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Zur Theorie der reguldaren Funktionen
einer Quaternionen-Variabeln

Von BERNHARD SCHULER, Ziirich

Einleitung

Die Arbeit handelt von den durch Herrn Fueter!) untersuchten regu-
laren Funktionen einer Quaternionenvariabeln z = x,+4,2,+12,2,+2,2;.
Sie zerfillt in zwei Teile. Im ersten Teil beschaftige ich mich mit Fragen,

die sich auf die Reihenentwicklung der rechts-regularen Funktionen
3

beziehen. Eine Funktion w = f(z) ::kZ,' Uy (g, Ty, Ty, 4)1, heilt rechts-
=0

regular in einem endlichen, nicht degenerierten Hyperraum H, falls sie

in jedem Punkt von H endliche und stetige partielle Ableitungen

3 au 3
wlk) = hZ'O 5—; 1, besitzt, die der Gleiehungkfow‘k)ik:() geniigen?). (Die
== k =

Funktion heifit links-regular, wenn unter denselben Voraussetzungen die

3
Ableitungen die Gleichungk}.:'0 1, w® =0 erfiillen.) Kin Punkt im Innern

von H heiflt reguldrer Punkt. In einem reguldaren Punkt ¢ laBt sich jede
rechts-reguliare Funktion f(z) in eine Reihe

[s.}

f(Z) = XN 2 Cnyngng Pnyngng (z —c¢) (1)

n=0 (ny+ng+ng=n)
entwickeln. Dabei gibt es immer eine Hyperkugel um ¢ mit nicht ver-
schwindendem Radius, in deren Innern diese Reihe absolut und gleich-
maBig konvergiert3). Der Einfachheit halber werde ich stets die Entwick-
lung um den Nullpunkt betrachten. Dies bedeutet keine Einschrankung,
weil durch eine Translation jede regulidre Funktion wieder in eine solche
tibergeht. Die Funktionen p,,_, , (2) sind folgendermaflen definiert. Es ist:

pn1n2n3(z) B %")(xkl_—iklxo) (xkz'—’ikzxﬂ) .. (xkn'—"iknxo) . (2)

1) Rud. Fueter: Die Funktionentheorie der Differentialgleichungen
Au = 0 und #SJu = 0 mit vierreellen Variabeln. Comm. Math. Helv,, Vol. 7,
pag. 307. — Zur Theorie der reguldren Funktionen einer Quaternionen-
variabeln. Monatshefte fir Math. u. Phys., Band 43, pag. 69. — Uber die ana-

lytische Darstellung der regularen Funktionen einer Quaternionen-
variabeln. Comm. Math. Helv., Vol. 8, pag. 471. — Die Singularitaten der
eindeutigen regulidren Funktionen einer Quaternionenvariabeln. Comm.
Math. Helv. Vol. 9, pag. 320.— Diese Arbeiten werden im folgenden als Fueter 1, 2, 3, 4
zitiert.

%) Siehe Fueter 1, pag. 310.

3) Siehe Fueter 3, pag. 374.
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Hierin ist n = n; + n, + n;, und die Summation erstreckt sich iiber alle
voneinander verschiedenen Anordnungen der n Faktoren (x, — 7,2,), von
denen jeweils n, gleich (x, —<,z,) sind (k = 1, 2, 3). Zuerst gebe ich
eine explizite Darstellung der Funktionen p, ,, ,(2). Dann untersuche
ich die Frage, wann die Reihe (1) in ihrem Konvergenzbereich eine
analytische Funktion von zwei komplexen Variabeln darstellt. Herr
Fueter hat namlich gezeigt?), daBl diese Funktionen als rechts-reguldre
Quaternionenfunktionen aufgefaflt werden konnen, falls man setzt:
2, = Zo+t,2; und 2, = x,+1,2;. Es ist dann z = z; +2,7,.

Im zweiten Teil befasse ich mich mit der Ubertragung einiger Sitze aus
der gewohnlichen Funktionentheorie. Dort wird bekanntlich gezeigt,
daB man von der Ableitung F'/(z) einer analytischen Funktion F (z) nicht
vorauszusetzen braucht, dall sie in einem Gebiet ¢f stetig sei, damit # (2)
in @ regular ist. Vielmehr geniigt hierzu die Existenz von F'/(z) in jedem
Punkt von . Der Beweis ergibt sich aus der Tatsache, dal man, wie
Goursat gezeigt hat®), den Cauchy’schen Integralsatz beweisen kann, ohne
die Stetigkeit von F'/(z) vorauszusetzen. Wenn aber das Integral j'F (2)dz
iiber jede ganz in G liegende, einfache, geschlossene Kurve verschwindet,
und F(z) in ¢ stetig ist, dann folgt aus dem Satz von Morera, dafl F'(z)
in @ regular ist. In der Theorie der reguliren Funktionen einer Quater-
nionenvariabeln treten an Stelle der Cauchy’schen Integralsitze die
beiden Hauptsatze von Herrn Fueter. Ist die Funktion w = f(z) rechts-
regular im Hyperraum A und die Funktion » = ¢ (z) links-regulir in H,
dann sagt der erste Hauptsatz aus, dafl das Integral

