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Zur Théorie der regulâren Funktionen
einer Quaternionen-Variabeln

Von Bernhabd Schuler, Zurich

Einleitung
Die Arbeit handelt von den durch Herrn Fueter1) untersuehten regu-

laren Funktionen einer Quaternionenvariabeln z x0Jri1x1-\-i2x2-\-i3xs.
Sie zerfallt in zwei Teile. Im ersten Teil beschaftige ich mich mit Fragen,
die sich auf die Reihenentwicklung der rechts-regulâren Funktionen

3

beziehen. Eine Funktion w f(z) E uk(x0, xl9 x2, x2)ik heiBt rechts-
ifc=0

regular in einem endlichen, nicht degenerierten Hyperraum H, falls sie

in jedem Punkt von H endliche und stetige partielle Ableitungen
3 flu 3

wik) __ jr -~ ih besitzt, die der Gleiehung E w{k)ik=0 genugen2). (Die

Funktion heiBt links-regular, wenn unter denselben Voraussetzungen die
3

Ableitungen die Gleiehung E ikw{k) 0 erfullen.) Ein Punkt im Innern

von H heiBt regularer Punkt. In einem regulâren Punkt c laBt sich jede
rechts-regulare Funktion / (z) in eine Reihe

/(«) E Z Onxn%nzVnxntn%(Z — C) 0)
n—0 (ni+n2+n3==n)

entwickeln. Dabei gibt es immer eine Hyperkugel um c mit nicht ver-
schwindendem Radius, in deren Innern dièse Reihe absolut und gleich-
maBig konvergiert3). Der Einfachheit halber werde ich stets die Entwick-
lung um den Nullpunkt betrachten. Dies bedeutet keine Einschrankung,
weil durch eine Translation jede regulare Funktion wieder in eine solche

ûbergeht. Die Funktionen Vnxn%nz (z) smo^ folgendermaBen definiert. Es ist :

Vnxntn^) Z(xk —ik Xo) (xk —îk Xo) (Xk —ik Xo) (2)
(*r)

1) Rud. Fueter' Die Funktionentheone der Differentialgleichungen
du — 0 und JJu 0 mit vierreellen Vanabeln. Comm. Math. Helv Vol. 7,

pag. 307. — Zur Théorie der regularen Funktionen einer Quaternionenvariabeln.

Monatshefte fur Math. u. Phys., Band 43, pag. 69. — Ûber die ana-
lytische Darstellung der regularen Funktionen einer Quaternionenvariabeln.

Comm. Math. Helv., Vol. 8, pag. 471. — Die Smgulantaten der
emdeutigen regularen Funktionen einer Quaternionenvariabeln. Comm.
Math. Helv. Vol. 9, pag 320 — Dièse Arbeiten werden im folgenden als Fueter 1, 2, 3, 4

zitiert.
2) Siehe Fueter 1, pag. 310.
3) Siehe Fueter 3, pag. 374.
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Hierin ist n n± + n2 + ns, und die Summation erstreckt sich uber aile
voneinander verschiedenen Anordnungen der n Faktoren (xt — ii%0), von
denen jeweils nk gleich (xk — ikx0) sind (k 1, 2, 3). Zuerst gebe ich
eine explizite Darstellung der Funktionen pninint(z). Dann untersuche
ich die Frage, wann die Reihe (1) in ihrem Konvergenzbereich eine

analytische Funktion von zwei komplexen Variabeln darstellt. Herr
Fueter hat namlich gezeigt4), daB dièse Funktionen als rechts-regulare
Quaternionenfunktionen aufgefaBt werden konnen, falls man setzt:
zx — x(sJri1x1 und z2 =- x2-\-i1x3. Es ist dann z zx-\-z2i2.

