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Sur I'équation de la chaleur

Par MiroN NICOLESCO

L’équation de Fourier, dite de la chaleur,

o’u Ou
T oy 0 (1)
a suscité de nombreuses et belles études: il suffirait de prononcer les
noms de E. E. Levi, E. Holmgren, de MM. Volterra, Hadamard, Mauro
Picone, M. Gevrey. Cependant il y a des résultats qui peuvent étre
améliorés: c’est un des buts de ce travail. J’y ai ajouté aussi quelques
résultats nouveaux.

La formule de Poisson, par exemple, s’établit d’habitude, dans la
bande ou elle est valable, en faisant sur I’allure & 'infini de la fonction
ou
ox .
peut supprimer, ou bien la condition relative & la dérivée, ou bien la
condition relative & la fonction méme.

u et de la dérivée partielle — des hypothéses spéciales. Je montre qu’on

Je donne ensuite, pour une demi-bande (c’est-a-dire un rectangle dont
I'un des cotés est rejeté & ’'infini) une formule correspondant & la formule
de Poisson pour la bande entiére.

Dans son Mémoire connu: ,,Sull’equazione del calore!)*, E. E. Levi a
posé et résolu le probléme de I'unicité pour une demi-bande limitée (&
gauche ou & droite) par un arc de courbe quelconque, en faisant une
certaine hypothese sur I’allure & I'infini de la fonction . Je montre que
Punicité subsiste dans des conditions beaucoup plus générales.

Enfin j’établis pour I’équation de la chaleur un théoreme entiérement
analogue a celui de Liouville pour les fonctions harmoniques. Ce dernier
résultat a déja été communiqué en 1932, avec des hypothéses plus restric-
tives que celles du texte, au Congres International de Zurich.

1. Considérons, dans le plan 20y, le rectangle PABQ, de sommets
P(r,y), A(r, k), B(R,h), Q(R, y), avec R>r, y> k. Si u(x, y) est une
intégrale de 1’équation (1), réguliére dans ce rectangle, on a la formule
bien connue

1) Annali di Matematica, serie III, t. XIV (1908), p. 187—264.
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suivant que le point M (z, y) est dans I'intervalle PQ ou extérieur & cet
intervalle.
Soit M'(x’, y’) le symétrique du point M par rapport au point Q.
On a
' =2R—uz, 9y =y.

Cela étant, appliquons la formule précédente au point M’. Puisque le
point M’ est extérieur au rectangle, on aura
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Nous allons utiliser tout de suite ces formules.

2. Considérons une intégrale u(x, y) de (1), réguliére dans la bande
infinie limitée par deux caractéristiques d’ordonnées respectives h et
y=h+ 6 (6> 0). On démontre que, si I’on a, simultanément dans
cette bande,

|u(z,y) | < Mek™, (4)
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la constante K vérifiant la double inégalité

1
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C’est la formule de Poisson. Comme cette formule est fondamentale dans
la théorie de la chaleur, il est utile d’examiner de plus prés les condi-
tions dans lesquelles elle est obtenue. Nous allons montrer que l'une
seulement des conditions (4) ou (5) suffit pour obtenir la formule de Poisson.

3. Démontrons, par exemple, la formule de Poisson avec la seule
hypothése (4). Retranchons, pour cela, la formule (3) de (2). On obtient
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Dans cette formule faisons tendre R vers I'infini. L’intégrale
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0&
tend manifestement, vers zéro avec 1/R. Il en est de méme de 'intégrale?)

%) Voir, p.e., Qoursat: Cours d’Analyse, t. III (1923), p. 311.
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Or

Donc en tenant compte de I’inégalité (4), I'intégrale considérée est majorée
par ’expression suivante
(4E§ —1) R4 2 Rz — 22

M(R—r), 15
2Vné
qui tend vers zéro pour R — oco. La formule (7) donnera donec, pour
R — oo,
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Au lieu du rectangle PABQ du n-1, raisonnons maintenant sur le rect-
angle PAB'Q’, symétrique du premier par rapport au coté PA. Dans
ce cas-1a, il faut utiliser la formule (2’), puisque le point (z, ¥) est exté-
rieur au rectangle PAB’Q’. Dans le second membre des formules (2/)
et (3) il faut remplacer r par 2r — R, R par r et — dans (3) — le point
x' = 2 R — x par le point X’ = 4r — 2 R — z. Et alors la formule (2)
devient
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tandis que la formule (3) s’écrit
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Dans cette derniere formule, la seconde intégrale tend manifestement
vers zéro avec 1/R. Il en est de méme de la derniére intégrale, car on a

4r —2R—z—¢=2r—R—z2+ 2r—R—§&)>2r— R—x

et l'intégrale est majorée par 1’expression suivante

M(R: 7') 4K872"(41§—'21'+ )2
2Vn5
qui tend vers zéro avec 1/R.

