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Sur l'équation de la chaleur

Par Mieon Nicolesco

L'équation de Fourier, dite de la chaleur,

*^_?*=0 (1)

a suscité de nombreuses et belles études: il suffirait de prononcer les

noms de E. E. Levi, E. Holmgren, de MM. Volterra, Hadamard, Mauro
Picone, M. Gevrey. Cependant il y a des résultats qui peuvent être
améliorés: c'est un des buts de ce travail. J'y ai ajouté aussi quelques
résultats nouveaux.

La formule de Poisson, par exemple, s'établit d'habitude, dans la
bande où elle est valable, en faisant sur l'allure à l'infini de la fonction

u et de la dérivée partielle ^— des hypothèses spéciales. Je montre qu'on
ox

peut supprimer, ou bien la condition relative à la dérivée, ou bien la
condition relative à la fonction même.

Je donne ensuite, pour une demi-bande (c'est-à-dire un rectangle dont
l'un des côtés est rejeté à l'infini) une formule correspondant à la formule
de Poisson pour la bande entière.

Dans son Mémoire connu: ,,Sull'equazione del calore1)", E. E. Levi a
posé et résolu le problème de l'unicité pour une demi-bande limitée (à
gauche ou à droite) par un arc de courbe quelconque, en faisant une
certaine hypothèse sur l'allure à l'infini de la fonction u. Je montre que
l'unicité subsiste dans des conditions beaucoup plus générales.

Enfin j'établis pour l'équation de la chaleur un théorème entièrement
analogue a celui de Liouville pour les fonctions harmoniques. Ce dernier
résultat a déjà été communiqué en 1932, avec des hypothèses plus restrictives

que celles du texte, au Congrès International de Zurich.

1. Considérons, dans le plan xOy, le rectangle PABQ, de sommets

P(r, y), A(r, h), B(B, h), Q(B, y), avec B > r, y > h. Si u(x, y) est une
intégrale de l'équation (1), régulière dans ce rectangle, on a la formule
bien connue

x) Annali di Matematica, série III, t. XIV (1908), p. 187—264.



u(x,y)

0
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h
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(2)
(2')

suivant que le point Jf (x, y) est dans l'intervalle PQ ou extérieur à cet
intervalle.

Soit Mr(xr, yr) le symétrique du point M par rapport au point Q.
On a

xf x, y'=y.
Cela étant, appliquons la formule précédente au point M'. Puisque le

point Mr est extérieur au rectangle, on aura

0 1_
(2R-r-z)*

-»)t.(r,,n

R

*<*-*>

Nous allons utiliser tout de suite ces formules.

2. Considérons une intégrale u(x, y) de (1), régulière dans la bande
infinie limitée par deux caractéristiques d'ordonnées respectives h et
y h + ô (<5 > 0). On démontre que, si l'on a, simultanément dans
cette bande,

\u(x,y)\<Me?+, (4)



du
dx (5)

la constante K vérifiant la double inégalité

on a

(6)

C'est la formule de Poisson. Comme cette formule est fondamentale dans
la théorie de la chaleur, il est utile d'examiner de plus près les conditions

dans lesquelles elle est obtenue. Nous allons montrer que Vune
seulement des conditions (4) ou (5) suffit "pour obtenir la formule de Poisson.

3. Démontrons, par exemple, la formule de Poisson avec la seule
hypothèse (4). Retranchons, pour cela, la formule (3) de (2). On obtient

u{x,y) —-

(s-r)*

< +

+ ¦

tt WR-r-xy

t- [7—\ - (2^-«—«)«(^)1 dr] _"if/e-, 2(y-r,) J '

(7)

(y-n)h

1 /' <*-& U(t J,\ i /'
/nJ \y—h 2f^J

Bans cette formule faisons tendre R vers l'infini. L'intégrale

y (2ij-r-a;)a

dr\

tend manifestement, vers zéro avec l/B. Il en est de même de l'intégrale2)

2) Voir, p. e., Qoursat: Cours d'Analyse, t. III (1923), p. 311.