Im zweiten Teil befasse ich mich mit der Ûbertragung einiger Satze aus
der gewohnlichen Funktionentheorie. Dort wird bekanntlich gezeigt,
daB man von der Ableitungi^^einer analytischen Funktion i'7 (z) nicht
vorauszusetzen braucht, daB sie in einem Gebiet G stetig sei, damit F (z)
in G regular ist. Vielmehr genugt hierzu die Existenz vonFf(z) in jedem
Punkt von G. Der Beweis ergibt sich aus der Tatsache, daB man, wie
Goursat gezeigt hat5), den Cauchy'schen Integralsatz beweisen kann, ohne
die Stetigkeit voni^z) vorauszusetzen. Wenn aber das Intégral §F(z)dz
uber jede ganz in G Kegende, einfache, geschlossene Kurve verschwindet,
und F {z) in G stetig ist, dann folgt aus dem Satz von Morera, daB F(z)
in G regular ist In der Théorie der regularen Funktionen einer Quater-
nionenvariabeln treten an Stelle der Cauchy'schen Integralsatze die
beiden Hauptsatze von Herrn Fueter. Ist die Funktion w f(z) rechts-
regular im Hyperraum H und die Funktion v g(z) links-regular in H,
dann sagt der erste Hauptsatz aus, daB das Intégral

(3)

ist, falls die geschlossene, einfach zusammenhangende Hyperflache R

ganz im Innern von H liegt6). Der zweite Hauptsatz liefert die Integral-
darstellung der Funktion / (z) im Innern von B mit Hilfe der Funktions-
werte auf B. In Formeln7)

i /•
-z)-1) • (4)

4) Fueter 3, pag. 375.
5) Goursat Acta Mathematica, Band 4 (1884), pag. 197. Transactions Amer. Math.

Soc, Band 1 (1900) pag. 14.

6) Fueter 1, pag. 312.
7) Fueter 1, pag. 318.
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Das Differential dZ hat folgende Bedeutung. Es ist das Produkt des

skalaren Hyperflachenelements dr mit der innern Normalen von R (dièse
als Quaternionen geschrieben). Also

h
dx.

dt2

dx2
~WX

dx2

~dî2

dx2 dxz

dt1dt2dtA

xk xk(t1, t2, t3), (Je 0, 1, 2, 3) ist die Parameterdarstellung von E.
Von R muB man verlangen, daB die Normale in jedem Punkt existiert,
und eindeutig festgelegt werden kann. R darf also nicht einseitig sein.
Die Funktion 4Ç((£ — z)'1) — in ((C — s)"1) (f — z)'1 ist links- und
rechts-regular im ganzen i?4 mit Ausnahme des Punktes C zs). Es
wird sich darum handeln, den ganzen oben angefuhrten Fragenkomplex
aus der gewohnlichen Funktionentheorie in dem vorliegenden allgemei-
nern Falle zu studieren. Im wesentlichen geht es also darum, die Voraus-
setzungen fur regulares Verhalten einzuschranken.

I.

A. Explizite Darstellung der Funktionen pWin2^3
3

Man setze pnin2n3(z)— E UllH2n3H -

jjnxn2n3^^, xXi x2, x3) sind nach (2) Formen vom Grade n — nx + n2 + ns.
Gesucht ist eine explizite Darstellung dieser Formen. Dabei stofit man

auf Ausdrucke von der Form Z ittlK2
(Of)

reellen Funktionen

- Die drei Indizes uber dem

Summenzeichen geben in der angeschriebenen Reihenfolge die Anzahl
der Faktoren ix bzw. i2 und is an. Es ist naturlich Ii + l2 + h &• Die
Summation ist dieselbe wie in (2). Es gilt der

Hilfssatz : Der Ausdruck verschwindet immer, ausge-

nommen in den folgenden vier Fallen. (Die Indizes sind so angesehrieben,
daB deren Paaritàt, auf die es wesentlich ankommt, deutlich in Erschei-

nung tritt.)
8) Fueter 1, pag. 317
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xh3
1 Z

(or)

2*1-fl2*22*3
2 Z

(or)

Jfe»

Jfe»
(5)

Diesen Satz beweist man mittels vollstandiger Induktion Der Induk-
tionsschluB ergibt sich jeweils aus der leicht zu beweisenden Beziehung

hhh

t*i-2
*2/3

(ar)

z
(ar)

(ar)