JwdZv=0 (3)
R

ist, falls die geschlossene, einfach zusammenhidngende Hyperfliche R
ganz im Innern von H liegt®). Der zweite Hauptsatz liefert die Integral-
darstellung der Funktion f(z) im Innern von R mit Hilfe der Funktions-
werte auf R. In Formeln?)

16) = g [ 10245 € —2)) . @
R

4) Fueter 3, pag. 375.

5) Qoursat: Acta Mathematica, Band 4 (1884), pag. 197. Transactions Amer. Math.
Soe., Band 1 (1900) pag. 14.

8) Fueter 1, pag. 312.

7) Fueter 1, pag. 318.
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Das Differential dZ hat folgende Bedeutung. Es ist das Produkt des
skalaren Hyperflachenelements dr mit der innern Normalen von R (diese
als Quaternionen geschrieben). Also

1 o T o
0x, oz, 0x, 0,
\ ot, ot, ot, ot,
dZ = S;Z—:o Exie) dr = | B, oz, 0z, ox, | dt,dt,dt,
- ot ot, ot, at,
0%y oz, or, 0z,
oty ot, ot oty

Xy, = X, (t;, ta, t3), (K = 0, 1, 2, 3) ist die Parameterdarstellung von R.
Von R muBl man verlangen, dafl die Normale in jedem Punkt existiert,
und eindeutig festgelegt werden kann. R darf also nicht einseitig sein.
Die Funktion 4.(( —2)™!) = — 4n (({ —2)™) ({ —2)7! ist links- und
rechts-regular im ganzen R, mit Ausnahme des Punktes { = 28). KEs
wird sich darum handeln, den ganzen oben angefiihrten Fragenkomplex
aus der gewohnlichen Funktionentheorie in dem vorliegenden allgemei-
nern Falle zu studieren. Im wesentlichen geht es also darum, die Voraus-
setzungen fiir regulires Verhalten einzuschrianken.

I.
A. Explizite Darstellung der Funktionen p,, ,,, (2) .

3
Man setze p, , . (2) = 2 Up™™i;. Die reellen Funktionen
k=0

Upr™(x,, £, X,, ;) sind nach (2) Formen vom Grade n=mn,+ n,+n,.
Gesucht ist eine explizite Darstellung dieser Formen. Dabei st6f3t man
Lilals

auf Ausdriicke von der Form 2 4, 4, ...%, . Die drei Indizes iiber dem
(ar)

Summenzeichen geben in der angeschriebenen Reihenfolge die Anzahl
der Faktoren ¢, bzw. 7, und 7, an. Es ist natiirlich I, 4, -+, = k. Die
Summation ist dieselbe wie in (2). Es gilt der

Lilgls

Hilfssatz : Der Ausdruck X 4, ...4

(ar)
nommen in den folgenden vier Fallen. (Die Indizes sind so angeschrieben,
daB3 deren Paaritit, auf die es wesentlich ankommt, deutlich in Erschei-
nung tritt.)

o verschwindet immer, ausge-

8) Fueter 1, pag. 317.
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21, 21, 2lg

1.
(ar)
2ly+1 215 21,
2.
(ar)
21, 205 +12l4
3.
(ar)
211 2l2 2la+1
4.

(ar)

U

1°

oy = (—_1)kl-1—!7k2-!173—!
N (——1)"Z—1—!%—mil
gy = (‘“l)kljﬁk;i!"z;’z’:z
I (~1)km%;i3

(b=1+1,+1;) (5)

Diesen Satz beweist man mittels vollstandiger Induktion. Der Induk-
tionsschluBl ergibt sich jeweils aus der leicht zu beweisenden Beziehung

fylol
21 1 ...
(ar)

ay “ay ag

:’[,1

L—2,11; 1ylg—2,15 Lisly—2

2 R T U{) i, by T3 (aZ; Ugy+ Bap o
RERA 1y lp—21, _ hisly—2 .

(a‘g O (%; bgyrx nbgy - %:) Bg, - - '7’%_2]'

Man wird zunéchst die vier Formeln (5) verifizieren, und dann mit Hilfe
der Rechengesetze der Quaternionen zeigen, daBl in allen iibrigen Fallen
der Ausdruck verschwindet.

