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Integralsatze fiir reguldre Funktionen
einer Quaternionen-Variablen

Von Rup. FUETER, Ziirich

1. Einleitung.

Ist u eine rechts-, v eine links-regulire Funktion der Quaternionen-

variablen z = ()k:; Z,1; in dem echten Hyperraume H, so gilt bekanntlich

der I. Hauptsatz?): fudZv =0 I)

(B
wo R irgend eine geschlossene Hyperfliche in H ist, deren Inneres nur
Punkte von H enthilt. Wird R durch z = X x,(¢,, t,, t3)1, gegeben, wo

(k)
die ¢, reelle Variable sind, so ist:

1 N N Uy
ot 0t ot ot,
0%, 0z, 0z, 0wy | diby diy dity .
0t oty ot ot,

dzZ

!
|
He

at, o, o1, ot

Das Vorzeichen wird so bestimmt, dal3 die Richtung des durch die
Determinante bestimmten Normalvektors ins Innere von R geht.

Es fragt sich, ob aus diesem Satze Integralsitze hergeleitet werden
konnen, die sich auf zwei- oder eindimensionale Gebilde beziehen? In der
Tat existieren solche Formeln, wie im folgenden gezeigt werden soll.
Diese scheinen mir daher bemerkenswert, weil sie auch fiir analytische
Funktionen von zwei Variablen gelten?).

1) Siehe iiber die Theorie meinen Vortrag am Intern. Math. KongreB3, Oslo, C. R. du
congrés int. des math., Oslo, 1936, t. I. p. 75. Bisherige Literatur in: Rud. Fueter: Die
Singularitiéten der eindeutigen regularen Funktionen einer Quater-
nionenvariablen. Comm. Math. Helv. t. 9, p. 321.

2) Wie mich Herr de Rham aufmerksam macht, kénnen nach E. Cartan alle Integral-
formeln durch ,,dérivation extérieure‘‘ erhalten werden. E. Cartan: Legons sur les
invariants intégraux, Paris, Hermann et fils, 1922, chapitre VII, p. 65. Dieser Weg
wiirde wohl in meinem Falle groe Schwierigkeiten bieten, die gerade durch die Einfithrung
der Quaternionen vermieden werden. Nur durch letztere ist es méglich, das Resultat in so
iiberaus eleganter Weise zu formulieren. Die Formeln IIT und IV sind iiberraschend
einfach.
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2. Integrale iiber Hyperflichenstiicke.

Es sei R ein endliches, sich nirgends durchdringendes, orientierbares
Hyperflichenstiick, das durch die (zweidimensionale) Oberfliche O be-
grenzt werde. Wir setzen alle diese Gebilde als stiickweise analytisch
voraus. Es sei ¢ ein Punkt in R, und R gegeben durch:

z=c+f(l,t,1,), (R)

WO ¢ = %;ckik, [, s, 1) = Z,;f,c(tl, ty, t5)%;, ist; die reellen Variablen
( (k

seien die Koordinaten des Raumteiles 7'. Wir setzen fest, da} f(0, 0, 0)=0
ist, d. h. daB fir¢, = 0,k = 1, 2, 3, 2 = ¢ wird. Die Oberflaiche O von R
wird durch die Oberfliche von 7' gegeben:

tlztl (Tl,Tz), lzl, 2,3, (O)
wo die 7, reell und Koordinaten eines Ebenenstiickes £ sind.

Wir legen durch ¢ ein beliebiges Kurvenstiick €:
z=-c(t),t reellund —e <t < + ¢ wo ¢(0) = c ist. (®)

Durch jeden Punkt von ¢ legen wir die Parallelhyperfliche R, zu R,

wobei ¢(f) dem Punkt c entspreche:
=c(t) 4+ i, 2, t3); —e =St =+¢& t,tlt;in T. (R

Alle R, zusammen bilden den Hyperraum H; jedes R, wird durch O,
begrenzt, das erhalten wird, indem man in R, fir ¢,l =1, 2, 3, die
Werte von (O) einsetzt. H wird begrenzt durch alle O,, — ¢ <t < + &,
und durch R_, und R_,.