»i '«* 2

+ hlz \a %
1

2
(%>

x j
Man wird zunachst die vier Formeln (5) venfîzieren, und dann mit Hilfe
der Rechengesetze der Quaternionen zeigen, daÔ in allen ubrigen Fallen
der Ausdruck verschwmdet

Die Verwendungsmoglichkeit des obigen Satzes beruht auf dem folgen
den Umstande Multipliziert man das Produkt

aus und summiert dann uber aile vonemander verschiedenen Anordnun
gen der Faktoren, so bekommt man

k=0 (*1+*2+*3

X

lak)

wobei stets nk — lk ^ 0, und & Zx +12 + Z3 ist Der Ausdruck Z iai ^fl^
(«3)

ist nach unserem Hilfssatz nur dann reell und von Null verschieden, falls
ll9 l2, 1$ aile drei gerade smd Substituiert man fur ll9 l2, l3, k beziehungs-
weise die Werte 2llt 2l2, 2l3, 2k, so kann man schreiben

Tjnxn2n3 _
1 1 (—1)*

Sh=k) (n1—2l1)i(n2~2l2)\ (%— (2k)
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Die Summation erstreckt sich von k 0 bis (n — l)/2, falls n ungerade>
und von k 0 bis n/2, falls n gerade ist.

Ganz analog gelangt man zu Formeln fur U^1"2*1* (k 1 2 3). Zur
Abkurzung setze man:

(24+1) 21,)!
L_

2Z2)' (n, —2*,)!ÏI<Ï,'J8I

Es ist ferner zu beachten, daB in den nachstehenden Summen keine
Terme auftreten, in denen eine oder mehrere der Dififerenzen nk — lk
negativ sind. Man konnte daher auch in diesen Fallen das Symbol

z1 j2 73 Per definitionem gleich Null setzen. Es ist:
h l2 h J

Summation uber k von ik O5 — falls n gerade

k 0 falls n ungerade.

1 n2

k

yïk + l

V2jfc+1

^k+1

Summation uber k von & 0 —-— falls n ungerade

2
falls n gerade.

ni + Wa +

Aus diesen Formeln lafît sich leicht entnehmen, daB Ulin%n* niemals
identisch verschwindet, wie man auch die Indizes ^,712,^3 wahlt.
jr/nin2n3 ^ __ i? 2, 3) aber verschwindet nur dann nicht identisch, falls
nk à 1.
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B. tJber die Reihenentwicklung analytischer Funktionen von zwei kom-
plexen Variabeln.

Da, wie in der Einleitung bemerkt, die analytischen Funktionen von
zwei komplexen Variabeln zx xo + i1x1 und z2 x2 + ixxz in ihrem
Regularitatsgebiet auch aufgefaBt werden konnen als rechts-regulare
Funktionen einer Quaternionenvariabeln z z1-\-z2i29 so wird man eine
solche Funktion in jedem regularen Punkt nach den Funktionen
Pnin2n3 (z — c) entwickeln konnen. Wir betrachten die Entwicklung um
den Nullpunkt. Die Beziehung9)

>»i+"»+n,/(g)-[

lehrt, daB die Entwicklungskoeffizienten cWiW2njj im Falle einer analyti-
sehen Funktion von zwei komplexen Variabeln stets komplexe Zahlen
sein mussen. Die Cauchy-Riemannschen Difîerentialgleichungen fur die
regularen Funktionen von zwei komplexen Variabeln lauten in komplexer
Schreibweise

a) w{0) — i,w{1)
(8)

Da die hier in Betracht kommenden Funktionen in einem regularen
Punkt beliebig oft difîerentiierbar sind, so sind die beiden Operatoren

und

in ihrer Wirkung beziehungsweise gleich den Operatoren

• — und
dx3 dx?1 dx\% dx^ dx2

((8)6) sagt aber nichts anderes aus, als daB der Operator (^ (- ix ^— I
yOXz dx3 ]

angewendet auf irgend eine regulare Funktion von zwei komplexen
Variabeln, identisch den Wert Null ergibt im ganzen Regularitatsgebiet.
Dann gilt also:

[_VX1 UJU2 C7X3 J2 O [_VX1 C/X2 O*CZ J

ln3

9) Fueter 3, pag. 375.
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Dièse Relationen sind stets erfullt, wenn /(z) eine im Null-Punkt
regulare Funktion der zwei Variabeln zx und z> ist. Umgekehrt kann man
zeigen, daB das Bestehen dieser Relationen zusammen mit der Forderung,
daB die cnin2n3 komplexe Zahlen sind, hinreichend ist dafur, daB die
betrefifende Reihenentwicklung in ihrem Konvergenzbereich eine regulare
Funktion von zwei Variabeln zx und z2 darstellt Der Beweis ergibt sich

aus der Gegenuberstellung der Entwicklung nach den Funktionen
Pn n n (z) einerseits, und nach den Potenzprodukten von zx und z2

andererseits.
Vorerst muB gezeigt werden, wie ein solches Produkt z™xz™* nach den

Funktionen pn „ „ (z) zu entwickeln ist. Es ist -— ù -=— -— -=—rnin2n9\ / ^ i ^ ^ fa^
~— L —— und daher
dx3 dz2

[finx
5w2+n3

/«»i+«s\ /*
dz\x dzn*+n*

"1

Zlî°

Die einzigen von Null verschiedenen Koeffizienten sind jene, wo nx ml
und n2Jrn3 m2 ist. Daraus ergibt sich:

2j"a?' mx m2 if^ iT^'P^,^, («) • (9)

Man beachte, daB fur zwei verschiedene Potenzprodukte von zx und z2

auf der rechten Seite von (9) niemals dieselbe Funktion pnin2nz(z) gleich-
zeitig auftreten kann. Ferner treten in

nur Funktionen gleichen Grades auf. (Die Funktionen pnintni(z) sind
in ihren reellen komponenten Formen vom Grade n nx -\-n2-\-n3 in
x0, xl9 x2, xz.) Damit ist man beinahe am Ziel. Der Ausdruck

(n1+«2+n3=n)

laBt sich in eindeutiger Weise uberfuhren in eine Form vom Grade n in
zx und z2 mit komplexen Koeffizienten, falls die cni n%n^ komplexe Zahlen
sind, und den Relationen cni7Z2??3+1 iiCnin2+in3 genugen. Denn aus

folgt : (n ~m1-\- m2)

c im2~J c
und daraus
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^ ml}m2-j m^mz-j WlW2°, 0
1 mxjm2-j\

—m-i ^WimjO ~mxjm2

Der ganze Vorgang bedeutet nur eme wegen der absoluten und gleieh-
maBigen Konvergenz der Reihe erlaubte Umordnung der Summanden

oo

1. Satz: Damit die Reihe Z Z cn1n2n3Pn1n2ns(z) m threm

Konvergenzgebiet eme analyhsche Funktion von zwei komplexen Vanabeln
darstellt, ist notwendig und hmreichend, dafi die c iWg 3

komplexe Zahlen
sind, die den Relationen cnx7z+inz ^icnin2n3+i genugen

(tti,w2, w3 0, 1, 2,

Man bemerkt, daB die Koeffizienten cni00 m den angegebenen Relationen
nicht auftreten Das muB auch so sem, denn die Funktionen pn 00 smd
Potenzen von zx

II
A. Vorbereitende Bemerkungen.

Ist F(z) (p(x,y) + iip(x,y) eme m dem endhchen Gebiet G der
komplexen Ebene defimerte Funktion des komplexen Argumentes z x +1 y,
dann besitzt F (z) m jedem Punkt von G eme Ableitung Fr(z)y falls m
jedem Punkt von G

*(z + h)—F(z)
h — «(*) < e

ist, sofern \h\ \ho-\-ih1\^ô(e) ist oc (z) ist eme dem Punkte z zuge-
ordnete endliche komplexe Zahl Es wird verlangt, daB zu jedem positiven
e eme positive Zahl ô(e) angegeben werden kann, und es ist oc(z) Ff(z)