Die Verwendungsmoglichkeit des obigen Satzes beruht auf dem folgen-
den Umstande. Multipliziert man das Produkt

(xkl_ikl xo) . . . (xkn_iknxo)

aus und summiert dann iiber alle voneinander verschiedenen Anordnun-
gen der Faktoren, so bekommt man

7! Doy 0y g (2)

> 3 (—1k

k=0 (l1+ls+i3=k)

( )(n1—~l ) (ng—1y)! ng—13)!

wobei stets n, — I, = 0, und k =1, + 1, I, ist. Der Ausdruck 2’ 7,

(n—k)!

gl ghelagta—lagk (37

lylyls

= ay* * e

Lilals

(a3) . ak

ist nach unserem Hilfssatz nur dann reell und von Null verschleden, falls
[, 1, 1, alle drei gerade sind. Substituiert man fiir /,, [,, ,, k beziehungs-
weise die Werte 21,, 21,, 21;, 2k, so kann man schreiben

Ugln2n3 -

1 (— 1)k

1
L i T2 T e —20y) T (my—2T5)1 (@R L1515
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Die Summation erstreckt sich von k = 0 bis (n — 1)/2, falls n ungerade,
und von k = 0 bis n/2, falls n gerade ist.

Ganz analog gelangt man zu Formeln fiir Ujt™2%s (k = 1,2, 3). Zur
Abkiirzung setze man:

NNy Ny (— 1)k k! 1 1
bl CE+ 1)1 (0, — 20)1 (ng—20) | (ng—2) | [T 1,1 ]
(k:l1+l2+l3)-

Es ist ferner zu beachten, dafl in den nachstehenden Summen keine
Terme auftreten, in denen eine oder mehrere der Differenzen n, — I,
negativ sind. Man konnte daher auch in diesen Féllen das Symbol

[ 7;1 ?;2 lns] per definitionem gleich Null setzen. Es ist:
1%293

Unl fgNg __ 2(2k + ].) 2 n1n2n3 x;tl—-zll x;lz-‘zlz xgla‘—2ls x(z)k .
0 k atlotts =0 Ly 1y 1
Summation iiber £ von k=0,..., 5 falls » gerade
n—1
k=0,..., 3 falls » ungerade.
U'lil nefy . 3 P m—1 n, 1y x’fl—l'—zllxgz—uz xga—ua x%"’“
E | (h+letl3=k) ll I, L
' (1, me—1 ng]
Ugl Na Ng _— 2 \ 2 1 2 3 x;zl—2l1x;l2—1-—2lz x;la—zla xgk-*—l (6)
v o+t T,-n L L L]

[, Ny M3—1]

n1—21y ,,.npg—215 . Ng—1—21 e 2k+1
1‘11 Z, CE33 3 X,

gnmn = 3 ¥
3 Folararh=n |l 1, 1,
. ) —1
Summation iiber £ von k=0, ..., ?——2——- falls » ungerade
n-—2

k=0, ...,

5 falls n gerade.

(n=mn, + 1z +n3) .
Aus diesen Formeln 14t sich leicht entnehmen, dafl Ug*":": niemals
identisch verschwindet, wie man auch die Indizes =,,n,, n; wihlt.

Uit (k= 1, 2,3) aber verschwindet nur dann nicht identisch, falls
n, = 1.
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B. Uber die Reihenentwicklung analytischer Funktionen von zwei kom-
plexen Variabeln.

Da, wie in der Hinleitung bemerkt, die analytischen Funktionen von
zwei komplexen Variabeln 2z, = z,+4 1,2, und 2, = x,}4,2; in ihrem
Regularitatsgebiet auch aufgefaflit werden konnen als rechts-regulire
Funktionen einer Quaternionenvariabeln z = 2, +2,%,, so wird man eine
solche Funktion in jedem reguliren Punkt nach den Funktionen
D,y nyng (# — €) entwickeln konnen. Wir betrachten die Entwicklung um
den Nullpunkt. Die Beziehung?)

Cn1n2n3 = [anl+n2+n3 f(Z)] (7)

n n n
0x* 0xy? 0xy®

lehrt, dafl die Entwicklungskoeffizienten ¢, , , im Falle einer analyti-
schen Funktion von zwei komplexen Variabeln stets komplexe Zahlen
sein miissen. Die Cauchy-Riemannschen Differentialgleichungen fiir die
reguldren Funktionen von zwei komplexen Variabeln lauten in komplexer