Jetzt sei  eine in jedem Punkte der abgeschlossenen Hyperfliche R
rechts-, v links-regulare Funktion. Dann ist %, v auch noch regulidr im
Innern einer Hyperkugel um jeden Punkt von E. Man kann somit ¢ so
klein wahlen, daBl »,v in jedem Punkte des abgeschlossenen Hyper-
raumes H regular sind. H, sei der Hyperteilraum von H, der begrenzt ist
durch:

R, 0 fir —e<t<rt R,.

Nach dem ersten Hauptsatze ist dann:

j'udZ'v——j‘udZ'v—}— f fud¥v=0.

(B-¢) =& (O¢)
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Dabei ist nach 1:

1 i 3o i
O O 9h O
ot ot, ot ot,

dZ = Zdt, dt, dt;, wo Z=| e fs dfs ofy

0fo of ofs  Ofs
ot ot ot ot

ist. Die ¢, seien so gewahlt, dal Z der Vektorrichtung von €, —¢ — + ¢,
entspricht. Weiter ist:
1 Iy To 13

o) () e ()

dY — Ydv,dr,di , wo Y= | Jo  Sh % O

0T, oty 0T, oty
ofg  0fi  Ofs ofs
07, 07, 0T, o7,

Das Vorzeichen ist so zu wahlen, dafl die Normale ins Innere von H,
gerichtet ist. Da die obige Gleichung fiir jedes v zwischen — ¢ und + ¢
gilt, darf man sie nach 7 differenzieren:

—~C—% wdZv+ | uYvdr,dt, = 0.

(Bz) (07)

Wegen der Stetigkeit und Endlichkeit der Funktionen diirfen wir unter
dem Integralzeichen differenzieren. Da Z nicht von v abhéngt, wird:

d du dv
T (ud Zv) _——deZ'v + udZ F
Nun ist:
du p dv ' ou ov
abad (k) v (k) .ok — (k) — .
dt (%;u Gk(‘t) > dr (2;2) ck(T) ;U axk , U ““"axk ’

setzt man dies ein, so wird:

d ’
— (udZv) = X (P dZv 4+ udZv'®)c,(7) .
dr (k)
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Anderseits ist:

1, o %g 1 (2 (2
ofy ofy Ofy of Ofs  Ofs
YO P :F 3171 aTl a’fl s Yl _ :t. aTl aTl aTl R
o, ofs Ofy ofs Ofs  Ofs
07, 07, 07, 07, 0T, 0T,
1 % 3 1 % p
ofe  0h  Ofy of Of  Ofy
Y,— F| 0 o, oty |, Y, =+]| o1 ot 07y | ist.
ofe 0o Of ofe 0fi Ofy
07, 07, 07, 0T, 07, 0T,

Setzt man dies ein, so erhialt man die Formel:

4
— 2 | @®dZv 4+ udZov®)e(r) + 2 | uY,vep(x)dvdr, = 0.
() (R;) (*) (0;)
Man darf hier v = 0 setzen. R, geht dann in R, O, in O iiber. Ferner
sind die ¢, (0) vollstindig beliebig. Somit zerfallt die Formel in folgende
vier Integralsitze:

| w®dZv + udZv®) = | uY vdv,dv,, k= 0,1,2,3 . (III)
(R) ()

Y, ist der Vektor, der in O senkrecht auf der Grenzfliche des Hyper-
raumes steht, der durch Bewegung von R parallel zur x,-Axe entsteht,
und der ins Innere dieses Hyperraumes geht.

Ist R irgend eine geschlossene Hyperfliche, auf der » und v iiberall
regular und eindeutig sind, so folgt, gleichgiiltig wie «, v im Innern sind,

fw®dZy 4+ udZv®) =0,k =0,1,2,3. (II1a)
(R)