J (y—n)'
Reste à examiner l'intégrale

Or
212— s—-| 22 — # + J£

Donc en tenant compte de l'inégalité (4), l'intégrale considérée est majorée
par l'expression suivante

qui tend vers zéro pour B -> oo. La formule (7) donnera donc, pour
B -> cx>,

y (*-r>2

u(x, y) 7= —| — —-—— \dr) +K 2|/J ]/ [\dx) 2(y~rj) J

diA (a — r)u{r,ri)—| — —

¦

(8)

Au lieu du rectangle PABQ du n*l, raisonnons maintenant sur le
rectangle PABfQrf symétrique du premier par rapport au côté PA. Dans
ce cas-là, il faut utiliser la formule (2'), puisque le point (x> y) est extérieur

au rectangle PABfQr. Dans le second membre des formules (2')
et (3) il faut remplacer r par 2r — B, B par r et — dans (3) — le point
x' 2B — x par le point Xf 4r — 2B — x. Et alors la formule (2;)
devient

y _ (x-2r+R)*

f r/gu\ (x-2r + J?)M(2r-i?)?)-[
!r_a (2(2/ — »?)

(X — r)u{r,r])ldri+ ^
1 C e~£ï=*>

-4= «.(.



tandis que la formule (3) s'écrit

0== 1_ fe *<"-"> r/gw\ (2r-R-x)u(2r-B,r,)-]
2f^J ]/y—fi [\Belt-tT-* Hy — n) J

* • (3i)
y (3r-îR-x)*

1_ fe 4 <*-'*> r/g«\ (Zr — 2R — x)u(r,rj)\
2]/nJh \y—r, LW/j-r Hy—n) J

«"-*>

Dans cette dernière formule, la seconde intégrale tend manifestement
vers zéro avec l/R. Il en est de même de la dernière intégrale, car on a

4r — 2R — x — | 2r — R — x + (2r — R— £) > 2r — B — x

et l'intégrale est majorée par l'expression suivante

qui tend vers zéro avec l/R.

Enfin, puisque, d'après (4),

\u(2r — R,rj) | <MeK^r-R)2 <Me
l'intégrale

est majorée par la suivante

y
<4ga-

'2(y —1,)
A

et comme cette dernière tend visiblement vers zéro pour jR -> 00 (puisque
— 1 < 0), il en sera de même de la première.



Cela étant, en retranchant les deux formules précédentes l'une de
l'autre et en faisant ensuite tendre B vers l'infini, on obtient

y

(80

Ajoutons (8) et (8'). Nous obtenons

y +oo

c. q. f. d.
—oo r

4. Tâchons maintenant d'obtenir la formule de Poisson en partant
de la seule condition (5). Pour cela il suffira simplement d'ajouter les
formules (2) et (3), au lieu de les retrancher; on obtiendra

u(x,y)
y

1 ?e 4<y-^)f (du\ (x-—r)u(r,rj)']
I — I — — \

VV=h s-

Cette formule contient les mêmes termes que la formule (7), sauf la
seconde intégrale de cette dernière, qui est remplacée par celle-ci :

1_ Ce
«v-V /du\



Puisque grâce à la condition (5), on a

cette intégrale sera majorée par la suivante

qui tend vers zéro pour M -> oo

A la limite on obtient donc toujours la formule (8)
De même, en ajoutant les formules (2r) et (3X) (au lieu de les retrancher)

et en faisant tendre R vers l'infini, on tombe sur la formule (8')
En ajoutant (8) et (8'), on obtient la formule de Poisson
II est donc prouvé, en définitive, par les raisonnements de ce n° et

du n° 3, que Yune des conditions (4) ou (5) est surabondante dans l'obtention
de la formule de Poisson 3)

5 Arrêtons nous un peu sur cette formule Elle est l'analogue de la
formule de même nom de la théorie du potentiel Cette dernière formule
contient comme cas particulier le théorème d'invariance des fonctions
harmoniques par la moyenne circulaire, théorème dû à Gauss II n'y a
pas un théorème analogue pour les intégrales de l'équation (1), ou,
plutôt, la formule de Poisson dans la théorie de la chaleur est à la fois
l'équivalent de la formule de Poisson et du théorème de Gauss dans la
théorie du potentiel Or, ce dernier théorème admet une réciproque On
doit donc s'attendre à avoir une réciproque du résultat exprimé par la
formule de Poisson dans la théorie de la chaleur Voici cette réciproque