Enfin, puisque, d’apres (4),

4K §(2r— R)?
|u(2r — R,m) | < M eKC@r—R? < e 4y—7)
Pintégrale
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est majorée par la suivante

(6—2r + R) M [ GES=DU(R-2m—22R-2n-21 gy
fe 4y —7) Reormmamar
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et comme cette derniére tend visiblement vers zéro pour B — oo (puisque
4K3d — 1 < 0), il en sera de méme de la premiére.



Cela étant, en retranchant les deux formules précédentes I'une de
P’autre et en faisant ensuite tendre R vers I'infini, on obtient
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Ajoutons (8) et (8’). Nous obtenons

(8)

- 00

] r + o _2—5); u(&, h) .
ven =g [+ )T

c.q.f.d.

4. Tachons maintenant d’obtenir la formule de Poisson en partant
de la seule condition (5). Pour cela il suffira simplement d’ajouter les
formules (2) et (3), au lieu de les retrancher; on obtiendra
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Cette formule contient les mémes termes que la formule (7), sauf la
seconde intégrale de cette derniére, qui est remplacée par celle-ci:

(z—R)?
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Puisque grace a la condition (5), on a

2
ox E=R

cette intégrale sera majorée par la suivante

AESR?
< MeER* < Metlv—n) |

Yy
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qui tend vers zéro pour R — co.

A la limite on obtient donc toujours la formule (8).

De méme, en ajoutant les formules (2,) et (3,) (au lieu de les retrancher)
et en faisant tendre R vers l'infini, on tombe sur la formule (8/).

En ajoutant (8) et (8’), on obtient la formule de Poisson.

1l est donc prouvé, en définitive, par les raisonnements de ce n® et
du n° 3, que 'une des conditions (4) ou (5) est surabondante dans I’obtention
de la formule de Potsson.?)

5. Arrétons-nous un peu sur cette formule. Elle est 1’analogue de la
formule de méme nom de la théorie du potentiel. Cette derniére formule
contient comme cas particulier le théoréeme d’invariance des fonctions
harmoniques par la moyenne circulaire, théoréme diti & Gauss. Il n’y a
pas un théoréme analogue pour les intégrales de 1’équation (1); ou,
plutot, la formule de Poisson dans la théorie de la chaleur est & la fois
I’équivalent de la formule de Poisson et du théoréme de Gauss dans la
théorie du potentiel. Or, ce dernier théoréme admet une réciproque. On
doit donc s’attendre & avoir une réciproque du résultat exprimé par la
formule de Poisson dans la théorie de la chaleur. Voici cette réciproque:

Soit u(x,y) une fonction sommable dans la bande infinie comprise entre
les droites y = h,y = h + (8 > 0). On suppose de plus que le produit

1
—~Kz2
u,g) ek, (ob K<gg)

reste borné dans cette bande. Dans ces conditions, st U'on a

(x— )2

u( e Tw-ndg | (9)

+ o0
Bt e f u(é,n)
, — JR—
2Vnd Vy—n
3) La suffisance de la condition (4) a été aussi établie, dans le cas du demi-plan

et par une méthode toute différente de celle du texte, par M. Mauro-Picone (Math.
Annalen, 101 (1929), p. 701—712).




quel que soit 1 tel que h << n < h + 6, la fonction u(x,y) est une intégrale
de (1), réguliére dans la bande considérée.

11 est facile de voir, en effet, en répétant un raisonnement classique,
que lintégrale obtenue de la précédente en dérivant sous le signe | par
rapport & x, est uniformément convergente dans la bande considérée.