Da man bei den regularen Funktionen emer Quaternionenvariabeln
mit emer emzigen Ableitung nicht mehr auskommt, erhebt sich die Frage,
mit welchen Voraussetzungen man m diesem allgememern Fall arbeiten
soll? Beim Studium der Lehre von den reellen Funktionen von mehreren
Vanabeln stoBt man gelegentlich auf den Begrifï der Differentnerbarkeit
nach Stolz10) Eine Funktion ^(a^, xn) heiBt nach Stolz difïerentiierbar
m emem Punkte (xl9 xn), wenn es n endliche Zahlen ock(Jc 1, n)
gibt, so daB

10) Siehe Caratheodory, Réelle Funktionen, pag 644
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i, xn+hn) ~cp(x1, ,xn)=Z ockhk+r R(\9...,hn) (10)

n

ist Hienn ist r2= 27 A|, und die Funktion E(hlf ,hn) muB folgende

Eigenschaft besitzen Es soll eine Funktion S(r) existieren, fur die
bm [8(r)] 0 ist, und zugleich |i^(^l3 hn)\^S{r) Es ist klar, daB

die Funktionen i?(Al3 hn) und $(r) noch Funktionen des Punktes
(xlf xn) smd In jedem Punkt, m dem eine Funktion nach Stolz
difïerentiierbar ist, ist sie stetig, und besitzt endliche erste partielle Ab-
leitungen nach yeder Vanabeln Dies laBt sich unmittelbar aus der
Définition herauslesen

Besitzt die komplexe Funktion F(z) q>(x,y) + iy>(x,y) m jedem
Punkt von G eine Ableitung F! (z), dann laBt sich leicht zeigen, daB die
Funktionen y (x, y) und \p(x, y) m jedem Punkt von G nach Stolz differen-
tnerbar smd Andererseits laBt sich aus der Difïerentnerbarkeit nach
Stolz dieser Funktionen und aus den Cauchy Riemannschen Difïerential-
gleichungen wieder auf die Existenz vonF'(z) zuruckschlieBen FaBt man
F (z) auf als Funktion einer Quaternionenvanabeln, und schreibt man die

3

Cauchy-Riemannschen Difïerentialgleichungen m der Form 27 w{k)ik 0,
fc-0

dann folgt aus dem oben gesagten, daB die Difïerentnerbarkeit nach
Stolz der reellen Komponenten einer Quatermonenfunktion zusammen

3

mit der Gleichung 27 w{khk 0 îm Falle der analytischen Funktionen

einer komplexen Vanabeln nicht mehr voraussetzt, als es die Existenz
von Ff(z) bei den analytischen Funktionen tut

B. Beweis des ersten Hauptsatzes fiir Intervalle.

Unter einem Intervall des ?i-dmiensionalen Raumes verstehe ich stets
den offenen Bereich

ak< xk< bk (k 1, n)

Intervalle bezeichne ich immer mit dem Buchstaben / Deren Rand,
der sich îm Falle n 4 aus acht dreidimensionalen Intervallen zu-
sammensetzt, bezeichne ich mit E(I) Wir betrachten eine Funktion

3

w f(z) 27 u(xQ, xl9 a?2, x3)ik, die in einem endhehen, nicht degene-
k 0 f<

rierten Hyperraum H defimert ist, und m jedem Punkt von H den beiden
Bedingungen
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a) die Funktionen uk(x0, xl9 x2, xz) sind difîerentiierbar
nach Stolz, (11)

b) die partiellen Ableitungen dieser Funktionen erfullen
3

die Gleichung U w{k) ik 0

genugt. Es ist zu beweisen, daB fur jedes ganz in H liegende Intervall /
das Intégral J — §wdZ verschwindet. Die Existenz von J ist zufolge

der Stetigkeit von f(z) in H gesichert. Unterteilt man das Intervall / in
sechzehn kongruente Teilintervalle, dann gibt es unter diesen mindestens
eines, es moge Ix heiBen, fur welches gilt :