Soit u(x,y) une fonction sommable dans lu bande infinie comprise entre
les droites y h, y h + ô(ô > 0) On suppose de plus que le produit

\*(x,y)\t-**, (où K<^j
reste borné dans cette bande Dans ces conditions, si l'on a

0)

¦) La suffisance de la condition (4) a été aussi établie, dans le cas du demi plan
et par une méthode toute différente de celle du texte, par M Mauro Ptcone (Math
Annalen, 101 (1929), p 701—712)
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quel que soit rj tel que h ^.y <h -{- ô, la fonction u (x, y) est une intégrale
de (1), régulière dans la bande considérée.

Il est facile de voir, en effet, en répétant un raisonnement classique,

que l'intégrale obtenue de la précédente en dérivant sous le signe J par
rapport à x, est uniformément convergente dans la bande considérée.

Su
Donc ¦=- existe et Ton peut écrire

dx

dx éVn J {y —rj)
— 00

Dérivons sous le signe J encore une fois par rapport à x; on obtient
l'expression

Ces intégrales sont, respectivement, majorées par

_x (y—v)'lt'a,
Ces dernières intégrales sont uniformément convergentes, car le coefficient

de |2 dans l'exposant de e est, par hypothèse, négatif. L'expression

(11) est donc égale à -=-j dont l'existence est ainsi démontrée. Or, si

l'on dérive dans (9) par rapport à y, on obtient la même expression dont
on vient de démontrer la convergence uniforme. On a donc bien

d2u _du
~dx~2~dy

dans toute la bande, c. q. f. d.

6. Dans la formule (2') remplaçons les lettres (x, y) (représentant
nécessairement un point extérieur au rectangle PABQ), par (xr, yr)\ de

cette formule ainsi modifiée retranchons la formule (3), où (x, y) est
aussi remplacé par (xr, yr), et faisons tendre R vers l'infini. Le raisonnement

fait aux n08 3 et 4 montret que le résultat de cette opération peut
s'obtenir immédiatement de (8) en remplaçant dans le premier membre
u(x,y) par zéro et dans le second membre (#, y) par (xr, yf):

10



y _v T>

1 f*p 4(y — fl) V/flqt\ >yf f\ tt f l'Ai
0 V= 6, (—\ — iî f)it(r'l?) U;

2]/7tJ yy' — r] Lw/i-r 2(t/' —j?) J
+

(12)

Cela étant, supposons le point (xf, y1) symétrique de (x, y) par rapport
au point P et retranchons la formule précédente de la formule (8). Il vient

(13)

Cette formule joue, pour une demi-bande le même rôle que la formule de
Poisson pour une bande entière. Elle donne les valeurs d'une fonction
u(x,y), intégrale de (1), à l'intérieur d'une demi-bande comprise entre
deux caractéristiques et une perpendiculaire à ces droites, en connaissant
ses valeurs sur le côté inférieur et le côté vertical de cette demi-bande.
La solution obtenue par cette formule est-elle unique? La réponse est
affirmative, elle sera une conséquence des considérations du numéro
suivant.

7. Dans son Mémoire cité dans l'introduction, E. E. Levi a posé et
résolu le problème de l'unicité pour une demi-bande horizontale limitée
(à gauche ou à droite) non pas par un segment de droite perpendiculaire
à la bande, mais par un arc de courbe quelconque. Il démontre cette
unicité dans l'hypothèse que la solution satisfait, dans la région
considérée, à l'inégalité suivante

\u(x,y)\<Mx01

oc étant un nombre positif quelconque. La démonstration de E. E. Levi
repose sur la proposition préliminaire suivante: Considérons une région
limitée par les caractéristiques y h, y h+<5e£ — à gauche — par

11



un arc s de courbe. Soit u (x,y) une intégrale de (1), nulle sur le côté inférieur
de cette région. Si Von a, à partir d'une certaine valeur de x,

\u(x,y)\<Mx«,

alors u(x,y) et ses dérivées partielles tendent vers zéro avec 1/x, dans la
région considérée*).