Schreibweise
a) w® = —q wh

(8)

b) w® = — g w®

Da die hier in Betracht kommenden Funktionen in einem reguliren
Punkt beliebig oft differentiierbar sind, so sind die beiden Operatoren

an1+n2+n3+1 an1+n2+n3+1

und
ozt oxy: dxyet? oxyt ozt Pxts

in ihrer Wirkung beziehungsweise gleich den Operatoren

oritnatng 0 oritnatng J
. und .
Om G gt 0, Oxy! 0xy? 0xy®  Ox,
((8)b) sagt aber nichts anderes aus, als daf3 der Operator (g{ + 7 é%) ,
2 3

angewendet auf irgend eine regulire Funktion von zwei komplexen
Variabeln, identisch den Wert Null ergibt im ganzen Regularitatsgebiet.
Dann gilt also:
. 6"1+”2+”3+1f(z)] [a"1+"2+"3+1f(z)]
-—1 _—
' [ z2=0 z=0

n n nz+1 n ng+1 n
Ox}t 0xy® 0xy® oxy 0xy* ™ dxys

oder : Coyngng +1 = U1Cny ny+ 1ny -

%) Fueter 3, pag. 375.
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Diese Relationen sind stets erfiillt, wenn f(z) eine im Null-Punkt
reguldre Funktion der zwei Variabeln 2z, und z, ist. Umgekehrt kann man
zeigen, daf3 das Bestehen dieser Relationen zusammen mit der Forderung,
da die ¢, , ,, komplexe Zahlen sind, hinreichend ist dafiir, dafl die
betreffende Reihenentwicklung in ihrem Konvergenzbereich eine regulare
Funktion von zwei Variabeln z, und z, darstellt. Der Beweis ergibt sich
aus der Gegeniiberstellung der Entwicklung nach den Funktionen
P, nyn, (#) einerseits, und nach den Potenzprodukten von z; und z,
andererseits.

Vorerst mul} gezeigt werden, wie ein solches Produkt 27*1z}'2 nach den

: . : . . 0 0 0
Funktionen p,, ,, », (?) zu entwickeln ist. Es ist ey = 1 %% 7 =0 P

d . 0
’a‘;i; = —92_2 und daher

ohztns

o™ .
c s (Zn1+n3 ) (zmlzmz)
niNgng n no+n 1 1 <2 2,=0
[87,11 0z72 ™" a0

Die einzigen von Null verschiedenen Koeffizienten sind jene, wo n, = m,
und %, -+n,; = m, ist. Daraus ergibt sich:

mo .
2=, ! m,! zi”‘lgé; 0 Py img—i (@) - (9)

Man beachte, daB3 fiir zwei verschiedene Potenzprodukte von z; und z,
auf der rechten Seite von (9) niemals dieselbe Funktion p,_ ,., (2) gleich-
zeitig auftreten kann. Ferner treten in

my .
jé'ol”’lnz 7pm17‘m2—~j(z)

nur Funktionen gleichen Grades auf. (Die Funktionen p, , , (2) sind
in ihren reellen komponenten Formen vom Grade n = n,-+n,+n,; in
Xy, Xy, Lo, £3.) Damit ist man beinahe am Ziel. Der Ausdruck

2 cnlnzna pnlnz'na (z)

(ny+ng+ng=n)

laft sich in eindeutiger Weise iiberfiihren in eine Form vom Grade » in
z; und 2z, mit komplexen Koeffizienten, falls die ¢, ,,,, komplexe Zahlen

sind, und den Relationen ¢, ,, , .1 = %1€y 4,114, geniigen. Denn aus

Cmyi—1 ma—i+1 = V1 Cmyj mo—j ,
folgt: (n=m, + m,)
— ma—j
Crmyime—i = U Crmymy0

und daraus
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mo me .
-l Cmyj ma—i Pmyj my—j () = Cmy mzolé_\-—f; e 7pmu’ mo—j (2)

7

. 2:—1751 cmlmzo
- a9
my! my!

my Mo
Rl %y ° .

Der ganze Vorgang bedeutet nur eine wegen der absoluten und gleich-
méifigen Konvergenz der Reihe erlaubte Umordnung der Summanden.

co

1. Satz: Damit die Reihe X 2 Croyngng Pnyngn, (2) 10 threm

n=0 ni+ngtnz=n
Konvergenzgebiet eine analytische Funktion von zwei komplexen Variabeln

darstellt, ist notwendig und hinreichend, daf die c, , ., komplexe Zahlen
sind, die den Relationen ¢, , .10, =%1Cn, nyn,+1 gENUgen.

(g, my, my =10,1,2,...)

Man bemerkt, dal die Koeffizienten ¢, ,, in den angegebenen Relationen
nicht auftreten. Das muf} auch so sein, denn die Funktionen p, ,, sind
Potenzen von z,.