Das folgt einfach aus der Beziehung

J f(C)dZ 2 J f{Ç)dZ

wo I{k) (k 1, 16) die Teilintervalle von J bedeuten. Die Fortsetzung
des Verfahrens fuhrt zu einer Intervallschachtelung, die in einem Punkt

3

c £ ck ik in / oder auf dessen Rand konvergiert. Nach der w-tenUnter-

teilung gibt es mindestens ein Teilintervall, fur welches gilt :

IJWI^ïJ; \J(R)\ • (12)

Da die Funktionen uk(x0, xl9 x2, xs) nach Voraussetzung in c difîerentiierbar

sind nach Stolz, hat man in leichtverstandlicher Schreibweise

¦\-r.p(c,h) (13)

mit h EKH und I P(c>h) I \ Z R2k(h0, hz)

Da die uk(x0, xl9 x29 x3) stetig sind in c, folgt aus (10), daB auch die
Funktionen Rk(h0, h3) stetig sind. Aus Rk(0, 0) 0 schlieBt man
weiter, daB zu jedem positiven s eine positive Zahl ro(e) existiert, so daB
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3

Wegen £ f(c){k)ik=O kann man (1!§) noch etwas umformen und bekommt

t(c + h) f(c)+jbif(c)M(hk — ikh0) + r'p(c9h) (14)

Man denke sich jetzt die Intervallschachtelung bis zu einem solchen
Grade durchgefuhrt, daB das Intervall / ganz im Innern der Hyperkugel
um c mit dem Radius ro(e) enthalten ist. Dann ist:

$f(c + h)dZ f(c)$dZ+ Zf{cyk>$(hk — ikh0)dZ + jV • p(c9h)dZ,

wobei uberall uber B(In) zu integrieren ist. Die Intégrale

fdZ, $(hk-ikh0)dZ, (jfe=l,2,3)

verschwinden, da die Integranden rechts-regulare Funktionen sind11). Es
bleibt also fur die Abschatzung nur das Intégral

j* f(c + h)dZ J r • p(c,h)dZ
R(In) Wn)

ubrig. Bezeichnet man mit l die Lange der Diagonale von /, und mit ln
diejenige von In, so gilt

Hieraus folgt :

\J(Rn)\ ^e J \rdZ\ ^eln J dr gPn8« 8~e
RUn) Rdn) lb

Und schlieBlich findet man unter Berucksichtigung von (12)

Die positive Zahl s darf aber beliebig klein gewahlt werden. Daraus
schlieBt man :

Bemerkung : In der Einleitung habe ich betont, daB die Hyperflache R,
uber die in den beiden Hauptsatzen zu integrieren ist, zweiseitig sein

sollte, damit in jedem Punkt die Normale eindeutig festgelegt werden
kann. Nun sind zwar die Rander von Intervallen zweiseitig, aber es gibt
Punkte, in denen die Normale nicht existiert (wenigstens nicht
eindeutig). Es sind das die Punkte, die mehr als einem der acht abgeschlosse-

u) Fueter 3, pag. 372, 1. Hilfssatz.
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nen, drei-dimensionalen Intervalle angehoren, deren Durchschnitt gleich
R (I) ist Die Schwiengkeit ist leicht zu umgehen, wenn man definitions-
weise setzt 8

J(R) =£J(rk)

Die rk smd die oben genannten acht drei-dimensionalen Intervalle
Wir kommen jetzt zum Beweis des allgememen Pâlies Es sei w — f(z)

eine Funktion, die den Voraussetzungen (11) genugt Die Funktion
v g(z) soll denselben Voraussetzungen genugen, mit der einen Ab-

3

anderung, dafi die partiellen Ableitungen die Gleichung U ikv{k) 0 er-

fullen Wegen der Stetigkeit von w und v m H existiert dann das Intégral

J(E)= J f(t)dZg(Q
R(I)

Nun fïïhrt man eine analoge Intervallschachtelung durch, wobei wieder
die Ungleichung (12) auftritt Fur g(z) gilt an der Stelle c, gegen welche
die Intervallschachtelung konvergiert analog zu (14)

^ + r q(c,h)