3. Integrale iiber Flichenstiicke.

Es sei O ein endliches, sich nirgends durchdringendes (zweidimensio-
nales) Flachenstiick, das durch die Kurve C begrenzt werde. Auch hier
werden alle diese Gebilde als stiickweise analytisch vorausgesetzt. ¢ sei
ein Punkt auf O, und O gegeben durch:

z=c+ f(t, ), ()
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WO ¢ = (%;ckik, und f = (Zk;fk(tl, t,)1, ist; die reellen Variablen ¢, seien
Koordinaten eines Ebenenstiickes £. Wir setzen fest, dal3 (0, 0) = 0 ist,

d. h. daB fir ¢, = 0, k = 1, 2, 2z = ¢ wird. C wird durch die Grenzkurve

von E gegeben:
t,=140),1=1,2. (©)

Wir legen durch ¢ ein beliebiges Flachenstiick £2:
2= g(r,7), Wo @(0,0)=c sei (@)

¢ sei ein innerer Punkt von 2, und 7,, 7, sollen die Werte durchlaufen:
—e =1, =+ ¢, n=12 (Quadrat in der Ebene der 7). Durch jeden
Punkt von Q legen wir die Parallelfliche O, , zu O, wobei ¢ dem
@(ty, T,) entspreche:

o s (}9(71, T2) + f(tl, t2)9 — € é ,-2 é + &, tl: t2 in E (01:1 ‘tz)
Alle O, . zusammen bilden einen Hyperraum H. Jedes O, , wird
durch die Kurve C, , begrenzt, die erhalten wird, wenn man in O

fiir ¢, und ¢, die Werte von (C) einsetzt. H wird begrenzt durch alle

Ty 13

C est, =+e,n=1,2,

Ty 12’

und durch
0 0

—ET g 2

0 )

fir alle 7,, resp. 7, zwischen — ¢ und +¢.

+E1y? Ty—€ > Ty1+¢

Jetzt sei u eine in jedem Punkte des abgeschlossenen Flachenstiickes O
rechts-, v linksregulidre Funktion. Man kann ¢ so klein wéhlen, da » und v
in allen Punkten des abgeschlossenen Hyperraumes H regulér sind.

Es sei t,,t, ein Punkt von Q, und H, , der Hyperteilraum von H,

fir den:
— € gTl —S—tly — €& érz étg

ist. Die Umgrenzung von H, , ist:
0—6152 3 Otlfg s T € g r2 é tz ’ 0‘(1—8 ’ 011 tgy T £ g T]_ é t]_ .

Nach dem I. Hauptsatze ist daher fiir Hy,y,:

1=t Ta=ty

ty ty
| wYvdr,dv,dt+ | | wZ'vdvydtydty | + | | wZ' vdv,dt,dt, |=0.

=g =—§ (011(2) ~& (01;112) T1=—E ~¢€ 0[112 Tg= —&

ty to
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Diese Gleichung gilt fiir alle t,, t, innerhalb den angegebenen Grenzen.
Wir diirfen sie daher partiell nach t; und t, differenzieren; es folgt:

quvdt+ 3t fuZ”vdtldtz—f——a%fuZ’vdtldtzzo .
1

(Ct, t,) (0t t,) (01, 1,)

Dabei ist :

1 ¢ 15 1 1 4, 2, 1 1 e 4, 44
0Po 0@y 02 0y 0%y 3}& 0y 0y dfy of, ofs of,
dr, 0r; Ot; 014 dt; o0, 0ty 01y ot, ot, ot, ot

Y=0¢, dp, 0 0| » Z'==£|0f, 0f, Of, 0fs |, Z"=+|0p, Op; Op; O »

0ty 0T, 0T, 0T, ot, ot, odt, ot, 01, 01, 0T, 01,
ofy 0, 9fy Ofs o of, o, o, ofy 9f Of: Of;
ot ot ot ot ot, ot, dt, ot, ot, ot, dt, ot,

wo fir 7,: 1, und 7, : t, einzusetzen ist.

Da die Normale ins Innere gerichtet sein muB, ist in Z’ und Z” dasselbe
Vorzeichen zu nehmen, d. h. entweder beidemal das obere oder beidemal
das untere. Denn fiir den Spezialfall z = ¢ + ¢, + 4,f,, fiir O, und
z=C-+ 1,0 + 1,7, fir Q ist der Wert Z'= F 1;,Z"= T i,, also die
Behauptung richtig. Durch stetige Transformation kann man aber den
allgemeinen Fall auf diesen zuriickfiihren.