Donc —g—g existe et ’on peut écrire

+ o
u_ 1 Cle—fuln -5 10
ax 4‘/;—& (,y 3/2 E . ( )

Dérivons sous le signe j‘ encore une fois par rapport & x; on obtient
I’expression

(z—£)2 (z—¢£)*

+ o0 + oo
1 f u(é,n) -2 1 [ (z—&2u(gn) -2
—e Yy-wdf 4 x e Yw-ndE, (11)
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Ces intégrales sont, respectivement, majorées par

+oo

M 5 (4E§— i)( f,sz) z§—a e M (4KS— i)(é‘; :,2)25_ 2 g
ﬁ,—-—— e o sy € g—n)"
nd (y —mn) Y (y—n)

Ces derniéres intégrales sont uniformément convergentes, car le coeffi-

cient de £2 dans I’exposant de e est, par hypothése, négatif. L’expression
2

(11) est donc égale & g—?: dont l’existence est ainsi démontrée. Or, si

Pon dérive dans (9) par rapport & ¥, on obtient la méme expression dont
on vient de démontrer la convergence uniforme. On a donc bien

ou_ou
o0xt oy
dans toute la bande, c. q. 1. d.

6. Dans la formule (2’) remplagons les lettres (z, y) (représentant
nécessairement un point extérieur au rectangle PABQ), par (z’, y’); de
cette formule ainsi modifiée retranchons la formule (3), ou (z, y) est
aussi remplacé par (z’, y’), et faisons tendre R vers I'infini. Le raisonne-
ment fait aux n® 3 et 4 montret que le résultat de cette opération peut
" g’obtenir immédiatement de (8) en remplagant dans le premier membre
u(x,y) par zéro et dans le second membre (z, y) par (z/, y'):

10
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Cela étant, supposons le point (z’, y’) symétrique de (x, y) par rapport
au point P et retranchons la formule précédente de la formule (8). Il vient

Yy
1 ~ O () (r 7)
, Y) = —— 4(y—n) d
Wi gl 2ane —p T

(13)

S = TG o(61 f Croestitu e, 1)
— d __ Tag-n 4N
+ T ) e &+ V Vy—h £.

Cette formule joue, pour une demi-bande le méme role que la formule de
Poisson pour une bande entiére. Elle donne les valeurs d’une fonction
u(x,y), intégrale de (1), & l'intérieur d’'une demi-bande comprise entre
deux caractéristiques et une perpendiculaire & ces droites, en connaissant
ses valeurs sur le coté inférieur et le cOté vertical de cette demi-bande.
La solution obtenue par cette formule est-elle unique? La réponse est
affirmative, elle sera une conséquence des considérations du numéro
suivant.

7. Dans son Mémoire cité dans l'introduction, E. E. Levi a posé et
résolu le probléme de 1'unicité pour une demi-bande horizontale limitée
(& gauche ou & droite) non pas par un segment de droite perpendiculaire
a la bande, mais par un arc de courbe quelconque. Il démontre cette
unicité dans I’hypothése que la solution satisfait, dans la région consi-
dérée, & I'inégalité suivante

|u(x, y)| < M

« étant un nombre positif quelconque. La démonstration de E. E. Levi
repose sur la proposition préliminaire suivante: Considérons une région
limitée par les caractéristiques y =h, y=h + d et — a gauche — par

11



un arc s de courbe. Sott u(x,y) une intégrale de (1), nulle sur le coté inférieur
de cette région. St Uon a, & partir d’une certaine valeur de x,

lu(x,y)| < Ma®,

alors u(x,y) et ses dérivées partielles tendent vers zéro avec 1[x, dans la
région considérée?).

Nous allons montrer que, sous Uhypothése plus générale (4), u(x,y) et
ses dérivées partielles tendent encore vers zéro avec 1/x. Dés lors, le théoréme
d’unicité pourra étre démontré, en suivant la voie de E. E. Levi, et pour
le contour qu’il a envisagé, avec la condition plus générale (4).

Considérons un point (2, y) quelconque de la région. Nous désignerons
par P le point ou la caractéristique menée par le point (x,y) coupe
Parc s, par A le point ou la caractéristique y = A coupe le méme arc,
enfin par B et ¢ les points oli la droite x = R (R est supposé suffisamment
grand pour que cette droite soit située toute & droite de ’arc s sans le
couper) coupe les deux caractéristiques considérées. On aura, pour tout
point (z, y), puisque u(z,y) est supposée nulle sur le segment AB,

p _(z=§)?
—1 (e W-Wou(f,n) (x—E&u(&,n)
o=k [SE e _butia,,
Y= n£Vy—n 0& 2(y—m)

(z— R)2
e =D [ (u (€, n)) _(w~—R)u(R,n>]d
2]/_ny —n [( t=R sy—m |

& étant I’abscisse du point d’ordonnée » sur larc s.
Pour un point (x’,y’), symétrique de (z,y) par rapport au point @,
donc extérieur au contour PA B@, on aura

P (2R—x £)3

- 'au@,n)__(zR—-x-—e)u(s,n)] ;
2;/“f Vo — [ % 2(y—n) (al
(z— R)32

e W= au(f»ﬂ) (x'—'R)u(R:’?):ld
2V—~ny——n [( ok )§=-R+ 2g—n) |

4) Loc. cit. 1) n. 11, p. 205.