Dabei ist entsprechend wie damais

|2(c,A)|<e fur \h\ ^
Von f(z) gebrauchen wir zum Beweise nur die StehgJceit, und die Tatsache,

dafi J f(z)dZ O ist fur yedes m H gelegene Intervall I Dann ist also

\f(c + h) — /(c) | <e, falls \h\ f^r2 Dabei ist s dieselbe positive Zahl, wie
oben Mit r0 bezeichne ich die klemere der beiden Zahlen rl9 r2 Denkt
man sich jetzt die Intervallschachtelung soweit durchgefuhrt, da6 In
ganz îm Innern der Hyperkugel um c mit dem Radius r0 enthalten ist, so

wird

f f(OdZ[g(c) + È(hk — ikh0)g(c)^ + r q(c,h)]

J f(Ç)dZ)g(c)

q(c,h)]
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Nach Voraussetzung verschwmdet Jx Ferner ist

J2= J f(c)dZ[*i: (hk — ikho)g
R{In) *=1

-f $ f(c)dZr q(ch)
Rdn)

-^ f [f(O-f(c)]dZ[Z(hk-ikho)g(c)M]
R(In) k==1

q(c,h)

J3 verschwmdet, weil die Funktionen (hk— tkh0), (k 1, 2, 3) sowohl
rechts wie links regular sind Die Abschatzung fur e/4 ist vollkommen
analog derjenigen îm vorhergehenden Beweis Bei J5 hat man

R(In)

*=1 R(In) lo" k

Ferner ist

| J6| ^e l\dZr q(c,h) | < e2 8 ^
Unter Berucksichtigung von (12) bekommt man

| J wdZv | ^. e 8Z4 { | g(c) | + [ jr | g(c){k) \ ] + s }

Damit haben wir den

2. Satz: Sind w f(z) und v g(z) zwei m H definierte Funktionen
emer Quaternionenvanabeln, deren réelle Komponenten m jedem Punkt
von H nach Stolz differentnerbar sind, und deren partielle Ableitungen in

3 3

]edem Punkt von H den Gleichunge?i 2J w{khk 0 bzw X ikv{k) 0

genugen, dann gilt fur yedes ganz m H gelegene Intervall I
J HQdZgtf) 0

R(D

Bemerkung Goursat operiert bekanntlich mit Dreiecken Dann kann
man sehr emfach den Cauchy'schen Satz beweisen fur beliebige, emfaeh

zusammenhangende, geschlossene Kurven îm Regulantatsbereich Das
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ist mit Hilfe von Intervallen nicht moglich. Wollte man hier in analoger
Weise vorgehen, dann muBte man den Satz fur das vierdimensionale
Simplex beweisen. Eine der Abschatzung zugangliche Zerlegung des-

selben ist zwar durchfuhrbar, aber nicht sehr ubersichtlich. Es ist daher
nicht beabsichtigt, auf der vorliegenden Grundlage die Théorie voll-
kommen neu aufzubauen. Vielmehr ist das ganze nur als Erganzung der
Beweise von Herrn Fueter aufzufassen.

C. Beweis des zweiten Hauptsatzes fur Intervalle.

Wir betrachten wieder die Funktion f(z) des vorigen Abschnittes, die
also in H den Voraussetzungen (11) genugt. Der Punkt z moge im Innern
eines ganz in H gelegenen Intervalles / sich befinden. Man konstruiere
um z, mit z als Mittelpunkt einen vier-dimensionalen Wurfel W, der auch
als Intervall aufgefaBt werden kann, und dessen Kantenlange so klein ist,
daB er ganz in / enthalten ist. Der Hyperraum zwischen R(I) und R(W)
laBt sich in eindeutiger Weise in 34 — 1 Intervalle Ik zerlegen, indem man
die den Wurfel W begrenzenden Hyperebenen mit E(I) zum Schnitt
bringt. Dann existieren nach dem vorhergehenden Abschnitt die Intégrale

J

und sind aile gleich Null. Denn dieFunktionzlç((C—z)-1 ——4n((£—z)-1)
(f — z)"1 ist links-regular als Funktion von £, falls f 7^2. Es wird also

j _ j =z j =0.
R(I) R(W) k S(Ik)