II.
A. Vorbereitende Bemerkungen.

Ist F'(2) = @(2,y) +iw(x,y) eine in dem endlichen Gebiet ¢ der kom-
plexen Ebene definierte Funktion des komplexen Argumentes z=x 1y,
dann besitzt F(z) in jedem Punkt von G eine Ableitung F'(z), falls in
jedem Punkt von ¢

F(z 4 h) — F(z)
h

— (@) <e

ist, sofern |h| = |k, 42k | =< (¢) ist. x(z) ist eine dem Punkte z zuge-
ordnete endliche komplexe Zahl. Es wird verlangt, daf} zu jedem positiven
¢ eine positive Zahl d(¢) angegeben werden kann, und es ist « (z) = F'(2).

Da man bei den reguliren Funktionen einer Quaternionenvariabeln
mit einer einzigen Ableitung nicht mehr auskommt, erhebt sich die Frage,
mit welchen Voraussetzungen man in diesem allgemeinern Fall arbeiten
soll? Beim Studium der Lehre von den reellen Funktionen von mehreren
Variabeln stof3t man gelegentlich auf den Begriff der Differentiierbarkert

nach Stolz!?). Eine Funktion ¢(z,, ..., x,) heit nach Stolz differentiierbar
in einem Punkte (x,, ..., z,), wenn es n endliche Zahlen «,(k=1, ..., n)
gibt, so daf}

10) Siehe Carathéodory, Reelle Funktionen, pag. 644.
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@, +hy, ..., 2, +h,)—@, ..., x,) :kélo‘khk‘l'"r'R(hl’ ..., k) (10)

ist. Hierin ist 72= 2 &2, und die Funktion R(A,, ..., k,) muB} folgende

k=1
Eigenschaft besitzen. Es soll eine Funktion S(r) existieren, fiir die

lim. [S(r)] = 0 ist, und zugleich |R(h,, ..., k)| <8(r). Es ist klar, daf}

r—>0
die Funktionen R(k,, ..., %,) und S(r) noch Funktionen des Punktes
(4, ..., z,) sind. In jedem Punkt, in dem eine Funktion nach Stolz

differentiierbar ist, ist sie stetzg, und besitzt endliche erste partielle Ab-
leitungen nach jeder Variabeln. Dies 1aBt sich unmittelbar aus der Defi-
nition herauslesen.

Besitzt die komplexe Funktion F(z) = ¢(x,y)+iy(x,y) in jedem
Punkt von G eine Ableitung #'/(z), dann la8t sich leicht zeigen, dafB die
Funktionen ¢ (z, y) und y(z, ) in jedem Punkt von G nach Stolz differen-
tiierbar sind. Andererseits 146t sich aus der Differentiierbarkeit nach
Stolz dieser Funktionen und aus den Cauchy-Riemannschen Differential-
gleichungen wieder auf die Existenz von F’(z) zuriickschlieBen. Fafit man

F'(z) auf als Funktion einer Quaternionenvariabeln, und schreibt man die
3

Cauchy-Riemannschen Differentialgleichungen in der Forme wkg, =0,
=0

dann folgt aus dem oben gesagten, dafl die Differentiierbarkeit nach

Stolz der reellen Komponenten einer Quaternionenfunktion zusammen
3

mit der Gleichunng' w® g, = 0 im Falle der analytischen Funktionen
=0

einer komplexen Variabeln nicht mehr voraussetzt, als es die Existenz
von F’(z) bei den analytischen Funktionen tut.

B. Beweis des ersten Hauptsatzes fiir Intervalle.

Unter einem Intervall des n-dimensionalen Raumes verstehe ich stets
den offenen Bereich
a, <z, <b, (k=1,...,n).

Intervalle bezeichne ich immer mit dem Buchstaben 7. Deren Rand,
der sich im Falle n = 4 aus acht dreidimensionalen Intervallen zu-

sammensetzt, bezeichne ich mit E(J). Wir betrachten eine Funktion
3

w = f(z) :kZ u((xo, %y, Xy, X£3)1;, die in einem endlichen, nicht degene-
=0

rierten Hyperraum H definiert ist, und in jedem Punkt von H den beiden

Bedingungen
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a) die Funktionen u,(x,, z;, ,, ;) sind differentiierbar
nach Stolz, (11)

b) die partiellen Ableitungen dieser Funktionen erfiillen

3
die Gleichungkgow("’ik =0

geniigt. Es ist zu beweisen, daB} fiir jedes ganz in H liegende Intervall /

das Integral J = j'de verschwindet. Die Existenz von J ist zufolge
R(I)

der Stetigkeit von f(z) in H gesichert. Unterteilt man das Intervall I in
sechzehn kongruente Teilintervalle, dann gibt es unter diesen mindestens
eines, es moge I, heillen, fiir welches gilt:

1

| J(Ry) | = 16

|J(RB) | -
Das folgt einfach aus der Beziehung

[ i0iz=3 | j©dz,

R(I) k=1 R(I%))

wo I®(k = 1, ..., 16) die Teilintervalle von I bedeuten. Die Fortsetzung

des Verfahrens fiihrt zu einer Intervallschachtelung, die in einem Punkt
3

c ——_kZ ¢, 1 in I oder auf dessen Rand konvergiert. Nach der n-ten Unter-
=0

teilung gibt es mindestens ein Teilintervall, fiir welches gilt:
| J(R,) | =2 57 |J(B)] . (12)
Da die Funktionen %, (x,, «,, ,, ;) nach Voraussetzung in c¢ differen-

tilerbar sind nach Stolz, hat man in leichtverstindlicher Schreibweise

3

fle+h) = f(e) + X f(c)* by +7.p(c, h) (13)

k=0

3 3
mit h::k%’ohkik und | p(c, k) | = VkZ_’OR,zc(ho, ey hy)

Da die u,(z,, z,, z,, ;) stetig sind in ¢, folgt aus (10), dal auch die
Funktionen R, (k,, ..., k,) stetig sind. Aus B, (0, ... 0) = 0 schliet man
weiter, dafl zu jedem positiven ¢ eine positive Zahl r,(¢) existiert, so daB3

|p(c,h)|<e fir |h| =ry(e).
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3
Wegenkz_;of (¢)®) ¢, =0 kann man (1%) noch etwas umformen und bekomm?t

fle+h) = f(e)+ 2 F(e)® (hy — ixho) + 7 ple, h) . (14)

Man denke sich jetzt die Intervallschachtelung bis zu einem solchen
Grade durchgefiihrt, dafl das Intervall I ganz im Innern der Hyperkugel
um ¢ mit dem Radius 7,(¢) enthalten ist. Dann ist:

3
§He+m)dz = [(0) jdZ+ E He)® f(by—ixho)dZ + 7+ ple,h)dZ,
wobei iiberall iiber R(I,) zu integrieren ist. Die Integrale

verschwinden, da die Integranden rechts-regulare Funktionen sind!!). Es
bleibt also fiir die Abschétzung nur das Integral

| fc+h)dZ = | r- p(c,h)dZ
R(Ipn) R(Ip)
ibrig. Bezeichnet man mit [ die Lange der Diagonale von 7, und mit [/,
diejenige von [/, so gilt
l=2"1[, .

Hieraus folgt:

4
| J(R)| ¢ [ |rdZ]| < el, | dr gl;Sg———Sl—%a .
E(In) R(In) 16

Und schliellich findet man unter Beriicksichtigung von (12)
|J(R)| <8¢ .

Die positive Zahl ¢ darf aber beliebig klein gewahlt werden. Daraus
schliet man:
fi©dz=o.
R(I)

Bemerkung : In der Einleitung habe ich betont, dafl die Hyperfliche R,
iiber die in den beiden Hauptsiatzen zu integrieren ist, zweiseitig sein
sollte, damit in jedem Punkt die Normale eindeutig festgelegt werden
kann. Nun sind zwar die Réander von Intervallen zweiseitig, aber es gibt
Punkte, in denen die Normale nicht existiert (wenigstens nicht ein-
deutig). Es sind das die Punkte, die mehr als einem der acht abgeschlosse-

1) Fueter 3, pag. 372, 1. Hilfssatz.
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nen, drei-dimensionalen Intervalle angehéren, deren Durchschnitt gleich
R () ist. Die Schwierigkeit ist leicht zu umgehen, wenn man definitions-
weise setzt:

JB) =2 T(ry).

Die 7, sind die oben genannten acht drei-dimensionalen Intervalle.

Wir kommen jetzt zum Beweis des allgemeinen Falles. Es sei w = f(z)
eine Funktion, die den Voraussetzungen (11) geniigt. Die Funktion
v = g(2) soll denselben Voraussetzungen geniigen, mit der einen Ab-

3
anderung, dafl die partiellen Ableitungen die Gleichunng' 1,0® =0 er-
=0

fillen. Wegen der Stetigkeit von w und » in H existiert dann das Integral

J(R) = | f(£)dZg(C) .

R(D
Nun fiithrt man eine analoge Intervallschachtelung durch, wobei wieder

die Ungleichung (12) auftritt. Fiir g(z) gilt an der Stelle ¢, gegen welche
die Intervallschachtelung konvergiert analog zu (14)

glet+h) =g(0) + 2 (h—rizho)g()® + 7-q(c.h).

Dabei ist entsprechend wie damals
lg(c,h)|<e fir |k =r/(e).