12



En retranchant cette formule de la précédente, il vient

P (z—§)?
— e 20— [ou(£,7) (x——f)u(f,n)]d
wey 2V—ny-—n [ 08 Sy—n | T
(2R( z—§)2
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- n .
(y—n)"

Yy
(#—R)?
1“ fe_ ia—n &—R)u(R,n) d
2y
Si 'on fait tendre R vers l'infini, sous I’hypothése (4), la derniére inté-
grale tend vers zéro. Il en sera de méme de la seconde, car la fonction &
intégrer tend vers zéro avec 1/R. Il reste donc & la limite

P (z— 5)2
av—" [ou (&,n) (x——f)u(f,ﬂ)
l __ 1 e [ ]d
u(,y) 2]/ f‘/y_,, o0& 2(y—n) !

Cette formule montre bien que l'on a
Iim (z,y)=0,
>0
(h<y<h+9)

car la fonction & intégrer tend uniformément vers zéro pour x — co.
Si P'on dérive la formule précédente par rapport & x et que l’on fait
ensuite x — co, on obtiendrait encore

ou(x, y)

T ox =0,

et ainsi de suite. Notre lemme, généralisant celui de E. E. Levi, est ainsi
établi. A partir de 1a, il serait facile, en réproduisant mot par mot le
raisonnement de E. E. Levi, de démontrer 'unicité de la solution pour
le domaine qu’il a envisagé, et cela avec Uhypothése plus générale (4).

En particulier, pour la demi-bande considérée par nous au numéro
précédent, la solution obtenue par la formule (13) est unigue, sous I’hypo-
these (4).

Notons encore que I’on pourrait démontrer aussi le théoréme d’unicité
avec '’hypotheése (5); il suffirait pour cela d’ajouter les deux formules
précédentes, au lieu de les retrancher.

13



8. Je partirai toujours de la formule de Poisson, dont je déduirai par
dérivation la formule (10). Faisons-y la substitution

x—§&=—2)y—n.X .

Il vient (en prenant n = A)

ou(x,y) _ 1 fu(x+ 2]/§_X,h) .Xe-T'dX . (14)

ox V=d

Je suppose maintenant que u(xz,y) soit bornée sur la droite y = A par le
nombre M (k). On déduit de la relation précédente

ou(x, y) & 2M(k)er—X’dX
ox nd Y ’

T

au(w,y)l < M)
ox ]/775 '

Par récurrence on obtient les inégalités générales

- 0

ou bien

(15)

0?u(x,y) M (h)
< P
ox? (md)™®

u(z,y)| _ M(h)
aye

ol p et ¢ sont arbitraires.

I1 résulte de ces inégalités que toute famille d’intégrales u(x,y) de (1),
également bornées sur le coté inférieur de la bande h < y < h + 6, et telle

que la famille u(x,y)e ¥ ou K< 211—6 est encore formée de fonctions égale-

ment bornées dans Uintérieur de la bande, est normale dans la bande consi-
dérée. Car les fonctions d’une telle famille sont également continues.

Ce théoréme étend aux intégrales de I’équation de la chaleur, et pour
le domaine infini considéré, un théoréme établi par M. Paul Montel5)
pour les fonctions harmoniques et par nous-méme pour les fonctions
polyharmoniques$).

5) Paul Montel: Sur les suites infinies de fonctions (Annales de I’Ecole Nor-
male Supérieure, 3me série, t. 24 (1907), ch. V, n. 57, 60).

8) Miron Nicolesco: Sur les fonctions de n variables, harmoniques d’ordre p
(Bulletin de la Société Mathématique de France, t. 60 (1932), p. 136).