Nous allons montrer que, sous Vhypothèse plus générale (4), u(x,y) et
ses dérivées partielles tendent encore vers zéro avec 1/x. Dès lors, le théorème
d'unicité pourra être démontré, en suivant la voie de E. E. Levi, et pour
le contour qu'il a envisagé, avec la condition plus générale (4).

Considérons un point (x, y) quelconque de la région. Nous désignerons

par P le point où la caractéristique menée par le point (x, y) coupe
Tare s, par A le point où la caractéristique y h coupe le même arc,
enfin par B et Q les points où la droite x R (R est supposé suffisamment
grand pour que cette droite soit située toute à droite de l'arc s sans le
couper) coupe les deux caractéristiques considérées. On aura, pour tout
point (x, y), puisque u(x,y) est supposée nulle sur le segment AB,

| étant l'abscisse du point d'ordonnée ^ sur Varc s.

Pour un point (x',yf), symétrique de (x} y) par rapport au point Q,
donc extérieur au contour PABQ, on aura

P (2jg-a-|)»

0== 1_ Ce
4<*->?> \du{j,ri) (2R^x—è)u(^rj)-\

2f^JA j/^ [ ai Hv—n) J

y (s-*)8

4) Loc. cit. n. 11, p. 205.
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En retranchant cette formule de la précédente, il vient

p (2R-X-Ç)2
1 Ce *(y-«?) pw(f,rç) (2i?— a;—f)tt(f,'.„.,

" j " j " I ¦¦ ¦'—-"-¦ I ' ' ——^ I Cv/I " I1 '""

Si l'on fait tendre B vers l'infini, sous l'hypothèse (4), la dernière
intégrale tend vers zéro. Il en sera de même de la seconde, car la fonction à

intégrer tend vers zéro avec \jR. Il reste donc à la limite

Cette formule montre bien que Ton a

lim u(x,y) 0

{h < y < h + ô)

car la fonction à intégrer tend uniformément vers zéro pour x -> oo.
Si l'on dérive la formule précédente par rapport à # et que l'on fait
ensuite x -> oo, on obtiendrait encore

et ainsi de suite. Notre lemme, généralisant celui de E. E. Levi, est ainsi
établi. A partir de là, il serait facile, en réproduisant mot par mot le
raisonnement de E. E. Levi, de démontrer l'unicité de la solution pour
le domaine qu'il a envisagé, et cela avec l'hypothèse plus générale (4).

En particulier, pour la demi-bande considérée par nous au numéro
précédent, la solution obtenue par la formule (13) est unique, sous l'hypothèse

(4).
Notons encore que l'on pourrait démontrer aussi le théorème d'unicité

avec l'hypothèse (5); il suffirait pour cela d'ajouter les deux formules
précédentes, au lieu de les retrancher.

13



8. Je partirai toujours de la formule de Poisson, dont je déduirai par
dérivation la formule (10). Faisons-y la substitution

.X
Il vient (en prenant r\ h)

du(x,y)
dx -à/"(*+21/3x (14)

Je suppose maintenant que u(x,y) soit bornée sur la droite y h par le
nombre M (h). On déduit de la relation précédente

du(x,y)
dx

ou bien
du(x,y)

dx
.M(h)

Par récurrence on obtient les inégalités générales

d*>u(x,y)
dx*>

„ M (h) &u{x,y)
dy«

(15)

où p et q sont arbitraires.

Il résulte de ces inégalités que toute famille d'intégrales u(x,y) de (1),
également bornées sur le côté inférieur de la bande h < y ^ h + à, et telle

que la famille u(x,y)e~Kxaoù K<—^ est encore formée de fonctions également

bornées dans Vintérieur de la bande, est normale dans la bande considérée.

Car les fonctions d'une telle famille sont également continues.

Ce théorème étend aux intégrales de l'équation de la chaleur, et pour
le domaine infini considéré, un théorème établi par M. Paul Montel5)

pour les fonctions harmoniques et par nous-même pour les fonctions
polyharmoniques6).

5) Paul Montel. Sur les suites infinies de fonctions (Annales de l'Ecole
Normale Supérieure, 3me série, t. 24 (1907), ch. V, n. 57, 60).

