesenen Tatsache

Wir haben im ersten Teil in § 9 das folgende, fur das ganze Kapitel III
des ersten Teiles auBerst wichtige Korollar ans Satz IX hergeleitet:

Unter den vollstandigen Teilnennern §n einer beliebigen, aber festen halb-

regelmafiigen Entwicklung einer quadratischen Irrationalitat kommt stets

ein bestimmter Zahlenwert S unendlich oft vor.

In der FuBnote 16 des ersten Teiles haben wir einen zweiten Beweis
dièses Korollars in Aussicht gestellt. Diesen zweiten Beweis wollen wir
nun in diesem Paragraphen erbringen.

Beweis12): Die Zahl f0, die wir in den halbregelmaBigen Kettenbruch

ao — i — • • • entwickelt haben, genuge der quadratischen Gleichung
\ai

A0S20 + jBo!o + Co O, (6,1)

wo Ao, Bo, Co, ganze Zahlen sind. Wenden wir nun auf dièse quadratische
Gleichung die lineare Substitution (1,7) an, so erhalten wir, nachdem
wir mit dem Nenner ènQn-i — enQn-i 1 multipliziert haben,

0

oder anders geordnet

AJl + BJn + Cn Oi wo (6,2)

An A,Pl_x + ^o^n-iQn-i + CoQU (6,3)

Bn - 2 £^0^-1^-2-^^0(^-1^-2+^-2^-1) -ÎZrPoQn-lQn-Z (*A)

Cn A0P2n_2 + B0Pn_2Qn_2 + C0Q2n_2. (Q,5)

Vergleicht man (6,3) und (6,4), so findet man

12 Die Ûberlegungen, die wir hier benutzen, verlaufen analog den tîberlegungen von
Charves. Der Charves'sehe Beweis fur die Penodizitat regelmafîiger Kettenbruchent-
wicklungen quadratischer Irrationahtaten benutzt namlich m besonders expliziter Weise
die Tatsache, dafi fur aile Naherungsbruche der regelmafiigen Kettenbruche em quadra-

Pn
tisches Naherungsgesetz vom Typus z~ (wo ç> eine feste Zahl, namlich

1, ist) gilt. Fur unsere Betrachtung ist nun wesentlich, dafî wir das Bestehen emes quadratischen

Naherungsgesetzes fur eine unendhche Teilfolge der Indizes benutzen und daraus
eine entsprechend abgeschwachte Folgerung ziehen.
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Aus der invarianten Eigenschaft der Diskriminante emer quadra-
tischen Form folgt unter Berucksichtigung von (1,4)

Pn-l Pn 2
(6,7)

B\ — 4:AQC0 ist sieher nicht Null, da ja sonst |0 rational ware. Daher
konnen sicher nicht aile drei GroBen An, Bn und Cn versehwinden, d. h.
die Gleichung (6,2) kann keme identische sem.

Es genugt nun zu zeigen, da/3 die drei ganzen Zahlen An, Bn und Cn

fur eine gewisse unendliche Teilfolge der Indizes n, namlich fur die un-
endliche Teilfolge mk + 2, wo mk aile ausgezeichneten Indizes durch-
lauft, absolut genommen unter einer von n unabhangigen Schranke
bleiben, denn ist dies der Fall, dann mussen notwendig unendlich viele
fn der gleichen Gleichung genugen und damit ist die Existenz unendlich
vieler gleicher £n nachgewiesen.

Nach Satz IIB gilt Qmk <2 und gmk+1< 3 Ist aber q^ < 3, so gilt
nach (2,2) ~2 oder also f0—-^ —

3co
wo

ist. Daraus ergibt sich
3co

(6,8)

Setzen wir nun in (6,3), fur mk + 2 geschrieben, den aus (6,8) fur /u

mk + 1 erhaltenen Wert fur PMJtH ein, so erhalten wir

AA (ÇQ f )2 + ^6 (fÇ +)2

9m2A0

Da nach (6,6) Cmjc+2=Amjc+-l ist und da (6,8) auch fur ^=wfe gilt, so

bleibt auch Cmk+2 unter der gleichen Schranke. Ferner folgt aus (6,7)
unter Berucksichtigung der soeben erhaltenen Schranken von A mjc+2 und

Es ist B^i+2- 4Amk+oCmjc+i + B%- 4A0C0Cmk+2 eine Schranke fur mk^ 2

<4[6|il0f0| + 3| Bo\ + 9|^0|r+| B2O — 4:AOCO |.

Damit haben wir den zweiten Beweis der obigen Behauptung erbracht.

(Eingegangen den 27. Marz 1937.)
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