14



9. Des formules (15) on déduit encore un résultat important. Rem-
plagons dans ces inégalités (xz, y) par (x,, ¥,), ensuite faisons tendre §
vers 'infini. A cause de la relation A+ 6 = y,, b tendra vers I’infini
négatif, c’est-a-dire que la bande considérée tendra vers le demi-plan
Yy < ¥, en méme temps que K tendra vers zéro. Cela étant, supposons

que le rapport
M(h)

6d

ol « est un nombre positif quelconque, reste borné. Les inégalités (15)
donnent

M

el *’

M
nﬂ/z_ap/z—s ’

0%u (2, , Yo)
Y5

ap U (xo ’ ?/o)
oxh

M étant une borne du rapport précédent. Si donc on désigne par n le
plus grand entier contenu dans «, on aura a la limite

a2mu(x0:y0)=0 W_Q:O (m:n n+1 ,..)
paim C T oy ’ ’ S

Comme (x,, y,) est arbitraire, on en déduit que u(x,y) est un polynome
de degré n en y, donc de degré 2n en x. On peut donc énoncer la proposi-
tion suivante:

Supposons que dans le demi-plan y < yo, — ¢ (y, quelconque) le rapport
u(x,y)
6(1
nombres positifs quelconques, reste borné. Alors u(x,y) est nécessairement

ou d est la distance du point (x,y) & la droite y=1y,, « et ¢ deux

un polynome (de degré E (x) en y).

On a désigné, comme d’habitude, par E («x) le plus grand entier contenu
u(x,y)
60(
se réduit a une constante dans le demi-plan considéré.

dans «x. En particulier, si le rapport , ot x< %, est borné, u(x,y)

Le dernier théoréme correspond au théoréme de Liouville pour les
fonctions harmoniques. Nous avions déja donné un cas trés particulier
de ce résultat, correspondant & x = 0 (dans ce cas on peut prendre aussi
¢ = 0), avec I’hypothése supplémentaire que ?‘,‘; est bornée dans l'un
des angles droits limités dans le demi-plan considéré par une paralléle &
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I'axe des y”). Comme on vient de le voir, ’hypothése relative & la dérivée
du ) "y . .
3% peut élre supprimée. Quant au premier énoncé, il correspond & la

généralisation que H. Poincaré a donnée, pour les fonctions harmoniques,

au théoréme de Liouvilles).

10. On doit & E. E. Levi®) ce théoréme: Si une suite de fonctions,
wntégrales de (1) converge uniformément sur le contour'®) d’un domaine, la
suite convergera uniformément & Uintérieur vers une intégrale de (1).

C’est ’extension & 1’équation de la chaleur d’un classique théoréme de
Harnack dans la théorie du potentiel. Nous allons énoncer un théoréme
analogue pour une bande infinie:

Considérons la bande comprise entre les caractéristiques d’ordonnées
respectives h et h + 8 (6 > 0) et une suite d’intégrales de (1)

ul(x’y)’ u2(x,y)" * un(x,?/),- * e

uniformément convergente sur le coté inférieur de la bande. Nous supposerons
de plus que les fonctions obtenues des précédentes par multiplication avec
le facteur e~ X** soient également bornées dans la bande considérée.
Dans ces conditions, la suite convergera uniformément dans la bande vers

une wntégrale de Uéquation (1).

En effet, la fonction u(x,h) e %** sera aussi bornée. Par conséquent,
I'intégrale suivante

1 +°°_(z—§)’
un(a:,y)=——7—t_g e 4 ., (& h)dE

a un sens et représente une intégrale de 1’équation (1), réguliére dans la
bande considérée. D’autre part, on peut aussi écrire, en vertu des hypo-

theéses,

7) Miron Nicolesco: Extension du théordme de Liouville-Picard & I’équation
de la chaleur (Internationaler Mathematiker-Kongre, Zirich, Sept. 1932, Sektions-

Vortrage, S. 329).
8) H. Poincaré: Théorie du potentiel newtonien, Paris, Hermann, 1899, p. 208.

9) Loe. cit. p. 194.
10) Pour ce qu’on appelle contour dans la théorie de ’équation de la chaleur, voir le

Mémoire cité de E. E. Levi.
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+ o0

(z —£)3
w, (2, ) = V%gfe‘ =R, (€,B)dE

d’ou -
1 R _@—en
u(w,y)—-un(x,y)=mfe S [ (€, h) —u, (&, h) ] dE .

Or, ¢ > 0 étant donné, on peut par hypothése trouver un entier n, tel
que l’on ait, pour = > n,,

|u(é, ) —u, (&, h) [ < e .

La formule précédente donnera, dans ces conditions,

lu (2, y) —u,(2,9) | <e,

ce qui démontre le théoréme énoncé.

(Regu le 14 avril 1937.)
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