Von f(z) gebrauchen wir zum Beweise nur die Stetigkeit, und die Tatsache,

daf3 j‘ f(2)dZ =0 st fur jedes in H gelegene Intervall I. Dann ist also
R(I)

|f(c+h)—f(c)|<e, falls |h]| <r,. Dabei ist ¢ dieselbe positive Zahl, wie
oben. Mit r, bezeichne ich die kleinere der beiden Zahlen r,, r,. Denkt
man sich jetzt die Intervallschachtelung soweit durchgefihrt, dafl I,
ganz im Innern der Hyperkugel um ¢ mit dem Radius r, enthalten ist, so
wird :

S 102 [g(€) 4+ 20— isho)g % + 7 g(e, D]
= (| H&)dZ)g(e)
R(Ipn)

+ | [fe) + (f(O) —f(c)) |42 [2 (b —dxho)g () ® +7 - (e, b)]

R(Ip)

=J,+J,.
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Nach Voraussetzung verschwindet J,. Ferner ist
Jo= [ f( c)dZ[Z (b — i1ho)g(c)®]
R(Ip)

+ | f(e)dZr - q(c,h)

R(Ip)

+ f [f( ) e f C)]dZ[Z(h — i) g (c)®]

+ f[f (§) — f(c)]dZr - q(c,h)

R(In)

S SRNT S S

J; verschwindet, weil die Funktionen (h, — 7,h,), (kK = 1, 2, 3) sowohl
rechts- wie links-reguldr sind. Die Abschéitzung fiir J, ist vollkommen
analog derjenigen im vorhergehenden Beweis. Bei J; hat man:

3
5] <e-X{1g@® | | |dZ (hy—ihe) |}
k=1 R(Ip)

3 l 3
se{Zlg@® |} [ 1dZr|sesqm { Zlgo®]} .
Ferner ist
l4
| Jo| <e J|dZr-qc,h) | < &8 o

Unter Beriicksichtigung von (12) bekommt man
3
| fwdZo| < &80 [g(e) | + [X1g(0)®|]+ ¢} .
R(I) k=1
Damit haben wir den
2. Satz: Sind w = f(2) und v = ¢(2) zwei in H defimerte Funktionen
etner Quaternionenvariabeln, deren reelle Komponenten wn jedem Punkt
von H nach Stolz differentiierbar sind, und deren partielle Ableitungen in
3 3
jedem Punkt von H den Gleickungenkfow(’”ik = 0 bzw. ké'oik p® = 0

geniigen, dann gilt fiir jedes ganz in H gelegene Intervall 1

| f(©dZg)=0 .

R(I)

Bemerkung : Goursat operiert bekanntlich mit Dreiecken. Dann kann
man sehr einfach den Cauchy’schen Satz beweisen fiir beliebige, einfach
zusammenhingende, geschlossene Kurven im Regularititsbereich. Das
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ist mit Hilfe von Intervallen nicht moglich. Wollte man hier in analoger
Weise vorgehen, dann miilte man den Satz fiir das vierdimensionale
Simplex beweisen. Eine der Abschitzung zugingliche Zerlegung des-
selben ist zwar durchfiihrbar, aber nicht sehr iibersichtlich. Es ist daher
nicht beabsichtigt, auf der vorliegenden Grundlage die Theorie voll-
kommen neu aufzubauen. Vielmehr ist das ganze nur als Erganzung der
Beweise von Herrn Fueter aufzufassen.

C. Beweis des zweiten Hauptsatzes fiir Intervalle.

Wir betrachten wieder die Funktion f(z) des vorigen Abschnittes, die
also in H den Voraussetzungen (11) geniigt. Der Punkt z mége im Innern
eines ganz in H gelegenen Intervalles / sich befinden. Man konstruiere
um z, mit z als Mittelpunkt einen vier-dimensionalen Wiirfel W, der auch
als Intervall aufgefal3t werden kann, und dessen Kantenliange so klein ist,
dafl er ganz in I enthalten ist. Der Hyperraum zwischen R (/) und RB(W)
1af3t sich in eindeutiger Weise in 3% — 1 Intervalle 7, zerlegen, indem man
die den Wiirfel W begrenzenden Hyperebenen mit R([/) zum Schnitt
bringt. Dann existieren nach dem vorhergehenden Abschnitt die Integrale

[ HQ)dZA((C—2) , (k=1,....,80),
R(If)

und sind alle gleich Null. Denn die Funktion 4,(({—2)"! = —4n(({—=)"")
(¢ — 2)? ist links-regular als Funktion von ¢, falls { 4 2. Es wird also

[— [=2 [ =o0. (15)

R(I) R(W) k R(Ip)