6) Miron Nicolesco: Sur les fonctions de n variables, harmoniques d'ordre p
(Bulletin de la Société Mathématique de France, t. 60 (1932), p. 136).
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9. Des formules (15) on déduit encore un résultat important.
Remplaçons dans ces inégalités (x, y) par (o;o, y0), ensuite faisons tendre <5

vers Finfini. A cause de la relation h + ô y0, h tendra vers l'infini
négatif, c'est-à-dire que la bande considérée tendra vers le demi-plan
y < 2/o> en même temps que K tendra vers zéro. Cela étant, supposons
que le rapport

M (h)
ôd

où oc est un nombre positif quelconque, reste borné. Les inégalités (15)
donnent

M d«u(xo,yo) M

M étant une borne du rapport précédent. Si donc on désigne par n le
plus grand entier contenu dans oc, on aura à la limite

Comme (x0, y0) est arbitraire, on en déduit que u(x,y) est un polynôme
de degré n en y, donc de degré 2n en x. On peut donc énoncer la proposition

suivante:

Supposons que dans le demi-plan y ^ y0 — s (y0 quelconque) le rapport
' -¦¦- où ô est la distance du point (x,y) à la droite y y0, oc et e deux

nombres positifs quelconques, reste borné. Alors u(x,y) est nécessairement

un polynôme (de degré E(oc) en y).

On a désigné, comme d'habitude, par E(oc) le plus grand entier contenu

dans oc. En particulier, si le rapport cl où oc< J, est borné, u(x,y)
se réduit à une constante dans le demi-plan considéré.

Le dernier théorème correspond au théorème de Liouville pour les
fonctions harmoniques. Nous avions déjà donné un cas très particulier
de ce résultat, correspondant & oc 0 (dans ce cas on peut prendre aussi

Bu
e 0), avec l'hypothèse supplémentaire que ^- est bornée dans l'un

dx
des angles droits limités dans le demi-plan considéré par une parallèle à

15



Taxe des y1). Comme on vient de le voir, l'hypothèse relative à la dérivée

— peut être supprimée. Quant au premier énoncé, il correspond à la

généralisation que H. Poincaré a donnée, pour les fonctions harmoniques,

au théorème de Liouville8).

10. On doit à E. E. Levi9) ce théorème: Si une suite de fonctions,
intégrales de (1) converge uniformément sur le contour10) d'un domaine, la
suite convergera uniformément à l'intérieur vers une intégrale de (1).

C'est l'extension à l'équation de la chaleur d'un classique théorème de
Harnack dans la théorie du potentiel. Nous allons énoncer un théorème
analogue pour une bande infinie:

Considérons la bande comprise entre les caractéristiques d'ordonnées
respectives h et h + à (ô > 0) et une suite d'intégrales de (1)

u±(x,y), u2(x,y),.. un(x3y),...

uniformément convergente sur le côté inférieur de la bande. Nous supposerons
de plus que les fonctions obtenues des précédentes par multiplication avec
le facteur e"*Kxa soient également bornées dans la bande considérée.
Dans ces conditions, la suite convergera uniformément dans la bande vers
une intégrale de l'équation (1).

En effet, la fonction u(x,h) e~Kx* sera aussi bornée. Par conséquent,
l'intégrale suivante

1 +n (*-D*
(x>y)=-JLf e ** .un(t,

\7lO J' —oo

a un sens et représente une intégrale de l'équation (1), régulière dans la
bande considérée. D'autre part, on peut aussi écrire, en vertu des
hypothèses,

7) Miron Ntcolesco: Extension du théorème de Liouville-Picard à l'équation
de la chaleur (Internationale!* Mathematiker-Kongrefi, Zurich, Sept. 1932, Sektions-
Vortrage, S. 329).

8) H. Poincaré Théorie du potentiel newtomen, Paris, Hermann, 1899, p. 208.
9) Loc. cit. p. 194.

10 Pour ce qu'on appelle contour dans la théorie de l'équation de la chaleur, voir le
Mémoire cité de E. E. Levi.
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'l/nô
d'où

\ r* _ te—£)a

Or, e > 0 étant donné, on peut par hypothèse trouver un entier n0 tel
que Ton ait, pour n > n0,

La formule précédente donnera, dans ces conditions,

\u{x,y) — un(x,y)\<e,

ce qui démontre le théorème énoncé.

(Reçu le 14 avril 1937.)
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