(15)

Aus (15) folgt sofort, daB das Intégral uber W von der Kantenlange des

Wurfels unabhangig ist. Es bleibt noch die Aufgabe, dièses Intégral zu
berechnen. Wegen der Stetigkeit der Funktion f(z) in H gibt es eine

Umgebung des Punktes z, in welcher

\f(z + h)-f(z)\He

ist. Ist die Kantenlange von W so klein, daB W ganz in obiger Umgebung
enthalten ist, dann wird

St Si( S [ - f(z) ]
R(W) R(W) R(W)

340



Nun ist

I J [f(Q —f]; /
R(W) R(W)

dennes.t

(l)
Sei K eine Hyperkugel um 2, die m W enthalten ist Da Aç((Ç— z)-1)
links regular ist îm Hyperraum zwischen R(W) und E(K), ist

Dièses letzte Intégral ist von Herrn Fueter13) ausgewertet worden, und
besitzt den Wert 8 jt2 Daher hat man schlieBlich

Damit ist der zweite Hauptsatz fur Intervalle bewiesen Nun smd wir in
der Lage, den Beweis zu liefern fur den lolgenden, das eigentliche Ziel
der Untersuchung bildenden

3. Satz: Ist H em endlicher, nicht degenenerter Hyperraum, und
3

f(z) Uuk(x0, xx x2, x3) ik eine Funkhon, deren réelle Komponenten m

jedem Punit von H nach Stolz differentuerbar sind, und deren partielle
3

Ableitungen die Gleichung 2J w{khk 0 erfullen, dann ist f(z) m H rechts

regular

Jeder mnere Punkt von H kann namlich mit emem ganz in H hegenden
Intervall / umgeben werden Fur / gelten dann die beiden Hauptsatze
Also laBt sich in / / {z) darstellen durch das Intégral

Weil die Funktion Aç((Ç — z^1) auf R(I) stetige partielle Ableitungen
nach den Parametern xk(lc 0, 1, 2, 3) besitzt, darf man unter dem

Integralzeichen partiell nach xk difïerentneren und bekommt

12) l ist die Kantenlange des Wurfels W
13 Fueter 1 pag 318
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Dièses Intégral stellt im Innern von / eine stetige Funktion von z dar-
Weil es zu jedem Punkt im Innern von H ein ganz in H liegendes Intervall
gibt, das diesen Punkt enthalt, so mussen die partiellen Ableitungen von
/(z) in jedem innern Punkt von H stetig sein. Damit sind die Voraus-
setzungen erfullt, unter denen Herr Fueter die beiden Hauptsatze be-
wiesen hat, und f(z) ist in der Tat rechts-regular in H.

D. Das Analogon zum Satz von Morera.

Wie betrachten wieder eine Funktion / (z) in H, und setzen von dieser

voraus, daB sie in H stetig ist, und daB das Intégral J f(Ç)dZ verschwindet,
R{I)

sofern das Intervall / ganz in H enthalten ist. Aus dem vorigen Beweis
des zweiten Hauptsatzes, der besonders auf diesen Fall zugeschnitten ist,
folgt unmittelbar, daB fur Punkte im Innern von / gilt :

Hieraus ergibt sich, daB die Ableitungen von f(z) in jedem Punkt im
3

Innern von / existieren, stetig sind, und der Gleichung Z f(zYk)ik=O

genûgen. Da jeder innere Punkt von H als innerer Punkt eines ganz in H
gelegenen Intervalles aufgefaBt werden kann, so ist damit der Beweis des

folgenden Satzes erbracht.

4. Satz: Ist H ein endlicher nicht degenerierter Hyperraum, und
3

f(z) £uJxq, xl9 x2, x3)ik eine in H stetige Funktion, fur welche das

Intégral J f(Ç)dZ uber jedes ganz in H liegendes Intervall I verschwindet,
R{I)

dann ist f(z) in H rechts-reguldr.

(Eingegangen den 24. Juni 1938.)
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