Aus (15) folgt sofort, dafl das Integral iiber W von der Kantenldnge des
Wiirfels unabhéngig ist. Es bleibt noch die Aufgabe, dieses Integral zu
berechnen. Wegen der Stetigkeit der Funktion f(z) in H gibt es eine
Umgebung des Punktes z, in welcher

[fz4+h)—f() = ¢

ist. Ist die Kantenlinge von W so klein, daB W ganz in obiger Umgebung
enthalten ist, dann wird

R(W) R(W

JHQ)AZAL((-2)) =f(2)I{ZA;((C—Z)“‘);(IW)[!‘(C) - f(z) ] dZA((L-2)7) .
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Nun ist:

IR(fW)[f(C) —{@)]dZA((.—2 )| ¢ | )‘dZAg((C—z)—l)l <956 ¢

R(W

denn es ist: ‘f | dZ A, ((E—2)) | =

R(W)
[3. & = 256¢ 1%) .

=4[ |dZn((¢—2)) ((—2) ]| < 41. 83
R(W) (?)

Sei K eine Hyperkugel um z, die in W enthalten ist. Da A4.(({—2)™)
links-regular ist im Hyperraum zwischen R(W) und R(K), ist:

] )dZA;((z-—zrl) = [ dZA, (L —2)) .

R(W R(K)

Dieses letzte Integral ist von Herrn Fueter®) ausgewertet worden, und
besitzt den Wert 8 »2. Daher hat man schlieBlich:

6 = g [ 10142 25 —2)"

R(I)

Damit ist der zweite Hauptsatz fiir Intervalle bewiesen. Nun sind wir in
der Lage, den Beweis zu liefern fiir den folgenden, das eigentliche Ziel
der Untersuchung bildenden

3. Satz: Ist H ein endlicher, micht degenerierter Hyperraum, und
3

f(z) :kgouk(xo, Xy, Xy, T3) 1, eine Funktion, deren reelle Komponenten in

jedem Punkt von H nach Stolz differentiierbar sind, und deren partielle
3
Ableitungen die Gleichung k{) w® i, = 0 erfillen, dann ist f(z) in H rechts-

reguldr.
Jeder innere Punkt von H kann namlich mit einem ganz in H liegenden

Intervall 7 umgeben werden. Fiir I gelten dann die beiden Hauptsatze.
Also 1aBt sich in 7 f(2) darstellen durch das Integral

1
16 = g [ 042 25(€—2)7) -
R(I)
Weil die Funktion 4.((f —2)™!) auf R([) stetige partielle Ableitungen
nach de‘n Parametern z,(k = 0, 1, 2, 3) besitzt, darf man unter dem
Integralzeichen partiell nach «, differentiieren und bekommt:

12) 7 ist die Kantenlange des Wiirfels W.
13) Fueter 1, pag. 318.

341



fayo = L f 1) dz 5%— [ A(C—2)] -

8n?
R(I)
Dieses Integral stellt im Innern von I eine stetige Funktion von z dar-
Weil es zu jedem Punkt im Innern von H ein ganz in H liegendes Intervall
gibt, das diesen Punkt enthédlt, so miissen die partiellen Ableitungen von
f(z) in jedem innern Punkt von H stetig sein. Damit sind die Voraus-
setzungen erfiillt, unter denen Herr Fueter die beiden Hauptsitze be-
wiesen hat, und f(z) ist in der Tat rechts-regular in H.

D. Das Analogon zum Satz von Morera.

Wie betrachten wieder eine Funktion f(z) in H, und setzen von dieser

voraus, daf sie in H stetig ist, und dafl das Integral f f(8)dZ verschwindet,
R{D)
sofern das Intervall I ganz in H enthalten ist. Aus dem vorigen Beweis

des zweiten Hauptsatzes, der besonders auf diesen Fall zugeschnitten ist,
folgt unmittelbar, daf} fiir Punkte im Innern von 7 gilt:

1) = g [ 1Q4Z A —2)

R
Hieraus ergibt sich, daBl die Ableitungen von f(z) in jedem Punkt im

3
Innern von I existieren, stetig sind, und der Gleichung 2 f(2)®5,=0
k=0

geniigen. Da jeder innere Punkt von H als innerer Punkt eines ganz in H
gelegenen Intervalles aufgefal3t werden kann, so ist damit der Beweis des
folgenden Satzes erbracht.

4. Satz: JIst H ein endlicher nicht degenerierter Hyperraum, und
3

f(2) = 2 up(zg, &1, @y, x,)1;, eine in H stetige Funktion, fir welche das
k=0

Integral j f(8)dZ diber jedes ganz in H liegendes Intervall I verschwindet,
R(D

dann st f(z) wn H rechts-requldr.

(Eingegangen den 24. Juni 1938.)
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