In Z’, Z” hangt nur die Zeile der 681:
1

daher Z' nach t,, Z” nach t, partiell, so ist:

von t,, t, ab. Differenziert man

oz’  oZ"

o, T =0

Somit wird, wie in Fall 2:

f wYvdt 4+ 3 f (w® Z" v - u Z"vk) ) Opy e
(Cty t,) (k) (04, t,) o7y
+ (R Z v - uZ v®) %{—k dt,dt, =0 .
2

Es sei jetzt:

9 0n

or, 01,
F kR —

99 s

or, Ot
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Dann ist Y=Y, F.,,h*k, wo iber die 6 Kombinationen

)
01, 02, 03, 12, 13, 23 zu summieren ist ; ferner sei 2’ =)}’ Zh 81:
(h) 1
—_— %’Zh a(p: , wo die Z, Unterdeterminanten von Z’ , resp. Z” sind :
4 by Oy 1 2, 1, 1 9 1 2 1,
% 9 s Oy 9 s %% 9h 9, % 9h 9%,
Z0:¢ atl atl atl ,Z]_:j: atl atl atl ,Z2:¥ atl at]_ atl ,Za_—_—:i: atl atl at]_
af, af, o, af, o, o af, 3, o 3, o o,
o, 0t Oty oty Ot, oty oty Oty 0ty ot, 0ty Ot

Dann lautet die obige Gleichung:

2 Fy | wYiyvdt— XX | (u®Z,v + uZ,v®)F,,dt,dt,=0 .

(k.0 (Cy t,) (k) (h) (O, t,)

Nun ist ¥, , = — F,,. Daher wird :
2 [ w¥pvdtF,— | (u® Zp+uZ,v®—u® Z,0—uZp™) dt,di, Fyp, ] =0.
(k1) (Cty t,) (Ot t,)

Hier setzt man t, =0, t, = 0. Dann geht O, ; in O, C, , in C iiber.
Da die 6 Grolen I, fiir t; = 0, {, = 0 ganz beliebig angenommen werden
diirfen, so zerfallt unsere Gleichung in die 6 Formeln:

j uY, ,vdt — j' (uPZ, v+uZ, o' — uM Z,v—uZ, v'M) dt, dt, =0 (IV)
©) (9)

h #k

k|
B =0 1,23

Zwischen den Z, findet die Relation statt:
Zy + 1921y + 13250 + 11251, = 0.
Die Y, haben folgende Werte:

PN Yy 1 (P
Yo=\0 04, Yuo=—\% 0k, Yu=|0h 0|,

ot ot ot ot ot ot

1 N 1 Tg 1 1y
Yy = _a_,fg _aj_g,_ ; Yig=— E_f_(_) % , Y3 = ?_f_o _ajl

ot ot ot ot o ot
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Y ,. ist der Vektor, der in C senkrecht auf der Grenzfliche des
Hyperraumes steht, der durch Bewegung von O, parallel zur Ak-
Koordinatenebene entsteht, und der ins Innere dieses Hyperraumes
geht.

Hat O keine Grenzkurve, wie etwa im Falle einer zweidimensionalen
Kugel, so wird aus 1IV:

[ (w® Z,v+ uZ, o) dt,dty, = | (u™ Z,v+ uZ,oW)dt, dt, (IVa)
©) ()
h

|
h;ék,ks_o,l,2,3.

4. Anwendungen

Von den mannigfaltigen Anwendungen der Formeln in 2. und 3. seien
nur folgende kurz angegeben:

a) Nimmt man in ITla v = 1, so folgt:

fu®dZ =0, k=0,1,2,3.
(R)

Diese Formel ist unabhédngig von dem Verhalten von % im Innern H
der geschlossenen Hyperfliche B. Nur mul} % in jedem Punkte von R ein-
deutig und rechtsregular sein.

Ist somit w = f(z) Summe von Ableitungen nach den z, von Funk-
tionen u,, die auf R rechtsregular und eindeutig sind:

w= () = u’ + uf’ + uf + ),

so ist stets:

(f(z)dZ =0 .

(R)
wobei es gleichgiiltig ist, wie die », im Innern H von R sich verhalten.
Man darf daher fiir eine beliebige Funktion w = f(z), die auf R rechts-
requldr und eindeutig wst,
1

= | f(z)dZ

8m? (i)
das Residuwm von f(z) im Innern H von R nennen. Das Residuum ist stets
null, wenn sich f(z) in der vorigen Weise als Summe von Ableitungen von
eindeutigen rechts-reguliren Funktionen auf R darstellen 143t. Von dieser
Tatsache gilt auch die Umkehrung, wie man beweisen kann: Ist das
Residuum von w = f(z) in H null, so ist f(z) Summe von Funktionen
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2’; w®, wo die u, auf der Grenzhyperfliche R von H rechts-regulir und
(k)
eindeutig sind.

b) Bei den Reihenentwicklungen einer rechts-reguliren Funktion
w = f(z) spielen die Funktionen p, , . (2) und g, ,,, (?) eine ent-
scheidende Rolle3). Die erstern iibernehmen die Aufgabe der Potenz-
funktion 2" in der Theorie der analytischen Funktionen einer komplexen
Variablen bei positivem 7, die letztern bei negativem n. Die p-Funktionen
geniigen den Differentialformeln:

OPnynyng (2)
0x,

0Pnyngng (2)
ox,

0Pnynyng (2)

oz, =Prynyng—1(2) -

= pnl—-lngna(z) ) :pn1n2~—1n3(z) ’

Fir die ¢g-Funktionen kann man aus ihnen die Formeln beweisen:

ain Nang (z)
0x4

aQ111n2n3 (Z)

a in figNy (z)
0%,

oz, = ~Gnyngny+1(2) -

= _Qn,+1n2na(z) ) = "inn2+1ns(z) )

Zum Beweise benutzt man die fiir alle |z| < ||, { = (2];; iy, gleich-
mafBig und absolut konvergente Reihe:

A —2)) = qgoo({—2) = :\? 2 Puynang (B) Guyngny (&) 5 [2]<|L] 5

n=0 (n=ny+nys+ng)

Offenbar ist:

0A((—2)"1)  94(({—2) _
o — 5E , k=1,2,3 .

Daher ergibt die Differentiation der Reihe z. B. nach z,, &;:

) 5 Oy
2 ) pnl—lnzna(Z) Iningng (C) =—2 2 Pringng (Z) Iy 2“3@ :

n=1 (n=ny+ng+nj) n=0 (n=n;+ng+ns) 651

Da die Entwicklung nach den p-Funktionen eindeutig ist?), folgen die
Differentialformeln.

Die p-Funktionen sind im endlichen iiberall rechts- und links-regulér,
die g-Funktionen ebenfalls mit Ausnahme des Punktes 0. Ist R irgend

3) Siehe deren Einfithrung in Rud. Fueter: Uber die analytische Darstellung
der regularen Funktionen einer Quaternionenvariablen. Comm. Math. Helv.
t. 8, p. 371, uff.

‘) Siehe meine unter 1) genannte Arbeit, p. 324.
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eine geschlossene Hyperfliche, die im Innern 0 enthalt, so darf man
in IITa

U = qnl'nzna (Z) H] Y == pl’l VaVg (2) ’
setzen. Wegen der Differentialformeln ergibt dann Illa:
f inngna (Z) dzpvl Vo vs(z) = J.in—lngns(z) de111—-1n2n3(z) ’ falls n1>0 ist ’
(R) (R)
= Iinnz——lna(z) devl vz-lva(z) ’ falls n2>0 ISt‘ ’
(R)

= [ @y nyny1(2)8Zp, ., 1(z), falls 0, >0 ist.
(R)

Hieraus kann man sehr einfach durch sukzessive Anwendung in Ver-
bindung mit Hauptsatz I die Formel beweisen :

1
'S‘Panlnzna (2) dz Privavs (Z)

(R)

(1, wenn n,=vw,, k=1,2,3;
~ | 0, wenn fiir wenigstens ein kn,5£v, ist.

Man hat nur fir n,=v,=0, k=1, 2, 3, die Formel direkt zu
berechnen.

(Eingegangen den 15. Juni 1938.)
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